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In this paper we study the asymptotics (as n → ∞) of the sequences of Laguerre
polynomials with varying complex parameters α depending on the degree n. More
precisely, we assume that αn = nAn, and limn An = A ∈ C. This study
has been carried out previously only for αn ∈ R, but complex values of A
introduce an asymmetry that makes the problem more difficult. The main ingredient
of the asymptotic analysis is the right choice of the contour of orthogonality,
which requires the analysis of the global structure of trajectories of an associated
quadratic differential on the complex plane, which may have an independent
interest. While the weak asymptotics is obtained by reduction to the theorem
of Gonchar–Rakhmanov–Stahl, the strong asymptotic results are derived via
the non-commutative steepest descent analysis based on the Riemann–Hilbert
characterization of the Laguerre polynomials.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

One of the motivations of this paper is the asymptotic analysis of the generalized Laguerre polynomials,
denoted by L

(α)
n , with complex varying parameters, whose definition and properties can be found for instance

in Chapter V of Szegő’s classic memoir [22]. They can be given explicitly by

L(α)
n (z) =

n∑
k=0

(
n + α

n− k

)
(−z)k

k! , (1)

or, equivalently, by the well-known Rodrigues formula
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L(α)
n (z) = (−1)n

n! z−αez
(

d

dz

)n[
zn+αe−z

]
. (2)

Expressions (1) and (2) make sense for complex values of the parameter α, showing that L
(α)
n depend

analytically on α. When indeterminacy occurs in evaluating the coefficients in (1), we understand them in
the sense of their analytic continuation with respect to α. With this convention we see that

L(α)
n (z) = (−1)n

n! zn + lower degree terms,

so that degL(α)
n = n for all α ∈ C. Moreover, for any α ∈ C, L(α)

n is the unique (up to a multiplicative
constant) polynomial solution of the differential equation

zy′′(z) + (α + 1 − z)y′(z) + ny(z) = 0, (3)

which shows that every zero of L
(α)
n different from z = 0 must be simple. In fact, multiple zeros (at the

origin) can appear if and only if α ∈ {−1,−2, . . . ,−n}. In this case the reduction formula

L(−k)
n (z) = (−z)k (n− k)!

n! L
(k)
n−k(z),

shows that z = 0 is a zero of L(−k)
n (z) of multiplicity k, see again [22] for details.

Orthogonality conditions satisfied by the Laguerre polynomials can be easily derived from (2) iterating
integration by parts, see e.g. [16]; we reproduce the arguments in Section 4.1 for the sake of completeness.
The weight of orthogonality is the algebraic function zαe−z and the integration goes along a contour in the
complex plane. The classical situation is α > −1, in which case the orthogonality of L(α)

n (x) reduces to

∞∫
0

L(α)
n (x)L(α)

m (x)xαe−x dt = 0, if n �= m.

As a consequence, for α > −1 zeros of L(α)
n (x) are positive and simple.

In this paper we study sequences of Laguerre polynomials with, in general, complex parameters α de-
pending on the degree n. More precisely, we assume that

αn = nAn, and lim
n

An = A ∈ C. (4)

With these hypotheses, but only for real parameters αn, sequences L(αn)
n were studied, in particular, in [16,8]

(weak asymptotics) and in [14,15] (strong asymptotics). This paper is a natural continuation of this study,
although complex values of A introduce an asymmetry that makes the problem more difficult. The main
ingredient of the asymptotic analysis is the right choice of the contour of orthogonality, which is related
to the trajectories of an associated quadratic differential. Precisely the description of the structure of these
trajectories (Section 2) constitutes the core of our contribution.

It is known that under assumptions (4) we need to perform a linear scaling in the variable in order to fix
the geometry of the problem. Thus, we will study the sequence

pn(z) = L(αn)
n (nz) = (−n)n

n! zn + lower degree terms. (5)

The zeros of pn cluster along certain curves in the complex plane, corresponding to trajectories (known also
as Stokes lines) of a quadratic differential, depending on a parameter A, see Fig. 1. This is not surprising:
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Fig. 1. Zeros of L(An)
n (nz) for A = −3 + 2i and n = 30.

as it follows from the pioneering works of Stahl [20], and later of Gonchar and Rakhmanov [11,12], the
support of the limiting zero-counting measure of such polynomials is a set of analytic curves exhibiting the
so-called S-property. They can also be characterized as trajectories of a certain quadratic differential on the
Riemann surface. The explicit expression of the quadratic differential associated to polynomials pn can be
easily derived from the differential equation (3), see [16] for details.

It turns out that for A < −1, the support of the limiting zero-counting measure for pn’s is a simple analytic
and real-symmetric arc, which as A approaches −1, closes itself to form for A = −1 the well-known Szegő
curve [18,22]. When A � 0, the support becomes an interval of the positive semi-axis. Case −1 < A < 0 is
special: generically, the support is connected, and consists of a closed loop surrounding the origin together
with an interval of the positive semi-axis. However, when αn’s are exponentially close to integers, the support
can split into two disjoint components, the closed contour and the interval, see [15] for details.

In the case A /∈ R the trajectories of these quadratic differentials, and subsequently, the support of the
limiting zero-counting measure for pn’s, have not been described; this is done in Section 2, which as we
pointed out, is probably one of the central contributions of this paper.

Being the generalized Laguerre polynomials such a classical object, it is not surprising that their asymp-
totics has been well studied, using different and complementary approaches based on many characterizations
of these polynomials. Many of these results correspond to the case αn > −1, when all their zeros be-
long to the positive semi-axis, see e.g. [10]. Others study the asymptotics with a fixed parameter α, such
as in [1], where additionally many interdisciplinary applications of Laguerre asymptotics are explained.
The Gonchar–Rakhmanov theory was used to find the weak asymptotics (or asymptotic zero distribution)
of pn’s for general αn ∈ R satisfying (4), see [16]; we extend it to complex αn’s in this work, see Sec-
tion 4.2. The critical case A = −1 in this context was analyzed in [8], using the extremality of the family
of polynomials.

The non-linear steepest descent method of Deift–Zhou introduced in [6], and further developed in [5]
and [7] (see also [2]), based on the Riemann–Hilbert characterization of orthogonality by Fokas, Its, and
Kitaev [9], is an extremely powerful technique, rendering exhaustive answers in cases previously intractable.
Following this approach, Kuijlaars and McLaughlin [14,15] found the strong asymptotics in the whole
complex plane for the family {pn} and arbitrary values of A ∈ R. The crucial ingredient of this asymptotic
analysis is the choice of an appropriate path of integration on the complex plane, based on the structure of
the trajectories of the associated quadratic differential.

Taking advantage of the results of Section 2 we prove the existence and describe such paths of integration,
which allows us to carry out the steepest descent analysis in the spirit of Kuijlaars and McLaughlin. As
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a result, we obtain in Section 4.2 the detailed strong asymptotics for the rescaled Laguerre polynomials pn.
This also sheds light on one of the open questions mentioned in [1].

The generalized Bessel polynomials B
(α)
n can be defined as

B(α)
n (z) = znL(−2n−α+1)

n

(
2
z

)
.

The asymptotic distribution of their zeros and their strong asymptotics is a straightforward consequence of
Theorems 3 and 4 below, by replacing A �→ −(A + 2) and z �→ 2/z.

2. Trajectories of a family of quadratic differentials

Let A ∈ C be a complex parameter, for which we define the monic polynomials

D(z) = DA(z) = (z −A)2 − 4z = (z − ζ+)(z − ζ−),

with

ζ± = ζ±(A) = A + 2 ± 2
√
A + 1 = (1 ±

√
A + 1 )2. (6)

Since DA is real-symmetric with respect to the parameter A, without loss of generality we can assume in
what follows that Im(A) � 0, and that the square root in (6) stands for its main branch in the closed upper
half plane. In what follows, we use the notation

C+ = {z ∈ C: Im z > 0}, C− = {z ∈ C: Im z < 0},

while as usual, R− and R+ stand for the open positive and negative real semi-axes, respectively.
On the Riemann sphere C we define the quadratic differential

�A = −D(z)
z2 dz2,

written in the natural parametrization of the complex plane. Its horizontal trajectories (or just trajectories
in the future) are the loci of the equation

Re
z∫ √

D(t)
t

dt ≡ const;

the vertical or orthogonal trajectories are obtained by replacing Re by Im in the equation above. The
trajectories and the orthogonal trajectories of �A produce a transversal foliation of the Riemann sphere C.

In order to study the global structure of these trajectories on the plane we start by observing that �A

has two zeros, ζ±, that are distinct and simple if and only if A �= −1, and a double pole at the origin if
A �= 0, with

�A =
(
−A

z2 + O
(
z−1)) dz2, z → 0.

Another pole of �A is located at infinity and is of order 4; with the parametrization u = 1/z,

�A =
(
− 1
u4 + O

(
u−3)) du2, u → 0.

Points from C \ {0, ζ−, ζ+,∞} are regular.
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Fig. 2. The local trajectory structure of �A near the origin when ImA = 0 (left), ReA = 0 (center) and in the rest of the cases
(A �= 0).

The local structure of the trajectories is well known (see e.g. [13,17,21,23]). At any regular point trajec-
tories look locally as simple analytic arcs passing through this point, and through every regular point of
�A passes a uniquely determined horizontal and uniquely determined vertical trajectory of �A, that are
locally orthogonal at this point [21, Theorem 5.5].

For A �= −1, 0, there are 3 trajectories emanating from ζ± under equal angles 2π/3. In the case of the
origin, the trajectories have either the radial, the circular or the log-spiral form, depending on the vanishing
of the real or imaginary part of A, see Fig. 2.

Regarding the behavior at infinity, we infer that the imaginary axis is the only asymptotic direction of
the trajectories of �A; there exists a neighborhood of infinity D such that every trajectory entering D tends
to ∞ either in the +i∞ or −i∞ direction, and the two rays of any trajectory which stays in D tend to ∞
in the opposite asymptotic directions [21, Theorem 7.4].

A trajectory γ of �A starting and ending at ζ± (if exists) is called finite critical or short; if it starts at
one of the zeros ζ± but tends either to the origin or to infinity, we call it infinite critical trajectory of �A.
In a slight abuse of terminology, we say that such an infinite critical trajectory, if it exists, joins the zero
with either the origin or the infinity.

The set of both finite and infinite critical trajectories of �A together with their limit points (critical
points of �A) is the critical graph ΓA of �A.

In this section we describe the global structure of the trajectories of �A, essentially determined by the
critical graph ΓA, as well as of its orthogonal trajectories. Usually, the main troubles come from the existence
of the so-called recurrent trajectories, whose closure may have a non-zero plane Lebesgue measure. However,
since �A has two poles, Jenkins’ Three Pole theorem asserts that it cannot have any recurrent trajectory
(see [21, Theorem 15.2]).

One of the main result of this section is the following theorem, which collects the properties of the critical
graph of �A (see Fig. 3).

Theorem 1. For any A ∈ C there exists a short trajectory γA of �A, joining ζ− and ζ+.
If A /∈ R, this trajectory is unique, homotopic in the punctured plane C \ {0} to a Jordan arc con-

necting ζ± in C \ R+, and it intersects the straight segment, joining ζ− and ζ+, only at its endpoints, ζ−
and ζ+.

Furthermore, for A ∈ C+ the structure of the critical graph ΓA of �A is as follows:

• the short trajectory γA of �A, joining ζ− and ζ+;
• the unique infinite critical trajectory σ0 of �A emanating from ζ− and diverging to the ori-

gin;
• the critical trajectory σ−, emanating from ζ− and diverging towards −i∞;
• two critical trajectories σ↑+ and σ↓+, emanating from ζ+ and diverging towards +i∞ and −i∞, respec-

tively.
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Fig. 3. Typical structure of the critical graph ΓA for the trajectories (continuous line) and orthogonal trajectories (dotted line) of
�A for Re(A + 1) = 0 (left), ReA = 0 (center) and in the rest of the cases with A ∈ C+.

ΓA splits C into three connected domains, two of them of the half-plane type. The domain, bounded by
σ− ∪ γA ∪ σ↓+, with the inner angle 2π/3 at ζ+, is a strip domain and contains the origin.

In other words, we claim that in the non-real case the critical graph of �A is made of one short and 4
infinite critical trajectories. The notion of half-plane and strip domains essentially means that

z∫ √
DA(t)
t

dt

is a conformal mapping of this domain onto a vertical half-plane or a vertical strip, respectively. See Propo-
sition 2 below or [21, §10] for details.

For A ∈ R the structure of ΓA has been thoroughly discussed in [14–16]. When A > −1, ζ± are real,
one of the short trajectories is the real segment joining ζ− with ζ+, and the second one is a closed loop
emanating from the leftmost zero ζ− and encircling 0. When A < −1, ζ− is the complex conjugate of ζ+,
there are two different short trajectories, joining ζ− with ζ+, such that their union separates the origin from
infinity. Case A = −1 is degenerate, when ζ− = ζ+ = 1. Hence, in our analysis we will concentrate on the
case A /∈ R, and thus with our previous assumption, Im(A) > 0, although the final results include A ∈ R as
the limit case.

For the benefit of the reader we describe first the general scheme of the proof of Theorem 1 before giving
the technical details. The proof actually spans several lemmas and comprises the following steps:

• Since we are interested in the (unique) short critical trajectory connecting both zeros of DA, we start
by studying the dependence of ζ± from the parameter A;

• from the perspective of the existence of this trajectory it is also important to calculate the possible
values of the integral

∫ ζ+
ζ−

t−1
√
DA(t)+ dt; this is done in Lemma 2;

• a key fact that allows us to “test” the admissibility of a hypothetical structure of ΓA is the so-called
Teichmüller’s lemma (formula (11)). Two of it straightforward consequences are Lemmas 3 and 4, which
discuss the case of two infinite critical trajectories diverging simultaneously either to 0 or infinity. Their
combination yields the existence of exactly one infinite critical trajectory (joining a zero of �A with the
origin) and of exactly one short trajectory connecting ζ− and ζ+ (Corollary 1);

• we conclude the proof of the structure of ΓA appealing again to the Teichmüller’s lemma.
• the claim made in the statement of Theorem 1 about the intersection of the short trajectory with the

straight segment, joining ζ− and ζ+, requires an additional calculation, see Lemma 5.
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Fig. 4. Domain of ζ+(A) (left) and ζ−(A) (right) for Im(A) > 0. The zero ζ−(A) is in the lower half plane if and only if (Im(A))2 <
−4 Re(A) and Im(A) > 0.

• As a bonus, we also discuss an alternative argument for the existence of a short trajectory joining ζ±,
which might be applicable to more general situations (Remark 2).

We finish this section discussing the structure of the orthogonal trajectories of �A.
Now we turn to the detailed proofs, clarifying the possible location of the zeros ζ± on the plane (see

Fig. 4).

Lemma 1. Let τ be the locus of the parabola on C given parametrically by {1 − t2 + 2it: t ∈ R}. Then

• A �→ ζ+(A) is the conformal mapping of C+ onto the domain in C+ bounded by the ray [1,+∞) and by
τ ∩ C+. In this mapping, the boundary [−1,+∞) corresponds to [1,+∞), while (−∞,−1) corresponds
to τ ∩ C+.

• A �→ ζ−(A) is the conformal mapping of C+ onto the domain in C bounded by the ray [0,+∞) and by
τ ∩C−. In this mapping, the boundary R+ corresponds to itself, the interval [−1, 0] corresponds to [0, 1],
while R− corresponds to τ ∩ C−. Moreover, the pre-image of R− is the parabola in the upper A-half
plane, given parametrically by {−t2 + 2it ∈ C: t � 0}.

Remark 1. Loosely, we can describe the dynamics of ζ±(A) when A travels the boundary R of C+ from −∞
to +∞ as follows: both ζ−(A) and ζ+(A) come from infinity moving along τ in the upper (ζ+) and in the
lower (ζ−) half plane, respectively, and hit the real line at 1 simultaneously for A = −1. At that moment,
ζ+(A) starts moving to the right along the upper side of [1,+∞), while ζ−(A) moves to the left, traveling
the real line until the origin along its lower side. It reaches the origin for A = 0; after that it “climbs” to
the upper side of R+ and moves monotonically to +∞.

Proof. Let
√
z denote the main branch of the square root in C \R−. Then it is easy to see that (1 +

√
z )2

is a conformal mapping of the upper half plane onto the domain bounded by the ray [1,+∞) and the locus
of the parabola τ ∩ C+ (see the shadowed domain in Fig. 4, left). From (6) it follows that this is precisely
the domain of ζ+(A) when Im(A) > 0; furthermore, ζ+(A) is real (and thus, � 1) if and only if A � −1.

On the other hand, (1 − √
z )2 is a conformal mapping of the the upper half plane onto the shadowed

domain in Fig. 4, right, bounded by the positive semi-axis and the locus of the parabola τ ∩ C−. Observe
also its boundary behavior: R+ corresponds to itself, the interval [−1, 0] is mapped onto [0, 1], while the
negative semi axis corresponds to the locus of the parabola mentioned above. Moreover, the pre-image of
the negative semi-axis is precisely τ ∩ C+.

From (6) it follows that this domain is the image of C+ by A �→ ζ−(A). In particular, ζ−(A) is positive
only when A � −1, and then ζ−(A) � ζ+(A). When A tends to a value on (−1, 0), the corresponding ζ−(A)
approaches the interval (0, 1) from the lower half plane, but if A tends to a point on R+, the zero ζ−(A)
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approaches R+ from the upper half plane. We also see that ζ−(A) is negative when A lies on the locus of
the parabola given parametrically by {z = −t2 + 2it ∈ C: t � 0} (in which case, ζ+(A) /∈ R). Furthermore,
ζ−(A) is in the lower half plane if and only if

(
Im(A)

)2
< −4 Re(A) and Im(A) > 0.

In particular, if A lies in the open first quadrant, both zeros ζ±(A) are in the upper half plane. �
We consider the family of Jordan arcs in the punctured plane C \ {0}, connecting ζ+ and ζ−. Each such

an arc is oriented from ζ− to ζ+, which induces also its “+” (left) and “−” (right) sides. Let us denote by
FA the subfamily of such arcs, homotopic in C\{0} to a Jordan arc in C\R+ (in other words, each γ ∈ FA

can be continuously deformed in C \ {0} to an arc not intersecting the positive real axis).

Lemma 2. Assume that A ∈ C+, and that γ is a Jordan arc in the punctured plane C \ {0}, from ζ− to ζ+.
Denote by

√
DA(z) the single-valued branch of this function in C \ γ determined by the condition

lim
z→∞

√
DA(z)
z

= 1, (7)

and let
√
DA(z)+ stand for its boundary values on the + side of γ.

Then

∫
γ

√
DA(t)+
t

dt =
{

2πi, if γ ∈ FA,

2πi(A + 1), otherwise. (8)

Proof. With A ∈ C+, assume that γ ∈ FA, and consider the following auxiliary function

f(z) =
√

DA(z)
z −A

=

√
1 − 4z

(z −A)2 ,

holomorphic in C \ (γ ∪ {A}), and such that f(∞) = 1. According to our analysis of the location of the
zeros ζ±, we can find the value of f(0) continuing it analytically from +∞ along the positive semi-axis.

Clearly, f(0) ∈ {−1,+1}. Assumption that f(0) = −1 implies that the image of (0,+∞) by f must cross
the imaginary axis, so that there exists a value x > 0 for which

1 − 4x
(x−A)2 � 0,

or equivalently, if x2 − 2(A + 2r)x + A2 = 0 for x > 0 and r ∈ [0, 1). Since the discriminant of this last
equation is 4r(A + r), this is impossible for A ∈ C \ [−1,+∞), and we conclude that f(0) = 1, or in other
words,

√
DA(0) = −A for γ ∈ FA. Obviously, if γ /∈ FA, then

√
DA(0) = A, so that

√
DA(0) =

{
−A, if γ ∈ FA,

A, otherwise. (9)

Denote

I = 1
πi

∫ √
DA(t)+
t

dt,
γ
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so that

I = 1
2πi

∮ √
DA(t)
t

dt = res
t=0

√
DA(t)
t

+ res
t=∞

√
DA(t)
t

=
√

DA(0) + res
t=∞

√
DA(t)
t

.

Since √
DA(t)
t

= 1 − A + 2
t

+ O
(
t−2), t → ∞, (10)

we have

res
t=∞

√
DA(t)
t

= A + 2.

Now (8) follows from (9). �
Recall that in our analysis we assume that A ∈ C+. In this situation, due to the local structure of the

trajectories, we cannot have closed loops, and we can assert that the critical graph ΓA of �A consists of at
most 6 trajectories (finite or not), and all the remaining trajectories diverge in both directions, being their
limits either 0 or ∞.

We can get additional information about the structure of ΓA using the Teichmüller’s lemma, see [21,
Theorem 14.1]. We understand by a �A-polygon any domain limited only by trajectories or orthogonal
trajectories of �A. If we denote by zj its corners, by nj the multiplicity of zj as a singularity of �A (taking
nj = 1 if zj ∈ {ζ−, ζ+}, nj = 0 if it is a regular point, and nj < 0 if it is a pole), and by θj the corresponding
inner angle at zj , then

∑
j

βj = 2 +
∑
i

ni, where βj = 1 − θj
nj + 2

2π , (11)

and the summation in the right hand side goes along all zeros of �A inside the �A-polygon. In consequence,
for a �A-polygon Ω not containing ζ± inside we have

∑
j

βj =
{

2, if 0 /∈ Ω,

0, if 0 ∈ Ω.

Straightforward calculation allows us to list the possible values for βj ’s at corners zj of a feasible
�A-polygon:

• if zj is a regular point we have

βj =
{

1/2, if θj = π/2,
−1/2, if θj = 3π/2.

• if zj ∈ {ζ−, ζ+}, and the two sides of Ω confluent at zj belong to the same family of trajectories, we
have

βj =
{

0, if θj = 2π/3,

−1, if θj = 4π/3.



M.J. Atia et al. / J. Math. Anal. Appl. 416 (2014) 52–80 61
If on the contrary a horizontal and a vertical trajectories intersect at zj as sides of Ω, we have

βj =

⎧⎨⎩
1/2, if θj = π/3,
−1/2, if θj = π,

−3/2, if θj = 5π/3.

• At zj = ∞ we can only have θj ∈ {0, π}, with nj = −4, so that

βj =
{

1, if θj = 0,
2, if θj = π.

Let us point out that the Teichmüller’s lemma is applicable also to zj = 0, in which case we always take
βj = 1. Indeed, if two trajectories diverge simultaneously to z = 0, there is always an orthogonal trajectory
(either also diverging to z = 0, if ReA �= 0, or looping around the origin otherwise) intersecting both at
the right angles. To each of these two corners, formed in this way, it corresponds the value of β = 1/2, so
their sum is 1. Making the intersection points approach the origin we see that in the limit we can consider
βj = 1 for zj = 0.

An immediate consequence of the calculations above is the following

Lemma 3. Assume that there exist two infinite critical trajectories γ1, γ2, emanating from a zero (ζ− or
ζ+) and diverging to infinity. Let Ω be the infinite domain whose boundary is γ1 ∪ γ2, with the inner angle
θ = 2π/3 at this zero. Then 0 /∈ Ω, and γ1 and γ2 diverge to ∞ in the opposite directions.

In particular, all three trajectories (or orthogonal trajectories) emanating from a zero cannot diverge
simultaneously to ∞.

Proof. Indeed, in this case the left hand side in (11) can take only values 1 or 2, with 2 corresponding to
the angle π at infinity. The conclusion follows immediately from identity (11).

The last conclusion is also straightforward: if all three trajectories emanating from a zero diverge simul-
taneously to ∞, they split the complex plain into three disjoint domains, but 0 cannot belong to either
one. �

Another consequence of the Teichmüller’s lemma is the following conclusion:

Lemma 4. If A /∈ R, there cannot exist two infinite critical trajectories emanating from ζ± and diverging to
the origin.

In the same vein, if Re(A+1) = 0, there cannot exist two infinite critical orthogonal trajectories emanating
from ζ± and diverging to the origin.

Proof. As usual, A ∈ C+; consider the case Re(A) �= 0, and assume that there are two infinite critical
trajectories γ±, both joining a zero with the origin.

Under our assumption on A, the local structure of horizontal and vertical trajectories at the origin is the
same. Let us denote by σ an orthogonal trajectory diverging to the origin. It necessarily intersects both γ−
and γ+ infinitely many times. We denote by P1 one of the intersections of σ with, say, γ−. Let P2 be the
first time the ray of σ emanating from P1 towards 0 meets γ+, and P3 its next intersection with γ− (see
Fig. 5).

Assume first that both γ± emanate from the same zero. Consider the bounded �A-polygon limited by
the union of the arcs of γ− and γ+ joining the zero of �A with P1 and P2, respectively, and the arc of σ
joining P1 and P2. Clearly, for such a �A-polygon the right hand side of (11) is equal to 2. On the other
hand, we have seen that the value of βj at the zero can be either 0 or −1, while at P1 and P2, βj = 1/2.
Thus, formula (11) cannot hold.
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Fig. 5. Local structure of two trajectories (continuous lines) and orthogonal trajectories (discontinuous line) of �A near the origin
with A, iA /∈ R.

Suppose now that γ± emanate from different zeros. Let us consider two paths joining ζ− and ζ+. One
path is the union of the arc of γ− from ζ− to P3, the arc of σ from P3 to P2, and the arc of γ+ from P2 to
ζ+. The other one is the union of the arc of γ− from ζ− to P1, the arc of σ from P1 to P2, and the arc of γ+

from P2 to ζ+. It is easy to see that the difference of these two paths consists of the closed curve encircling
the origin (the union of the arc of γ− joining P1 and P3 and the arc of σ joining P1 and P3 through P2).
Hence, γ− and γ+ are not homotopic on C \ {0}. It means that the integral in (8) along both paths take
different values from the right hand side in (8). In particular, along one of the two paths the integral is
purely imaginary, which contradicts the fact that a non-trivial portion of the path goes along the orthogonal
trajectory joining P2 with either P1 or P3. This contradiction settles the proof.

All these considerations apply to the case Re(A) = 0, with the simplification that now γ± are Jordan
arcs, and σ is a closed Jordan curve, encircling the origin.

Finally, the case Re(A+ 1) = 0 is analyzed in the same vein, by exchanging the roles of trajectories and
orthogonal trajectories in the last proof. �

Combining Lemmas 3 and 4 we obtain the following important

Corollary 1. If A ∈ C+, there exist:

• exactly one infinite critical trajectory joining a zero of �A with the origin; it emanates from ζ−,
• exactly one short (finite critical) trajectory connecting ζ− and ζ+.

Proof. Consider the three trajectories emanating from a zero, say ζ−. By Lemma 3, they cannot diverge
simultaneously to ∞, so among them there is at least one short or one infinite critical trajectory diverging
to 0. Notice that a short trajectory that starts and ends at the same zero creates a loop, and thus is boundary
of a ring domain (see [21, Ch. IV]) containing the origin. According to the local structure of trajectories at
z = 0, described above (see Fig. 2), this is impossible for A /∈ R.

Since the same considerations apply to the other zero of �A, we conclude that among all trajectories
emanating from a zero of �A there is at most 4 diverging to infinity, at most 1 diverging to the origin, and
no loops. This immediately implies the existence of a short trajectory connecting ζ− and ζ+.

Furthermore, according to Lemma 2, for A /∈ R,

Re
ζ+∫ √

DA(t)
t

dt = 0

ζ−
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can hold only if we integrate along a path in the homotopy class FA. Since two different short trajectories
cannot belong to the same homotopy class in C\{0}, we conclude that there is at most one short trajectory.
This proves that the short trajectory is exactly one, and implies existence of an infinite critical trajectory
connecting a zero with the origin.

Finally, by Lemma 4 and continuous dependence of �A from A it follows that the infinite critical trajectory
diverging to 0 must emanate from the same zero ζ±(A) for all A ∈ C+. It is sufficient then to analyze the
case A+ iε, with A > 0 and ε > 0. Recall that for A > 0, 0 < ζ−(A) < ζ+(A); the critical graph ΓA consists
of the interval [ζ−(A), ζ+(A)], two critical trajectories emanating from ζ+(A) and diverging towards ±i∞,
and a closed loop emanating from ζ−(A) and enclosing the origin.

We have seen that both ζ−(A + iε) and ζ+(A + iε) are in the upper half plane, close to their original
positions ζ±(A). By continuity, for small values of ε > 0 there still are two critical trajectories emanating
from ζ+(A + iε) and diverging towards ±i∞. However, the closed loop can no longer exist; it breaks into
two critical trajectories starting at ζ−(A + iε). As we have seen, one of these trajectories must diverge to
the origin. �

The combination of Corollary 1 with the lemmas above yields the existence of the critical trajectories
described in Theorem 1, for which we will use the notation introduced there.

Consider the �A-polygon, bounded by the two trajectories σ↑+ and σ↓+, with the inner angle 2π/3 at
ζ+. By Lemma 3, this �A-polygon does not contain the origin, and σ↑+ and σ↓+ diverge in the opposite
vertical directions (which justifies the notation).

Let us consider now a �A-polygon Ω, bounded by σ− ∪ γA and one of the two trajectories σ↑+, σ↓+,
with the inner angle 2π/3 at ζ+ (see Fig. 3). The analysis based on the Teichmüller’s lemma above shows
that Ω can be only of one of the following two types:

• the inner angle of Ω at ζ− is 2π/3, 0 /∈ Ω, and the inner angle at ∞ is π, or
• the inner angle of Ω at ζ− is 4π/3, 0 ∈ Ω, and the inner angle at ∞ is 0.

In particular, both �A-polygons with the inner angle 2π/3 at ζ+, bounded by σ− ∪ γA ∪ σ↑+ and by
σ− ∪ γA ∪ σ↓+, respectively, must be of different type. This leaves us with the unique configuration for ΓA,
up to complex conjugation. This configuration is determined by the asymptotic direction of σ− at infinity,
which remains invariant for all A ∈ C+. But for A < −1 we know that σ− tends to −i∞ (see [14]), which
establishes the corresponding assertion of Theorem 1.

Remark 2. Let us discuss an alternative approach to the proof of the existence of a short trajectory joining
ζ±, which is more general and can be applied in other similar situations. We introduce the set A ⊂ C defined
by

A = {A: there exists a short trajectory γA for �A joining ζ±}.

From [14–16] it follows that R ⊂ A.
We claim that A is open in C. Assume that A ∈ A \ R; in particular, the integral in (8) taken along

γA in the appropriate direction is equal to 2πi. By continuity of the quadratic differential �A, for every
ε > 0 there exists δ > 0 such that for any A′ ∈ C satisfying |A′ − A| < δ, there exists a trajectory of �A′

emanating from ζ−(A′) and intersecting the ε-neighborhood Uε of ζ+(A′); let us denote it by γA′ . Obviously,
the intersection of γA′ with Uε is an arc of a horizontal trajectory of �A′ by definition. If γA′ is not critical
(i.e., if it does not intersect ζ+(A′)), then by the local structure of trajectories at a simple zero, we may
assume that δ > 0 is small enough so that γA′ is intersected by an orthogonal trajectory σ emanating
from ζ+(A′). But in this case the path of integration in (8) that follows the arc of γA′ from ζ−(A′) to the
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intersection point and then continues to ζ+(A′) along σ, cannot render a purely imaginary integral. This
contradiction shows that the whole small neighborhood of A is still in A.

On the other hand, A is closed in C. Indeed, imagine that An ∈ A converge to A /∈ R, so that ζ±(An) →
ζ±(A). For each An, there exists the (unique) short trajectory γAn

joining ζ±(An). It is easy to see that
the limit set of the sequence {γAn

} (in the Hausdorff metrics) is either another short trajectory connecting
ζ±(A), or a union of two infinite critical trajectories, connecting each ζ±(A) with the origin. But the last
case is forbidden by Lemma 4, which concludes the proof that A = C.

Let us prove finally the statement about the intersection of γA with the straight segment, joining ζ− and
ζ+, which we in a slight abuse of notation denote by [ζ−, ζ+].

Lemma 5. For A ∈ C \ [−1,+∞),

γA ∩ [ζ−, ζ+] = {ζ−, ζ+}.

Proof. Using the parametrization t(s) = rs+ζ−, r = ζ+−ζ− = 4
√
A + 1, s ∈ [0, 1], for the segment [ζ−, ζ+]

we obtain that

z∫
ζ−

√
DA(t)
t

dt = r2

i

x∫
0

√
s(1 − s)
|t(s)|2 t(s) ds, z = z(x), x ∈ [0, 1],

where we integrate along [ζ−, ζ+] from ζ− to a certain point z = z(x). In particular,

Re
z∫

ζ−

√
DA(t)
t

dt =
x∫

0

√
s(1 − s)
|t(s)|2 Im

(
r2t(s)

)
ds

= |r|2
x∫

0

√
s(1 − s)
|t(s)|2

(
Im(r)s + Im

(
r2

|r|2 ζ−
))

ds.

In this expression,
√

s(1 − s) preserves sign as long as the segment (path of integration) does not cross γA.
Thus, between any two consecutive points of intersection of [ζ−, ζ+] with γA, function

�(s) = Im(r)s + Im
(

r2

|r|2 ζ−
)

must change sign. But � is a linear function in s, � �≡ 0 for A ∈ C \ [−1,+∞), and in consequence, it can
change sign at most once on [0, 1]. This proves the lemma. �

Although the orthogonal trajectories of �A, defined by

Im
z∫ √

DA(t)
t

dt ≡ const,

will not play a significant role in the asymptotic analysis of the Laguerre polynomials, their structure has
an independent interest. Thus, we conclude this section with its brief description:
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Proposition 1. Assume A ∈ C+ such that Re(A + 1) �= 0 and Re(A) �= 0. Then

1. There are exactly two infinite critical orthogonal trajectories, each joining one of the zeros ζ± with the
origin.

2. The other two orthogonal trajectories emanating from ζ− (resp., ζ+) diverge to ∞ in the opposite
horizontal directions.

3. A critical orthogonal trajectory starting at either zero in the direction to a connected component of
C\ΓA not containing the origin among its boundary points, stays in this connected component diverging
to infinity.

Recall that ΓA is the critical graph of �A, described in Theorem 1.

Proof. With our assumption A ∈ C+, A /∈ iR, due to the local structure of the orthogonal trajectories, we
cannot have closed loops, and we can assert that there are at most 6 critical orthogonal trajectories (finite
or not), and all the remaining orthogonal trajectories diverge in both directions, being their limits either 0
or ∞.

Lemma 3 shows that all three orthogonal trajectories emanating from a zero ζ± cannot diverge simulta-
neously to ∞, while by Lemma 2, and in particular, by formula (8), a short orthogonal trajectory joining ζ±
is not possible if Re(A+1) �= 0. Thus, there should exist at least one orthogonal trajectory connecting each
zero with the origin. Arguments used in the proof of Lemma 4 imply that each zero cannot be connected
with 0 by more than one orthogonal trajectory. This establishes that there are exactly one such trajectory
for each zero. The remaining critical trajectories must necessarily diverge to ∞, and the conclusion about
their asymptotic directions follows from the local structure at infinity.

The conclusion in 3 is a consequence again of the Teichmüller’s lemma: assume that such an orthogonal
trajectory intersects the boundary of the connected component of C \ ΓA, forming a �A-polygon, not
containing the origin, and with the inner angles π/3 at the zero of �A, and π/2 at the intersection of the
horizontal and vertical trajectories. But this configuration is forbidden by formula (11). �

Cases A ∈ iR or (A + 1) ∈ iR are somewhat special. If A ∈ iR, the local structure of the orthogonal
trajectories at the origin (see Fig. 2) shows that there is at least one (and hence, only one) closed critical
orthogonal trajectory connecting a zero with itself and encircling the origin. The other orthogonal trajectory
emanating from the same zero diverges to ∞. All three orthogonal trajectories emanating from the other
zero also diverge to ∞.

If A ∈ C+, Re(A+1) = 0, then the horizontal and vertical critical graphs of �A have the same structure,
see again Fig. 3 illustrating the three generic situations.

3. Auxiliary constructions

The distinguished pervasive short trajectory γA plays an essential role in the asymptotics of the Laguerre
polynomials with complex varying coefficients. As we will show below, it carries (again, asymptotically) the
zeros of the rescaled polynomials (5), see Fig. 8.

Thus, for A ∈ C+ we use for convenience the notation

RA(z) =
√

DA(z), z ∈ C \ γA, (12)

with the branch of the square root fixed by the asymptotic condition (7). We introduce two analytic func-
tions,
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φ(z) = 1
2

z∫
ζ+

RA(t)
t

dt and φ̃(z) = 1
2

z∫
ζ−

RA(t)
t

dt. (13)

We take φ defined in the simply connected domain D = C \ (σ− ∪ σ0 ∪ γA), while φ̃ is defined in D̃ =
C \ (σ0 ∪ γA ∪ σ↑+), see Fig. 6. In this way, both functions are single-valued in their respective domains of
definition, as well as in the common domain

Ω = D ∩ D̃ = C \ (σ− ∪ σ0 ∪ γA ∪ σ↑+),

which consists of two simply-connected disjoint components. We take the curve σ−∪γA∪σ↑+ oriented from
−i∞ to +i∞, and consistently, the left component of Ω, not containing the origin on its boundary, is Ω+,
while the other component is Ω−. By the structure of ΓA, domain Ω+ contains the asymptotic direction
−∞, while Ω−, the asymptotic direction +∞.

Proposition 2. With the notations above,

φ̃(Ω+) = {z ∈ C: Re z < 0},

φ̃
(
Ω

(1)
−

)
=

{
z ∈ C: 0 < Re z < π Im(A)

}
,

φ̃
(
Ω

(2)
−

)
=

{
z ∈ C: Re z > π Im(A)

}
. (14)

In consequence, φ̃ establishes a bijection between D̃ and the complex plane C cut along two vertical slits,
joining 0 and −πi(A + 1) with +i∞, respectively.

Analogously,

φ(Ω+) = {z ∈ C: Re z < 0},

φ
(
Ω

(1)
−

)
=

{
z ∈ C: −π Im(A) < Re z < 0

}
,

φ
(
Ω

(2)
−

)
= {z ∈ C: Re z > 0}.

In particular,

Reφ(z) < 0 for z ∈ Ω+ ∪Ω
(1)
− . (15)

Proof. To begin with, consider the conformal mapping w = φ̃(z) of the domain Ω. Notice that the critical
graph ΓA splits the domain Ω into three simply connected subdomains: one is Ω+, and the other two are
Ω

(1)
− and Ω

(2)
− , such that Ω

(2)
− is bounded only by σ↓+ and σ↑+, see Fig. 6.

The boundary of Ω+ consists of critical trajectories only, so that using the definition of φ̃ it is straight-
forward to see that φ̃(Ω+) is the left half plane. Moreover, by (8),

lim
Ω+	z→ζ+

φ̃(z) = πi, (16)

and the + side of the short trajectory γA is mapped onto the vertical segment [0, πi].
On the other hand, the “−” side of σ− and the “+” side of σ0 (oriented from the origin to ζ−) are mapped

onto the imaginary axis. There are two asymptotic directions to ζ− from Ω
(1)
− ; for one of them (from the

“+” side of σ0) by definition

lim φ̃(z) = 0.

z→ζ−
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Fig. 6. Domains of Ω \ ΓA (left), and their images by the conformal mapping φ̃.

For the other direction, from the “−” side of σ0,

lim
z→ζ−

φ̃(z) = 1
2

∮
RA(t)

t
dt = πi res

t=0

RA(t)
t

= πiRA(0) = −πiA, (17)

where the contour of integration encircles the origin in the anti-clockwise direction, and where we have used
(9). Observe that

Re(−πiA) = π Im(A) > 0

for A ∈ C+. Thus, the boundary (σ0)− ∪ (γA)− ∪ σ↓+ is mapped onto the vertical line in the right half
plane, passing through π Im(A). By (8),

lim
Ω

(1)
− 	z→ζ+

φ̃(z) = −πi(A + 1), (18)

so that (γA)− corresponds by φ̃(z) to the vertical segment [−πi(A+ 1),−πiA]. This concludes the proof of
(14).

The corresponding results for function φ are established using the following connection formula:

φ(z) =
{
φ̃(z) − πi, for z ∈ Ω+,

φ̃(z) + πi(1 + A), for z ∈ Ω−,

which is a direct consequence of formulas (16), (18) and the definition of φ:

lim
Ω+	z→ζ+

φ̃(z) = πi, lim
Ω−	z→ζ+

φ̃(z) = −πi(A + 1), lim
Ω±	z→ζ+

φ(z) = 0. �
Observe also that with Proposition 2 we conclude the proof of Theorem 1. Our main result of the first

part of this section is the following

Corollary 2. There exist two analytic curves, Σ+ and Σ−, in Ω− \R+, emanating from ζ+ and ζ−, respec-
tively, and diverging to infinity in the asymptotic direction +∞, and such that

Reφ(z) > 0 for z ∈ Σ−, and Re φ̃(z) > 0 for z ∈ Σ+.
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From the considerations at the end of Section 2 it follows that one instance of Σ+ could be the orthogonal
trajectory of �A emanating from ζ+ and diverging in the +∞ direction, see Fig. 3 or Fig. 8 below. However,
this fact is not so relevant; what really matters for our further analysis is the existence of both curves stated
in this Corollary.

In what follows we will make use of the contour

ΣA = Σ− ∪ γA ∪Σ+, (19)

oriented clockwise, in such a way that ΣA is not homotopic to a point in C \ R+, and the origin remains
on the right of the curve. Observe that ΣA is not uniquely determined due to the freedom in the choice of
Σ±, although γA is.

We turn now to the second goal of this section. The main tools for the study of the weak asymptotic
behavior of polynomials satisfying a non-hermitian orthogonality were developed in the seminal works of
Stahl [20] and Gonchar and Rakhmanov [12]. They showed that when the complex analytic weight function
depends on the degree of the polynomial, the limit zero distribution is characterized by an equilibrium
problem on a compact set in the presence of an external field; this compact set must satisfy a symmetry
property with respect to the external field.

For any positive Borel measure μ on C, such that∫
|z|�1

log |z| dμ(z) < +∞,

we can define its logarithmic potential

V μ(z) = −
∫

log |t− z| dμ(t).

Given A, Im(A) > 0, consider the harmonic external field

ψ(z) = −Re(A)
2 log |z| + Im(A)

2 arg(z) + Re(z)
2

in C \ R+, where we take the main branches of log and arg. Let also the contour ΣA be as defined in (19).
It is known that the (unique) probability equilibrium measure μ on ΣA in the external field ψ can be

characterized by the property

V μ(z) + ψ(z)
{= � = const, for z ∈ supp(μ),

� � for z ∈ ΣA,
(20)

where � is the equilibrium constant; for details see e.g. [12] or [19].
Both the measure μ and its support supp(μ) have the S-property in the external field ψ if at any interior

point ζ of supp(μ),

∂(V μ + ψ)
∂n−

(ζ) = ∂(V μ + ψ)
∂n+

(ζ), (21)

where n− = −n+ are the normals to supp(μ).

Proposition 3. The absolutely continuous measure

dμ(z) = dμA(z) = RA(z)+
2πiz dz, z ∈ γA (22)

is the equilibrium measure on ΣA in the external field ψ.
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Function RA was defined in (12). Recall that as usual, γA is oriented from ζ− to ζ+, and RA(z)+ is the
boundary value on its left side.

Proof. By the definition of γA, the right hand side in (22) is real-valued and non-vanishing along γA. Taking
into account (8) we conclude that μ is a probability measure on γA. Furthermore, as in the proof of Lemma 2
and using (10), for z /∈ γA,∫

dμ(t)
t− z

= 1
4πi

∮
γA

RA(t)
t(t− z) dt = 1

2

(
res
t=0

RA(t)
t(t− z) + res

t=∞
RA(t)
t(t− z) + res

t=z

RA(t)
t(t− z)

)

= 1
2

(
A

z
− 1 + RA(z)

z

)
.

Thus,

V μ(z) = const + 1
2 Re

z∫
ζ+

(
A

t
− 1 + RA(t)

t

)
dt, z ∈ C \ γA.

Thus, for z ∈ C \ (γA ∪ σ− ∪ σ0 ∪ R+),

V μ(z) + ψ(z) = V μ(z) + 1
2 Re

(
−A log(z) + z

)
= 1

2
(
−� + Reφ(z)

)
, (23)

where φ was defined in (13), and � is an appropriately chosen real constant. It remains to use that the last
term in the right hand side vanishes on γA and is strictly positive on Σ± (see Corollary 2) to conclude that
for μ in (22) characterization (20) holds.

Finally, since V μ(z) + ψ(z) − �, harmonic in C \ (γA ∪ R+), is identically 0 on γ and is the real part of
the analytic function

W(z) = 1
2

z∫
ζ−

RA(t)
t

dt,

satisfying W ′
−(z) = −W ′

+(z) on γA, the symmetry property (21) easily follows from the Cauchy–Riemann
equations. �

In the next section a relevant role will be played by the so-called g-function, i.e. the complex potential
of the equilibrium measure μA on γA:

g(z) = g(z,A) =
∫
Γ

log(z − s) dμ(s), z ∈ C \ (γA ∪Σ−), (24)

where for each s we view log(z − s) as an analytic function of the variable z, with branch cut emanating
from z = s; the cut is taken along γA ∪Σ−.

4. Asymptotics of Laguerre polynomials

Now we have all ingredients to formulate and prove the asymptotic results for the rescaled generalized
Laguerre polynomials pn, defined in (5) in Section 1, under the assumption (4). The analysis is based
on the non-hermitian orthogonality conditions satisfied by these polynomials (Section 4.1). For the weak



70 M.J. Atia et al. / J. Math. Anal. Appl. 416 (2014) 52–80
asymptotics (or limiting zero distribution) we can use an analogue of the Gonchar–Rakhmanov–Stahl’s
results, while the strong asymptotics is derived from the corresponding Riemann–Hilbert characterization
of these polynomials (Section 4.1) using the non-linear steepest descent method of Deift and Zhou.

4.1. Orthogonality conditions and Riemann–Hilbert characterization

Throughout this section we assume that α ∈ C \ R. Then, the generalized Laguerre polynomials L
(α)
n

satisfy a non-hermitian orthogonality in the complex plane, see [16]. Namely,

Theorem 2. Let Σ in C \ [0,+∞) be an unbounded Jordan arc diverging in both directions toward +∞,
n ∈ N, and α ∈ C \ R. Then∫

Σ

zkL(α)
n (z)zαe−z dz = 0, for k = 0, 1, . . . , n− 1. (25)

In addition, ∫
Σ

znL(α)
n (z)zαe−z dz �= 0. (26)

Although the selection of the branch of zα is not relevant, for the sake of definiteness we take here
zα = |z|α exp(iα arg z), with arg z ∈ [0, 2π).

Proof. In the proof we use f (k) to denote the k-th derivative of f and w(z;α) := zαe−z.
By the Rodrigues formula (2),

L(α)
n (z) = (−1)n

n!
w(n)(z;n + α)

w(z;α) . (27)

Integrating in the left hand side of (25) n times by parts and using (27), we get

∫
Σ

zkL(α)
n (z)zαe−z dz = (−1)n

n!

n−1∑
j=0

(−1)j
[
zk

](j)
w(n−j−1)(z;n + α)|Σ

+ 1
n!

∫
Σ

[
zk

](n)
w(z;n + α) dz. (28)

Since w(z;α) is single-valued on Σ,

[
zk

](j)
w(n−j−1)(z;n + α)|Σ = 0, for 0 � j � n− 1.

Thus, if k � n− 1, all the terms in the right-hand side of (28) vanish, and (25) follows.
Furthermore, for k = n, we also get∫

Σ

znL(α)
n (z)zαe−z dz = (−1)n

n!

∫
Σ

znw(n)(z;n + α) dz = (−1)n
∫
Σ

zα+ne−z dz.

We deform Σ to the positive real axis to obtain
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Fig. 7. A contour Σ.

∫
Σ

znL(α)
n (z)zαe−z dz = (−1)n

(
1 − e2πiα) ∞∫

0

zα+ne−z dz

= (−1)n+12ieπiα sin(πα)Γ (α + n + 1), (29)

where Γ denotes the Gamma function. By analytic continuation the integral in (26) is equal to (29) for
every α, and (26) follows. �

Consider now the monic rescaled polynomials

Pn(z) = (−1)nn!
nn

L(α)
n (nz) = (−1)nn!

nn
pn(z), n = 0, 1, . . . (30)

By Theorem 2, Pn(z) verifies the orthogonality∫
Σ

zkPn(z)zαe−nz dz

{= 0, for k = 0, 1, . . . , n− 1,
�= 0, for k = n,

for a contour Σ specified in Theorem 2 (see Fig. 7). By the classical work of Fokas, Its, and Kitaev [9], this
yields a characterization of the polynomial Pn in terms of a Riemann–Hilbert problem: determine a 2 × 2
matrix valued function Y : C \Σ → C

2×2 satisfying the following conditions:

(a) Y (z) is analytic for z ∈ C \Σ,
(b) Y (z) possesses continuous boundary values for z ∈ Σ. If Σ is oriented clockwise, and Y+(z), Y−(z)

denote the non-tangential boundary values of Y (z) on the left and right sides of Σ, respectively, then

Y+(z) = Y−(z)
(

1 zαe−nz

0 1

)
, for z ∈ Σ.

(c) Y (z) has the following behavior as z → ∞:

Y (z) =
(
I + O

(
1
z

))(
zn 0
0 z−n

)
, as z → ∞, z ∈ C \Σ.
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The unique solution of this problem for Y is given by (see [9])

Y (z) =
(

Pn(z) 1
2πi

∫
Σ

Pn(ζ)ζαe−nζ

ζ−z dζ

dn−1Pn−1(z) dn−1
2πi

∫
Σ

Pn−1(ζ)ζαe−nζ

ζ−z dζ

)
,

where Pn(z) is the monic generalized Laguerre polynomial (30) and the constant dn−1 is chosen to guarantee
that for the (2, 2) entry of Y ,

lim
z→∞

znY22(z) = 1.

The orientation of Σ is consistent also with the one used in Section 2.

4.2. Asymptotics of varying generalized Laguerre polynomials

With each pn in (5) we can associate its normalized zero-counting measure νn = ν(pn), such that for any
compact set K in C, ∫

K

dνn = number of zeros of pn in K

n

(the zeros are considered taking account of their multiplicity). Weak asymptotics for pn’s studies convergence
of the sequence νn in the weak-∗ topology, that we denote by ∗−→.

Theorem 3. Let the sequence of (generalized) Laguerre polynomials pn in (5) satisfy (4) with A ∈ C \ R.
Then

νn
∗−→ μ, n → ∞,

where μ is the probability measure given in Proposition 3. Its support is a simple analytic arc, namely the
short trajectory γA described in Theorem 1.

Regarding the strong asymptotics we have a result very similar to that in [14], but referring now to the
short trajectory γA. Because of the n-dependence of αn, all of the notions and results introduced previously
are n-dependent. For example, we have that the curves γAn

are all varying with n, and so we denote them
by γn; clearly, they tend to the limiting curve γA. Likewise, we have that the functions RAn

, g, φ, and
φ̃, as well as all matrix-valued functions are n-dependent, and we also use a subscript n to denote their
dependence on n, using the notation without subscript n when referring to the limiting case.

Theorem 4. For the rescaled generalized Laguerre polynomials pn as n → ∞,

(a) (Asymptotics away from γA)
Uniformly for z in compact subsets of C \ γA, we have as n → ∞,

pn(z) = (−n)n

n! engn(z)
(

1 + R′
n(z)

2

)1/2(
1 + O

(
1
n

))
.

(b) (Asymptotics on +-side of γn, away from endpoints)
Uniformly for z on the +-side of γn away from ζ±, we have as n → ∞,
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pn(z) = (−n)n

n! engn(z)
(

1 + R′
n(z)

2

)1/2[
1 −

(
1 −R′

n(z)
1 + R′

n(z)

)1/2

e2nφn(z) + O
(

1
n

)]
.

(c) (Asymptotics on −-side of γn, away from endpoints)
Uniformly for z on the −-side of γn away from ζ±, we have as n → ∞,

pn(z) = (−n)n

n! engn(z)
(

1 + R′
n(z)

2

)1/2[
1 +

(
1 −R′

n(z)
1 + R′

n(z)

)1/2

e2nφn(z) + O
(

1
n

)]
.

(d) (Asymptotics near ζ+)
Uniformly for z in a (small) neighborhood of ζ+, we have as n → ∞,

pn(z) = (−n)n

n! exp
(
n

2 (−An log z + z + �)
)√

π

×
[(

z − βn

z − βn

)1/4(
n2/3fn(z)

)1/4 Ai
(
n2/3fn(z)

)(
1 + O

(
1
n

))

−
(
z − βn

z − βn

)1/4(
n2/3fn(z)

)−1/4 Ai′
(
n2/3fn(z)

)(
1 + O

(
1
n

))]
,

where

fn(z) = f(z,An), f(z,A) =
[
3
2φ(z)

]2/3

.

Recall that R was introduced in (12), while g was defined in (24). See Section 4.3 below for a more
detailed explanation about the conformal mapping f .

Remark 3. We can write a similar asymptotic formula at the other endpoint of γA; it will be in terms of the
function φ̃ appropriately redefined in a neighborhood O of ζ− in such a way that it is analytic in O \ γA.
Namely, by (17), we should use there

φ̂(z) =
{
φ̃(z), on the “ − ” side of σ0,

φ̃(z) + πiA, on the “ + ” side of σ0,

where again σ0 is oriented from the origin to ζ−.

As a consequence of Theorem 4, we can make a stronger statement about the zero asymptotics of pn
(compare it with Theorem 3):

Corollary 3. Under assumptions of Theorem 4, for every neighborhood O of γA, there is N ∈ N such that
for every n � N , all zeros of pn are in O, and no zeros at the (γA)+ side of γA.

Fig. 8 is a good illustration of the statement of this corollary.

4.3. Proofs of the asymptotic results

All proofs are based on the complex non-hermitian varying orthogonality satisfied by the generalized
Laguerre polynomials with complex coefficients (Theorem 2). The cornerstone is the existence of the equi-
librium measure μ having the S-property, established in Proposition 3.
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Fig. 8. Zeros of the Laguerre polynomials (small dots) superimposed to a typical critical graph for the trajectories and orthogonal
trajectories of �A.

The connection of the weak asymptotics of non-hermitian orthogonal polynomials with the equilibrium
with symmetry was established first by Stahl [20] (for a fixed weight) and extended by Gonchar and
Rakhmanov to a varying orthogonality in [12]. Theorem 3 is a straightforward consequence of the main
theorem in [12], see also [16].

On the other hand, Theorem 4 is established using the non-linear steepest descent analysis of Deif and
Zhou [3,6,2] of the Riemann–Hilbert (RH) problem described in Section 4.1, where we set Σ = ΣA, as
defined in (19). The proof follows the scheme of the work [14] almost literally. Thus, instead of repeating
all the calculations step by step, we describe here the main transformations, referring the interested reader
to [14] for details.

It is convenient to redefine slightly function φ in (13), moving the branch cuts from σ− to Σ−, and from
σ0 to R+ as follows. First, we continue φ analytically from Ω+ through σ− to the domain bounded by
σ− and Σ−. Moreover, let C be the arc of σ0 from ζ− to its first intersection with R+, see Fig. 9. Then
Ω

(1)
− \(C∪R+) consists of two connected components: “upper” (containing the origin) and “lower” domains.

Hence, if we define

ϕ(z) =

⎧⎨⎩
φ(z) − πi(2 + A), if z in the domain bounded by σ− and Σ−,

φ(z) − πiA, if z in the domain bounded by Σ−, C and R+,

φ(z), if z in the remaining domain bounded by γA, C and R+,

(31)

it will be holomorphic in C \ (γA ∪Σ− ∪ R+), see our analysis in Section 3.
As usual, the first transformation of the Riemann–Hilbert problem for Y is the regularization at infinity

by means of the function g introduced in (24). By (23), there is a constant � such that

g(z) = 1
2
(
−A log z + z − ϕ(z) + �

)
, z ∈ C \ (γA ∪Σ− ∪ R+), (32)

where log z is defined with a branch cut along R+.
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Fig. 9. Domain of definition of ϕ in (31).

We define for z ∈ C \ΣA,

U(z) = e−n(
/2)σ3Y (z)e−ng(z)σ3en(
/2)σ3 .

Here, and in what follows, σ3 denotes the Pauli matrix σ3 =
(

1 0
0 −1

)
, so that for example e−ng(z)σ3 =(

e−ng(z) 0
0 eng(z)

)
.

From the Riemann–Hilbert problem for Y it follows by a straightforward calculation that U is the unique
solution of the following RH problem: determine U : C \Σ → C

2×2 such that

(a) U(z) is analytic for z ∈ C \ΣA,
(b) U(z) possesses continuous boundary values for z ∈ ΣA, denoted by U+(z) and U−(z), and

U+(z) = U−(z)
(
e−n(g+(z)−g−(z)) zAne−nzen(g+(z)+g−(z)−
)

0 en(g+(z)−g−(z))

)
(33)

for z ∈ ΣA,
(c) U(z) behaves like the identity at infinity:

U(z) = I + O
(

1
z

)
as z → ∞, z ∈ C \ΣA.

The jump relation (33) for U has a different form on the three parts ΣA. Using (32) it is easy to obtain
the following jump relations for g across the contour ΣA (see [14]):

U+(z) = U−(z)
(
e2nφ+(z) 1

0 e2nφ−(z)

)
for z ∈ γA, (34)

U+(z) = U−(z)
(

1 e−2nφ(z)

0 1

)
for z ∈ Σ+, (35)

and

U+(z) = U−(z)
(

1 e−2nφ̃(z) )
for z ∈ Σ−. (36)
0 1
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Fig. 10. Contour ΣT and domains Ωi, i = 1, . . . , 4.

The second transformation of the RH problem deals with the oscillatory behavior in the jump matrix for
U on γA, see (34), and is based on its standard factorization:(

e2nφ+(z) 1
0 e2nφ−(z)

)
=

(
1 0

e2nφ−(z) 1

)(
0 1
−1 0

)(
1 0

e2nφ+(z) 1

)
. (37)

As part of the steepest descent method we introduce the oriented contour ΣT , which consists of ΣA plus
two simple curves γ± from ζ− to ζ+, contained in Ω+ and Ω−, respectively, as shown in Fig. 10. We choose
γ± such that Reφ(z) < 0 on γ±, which, as it follows from (15), is always possible. Then C \ ΣT has four
connected components, denoted by Ω1, Ω2, Ω3, and Ω4 as indicated in Fig. 10.

Consequently, we define T : C \ΣT → C
2×2 by

T (z) = U(z) for z ∈ Ω1 ∪Ω4,

T (z) = U(z)
(

1 0
−e2nφ(z) 1

)
for z ∈ Ω2,

T (z) = U(z)
(

1 0
e2nφ(z) 1

)
for z ∈ Ω3.

Then from the RH problem for U and the factorization (37) we obtain that T is the unique solution of the
following Riemann–Hilbert problem: determine a 2×2 matrix valued function T : C\ΣT → C

2×2 such that
the following hold:

(a) T (z) is analytic for z ∈ C \ΣT ,
(b) T (z) possesses continuous boundary values for z ∈ ΣT , denoted by T+(z) and T−(z), and

T+(z) = T−(z)
(

0 1
−1 0

)
for z ∈ γA,

T+(z) = T−(z)
(

1 0
e2nφ(z) 1

)
for z ∈ γ±,

T+(z) = T−(z)
(

1 e−2nφ̃(z)

0 1

)
for z ∈ Σ−,

and

T+(z) = T−(z)
(

1 e−2nφ(z)

0 1

)
for z ∈ Σ+.
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(c) T (z) behaves like the identity at infinity:

T (z) = I + O
(

1
z

)
as z → ∞, z ∈ C \ΣT .

The global (or outer) parametrix corresponding to this problem is a matrix N : C \ γA → C
2×2 given by

(see e.g. [4], [2, Section 7.3], or [14, Section 5.1])

N(z) =
(

(1+R′
A(z)
2 )1/2 −(1−R′

A(z)
2 )1/2

(1−R′
A(z)
2 )1/2 (1+R′

A(z)
2 )1/2

)
,

where we take the main branches of the square roots.
It is easy to verify that

(a) N(z) is analytic for z ∈ C \ γA,
(b) N(z) possesses continuous boundary values for z ∈ Γ \ {ζ−, ζ+}, denoted by N+(z) and N−(z), and

N+(z) = N−(z)
(

0 1
−1 0

)
for z ∈ γA \ {ζ−, ζ+},

(c) N(z) = I + O(1/z) for z → ∞.
(d) Near the endpoints ζ± it satisfies

N(z) = O
(
|z − ζ±|−1/4), z → ζ±.

Since the behavior of N does not match the desired behavior at the endpoints ζ± of γA, we need one more
construction around these points, namely the so-called local parametrix, well described for instance in [2].

From its definition in (13) it is easy to see that the φ-function has a convergent expansion

φ(z) = (z − ζ+)3/2
∞∑
k=0

ck(z − ζ+)k, c0 �= 0,

in a neighborhood of ζ+. The factor (z − ζ+)3/2 is defined with a cut along γA ∪Σ−. Then f , defined by

f(z) =
[
3
2φ(z)

]2/3

,

is analytic in a neighborhood of ζ+. We choose the 2/3-root with a cut along γA and such that f(z) > 0
for z ∈ Σ+. Recall that Re(φ) > 0 on Σ+. Then f(ζ−) = 0 and f ′(ζ−) �= 0. Therefore we can deform Σ+
locally and choose δ so small that t = f(z) is a one-to-one mapping from Uδ onto a convex neighborhood
f(Uδ) of t = 0. Under the mapping t = f(z), we then have that Σ+∩Uδ corresponds to (0,+∞)∩f(Uδ) and
that γA ∩ Uδ corresponds to (−∞, 0] ∩ f(Uδ). We can also deform γ± in such a way that for an arbitrary,
but fixed θ ∈ (π/3, π), f maps the portion of γ+ and γ− in Uδ to the rays {arg ζ = θ} and {arg ζ = −θ},
respectively.

With this mapping we take P , analytic for z ∈ Uδ \ΣT , and continuous on Uδ \ΣT , given by

P (z) = E(z)Ψθ
(
n2/3f(z)

)
enφ(z)σ3/2,

where
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Fig. 11. Contour ΣS , and domains Uδ, Ũδ, ΩS
j , j = 1, 2, 3.

E(z) =
√
πe

πi
6

(
1 −1
−i −i

)(
n1/6f(z)1/4

a(z)

)σ3

and Ψθ is an explicit matrix valued function built out of the Airy function Ai and its derivative Ai′ as
follows

Ψθ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Ai(t) Ai(ω2t)
Ai′(t) ω2 Ai′(ω2t)

)
e−

πi
6 σ3 for 0 < arg t < θ,(

Ai(t) Ai(ω2t)
Ai′(t) ω2 Ai′(ω2t)

)
e−

πi
6 σ3

(
1 0
−1 1

)
for θ < arg t < π,(

Ai(t) −ω2 Ai(ωt)
Ai′(t) −Ai′(ωt)

)
e−

πi
6 σ3

(
1 0
1 1

)
for −π < arg t < −θ,(

Ai(t) −ω2 Ai(ωt)
Ai′(t) −Ai′(ωt)

)
e−

πi
6 σ3 for −θ < arg t < 0,

with ω = e2πi/3.
A similar construction yields a parametrix P̃ in a neighborhood Ũδ = {z | |z − ζ−| < δ}, see [14] for

details.
Finally, using N , P , and P̃ , we define for every n ∈ N,

S(z) = T (z)N(z)−1 for z ∈ C \
(
ΣT ∪ Uδ ∪ Ũδ

)
,

S(z) = T (z)P (z)−1 for z ∈ Uδ \ΣT ,

S(z) = T (z)P̃ (z)−1 for z ∈ Ũδ \ΣT .

Then S is defined and analytic on C \ (ΣT ∪∂Uδ ∪∂Ũδ). However it follows from the construction that S
has no jumps on γA and on ΣT ∩ (Uδ ∪ Ũδ). Therefore S has an analytic continuation to C \ΣS , where ΣS

is the contour indicated in Fig. 11. Contour ΣS splits the complex plane in the subdomains also indicated
in Fig. 11.

We also have that

∥∥P (z)N−1(z) − I
∥∥ � C

n
for z ∈ ∂Uδ and

∥∥P̃ (z)N−1(z) − I
∥∥ � C

n
for z ∈ ∂Ũδ,

with a constant C that is independent of z (it can also be chosen independently of the value of A for A in
a compact subset of C, see [14]), and standard arguments show that jump matrices for S are close to the
identity matrix if n is large.
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Although in the previous analysis we have used the value A (assumed fixed), as it was explained in the
introduction to Theorem 4, all of the notions and results introduced before are n-dependent. However, from
the asymptotic assumption (4) we have that the curves γn tend to the limiting curve γA, etc.

We observed already that the jump matrix for Sn is I +O(1/n) uniformly on ΣS
n as n → ∞. In addition,

the jump matrix converges to the identity matrix as z → ∞ along the unbounded components of ΣS
n

sufficiently fast, so that the jump matrix is also close to I in the L2-sense. Since the contours ΣS
n are only

slightly varying with n, we may follow standard arguments to conclude that

Sn(z) = I + O
(

1
n

)
as n → ∞ (38)

uniformly for z ∈ C \ΣS
n .

Finally, unraveling the steps Yn �→ Un �→ Tn �→ Sn and using (38), we obtain strong asymptotics for Yn

in all regions of the complex plane. In particular we are interested in the (1,1) entry of Yn, since this is the
monic generalized Laguerre polynomial. We are not describing the details of this straightforward calculation
here, and refer again the interested reader to [14].

This completes the proof of Theorem 4.
We finish by proving Corollary 3. The assertion that all zeros of pn are in O (accumulate at γA) is a

direct consequence of (a) of Theorem 4 and the fact that 1 + R′
A(z) �= 0 in C \ γA.

Observe that Re(R′
A)(z) = 0 if and only if z ∈ [ζ−, ζ+], where as in Lemma 5, we denote by [ζ−, ζ+] the

straight segment joining ζ− and ζ+.
By Lemma 5, for A ∈ C \ [−1,+∞), γA ∪ [ζ−, ζ+] is a boundary of a simply connected domain; let us

denote it by D. Thus, Re(R′
A) preserves sign both in D and in C \ D, and these signs are opposite. Since

lim
z→∞

R′
A(z) = 1,

we conclude that Re(R′
A)(z) < 0 for z ∈ D, and Re(R′

A)(z) > 0 for z ∈ C \ D. In particular,∣∣1 + R′
A(z)

∣∣ < ∣∣1 −R′
A(z)

∣∣ if and only if z ∈ D. (39)

Furthermore, for A < −1, the inner boundary of D corresponds to the “−” side of γA. Since for A ∈
C \ [−1,+∞), γA �= [ζ−, ζ+], we conclude that this property holds for every value of A ∈ C \ [−1,+∞). In
particular, we have proved that (39) holds only on the “−” side of γA.

By assertions (b) and (c) of Theorem 4, zeros of pn in a neighborhood of γn must satisfy

∣∣∣∣1 −R′
n(z)

1 + R′
n(z)

∣∣∣∣1/2e2n Re φn(z) = 1 + O
(

1
n

)
.

Since by (15), Reφn(z) < 0 on both sides of γ, it remains to use (39) to conclude the proof.
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