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A pre-order and equivalence relation on the class of Hilbert space operators with 
positive real part are introduced, in correspondence with similar relations for 
contraction operators defined by Yu.L. Shmul’yan in [6]. It is shown that the pre-
order, and hence the equivalence relation, is preserved by certain linear fractional 
transformations. As an application, the operator relations are extended to the class 
C(U) of Carathéodory functions on the unit disc D of C whose values are operators 
on a finite dimensional Hilbert space U . With respect to these relations on C(U) it 
turns out that the associated linear fractional transformations of C(U) preserve the 
equivalence relation on their natural domain of definition, but not necessarily the 
pre-order, paralleling similar results for Schur class functions in [3].

© 2014 Elsevier Inc. All rights reserved.

0. Introduction

In this paper we introduce a pre-order on the class of Hilbert space operators with positive real part and 
prove that this pre-order, and hence the associated equivalence relation, is preserved by linear fractional 
transformations of the type extensively studied by V.M. Potapov, cf., [1] and the references therein. The 
pre-order is similar to one defined by Yu.L. Shmul’yan in [6] for contractions, which was recently extended 
in [3] to Schur class functions. Due to certain properties of the map A �→ Re(A) := 1

2 (A +A∗) the proofs are 
more transparent and a more complete characterization of the equivalence relation is obtained. As an appli-
cation of our results, we can (partially) extend our results to the class of Carathéodory functions, paralleling 
the main results of [3], directly at the level of functions and without considering Toeplitz operators.

In order to state our results more precisely, we require some preliminaries. Let H and K be Hilbert spaces. 
We write L(H, K) for the set of operators mapping H into K. If H = K we abbreviate L(H, K) to L(H). 
Here “operator on H” means a bounded linear map. Moreover, invertibility of a Hilbert space operator will 
always mean boundedly invertible. With PR(H) we indicate the class of operators A ∈ L(H) whose real 
part Re(A) is a positive operator, notation Re(A) ≥ 0. The imaginary part 1

2i (A − A∗) of A is denoted 
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by Im(A) and the support subspaces of Re(A) and Im(A) are denoted by RA and IA, respectively, i.e., 
RA = Ran Re(A) and IA = Ran Im(A). Here RanN denotes the closure of the range of the operator N . 
Further, the set of invertible operators in PR(H) is denoted by PR◦(H), equivalently, these are the operators 
on H whose real parts are strictly positive, notation Re(A) > 0.

Given A, B ∈ PR(H), we write A ≺ B if

A−B = Re(B) 1
2X Re(B) 1

2 for some X ∈ L(RB). (0.1)

In Theorem 1.1 below it is proved that ≺ defines a pre-order on PR(H) and several reformulations of A ≺ B

are given. According to Lemma 1.2 below, the relation A ≺ B implies the range-inclusion Ran Re(A) ⊂
Ran Re(B) and thus RA ⊂ RB . Similarly, Theorem 1.4 provides a few characterizations of the associated 
equivalence relation, denoted by ∼. In particular, it is shown that A ∼ B holds if and only if RA = RB and

A−B = Re(A) 1
2 X̃ Re(B) 1

2 for some X̃ ∈ L(RB). (0.2)

Since Re has the following properties:

Re(A + B) = Re(A) + Re(B) and Re
(
A∗) = Re(A),

the proofs for the case of operators with positive real part are simpler and more transparent than those for 
the case of contraction operators, leading to a more complete characterization for the equivalence relation 
than the one obtained in [4], cf., [3, Theorem 1.6].

Now define J and Ĵ to be the signature matrices in L(H⊕H) given by

J =
[

0 −I

−I 0

]
and Ĵ =

[
I 0
0 −I

]
. (0.3)

Let W ∈ L(H⊕H) be J-contractive, that is,

W ∗JW ≤ J. (0.4)

In terms of the entries of the 2 × 2 block decomposition W =
[W11 W12
W21 W22

]
of W this means

[
2 Re(W ∗

11W21) W ∗
21W12 + W ∗

11W22 − I

W ∗
12W21 + W ∗

22W11 − I 2 Re(W ∗
12W22)

]
≥ 0.

With W we associate the linear fractional transformation (LFT) TW defined by

TW [A] := (W11A + W12)(W21A + W22)−1 (A ∈ DW ). (0.5)

Here DW := {A ∈ PR(H) : W21A + W22 invertible} is the domain of TW . The assumption (0.4) implies 
that PR◦(H) ⊂ DW , in particular, W22 is invertible, and that TW maps DW into PR(H). For more details 
we refer to [1, Section 2.10]; one easily verifies that the ‘finite dimensional’ algebraic results proved there 
extend to general Hilbert spaces.

Assume W is invertible. Following Section 2.3 in [1] we define W̃ ∈ L(H⊕H) by

W̃ = ĴW−1Ĵ =:
[
W̃11 W̃12

W̃ W̃

]
. (0.6)
21 22



1378 S. ter Horst / J. Math. Anal. Appl. 420 (2014) 1376–1390
Then DW = {A ∈ PR(H) : W̃11 + AW̃21 invertible} and TW can be written as

TW [A] = (W̃11 + AW̃21)−1(W̃12 + AW̃22) (A ∈ DW ). (0.7)

Our first main result is the following theorem.

Theorem 0.1. Let W ∈ L(H⊕H) be invertible and assume (0.4) is satisfied. Then TW preserves the pre-order 
≺ on PR(H) restricted to DW .

Consequently, we obtain the following result.

Theorem 0.2. Let W ∈ L(H ⊕ H) be invertible and assume (0.4) is satisfied. Then TW preserves the 
equivalence relation ∼ on PR(H) restricted to DW .

Both theorems will be proved in Section 2, in an extended form. It turns out that Theorem 0.2 is 
considerably easier to prove and doing so leads to an observation that will be of use in the sequel: for A, B ∈
PR(H) such that A ∼ B, with X̃ as in (0.2), the operator that established the equivalence TW [A] ∼ TW [B]
(as in (0.2) but with X̃W instead of X) satisfies ‖X̃W ‖ ≤ ‖X̃‖.

Now let U be a finite dimensional Hilbert space. We write C(U) for the Carathéodory class consisting of 
holomorphic PR(U)-valued functions on the open unit disc D = {λ ∈ C : |λ| < 1}. The strict Carathéodory 
class is denoted by C◦(U) and consists of functions F ∈ C(U) such that there exists a ρ > 0 with Re(F )(λ) ≥
ρI for each λ ∈ D.

Let F ∈ C(U). Consider Theorem 5 from [5] with J as defined above and T (λ) =
[
F (λ) I
I 0

]
, taking 

λ = λ0 =: λ1 and μ = μ0 =: λ2. This yields the existence of a function Φ : D2 → L(U) such that

F (λ1) − F (λ2) = Re(F )(λ1)Φ(λ1, λ2) Re(F )(λ2) (λ1, λ2 ∈ D).

In view of (0.2), this means that F (λ1) ∼ F (λ2) for any two points λ1, λ2 ∈ D, and thus, by Lemma 1.2
below, that RF (λ) is independent of the choice of λ ∈ D. Hence, we can define

RF := RF (λ) with λ ∈ D arbitrary.

The function F can be extended a.e. to a PR(U)-valued function on the unit circle T := {λ ∈ C : |λ| = 1}
by taking non-tangential limits. On the boundary T we have the inclusion RF ⊂ RF (τ), for a.e. τ ∈ T, by 
the maximum principle, but in general not the reversed inclusion.

Since for any function in C(U) the values on D are all pairwise equivalent, for F, G ∈ C(U) to satisfy 
F (λ) ∼ G(λ) for all λ ∈ D it suffices to verify similarity of F and G at any one point of D. Hence the 
functions λ �→ 1 and λ �→ (1 +λ)(1 −λ)−1 are pointwise equivalent on D. However, they have very different 
boundary behavior at λ = 1. It turns out that the more natural extension of the pre-order and equivalence 
relation from Section 1 to the Carathéodory class C(U) involves an additional uniformity constraint. For 
F, G ∈ C(U) we write F ≺C G if

F −G = Re(G) 1
2QRe(G) 1

2 ,

with Q a bounded L(RG)-valued function on D. (0.8)

Various characterizations of this pre-order, and the associated equivalence relation (denoted ∼C), are proved 
in Theorem 3.1 below. In particular, F ≺C G is equivalent to G −ε(F−G) being in C(U) for ε ∈ C sufficiently 
small. The most interesting implications of F ≺C G are with respect to the boundary behavior of F and G. 
Proposition 3.2 below shows that for any u ∈ U and β ∈ T, limλ→β G(λ)u = 0 implies limλ→β F (λ)u = 0
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(with convergence either both nontangentially or both unrestrictedly) provided F ≺C G and G(β) exists in 
PR(U).

Next we consider how Theorems 0.1 and 0.2 can be extended to C(U). Let Ψ =
[ Ψ11 Ψ12
Ψ21 Ψ22

]
be an

L(U ⊕ U)-valued holomorphic function on D such that

Ψ(λ)∗JΨ(λ) ≤ J (λ ∈ D). (0.9)

Then we can define the linear fractional transformation TΨ by

TΨ [F ] := (Ψ11 + Ψ12F )(Ψ22 + Ψ21F )−1 (F ∈ DΨ ).

Here all operations are pointwise and

DΨ :=
{
F ∈ C(U) : Ψ22 + Ψ21F is invertible at each point of D

}
is the domain of TW . Condition (0.9) implies C◦(U) ⊂ DΨ and TΨ maps DΨ into C(U). In particular, Ψ22 is 
invertible at each point of D. In order to extend Theorem 0.2 to C(U), it suffices to assume that det(Ψ) �≡ 0, 
which, due to the analyticity of Ψ , is equivalent to Ψ being invertible at all except for a few isolated points 
of D. This condition is met in case Ψ is J-unitary (see [1, Section 4.1]), i.e., if in addition (0.9) holds with 
equality a.e. on T.

Theorem 0.3. Let Ψ be an L(U ⊕ U)-valued holomorphic function on D such that (0.9) holds. Assume 
det(Ψ) �≡ 0. Then TΨ preserves the equivalence relation ∼C on C(U) restricted to DΨ .

Theorem 0.1 does not extend to C(U) on the domain DΨ . See Example 3.7 below. One has to reduce the 
domain to a smaller set. As before, assume det(Ψ) �≡ 0. Write DΨ for the subset of D where Ψ is invertible. 
Define Ψ̃ := ĴΨ−1Ĵ on DΨ . Then for all F ∈ DΨ we have

TΨ [F ] = (Ψ̃11 + AΨ̃21)−1(Ψ̃12 + AΨ̃22) on DΨ ,

with Ψ̃ij the entries from the standard 2 × 2 block decomposition of Ψ̃ . Write H∞(U) for the Hardy class of 
bounded holomorphic L(U)-valued functions on D. We now define the reduced domain for TΨ by

D◦
Ψ =

{
F ∈ C(U) ∩H∞(U) : (Ψ̃11 + FΨ̃21)−1 exists and is bounded on DΨ

}
.

Theorem 0.4. Let Ψ be an L(U ⊕ U)-valued holomorphic function on D such that (0.9) holds. Assume 
det(Ψ) �≡ 0. Then TΨ preserves the pre-order ≺C on C(U) restricted to D◦

Ψ .

Besides the current introduction, the paper consists of three sections. In Section 1 we prove that (0.1)
defines a pre-order on PR(H) and derive various reformulations of (0.1), and the associated equivalence 
relation, as well as several implications of these relation. Theorems 0.1 and 0.2 will be proved in Section 2, 
in a slightly extended form. The extensions of the results from Sections 1 and 2 to the Carathéodory class 
are the topic of Section 3.

1. A pre-order and equivalence relation on PR(H)

Throughout this section, let H be a Hilbert space. The first result of this section shows that the relation 
on PR(H) given by (0.1) defines a pre-order ≺, and provide a few additional characterizations of ≺.
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Theorem 1.1. The relation A ≺ B defined by one of the following four equivalent conditions:

(POi) A −B = Re(B) 1
2X Re(B) 1

2 for some X ∈ L(RB);
(POii) A∗ + B = Re(B) 1

2Y Re(B) 1
2 for some Y ∈ L(RB);

(POiii) there exists r > 0 with B + ε(A −B) ∈ PR(H) for all ε ∈ C with |ε| ≤ r;
(POiv) there exists r > 0 with B + ε(A −B) ∈ PR(H) for all ε ∈ C with |ε| = r;

defines a pre-order relation on PR(H). Assume A ≺ B. Then X in (POi) and Y in (POii) satisfy

Y −X∗ = 2I and Re(X) + I = Re(Y ) − I = X + Y ≥ 0. (1.1)

Moreover, r in (POiii)–(POiv) can be chosen such that ‖X‖, ‖Y ‖ and r satisfy

‖X‖ ≤ 2 + ‖Y ‖, ‖Y ‖ ≤ 2 + ‖X‖, 1
r
≤ ‖X‖ ≤ 2

r
. (1.2)

Before proving Theorem 1.1, it is convenient to first prove the next lemma.

Lemma 1.2. Let A, B ∈ PR(H) satisfy (POi) and (POii). Then Ran Re(A) is included in Ran Re(B), and 
thus RA ⊂ RB, and there exists an operator M ∈ L(RB) with M∗M = 1

2 (X + Y ) such that Re(A) 1
2 =

M Re(B) 1
2 .

Proof. Note that 2 Re(A) = (A −B) + (A∗ + B). Using (POi) and (POii), we obtain 2 Re(A) = Re(B) 1
2 ×

(X+Y ) Re(B) 1
2 . Since Re(A) ≥ 0, we have X+Y ≥ 0. Therefore, Douglas’ lemma [2] implies that there exists 

a co-isometry N ∈ L(RB , RA) with KerN = Ran (X + Y )⊥ such that 
√

2Re(A) 1
2 = N(X + Y ) 1

2 Re(B) 1
2 . 

Hence we can take M = 2−1/2N(X + Y ) 1
2 . Since Ran (X + Y ) 1

2 is included in the support of N , this shows 
M∗M = 1

2 (X + Y ) 1
2N∗N(X + Y ) 1

2 = 1
2 (X + Y ). The inclusion Ran Re(A) ⊂ Ran Re(B) now follows from 

Re(A) 1
2 = Re(B) 1

2M∗. �
Proof of Theorem 1.1. We first proof the equivalence of (POi)–(POiv).

(POi) ⇐⇒ (POii): The equivalence of (POi) and (POii) follows immediately from the fact that 2 Re(B) =
(A∗ + B)∗ − (A −B), with X and Y related through the identity given in (1.1).

(POi) ⇐⇒ (POiii): Assume X ∈ L(RB) such that (POi) holds. Then, for any ε ∈ C

Re
(
B + ε(A−B)

)
= Re(B) + Re

(
ε
(
Re(B) 1

2X Re(B) 1
2
))

= Re(B) + Re(B) 1
2 Re(εX) Re(B) 1

2

= Re(B) 1
2
(
I + Re(εX)

)
Re(B) 1

2 .

Now, if |ε| ≤ 1/‖X‖ (with no limitation on ε if X = 0), then

I + Re(εX) ≥
(
1 −

∥∥Re(εX)
∥∥)I ≥

(
1 − ‖εX‖

)
I =

(
1 − |ε|‖X‖

)
I ≥ 0.

Hence B + ε(A −B) ∈ PR(H) whenever |ε| ≤ 1/‖X‖, which shows (POiii) holds with r = 1/‖X‖.
Conversely, assume r > 0 such that (POiii) holds. Take ε = ±r. Then (POiii) yields

−1
r

Re(B) ≤ Re(A−B) ≤ 1
r

Re(B).

Next take ε = ±ir. Then Re(ε(A −B)) = ∓r Im(A −B), and (POiii) yields
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−1
r

Re(B) ≤ Im(A−B) ≤ 1
r

Re(B).

By Lemma 1.4 in [3], there exist self-adjoint operators X1 and X2 in L(RB) with ‖Xj‖ = 1/r, j = 1, 2, 
such that

Re(A−B) = Re(B) 1
2X1 Re(B) 1

2 and Im(A−B) = Re(B) 1
2X2 Re(B) 1

2 .

Thus (POi) holds with X = X1 + iX2 and we have ‖X‖ ≤ ‖X1‖ + ‖X2‖ = 2/r.
(POiii) ⇐⇒ (POvi): The implication (POiii) ⇒ (POiv) is obvious. Conversely, assuming (POiv) holds. 

Let Tj = B + εj(A − B) for |εj | = r, j = 1, 2. If T1 and T2 are in PR(H), than so is 1
2 (T1 + T2) =

B − 1
2 (ε1 + ε2)(A −B). Now (POiii) follows because{

ε1 + ε2

2 : |ε1| = |ε2| = r

}
= r

2(T + T) = rD =
{
z : |z| ≤ r

}
.

In particular, for r in (POiii) we can take the same r as in (POiv).
Clearly A ≺ A for any A ∈ PR(H); simply take X = 0, Y = I or any r > 0. Hence, to see that ≺ defines 

a pre-order, it remains to show ≺ is transitive. Assume A, B, C ∈ PR(H) such that A ≺ B and B ≺ C, say 
the relations are established through (POi) via X1 ∈ L(RB) and X2 ∈ L(RC), respectively. By Lemma 1.2, 
Re(B) 1

2 = M Re(C) 1
2 for some M ∈ L(H). Hence

A− C = A−B + B − C = Re(C) 1
2
(
M∗X1M + X2

)
Re(C) 1

2 .

Thus A ≺ C, and we obtain that ≺ is transitive.
The identity Y −X∗ = 2I and the positivity of X + Y , by Lemma 1.2, show

2
(
Re(Y ) − I

)
= 2

(
Re(X) + I

)
= X + Y ≥ 0.

Hence the inequalities of (1.1) hold as well.
The inequalities of (1.2) follow directly from the relations between X and Y and between ‖X‖ and r

derived above. �
It now follows immediately from the various characterizations in Theorem 1.1 that A ≺ B implies:

(i) A∗ ≺ B∗;
(ii) RA ⊂ RB and thus KerRe(B) ⊂ Ker Re(A);
(iii) i Im(A)|R⊥

B
= A|R⊥

B
= B|R⊥

B
= i Im(B)|R⊥

B
= −A∗|R⊥

B
= −B∗|R⊥

B
;

(iv) C∗AC ≺ C∗BC for any C ∈ L(H′, H).

The equivalence relation associated with the pre-order ≺ will be indicated by ∼. Hence A ∼ B holds if 
and only if A ≺ B and B ≺ A. If A ∼ B, then the conclusion of Lemma 1.2 can be extended in the following 
way. Here and in the sequel, for an invertible operator C, the notation C−∗ indicates the operator (C−1)∗.

Lemma 1.3. Assume A ∼ B. Let X, Y ∈ L(RB) be as in (POi) and (POii) and let X ′, Y ′ ∈ L(RA) be the 
operators associated with (POi) and (POii), respectively, for B ≺ A. Then Ran Re(A) = Ran Re(B), and 
thus RA = RB, and Re(A) 1

2 = M Re(B) 1
2 holds for an invertible operator M ∈ L(RB) with M−∗M−1 =

1
2 (X ′ + Y ′).

Proof. Applying Lemma 1.2 to both A ≺ B and B ≺ A yields Ran Re(A) = Ran Re(B). Moreover, we 
obtain that there exist operators M, M ′ ∈ L(RB) with M∗M = 1 (X + Y ) and M ′∗M ′ = 1 (X ′ + Y ′)
2 2
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such that Re(A) 1
2 = M Re(B) 1

2 and Re(B) 1
2 = M ′ Re(A) 1

2 . Then Re(A) 1
2 = MM ′ Re(A) 1

2 and Re(B) 1
2 =

M ′M Re(B) 1
2 . Hence MM ′ = I = M ′M , which shows M = M ′−1 is invertible and M−∗M−1 = M ′∗M ′ =

1
2 (X ′ + Y ′). �

The next theorem gives a characterization of this equivalence relation.

Theorem 1.4. Let A, B ∈ PR(H). Then A ∼ B if and only if one of the following equivalent statements 
holds:

(ERi) A −B = Re(A) 1
2 X̃ Re(B) 1

2 for some X̃ ∈ L(RB) = L(RB , RA);
(ERii) A∗ + B = Re(A) 1

2 Ỹ Re(B) 1
2 for some Ỹ ∈ L(RB) = L(RB , RA);

(ERiii) there exists r̃ > 0 with δB + (1 − δ)A + ε(A −B) ∈ PR(H) for all δ ∈ [0, 1] and ε ∈ C with |ε| ≤ r̃;
(ERiv) there exists r̃ > 0 with δB + (1 − δ)A + ε(A −B) ∈ PR(H) for all δ ∈ [0, 1] and ε ∈ C with |ε| = r̃.

Assume A ∼ B. Then the following statements hold:

(i) Let X be as in (POi) and Y as in (POii) and assume B ≺ A holds as in (POi) with X replaced by X ′

and as in (POii) with Y replaced by Y ′. Then X̃ and Ỹ in (ERi) and (ERii) satisfy

‖X̃‖ ≤ ‖Re
(
X ′) + I‖‖X‖ and ‖Ỹ ‖ ≤ ‖Re

(
Y ′)− I‖‖Y ‖.

Additional bounds on ‖X̃‖ and ‖Ỹ ‖ are obtained by replacing the roles of X and X ′, respectively Y
and Y ′.

(ii) Let X̃ and Ỹ be as in (ERi) and (ERii). Then X̃ + Ỹ is invertible and (X̃ + Ỹ ) Re(B) 1
2 = 2 Re(A) 1

2 . 
Moreover, the operators X, X ′, Y and Y ′ in (i) satisfy

max
{
‖X‖, ‖X ′‖

}
≤ 1

2
(
‖X̃‖ +

√
1 + ‖X̃‖

)
‖X̃‖, max

{
‖Y ‖,

∥∥Y ′∥∥} ≤ ‖Ỹ ‖2.

(iii) The numbers r̃ in (ERiii) and (ERiv) and r and r′ in (POiii) and (POiv) for A ≺ B and B ≺ A, 
respectively, can be taken such that r̃ = min{r, r′}.

The equivalence of (ERi)–(ERiii) is not as straightforward as for (POi)–(POiii), and we shall prove 
the equivalence indirectly, by showing that each of the statements is equivalent to A ∼ B. To give some 
indication as to why the equivalence is not so straightforward, note that from (ERi) it is evident that 
A ∼ B implies B∗ ∼ A∗, while symmetry (A ∼ B ⇒ B ∼ A) is not obvious from (ERi). On the other hand, 
the symmetry of ∼ follows immediately from (ERii), but here it is not directly clear that A ∼ B implies 
A∗ ∼ B∗.

Before proving Theorem 1.4, we first prove a lemma which, in a more general setting, shows that the 
conclusion from Lemma 1.3 is also reached when A ∼ B is replaced by either (ERi) or (ERii).

Lemma 1.5. Let N1 ∈ L(K, K1) and N2 ∈ L(K, K2) be Hilbert space operators. Assume there exists a 
Z ∈ L(RanN1, RanN2) such that

N∗
1N1 ±N∗

2N2 = Re
(
N∗

2ZN1
)

(1.3)

with ± to be interpreted as either + or −. Then KerN1 = KerN2 and there exists an invertible operator 
Q ∈ L(RanN1, RanN2) such that QN1 = N2. Moreover, if (1.3) holds with +, then ‖Q−1‖ and ‖Q‖ can be 
bounded by ‖Z‖ and if (1.3) holds with −, then ‖Q−1‖ and ‖Q‖ are bounded by 1 (‖Z‖ + (1 + ‖Z‖) 1

2 ).
2
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Proof. In both case, it suffices to show that there exist γ1, γ2 ≥ 0 such that

‖Njx‖ ≤ γj‖Nix‖
(
x ∈ K, i, j ∈ {1, 2}, i �= j

)
. (1.4)

Indeed, if this is the case then clearly KerNi ⊂ KerNj and, again by Douglas’ lemma, Ni = QjNj for a 
Qj ∈ L(RanNj , RanNi) with ‖Qj‖ ≤ γj . Mimicking the proof of Lemma 1.3, we obtain that Q1 and Q2
are invertible with Q−1

1 = Q2. The bounds on ‖Q‖ and ‖Q−1‖ then follow by showing that (1.4) holds for
appropriate choices of γj.

First assume (1.3) holds with ± replaced by +. In that case we have

N∗
1N1 ≤ Re

(
N∗

2ZN1
)

and N∗
2N2 ≤ Re

(
N∗

1Z
∗N2

)
,

using Re(N∗
2ZN1) = Re((N∗

2ZN1)∗) = Re(N∗
1Z

∗N2) in the last inequality. Then for any x ∈ K and 
i, j ∈ {0, 1}, i �= j, we have

‖Njx‖2 ≤ Re
(
〈ZN1x,N2x〉

)
≤ ‖ZN1x‖‖N2x‖ ≤ ‖Z‖‖Nix‖‖Njx‖.

Thus (1.4) holds with γj = ‖Z‖ for j = 1, 2. Hence we obtain QN1 = N2 for some invertible 
Q ∈ L(RanN1, RanN2) with ‖Q‖ and ‖Q−1‖ bounded by ‖Z‖.

Now assume (1.3) holds with ± replaced by −. Set γ = 1
2 (‖Z‖ +(1 +‖Z‖) 1

2 ). Then for i, j ∈ {0, 1}, i �= j, 
we have

N∗
j Nj = Re

(
N∗

i ZjNj

)
+ N∗

i Ni,

with Z1 = Z and Z2 = −Z∗. For each x ∈ K this implies

‖Njx‖2 = Re
(
〈ZjNjx,Nix〉

)
+ ‖Nix‖2 ≤ ‖Zj‖‖Njx‖‖Nix‖ + ‖Nix‖2.

The inclusion KerNi ⊂ KerNj follows immediately from this inequality. In particular (1.4) holds for x ∈
KerNi. Now assume Nix �= 0 and set λj = ‖Njx‖/‖Nix‖. Dividing by ‖Nix‖2, we obtain that λ2 ≤
1 + ‖Zj‖λ = 1 + ‖Z‖λ. This inequality is satisfied for

1
2
(
‖Z‖ −

√
1 + ‖Z‖

)
≤ λ ≤ 1

2
(
‖Z‖ +

√
1 + ‖Z‖

)
= γ.

Thus λ ≤ γ yields ‖Njx‖ ≤ γ‖Nix‖. Hence (1.4) holds with γ1 = γ2 = γ. Therefore, QN1 = N2 holds for 
some invertible Q ∈ L(RanN1, RanN2) with ‖Q‖ and ‖Q−1‖ bounded by γ. �
Proof of Theorem 1.4. We first show that (ERiii) is equivalent to A ∼ B, via (POiii) in both directions, 
and prove the relation between r, r′ and r̃ in (iii). The equivalence of (ERiii) and (ERiv), with the same 
value for r̃, goes along the same route as for (POiii) and (POiv). Clearly, (ERiii) implies (POiii) in both 
directions, with r = r′ = r̃. Now assume A ∼ B is established through (POiii) in both directions, with r′ for 
B ≺ A. Fix ε ∈ C with |ε| ≤ r̃ := min{r, r′} and δ ∈ [0, 1]. Define U = B+ ε(A −B) and V = A − ε(B−A). 
Then U, V ∈ PR(H) and, since PR(H) is convex, we have

δB + (1 − δ)A + ε(A−B) = δU + (1 − δ)V ∈ PR(H).

Hence (ERiii) holds.
Assume A ∼ B. By Lemma 1.3, RA = RB and Re(A) 1

2 = M Re(B) 1
2 for some invertible M ∈ L(RB). 

Clearly, (ERi) and (REii) then hold with X̃ = M−∗X and Ỹ = M−∗Y . Note further that
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X̃ + Ỹ = M−∗(X + Y ) = 2M−∗M∗M = 2M.

Hence (X̃ + Ỹ ) Re(B) 1
2 = 2 Re(A) 1

2 . Since M−∗M−1 = X ′ + Y ′, we have ‖M−∗‖2 = ‖M−∗M−1‖ =
‖X ′ + Y ′‖. Thus ‖X̃‖ ≤ ‖X ′ + Y ′‖ 1

2 ‖X‖ and similarly ‖Ỹ ‖ ≤ ‖X ′ + Y ′‖ 1
2 ‖Y ‖. The inequalities for ‖X̃‖

and ‖Ỹ ‖ in (i) then follow from (1.1).
Next we employ Lemma 1.5 to show that (ERi) and (ERii) both imply Re(A) 1

2 = M Re(B) 1
2 for some 

invertible M ∈ L(RB), with appropriate bounds on ‖M‖ and ‖M−1‖. Note that A ∼ B then follows 
immediately, since in both (ERi) and (ERii) one can then replace either Re(A) 1

2 or Re(B) 1
2 with the other.

Set N1 = Re(A) 1
2 and N2 = Re(B) 1

2 . Taking real parts on both sides in (ERi) and (ERii), respectively, 
and using Re(A∗) = Re(A) gives

N∗
1N1 −N∗

2N2 = Re
(
N∗

1 X̃N2
)

and N∗
1N1 + N∗

2N2 = Re
(
N∗

1 Ỹ N2
)
.

Hence (1.3) holds with Z = X̃ if ± = − and Z = Ỹ if ± = +. The result and the bounds in (ii) now follow 
immediately from Lemma 1.5. �

We conclude this section with the analogue of Lemma 1.7 from [3]. The result follows from restricting 
Corollaries 3.3 and 3.4 below to constant functions.

Lemma 1.6. The following statements hold:

(i) The set PR◦(H) forms an equivalence class and A ≺ B holds for any A ∈ PR(H) and B ∈ PR◦(H).
(ii) Any B ∈ PR(H) with Re(B) = 0 forms an equivalence class by itself and A ≺ B implies A = B for 

any A ∈ PR(H).

2. Invariance under linear fractional transformations

In this section we prove Theorems 0.1 and 0.2. Let W be an invertible operator in L(H⊕H), for some 
Hilbert space H, and assume (0.4) holds. Define J and Ĵ as in (0.3) and W̃ as in (0.6).

Lemma 2.1. Let W ∈ L(H ⊕ H) be invertible and assume (0.4) is satisfied. Then for any A, B ∈ DW we 
have

Re
(
TW [A]

)
≥ (W21A + W22)−∗ Re(A)(W21A + W22)−1,

Re
(
TW [A]

)
≥ (W̃11 + AW̃21)−1 Re(A)(W̃11 + AW̃21)−∗,

TW [A] − TW [B] = (W̃11 + AW̃21)−1(A−B)(W22 + W21B)−1. (2.1)

In particular, for any A ∈ DW there exist contractions MA and M̃A such that

MA Re
(
TW [A]

) 1
2 = Re(A) 1

2 (W22 + W21B)−1,

M̃A Re
(
TW [A]

) 1
2 = Re(A) 1

2 (W̃11 + AW̃21)−∗. (2.2)

The first inequality in fact holds without the invertibility of W as well. Moreover, the fact that TW maps 
DW into PR(H), as claimed in the introduction, follows directly from the two inequalities in (2.1).
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Proof of Lemma 2.1. Using the two representations of TW given in (0.5) and (0.7) one easily verifies that

W

[
A

I

]
=

[
TW [A]

I

]
(W21A + W22),[

I A
]
W̃ = (W̃11 + AW̃21)

[
I TW [A]

]
.

Note that
Set J1 =

[ 0 I
I 0

]
and J2 =

[ I 0
0 −I

]
, both in L(H⊕H). Then

W̃ ĴW = Ĵ , W ∗JW ≤ J, WJW ∗ ≤ J.

The identity follows directly from W̃ Ĵ = ĴW−1, the first inequality holds by assumption and the second 
inequality is a consequence of the first, cf., Lemma 2.3 in [1]. The first inequality of (2.1) then follows from

2(W21A + W22)∗ Re
(
TW [A]

)
(W21A + W22)

= −(W21A + W22)∗
[
TW [A]

I

]∗

J

[
TW [A]

I

]
(W21A + W22)

= −
[
A

I

]∗

W ∗J1W

[
A

I

]
≤

[
A

I

]∗

J

[
A

I

]
= 2 Re(A).

The second inequality is proved in a similar way, using the fact that W̃ is also J-contractive, which is 
a consequence of ĴJĴ = −J , details are left to the reader. The existence of contractions MA and M̃A

satisfying (2.2) now follows directly from Douglas’ lemma. Finally, the identity in (2.1) is a consequence of

(W̃11 + BW̃21)
(
TW [A] − TW [B]

)
(W21A + W22)

= (W̃11 + BW̃21)
[
I TW [B]

]
Ĵ

[
Tw[A]

I

]
(W21A + W22)

=
[
I B

]
W̃ ĴW

[
A

I

]
=

[
I B

]
Ĵ

[
A

I

]
= A−B. �

We now prove our second main result, Theorem 0.2, in an extended form.

Theorem 2.2. Let W ∈ L(H ⊕ H) be invertible and assume (0.4) is satisfied. Then TW preserves the 
equivalence relation ∼ on PR(H) restricted to DW . More specifically, if A ∼ B for A, B ∈ DW , say 
A −B = Re(A) 1

2 X̃ Re(B) 1
2 for X̃ ∈ L(RB). Then

TW [A] − TW [B] = Re
(
TW [A]

) 1
2 X̃W Re

(
TW [B]

) 1
2 with X̃W = M̃∗

AX̃MB . (2.3)

Here MB and M̃A are defined according to (2.2). In particular, ‖X̃W‖ ≤ ‖X̃‖.

Proof. The identity (2.3) follows after inserting A − B = Re(A) 1
2 X̃ Re(B) 1

2 into the identity in (2.1) and 
applying the identities in (2.2), with A replaced by B in the first identity. Since MB and M̃A are contractions, 
we find ‖X̃W ‖ ≤ ‖X̃‖. �

Next we prove our first main result, Theorem 0.1, again in an extended form.
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Theorem 2.3. Let W ∈ L(H⊕H) be invertible and assume (0.4) is satisfied. Then TW preserves the pre-order 
≺ on PR(H) restricted to DW . More specifically, if A ≺ B for A, B ∈ DW , say A −B = Re(B) 1

2 X̃ Re(B) 1
2

for X ∈ L(RB). Then

TW [A] − TW [B] = Re
(
TW [B]

) 1
2XW Re

(
TW [B]

) 1
2 ,

with XW = M̃∗
B

(
I −X Re(B) 1

2 W̃21(W̃11 + AW̃21)−1 Re(B) 1
2
)
XMB . (2.4)

Here MB and M̃A are defined according to (2.2).

Proof. Inserting A −B = Re(B) 1
2 X̃ Re(B) 1

2 into the identity in (2.1) and applying the first identity in (2.2), 
with A replaced by B, yields

TW [A] − TW [B] = (W̃11 + AW̃21)−1 Re(B) 1
2XW Re

(
TW [B]

) 1
2 .

Hence, in order to complete the proof we have to show that

(W̃11 + AW̃21)−1 Re(B) 1
2

= Re
(
TW [B]

) 1
2 M̃∗

B

(
I −X Re(B) 1

2 W̃21(W̃11 + AW̃21)−1 Re(B) 1
2
)
.

To see that this is the case first note that

(W̃11 + BW̃21)−1 − (W̃11 + AW̃21)−1

= (W̃11 + BW̃21)−1[(W̃11 + AW̃21) − (W̃11 + BW̃21)
]
(W̃11 + AW̃21)−1

= (W̃11 + BW̃21)−1(A−B)W̃21(W̃11 + AW̃21)−1

= (W̃11 + BW̃21)−1 Re(B) 1
2X Re(B) 1

2 W̃21(W̃11 + AW̃21)−1

= Re
(
TW [B]

) 1
2 M̃∗

BX Re(B) 1
2 W̃21(W̃11 + AW̃21)−1.

Hence, we have

(W̃11 + AW̃21)−1 Re(B) 1
2

= (W̃11 + BW̃21)−1 Re(B) 1
2 +

−
(
(W̃11 + BW̃21)−1 − (W̃11 + AW̃21)−1)Re(B) 1

2

= Re
(
TW [B]

) 1
2 M̃∗

B +

− Re
(
TW [B]

) 1
2 M̃∗

BX Re(B) 1
2 W̃21(W̃11 + AW̃21)−1 Re(B) 1

2

= Re
(
TW [B]

) 1
2 M̃∗

B

(
I −X Re(B) 1

2 W̃21(W̃11 + AW̃21)−1 Re(B) 1
2
)
,

as claimed. �
3. An application to the Carathéodory class

Throughout this section U is a finite dimensional Hilbert space. We extend the pre-order ≺ and equiva-
lence relation ∼ of Section 1 to the Carathéodory class C(U) and prove Theorems 0.3 and 0.4.
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We start with some preliminaries. The operations Re and ∗ are extended to C(U) pointwise, i.e., for 
F ∈ C(U) we define Re(F ) and F ∗ by Re(F )(λ) = Re(F (λ)) and F ∗(λ) = F (λ)∗, λ ∈ D. Recall that 
RF := RF (λ) is independent of the choice of λ ∈ D.

The following theorem provides several characterizations of the pre-order defined in (0.8) and the related 
equivalence relation.

Theorem 3.1. Let F, G ∈ C(U). Then the relation F ≺C G defined by one of the following four equivalent 
conditions:

(CPOi) F −G = Re(G) 1
2Q Re(G) 1

2 for a bounded L(RG)-valued function Q on D;
(CPOii) F ∗ + G = Re(G) 1

2RRe(G) 1
2 for a bounded L(RG)-valued function R on D;

(CPOiii) there exists an s > 0 with G + ε(F −G) ∈ C(U) for all ε ∈ C with |ε| ≤ s;
(CPOiv) there exists an s > 0 with G + ε(F −G) ∈ C(U) for all ε ∈ C with |ε| = s;

defines a pre-order relation on PR(H). Furthermore, we have F ≺C G and G ≺C F (denoted F ∼C G) if 
and only if RF = RG and one of the following equivalent statements holds:

(CERi) F −G = Re(F ) 1
2 Q̃Re(G) 1

2 for a bounded L(RG)-valued function Q̃ on D;
(CERii) F ∗ + G = Re(F ) 1

2 R̃Re(G) 1
2 for a bounded L(RG)-valued function R̃ on D;

(CERiii) there exists an s̃ > 0 with δG + (1 − δ)F + ε(F − G) ∈ C(U) for all δ ∈ [0, 1] and ε ∈ C with 
|ε| ≤ s̃;

(CERiv) there exists an s̃ > 0 with δG + (1 − δ)F + ε(F − G) ∈ C(U) for all δ ∈ [0, 1] and ε ∈ C with 
|ε| = s̃.

Similar relations exist between the supremum norms of the functions Q, R, Q̃ and R̃ and the numbers 
s and s̃ as were derived for X, Y , X̃, Ỹ , r and r̃ in Theorems 2.3 and 2.2. However, we have no need for 
them in the sequel of the present paper.

Proof of Theorem 3.1. The pointwise equivalences of (CPRi)–(CPRiv) and of (CERi)–(CERiv), i.e., with 
the equalities and inclusions at specified points of D (and possibly different r and r̃ at different points) follow 
immediately from the first parts of Theorems 2.3 and 2.2, respectively. Hence we obtain the equivalence of 
(CPRi)–(CPRiv) and of (CERi)–(CERiv) without the boundedness constraint in (CPRi), (CPRii), (CERi) 
and (CERii) and with s and s̃ in (CPRiii), (CPRiv), (CERiii) and (CERiv) possibly dependent of the point 
in D. The fact that we have equivalence with the boundedness conditions on Q, R, Q̃ and R̃ and with s
and s̃ independent of the point in D, follows directly from the inequalities in (1.2) and in items (i)–(iii) in 
Theorem 2.2. �

As observed in the introduction, the interesting implications of ≺C appear on the boundary.

Proposition 3.2. Let F, G ∈ C(U) such that F ≺C G, u ∈ U , and t �→ λt, t ∈ (0, 1] be a continuous 
curve in D with λt ∈ D whenever t ∈ (0, 1). Assume G(λ1) exists in PR(U). Then limt↑1 G(λt)u = 0
implies limt↑1 F (λt)u = 0. In particular, if β ∈ T and limλ→β G(λ)u = 0 nontangentially (respectively 
unrestrictedly), then limλ→β F (λ)u = 0 nontangentially (respectively unrestrictedly).

Proof. First observe that for any u ∈ U and λ ∈ D∥∥Re(G) 1
2 (λ)u

∥∥2 =
∣∣Re

〈
G(λ)u, u

〉∣∣ ≤ ‖u‖
∥∥G(λ)u

∥∥.
Now let Q̃ be as in (CPOi). Then
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∥∥F (λ)u−G(λ)u
∥∥ ≤

∥∥Re(G) 1
2 (λ)Q(λ) Re(G) 1

2 (λ)u
∥∥

≤
∥∥Re(G) 1

2 (λ)
∥∥∥∥Q(λ)

∥∥∥∥Re(G) 1
2 (λ)u

∥∥
≤

∥∥Re(G) 1
2 (λ)

∥∥‖Q‖∞
√

‖u‖
∥∥G(λ)u

∥∥.
Since ‖ Re(G) 1

2 (λ1)‖ < ∞, this inequality shows that limt→1 G(λt)u = 0 implies limt→1 F (λt)u = 0, as 
claimed. �

Due to the boundedness conditions in the various characterizations of ≺C and the fact that functions in 
C◦(U) need not be bounded on D, the set of strict Carathéodory functions C◦(U) is less well behaved with 
respect to the pre-order ≺C as is the case for strict Schur class functions in connection with the pre-order 
of [3]. We have to restrict to C(U) ∩H∞(U).

Corollary 3.3. The set C◦(U) ∩H∞(U) forms an equivalence class with respect to ∼C and F ≺C G holds for 
any G ∈ C◦(U) ∩H∞(U) and F ∈ C(U) ∩H∞(U).

Proof. Note that if G ∈ C(U) ∩H∞(U) and F ∈ C(U), then F ≺ G implies F ∈ C(U) ∩H∞(U). Now assume 
G ∈ C◦(U) ∩H∞(U). Then Re(G) 1

2 is invertible on D with λ �→ Re(G)− 1
2 (λ) bounded on D. Hence F −G =

Re(G) 1
2Q Re(G) 1

2 with Q = Re(G)− 1
2 (F −G) Re(G)− 1

2 and ‖Q‖∞ < ∞ whenever F ∈ C(U) ∩H∞(U). This 
shows C◦(U) ∩H∞(U) is included in the equivalence class of any G ∈ C◦(U) ∩H∞(U).

If F ∈ C(U) ∩H∞(U), but F /∈ C◦(U), then F (eit)u = 0 for some u ∈ U and t ∈ R such that F (eit)u can 
be defined through its nontangential limits at eit. By Proposition 3.2, G ≺C F would imply G(eit)u = 0, 
and thus G /∈ C◦(U). �

The following result is a direct consequence of Proposition 3.2 and the fact that functions in C(U) are 
uniquely determined by their nontangential limits.

Corollary 3.4. Any G ∈ C(U) ∩H∞(U) with Re(G) = 0 a.e. on T forms an equivalence class by itself, and 
F ≺C G implies F = G for any F ∈ C(U).

Next we show that the functions that establish the relations ≺C and ∼C are continuous.

Proposition 3.5. Let F, G ∈ C(U) such that F ≺C G (resp. F ∼C G). Then the functions R in (CPOi) and 
Q in (CPii) (resp. R̃ in (CERi) and Q̃ in (CERii)) are continuous on D.

This result is a direct consequence of the following lemma.

Lemma 3.6. Let U , V and W be finite dimensional Hilbert spaces. Let X, Y and Z be functions on D with 
values in L(V, W), L(V) and L(U , V) and assume RanX(λ)∗ = V = RanZ(λ) for each λ ∈ D. Assume 
further that X, Z and H := XY Z are continuous on D and Y is bounded on D. Then Y is continuous on 
D as well.

Proof. We first show that Y Z is continuous on D. Let λ0 ∈ D. Since V and W be finite dimensional Hilbert 
spaces, X, Z and H are continuous with respect to any topology. Fix u ∈ U and w ∈ W. Note that for any 
λ ∈ D we have∣∣〈Y (λ)Z(λ)u,

(
X(λ)∗ −X(λ0)∗

)
w
〉∣∣ ≤ ∥∥Y (λ)

∥∥∥∥Z(λ)u
∥∥∥∥(X(λ)∗ −X(λ0)∗

)
w
∥∥.

Since λ �→ X(λ)∗ is continuous on D and H and Y are bounded on a small enough neighborhood of λ0, the 
above inequality yields



S. ter Horst / J. Math. Anal. Appl. 420 (2014) 1376–1390 1389
lim
λ→λ0

∣∣〈Y (λ)Z(λ)u,
(
X(λ)∗ −X(λ0)∗

)
w
〉∣∣ = 0.

Furthermore, we have

lim
λ→λ0

〈
X(λ)Y (λ)Z(λ)u,w

〉
=

〈
X(λ0)Y (λ0)Z(λ0)u,w

〉
=

〈
Y (λ0)Z(λ0)u,X(λ0)∗w

〉
and

〈
X(λ)Y (λ)Z(λ)u,w

〉
=

〈
Y (λ)Z(λ)u,X(λ)∗w

〉
=

〈
Y (λ)Z(λ)u,X(λ0)∗w

〉
+

〈
Y (λ)Z(λ)u,

(
X(λ)∗ −X(λ0)∗

)
w
〉
.

This shows that

lim
λ→λ0

〈
Y (λ)Z(λ)u,X(λ0)∗w

〉
=

〈
Y (λ0)Z(λ0)u,X(λ0)∗w

〉
.

Since u ∈ U and w ∈ W were chosen arbitrarily and RanX(λ0)∗ = V, we obtain that limλ→λ0 Y (λ)Z(λ) =
Y (λ0)Z(λ0) for any λ0 ∈ D. Hence Y Z is continuous on D. Repeating the argument with H = Z∗Y ∗, i.e., 
with Z∗ and Y ∗ in place of X and Y and Z identically equal to the identity operator in V we obtain the 
continuity of Y . �

Next we prove Theorems 0.3 and 0.4.

Proof of Theorem 0.3. Let F, G ∈ C(U) such that F ∼C G, say F − G = Re(F ) 1
2 Q̃Re(G) 1

2 on D with 
‖Q̃‖∞ < ∞. Then we can apply Theorem 2.2 pointwise to all λ ∈ D, with W = Ψ(λ), except for the few 
isolated points λ ∈ D where Ψ(λ) is not invertible. We then obtain ‖Q̃Ψ (λ)‖ ≤ ‖Q̃(λ)‖ and

TΨ [F ](λ) − TΨ [G](λ) = Re
(
TΨ [F ]

) 1
2 (λ)Q̃Ψ (λ) Re

(
TΨ [G]

) 1
2 (λ). (3.1)

Hence TΨ [F ](λ) ∼ TΨ [G](λ) and we have ‖Q̃Ψ (λ)‖ ≤ ‖Q̃(λ)‖ ≤ ‖Q̃‖∞ < ∞.
Let λ0 ∈ D such that Ψ(λ0) is invertible. Then for any of the isolated points λ ∈ D where Ψ(λ) is not 

invertible we have

TΨ [F ](λ) ∼ TΨ [F ](λ0) ∼ TΨ [G](λ0) ∼ TΨ [G](λ).

Therefore, (3.1) holds for all λ ∈ D. Lemma 3.6 shows that Q̃Ψ is continuous on D, and thus ‖Q̃Ψ (λ)‖ ≤ ‖Q̃‖∞
also holds for the isolated points λ where Ψ(λ) is not invertible. Hence ‖Q̃Ψ‖∞ ≤ ‖Q̃‖∞ < ∞ and we obtain 
that TΨ [F ] ∼C TΨ [G] holds via (CPOi). �
Proof of Theorem 0.4. The argumentation is similar to the proof of Theorem 0.3. However, in this case one 
needs

(
I −RRe(G) 1

2 Ψ̃21(Ψ̃11 + FΨ̃21)−1 Re(G) 1
2
)
R

to be bounded on D. The fact that F, G ∈ D◦
Ψ implies that (Ψ̃11 + FΨ̃21)−1 and Re(G) 1

2 exist and are 
bounded on D. Hence the result follows. �
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Example 3.7. Take

Ψ(λ) =
[

1 − λ 1 + λ

1 + λ 1 − λ

]
(λ ∈ D).

Then

Ψ(λ)∗J2Ψ(λ) = 1
2

[
1 − |λ|2 1 + |λ|2
1 + |λ|2 1 − |λ|2

]
≥ J2 (λ ∈ D)

with equality on T. Moreover, detΨ(λ) = −λ, so that Ψ is invertible on D\{0}. Hence TΨ defines a self-map 
of C := C(C).

Now take F ≡ 0 ∈ C and G ≡ 1 ∈ C◦. Then F ≺C G, by Corollary 3.3. We have G̃ := TΨ [G] ≡ 1 ∈ C◦
and

F̃ (λ) := TΨ [F ](λ) = 1 + λ

1 − λ
with Re(F̃ )(λ) = 1 − |λ|2

|1 − λ|2 ≥ 0 (λ ∈ D).

Thus F̃ /∈ H∞, and hence F̃ ⊀C G̃ (see the proof of Corollary 3.3), even though G̃ ∈ C◦.
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