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Abstract

We study global solutions of a class of chemotaxis systems generalizing the proto-

type
{ u =V - (p(u)Vu) — xV - (Y(u)Vo) + au — bu", x € Q,t> 0,

nw=Av—v+u x€ct>0,
in a bounded domain © € RY(N > 1) with smooth boundary 99, ¢(u) = (u + 1)~¢,
Y(u) = u(u + 1)%71, the parameters r > 1,a > 0,b,x > 0 and «a, 8 € R. It is proved

that if 0 < o+ 8 < max{r —1+a, %}, or
b is big enough, if g=r—1,

then the classical solutions to the above system are uniformly-in-time bounded. Our
results improve the results of Wang et al. (Discrete Contin. Dyn. Syst. Ser. A.,
34(2014), 789-802) and Cao (J. Math. Anal. Appl., 412(2014), 181-188.) and also
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enlarge the range of Tao and Winkler (J. Diff. Eqns., 252(2012), 692-715) and Ishida
et al. (J. Diff. Eqns., 256(2014), 2993-3010).
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1 Introduction

In this paper, we consider the initial-boundary value problem for the quasilinear parabolic—

parabolic Keller-Segel system with the logistic source

(
up =V - (o(w)Vu) = xV - ((u)Vv) + f(u), z€Q,t>0,
Ty =Av4+u—v, x€Qt>0, (L.1)
ou v L.
5—@—0, mE@Q,t>O,
’LL([L‘,O) = UO(‘r>> ’U(JL‘,O) = UO(I)a YIRS Qv

N
92
where 7 = 1, Q C RY(N > 1) is a bounded domain with smooth boundary 99, A = Z 32
=1 9T
0
£ denotes the outward normal derivative on 0€), xy > 0 is a parameter referred to as
v
chemosensitivity, u = u(z,t) denotes the density of the cells population, v = v(z,t) repre-
sents the concentration of the chemoattractant, ¢(u) describes the chemotactic sensitivity
of cells population and the logistic source f : [0,00) — R is smooth and satisfies f(0) = 0

as well as

fu) <a—0bu" forall u>0 (1.2)

with some @ > 0,0 > 0 and r > 1. We henceforth assume that ¢(u) and ¢(u) satisfy
¢ € C*([0,00)), and ¥ € C*([0,00)) with (0) = 0. (1.3)

Moreover, in order to prove our results, we need to impose the conditions that there exist

some constants o € R, 8 € R, M, > 0 and My > 0 such that

d(u) > My(u+1)"* forallu >0 (1.4)
and

Y(u) < My(u+ 1) for all u > 0. (1.5)

Much attention has been paid to the properties of solutions to chemotaxis models which
are kindred to (1.1), for which we refer to Murray ([18]) for a general background, Horstmann
([11]) for a survey on the Keller-Segel model. Especially, Burger et al. ([1]) proved the

global existence and uniqueness of the solutions of Cauchy problem in RV for linear and
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nonlinear diffusion with prevention of overcrowding. The model proposed herein exhibits
an even higher degree of nonlinearity, and offers further possibilities to describe chemotactic
movement; for example, one could imagine that the cells or bacteria are actually placed in
a medium with a non-Newtonian rheology. For a detailed description of the intrinsic scaling
method and some applications, we refer to the book [27].

During the past decades, the Keller-Segel models of type (1.1) have been studied exten-
sively by many authors, where the main issue of the investigation is whether the solutions of
the models are bounded or blow-up (see e.g., Cieslak et al. [7, 4, 5, 6], Calvez and Carrillo
2], Keller and Segel [15, 16], Horstmann et al. [11, 12, 13], Osaki [20, 19], Painter and Hillen
[21], Perthame [22], Rascle and Ziti [23], Wang et al. [28, 29], Winkler [31, 32, 33, 34, 35, 37|,
Zheng [39]). Especially, in the absence of the logistic source (i.e. f = 0) for problem (1.1),
the results appear to be rather complete. In particular, if ¢(u) = 1, Horstmann and Wang
([12]) showed that the solutions are global and bounded provided that ¥ (u) < c(u + 1)¥ <
for all u > 0 with some ¢ > 0 and ¢ > 0; On the other hand, if ¢(u) > c(u + 1)¥*¢ for
all u > 0 with e > 0 and ¢ > 0, Q C RY(N > 2) is a ball, and some further technical
conditions are satisfied, then the solutions become unbounded in finite or infinite time. In

25, assuming that Q C RV (N > 2) be a bounded convex domain, Tao and Winkler proved
P(u)
¢(u)

solutions are global and bounded provided that ¢(u) satisfies some another technical con-

that if < c(u+ 1)%+5 for all « > 0 with some & > 0 and ¢ > 0, then the corresponding
ditions. Recently, Ishida et al. ([14]) improve the results of [25] to a bounded non-convex
domain and degenerate diffusion.

On the other hand, logistic-type growth restrictions have been detected to prevent any
chemotactic collapse in some systems closely related to (1.1): For example, if ¢(u) =
1,9(u) = u, f satisfies (1.2) with r = 2, Winkler ([33]) discussed the existence of global
bounded classical solutions to problem (1.1) on a smooth bounded convex domain under the
assumption that either N < 2, or that the logistic damping effect b is large enough. When
P(u) = (u+1)" ¥(u) = u(u+ 1) with 0 < a+ f < £ and [ satisfies (1.2), Wang et

al. ([28]) obtained the unique global uniformly bounded classical solution (u,v) of problem



(1.1). Furthermore, assuming that the logistic source f € C*°([0, 00)) satisfies
f(u) < au—bu?® for all u>0 (1.6)

and ¢, fulfill
¢, € C*([0,00)) and ¢(s) >0 forall s> 0.

c1s” < p(s) for all s > s,
88 < P(s) < cos” for all s> s,

with ¢o > ¢; > 0, s > 1 and p, 3 € R, Cao ([3]) proved that if § < 1, then the classical
solution of (1.1) is global in time and bounded.

Going beyond these boundedness statements, a number of results is available which show
that the interplay of chemotactic cross-diffusion and cell kinetics of logistic-type may lead
to quite a colorful dynamics. For instance, the result in [34] indicates that chemotaxis
models may admit finite-time blow-up solutions even in the presence of certain logistic-type
growth inhibitions, provided the latter are suitably weak. If 7 = 1,¢(u) = 1,¢(u) = u,
f(u) = u— bu? and the ratio % is sufficiently large, Winkler ([36]) proved that the unique
nontrivial spatially homogeneous equilibrium given by u = v = % is globally asymptotically
stable in the sense that for any choice of suitably regular nonnegative initial data (ug,vg)
such that ug # 0, the above problem possesses a uniquely determined global classical solution

(u,v) with (u,v)];=0 = (ug, v9) which satisfies
1 1
[l ) = Sllze@) = 0 and lo( ) = 3|z = 0

as t — o0.

Motivated by the above works, the aim of present paper is to study the boundedness of
the quasilinear chemotaxis system (1.1) under the conditions (1.2)-(1.5). Our main result
says that together with the nonlinear diffusion, the aggregation and the logistic dampening

rule out the occurrence of blow-up whenever 0 < o + < max{r — 1+, 2}, or

b is big enough, if g=r—1,



which means the logistic source and the nonlinear diffusion benefit the boundedness of solu-
tions in the case of 0 < a+ f < max{r — 1+ a, %}. It is noted that, due to the structure of
supercritical sensitivity (a + 8 > %), we can not invoke the Gagliardo—Nirenberg interpo-
lation inequality which is used to estimate ||ul[zrq)(k > 1) in case of subcritical sensitivity
(a+ 8 < %) ([25, 28]). Moreover, in order to solve the case § = r — 1, we have to investigate
the properties of second equation. Hence, in order to give a complete analysis of problem
(1.1), we must find new techniques. Let us point out that the main difference between this
work and that of [3, 14, 24] is that the nonlinearity involved in (1.1) is stronger than the one
in [3, 14, 24], which makes the analysis of problem under consideration more involved.

This paper is organized as follows. In the next section, we recall some preliminary results,
state the main results of this paper and the local existence of the classical solution to (1.1).
Section 3 is devoted to prove the main results of this paper. More precisely, we estimate
u(z,t) in a higher L? space, and then obtain the uniform-in-time boundedness for u by a

iteration procedure.

2 Preliminaries and main results

Throughout this paper the Hilbert space H = L?(f2) is equipped with usual inner product
(+,-) and norm |.|.
Before proving our main results, we will give some preliminary lemmas, which play a

crucial role in the following proofs.

Lemma 2.1. ([9, 14]) Let s > 1 and ¢ > 1. Assume that p > 0 and a € (0,1) satisfy

1 q 1 1
I —(1=-a)2 — - — <a.
57N (1 a)s+a(2 N) and p<a

Then there exist co, ¢y > 0 such that for all u € WY2(2) N La(€2),

[ullwra@) < col Vulzllull =+ collul

1—a s
Li(Q) L1(Q)’

Lemma 2.2. ([17]) Let Q be a bounded domain in RN with smooth boundary. If w € C*(Q)
satisfies a_w =0, then
v
O|Vw|?

<
81/ ~ C'Q|Vw|,



where Cq > 0 is a constant depending only on the curvatures of 2.
Lemma 2.3. (/26]) Let y(t) > 0 be a solution of problem

y(t)+Ay¥ <B t>0,

y(0) =90 >0

(2.1)

with A > 0,p >0 and B > 0. Then we have

y(t) < max{yo, (%)é} s

Lemma 2.4. Assume that di,ds > 0 and ro > 0, then
(di +dp)™ < 27(d° + dy).

Theorem 2.1. Assume that ug € C°(Q) and vy € WH(Q) (with some 0 > n) both are
nonnegative, f satisfies (1.2), ¢ and v satisfies (1.3)—(1.5). If0 < a+f < max{r—1+a, %},
or

b s big enough, if B=1r—1,

then there exists a pair (u,v) € (C°(Qx [0,00)) NC*L(Q x (0,00))? which solves (1.1) in the

classical sense. Moreover, both u and v are bounded in 2 x (0, 00).

Remark 2.1. (i) We find that the coefficient b of logistic source will not be used in the case
of 0 <a+f <max{r—1+a,=}.

(ii) Theorem 2.1 extends the results of L. Wang et al. ([28]), who proved the possibility
of global, in the cases 0 < a + 8 < %, and with Q C R" is a convex bounded domains.

(iii)If f(u) = 0, Theorem 2.1 extends the results of Tao and Winkler ([25]), who proved
the possibility of global, in the cases % < cu” (o < 2(N > 2) and u > 1), and with
Q C RY is a convex bounded domains.

(iv)Theorem 2.1 extends the results of Cao ([3]), who proved the possibility of global, in
the cases 8 =1, f(u) = au — bu?.

(v)Theorem 2.1 enlarges the parameter range % < o+ < r— 1+ «, Ishida et al. ([14]),

who proved the possibility of global, in the cases f(u) = 0.



The following local existence result is rather standard, since a similar reasoning in [3, 7,

24, 28, 29, 30, 38]. We omit it here.

Lemma 2.5. Assume that the nonnegative functions ug € C°(Q) and vy € WH(Q) (with
some 0 > N), f satisfies (1.2) with some a > 0,b > 0 and ¢, satisfy (1.3)-(1.5), re-
spectively. Then problem (1.1) has a unique local-in-time non-negative classical solution

(u,v) € COQ x [0, Thaz)) N CH(Q % (0, Trnaz)) N L5((0, Trnae); WH9(Q)), where Tppon de-

loc

notes the mazimal existence time. In addition, if Tyee < +00, then
lu(-, )l oo + [0 E)[lwro) — 00 as t = Thas
18 fulfilled. Moreover, if Tha. < +00, then
lu(-, )|l Loeo) = 00 as t = Thge (2.2)
18 fulfilled.

In order to proceed, let us now pick any s € (0, T)q:) and s < 1. Then by Lemma 2.5,

we can conclude that for any given s € (0, T},42), s < 1, there exists K > 0 such that
|u(7)|| L) < K, ||o(7)]|zoo@) £ K and [[Av(T)||pe) < K forall 7€[0,s]. (2.3)
Lemma 2.6. ([14, 25, 28]) For alll € (1, %), there exists a constant ¢ > 0 such that
lo(-, ) llwee < ¢ forall t e (0, T

Lemma 2.7. (/3, 10]) Suppose v € (1,+00), g € L7((0,T); L?(Q)) and vy € W*7(Q) such
81)0

that — = 0. Let v be a solution of the following initial boundary value

v

vy — Av =g,

v

— = 2.4
"o, (2.4)

v(x,0) = vo(x).
Then there exists a positive constant oy such that
T T T
e e R O APy AP OR PR

. (25)
< 5 ( [ ot 0t + s 01 0, + ||Avo<-,t>uzw(m) |



On the other hand, assuming v is a solution of the following initial boundary value

vy —Av+v =g,

% =0, (2.6)
v(x,0) = vo(x).

Then there exists a positive constant C., such that if s € [0,T), v(-,s0) € W2Y(Q)(y > N)
v, sp)

ith
wi ey

=0, then

T
/ A0, 1) s
S0 (27)

T
< G ([ oMt + 50y + 18050 ) )

S0

3 The proof of main results

This section is devoted to prove Theorem 2.1. To this end, we obtain the |[u(-, )| r~w) by
the iteration method, which depends some a priori estimates.

Firstly, let us derive the following a-priori estimates for the solutions of model (1.1).

Lemma 3.1. Assume that f satisfies (1.2) and (u,v) is the solution of (1.1). Then for any

T € (8, Trnaz), there exists T > 0 such that
/(u(m,t) +1)%dx <Y forall te(s,T)
Q

and
T
/ /(u(:l:,t) + 1) dwdt < Y(T + 1),
s Q

where 0 < o < 1.

Proof. Integrating (1.1); (the first equation of (1.1)) over 2 and using (1.2), we obtain

%/Qu(a:,t)dx = /ﬂf(u(:z:,t))dx <alQ| - b/QuT(x,t)dq:. (3.1)

Due to r > 1 and the Hélder inequality, we conclude that

d T
—/u(a:,t)dx+b\ﬂ]1_7" </ u(x,t)dx) < alq).

9



Hence, by Lemma 2.3, we get
/ u(z, t)dr < max{K, (- ) HE| for all ¢ e (s,7T),
Q

that is

/( (1) + 1)z < (max{K, (3)?} + 1|9 for all t€ (5,7).

If 0 < o <1, by (3.3) and the Hélder inequality, we have

/Q(u(x,t)+1)"dx§ </Q(u(x,t)+ 1)d ) Q"7 < (max{K, (- ) ++1)719).

(3.2)

(3.3)

(3.4)

On the other hand, integrating (3.1) over (s,T') with respect to ¢ and using (2.3), we have

11)/ :erJH—// (x,t)dxdt <

<

i <a|Q|T + /ﬂ u(e, 5)dm>

| (aT + K)
|

IN
\5

o

| (a+ K)(T+1),

|

which implies that,

/T/ur(as,t)dzcdtg %(a—l—K)(T—kl).

Hence, by Lemma 2.4, we have

// (x,t) + 1) dzedt < 27"(// :L’tdxdt+|Q|T>

< o {%m + )T+ 1) + QT
“* Ko @+,

< 27|Q(

which, combined with » > 1 and the Holder 1nequahty implies that

[ fwen ey wuz [1([uen 1>rdx>“—-l (] mx)%dt

r—1

T / </ xt—irl)dx)Tdt
e (/ (/Q( (:p,t)—kl)rd:p) e
|Q|%T%</5T</Q (,t) + 1) )TT

2io)(“ R ><T+1>)

+1> L (T +1).

IN

IN

1 1

QT

IN

N
()
7
2
/?/\
_|_
=

10
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; =1
Finally, choosing T = [(maX{K, (8 +1)7+2r 7 (R 4+1) 7 ] Q2| and using (3.4) and

(3.8), we can get the results. O

Next, we are in a position to improve the regularity of u in a higher LP space, which

plays important role in obtaining the L*-estimate of u.

Lemma 3.2. Assume that f satisfies (1.2) with % < a+  <r—1+4«. Let (u,v) be a

solution to (1.1) on (0, Traz),

r—14f 1<r<2,
Kp = (3.9)
1 if r=2

d>krand p=(r—p0)0+(r—p5—-1)(r—x). If
/(u + 1)°(z,t)dx < Co(T + 1) for any t € (s,T) (3.10)

and
T
/ /(u + 1) (g t)dadt < Co(T + 1) (3.11)
s Q
hold for some T € (0, Tpnar) and some Cy > 1, then there exist My > 0 and M > 0 depending
on a,b,r, K and |Q| such that
/(u + D) (x, t)de < MoM*Co(T + 1) for any t € (s,T)
Q
and

T
/ / (u + 1)+ (2, ) dedt < MoM"Co(T + 1),
s Q

Proof. Without loss of generality that 5 > 0. Multiplying (1.1); by (u + 1)* " and inte-

grating over €2, we get

gl M g+ e ) [ ek 1w Vs -
Q= /Q V - (6(u) Vo) (u + 1)~ dx + /Q (u+ 1) f(u)dz, '
which, together with (1.4), implies that
e M — k) /(u )Rt |y 2
p— K, + 1dt Lemrrsie) AU (3.13)
< —X/QV (P(u) Vo) (u + 1) " de + /Q(u + P f(u)de.

11



Integrating by parts to the first term on the right hand side of (3.13) and using 5+ 1 < r

and the Young inequality, we obtain from the second equation in (1.1)

o /Q V- () Vo) (u+ 1) do
= (n— Hr)X/ Y(u)(u+ )"V (u 4+ 1) - Vodr
= (n— KT)X/ZV\II(U) - Vodx

— —(M—/QT)X/\IJ(U)Avdl‘

= —(u—l{r)x]\ll(u)(vt—i-v—u)dx (3.14)
0
< (x| (Bl + W) da
Q
= Ky _ D
< M + 1 1% 'ir+5 + _‘_ 1 1% HT+5+1 d
< My [ (] 1)) do
< M, / (w4 1) 554 dp 4 M, / (w4 1)+, |z
0 0
b H;'ir#»r
< (u+ D)= dg + Oy () + Co(p) [ || 77 du,
2r+1 Q Q
where
U(u) = / Y(7) (1 + 1), (3.15)
0
r—pg—1,0 U— Ky + 7T | _porrtptl p—rptr
C — r—B—1 M r—pB—1 Q
) = Ty e A ) ) B g
- T_ﬁ_l( b )T (y M) T
U — Ry 22 XMy ,
r—pg—1 p—retpr1 27T XMy, 1 B
X 1 - r—B—1 — = P )r-B-1 (I’L ET+1) Q
_ B r—1
< (= B D(gg) T (M)
Sl R WSE P o il il
ok + 0 +1 =y + 1
and
e T I L N S
C = — M)
5 (1) u—nr+r(2r+2 X u—m«+ﬁ) (xMy) 2
= 5 b _B-1 r—=1 r— B _ p—kr+B 2r+ XMw 1 _
—= r—pB M r— 1 S r—p3 — = " )\r-B ('u’ ET+1)
e ) M) T
b B-1 r1 r—p p—ry+8 [(QTJr XMl”)*B}(#_“T‘H)

IN

(r = B)(5mm) ™ (M) (14

Here we have used the fact that v and v are nonnegative functions.



Due to (1.2), we have

/(u + )7 f(u)dx

< (u+ D* " (a — bu")dx (3.18)
Q
= a/(u + ) rrde — b/(u + D)l da.
Q Q

On the other hand, due to

(u+ 1) (4 + 1) d = / (ut 1w,
Q

/Q(u YR (0 4 1)da > /

Q

we have
b / (u+ 1) u"de > b / (u+ 1) de — b / (u+ 1) dx.
0 2" Jq 0

Inserting the above inequality into (3.18), we get

(0 + 1) dg — 23 / (ut P+ dp (3.19)
Q

/Q (u+ 1P F(u)dz < (a +b) /

Q

By (3.12), (3.14), and (3.19), we obtain

1 d
— | e My(p — ki, / 1)r=rr=e117y)2d
Ml ) (0D Vupas
< o /(u—i—1)“_"‘T+Td:v+(a+b)/(u+1)“_“de+01(u)+02(u)/ v 7 da.
Q Q Q
(3.20)
Since r > 1, and with the help of the Young inequality, we see that
1 d e o
7—\]u+1\|‘£u_;:fl(g)—I—M¢(/L—/<;T)/(u+1)# a2
po ot Lt Q i (3.21)
< g [ D+ )+ o)+ Cal) [l
Q Q
where
r b B Ry =T _pnr H—Frtr
Cali) = e (g % )5 a +)
Tr b 1 r—Tl pn—FKr 2T+2(a+b) 1
L \ - b))+ (1 pial [ GeeR S R 1 (Ll b o)
() DT () e
b .1 re1 ey [(W)ﬂ(u—mﬂ)
< G b) = (1 =0
< ) ot )T e
(3.22)
Next, let
b __B r—1 T — 6 —1 _r(r—=B—1)+B+1
Co=(r—0—1)(z) =1 (xMy)—71(1+ T Q)

13



b -1 r-1 1
r—1

)7(7"71)

and

r—1

N7 (14— - =8-1)Q
(a+)F (14 ———) D]
and choose

M1 = max{C'4, 05, 06}7

2T+2 M 1
T ()T L ()

then by (3.16), (3.21) and (3.22), we have

2r+2 M
M, = max{1 + (#)

1

K41 —Kp+r
— ||U+ Lt o) + ! b/(U+ L=t dy < Mlﬁ/ |Ut|hfﬁ+ dz.
,U, Ry + ]. dt Luzsr (Q) 2T+2 Q - QO

=Ky +1
(3.23)
Here we have used the fact that f(z) = (1 + i)m is a strictly increasing function on (r(r —
B —1),400), limyi0(l+ )" =eand p— K, > r(r —f=1) > 0.

Now, inserting (3.23) over (s,7") and using (2.3) and p — k, +1 > 1, we have

/Q(u + 1)t () t)da

gfmr#»?“
< /(u—kl)" ot () s)da + My My~ ”*H/ /]vt] 7 dadt (3.24)
Q
n= ’ir+7‘
< KFH QL+ MM “r+1/ /\vt\ 7 dxdt forall te (s,T)
and
/ /u+1“ Rt dyedt
2r+2 r+2M,u Kr+1 p—Fkrtr K7+7‘
< 1)prrtl dz + M // P dxdt
< b(ﬂ_mﬂ)/(w po e s+ My s [ [ e
<

27'+2 1 7NTB+T
. (K“ RO 4 MM / /y v d;cdt).
(3.25)
p—Er+r -1

On the other hand, with the help of the Young inequality, multiplying (1.1)s by v 5

14



and integrating by parts, we obtain

r— = Nr+r U — Ky +r L—Krt+r o 9 / p—rrtr 4 H—Kr+7r
— = —(—— -1 5 |Vl =l E )d
Tl e = () [+ v da

< (uvu E vuzirﬁy)dx
Q
w—Kp+T
T )
nw—FKr+71rJo
(3.26)
Integrating (3.26) over (s,7T), using (3.10)—(3.11) and (2.3), then we have
/ /U S (x,t)dxdt < /v Tﬂy(xsdx—i—/ /u—i—l w5 (wt)dxdt
2
< K950 + Co(T + 1) (3.27)

L—Kr+T

< OyMy 7 Cy(T + 1),

where C7 = K|Q] +1 and M3 = max{1, K}. Here we have used the fact that u = (r — 8)d +
(r — B —1)(r — k,). Therefore, Lemma 2.7, (3.11) and (3.27) yield

/ /]vt] = (x,t)dxdt
50/ / u“f"? )+ 0 T (2 ,t)) dudt

(28) 40" (2,5) ) da

b (x t)+v i (x t))dxdt

IN

(3.28)

p—Kpr+r

F,s) 40" (2,9) ) da
TOW(T + 1) + 86Co(T + 1) + 2K 55 1Q)6o(T + 1)
< OsM, 7 Cy(T+1),

IN
\\‘
\

N

+

A
S
=

!

where Cy = 2d0(1 4+ M>|Q|), & is the constant given in Lemma 2.7.

Now, inserting (3.28) into (3.24) and (3.25), respectively, and using § + 1 < r, we have

/(u + 1)t (g ) da
Q
B—Kptr

KH K’"—H‘Q’—FMM/’L Kr-l-lC M r—B CQ(T+1)

IN

(3.29)

A

MY K2|Q| + My MY M2Cs MY M Co(T + 1)

< CyMICH(T +1)

15



and

T
/ /(u + )P dadt
s Q

2r+2 p—spr
< <K*‘ P Q|+ My MY T O My TP CO(T+ 1)>
22 (3.30)
27‘
< = (M;K2|Q\ My MEM2Cs MEMECo(T + 1))
< CyM!I'Cy(T + 1),
where Cy = (14+22)(K?|Q|+Cs My MZMJ), My = MyMs. Finally, it follows from the Holder
inequality and (3.29) that
[+ 1y e
Q
< w+ D (g ) dg) w1 |Q e
([ (e 1y, )y ) )
< (CoMLCo(T + 1)) mrFT |Qimrit

< MoM"Co(T + 1),

where My = (Cy)i=rrt |Q|M::11 + Cy, M = M,. Combining (3.30) with (3.31), we can get

the results. This completes the proof of Lemma 3.2. O

2
Lemma 3.3. Assume that 0 < o+ f < N Let (u,v) be a solution to (1.1) on (0, Traz)-

Then for any T € (8, Tymaz), k > 1, m > 1, there exist a positive constant C' such that
lu(-, )|k <C  and ||[Vo(-,t)||2m@q) < C (3.32)
hold for allt € (s,T).

Proof. Let [ € [1 Throughout this proof, C;(i > 1) are positive constants depending

S =l
only on some of ¢y, ¢}y, ca, @, 8, N,Q, a,b,r, X, ug and vg. From L'-boundedness of u, it suffices
to prove the assertion for sufficiently large k. Now for k& > 1, using L'-boundedness of u and

following the same procedure as in ([28], (30) and (45)), we obtain

d 1 2k My
— </(u+1)kdx+—/|VU|2mdx> "’—/W + 1) 2da
dt O m Jo

20 — 1
+L2)/ V| Vo|™|?dz
m Q

o) (/ yV(u+1)’“‘T“y2dz>91 (/Q|V|Vv|m]2dx>m (3.33)
(/ IV (u+ 1) |2dx>02 </Q|V|Vv|m\2dm>m

2
+(13/ 9Vl (Vo> 2dx + C4,

IN

16



where 61,05, o1 and o5 depend only on N, «, 8 and k and satisfy
0<Oi+o0,<1 (i=1,2).

Next we deal with the integration on 9€2. We see from Lemma 2.2 that

2
/ a|VU’ ’V ’2m de
a0 OV

Vo™ dzx (3.34)

IN

o0
= CQ||VU|M|%2(39)~

Let us take 7 € (0, 1). By the embedding Wr+22(Q) — L2(9) is compact (see e.g. Haroske
and Triebel [8]), we have

IV [2200) < Csl IVl [? (3.35)

WwrE2Q)

In order to apply Lemma 2.1 to the right-hand side of (3.35), let us pick a € (0, 1) satisfying

Noting that r € (0,3) and m > 1 imply that » + 3 < a < 1, we see from the fractional

Gagliardo—Nirenberg inequality (Lemma 2.1) and boundedness of |[Vu|' (see Lemma 2.6)

that

V1,

co VIVl ][Vl

IN

L oy T IV (3.36)

< Ol V|Vo|™[S + Cs.

Combining (3.34) and (3.35) with (3.36), we obtain

d| Vol
/ ’a:’ |Vo|*™2dx < C7|V|Vo|™3 + Cr. (3.37)
o0

Inserting (3.37) into (3.33) and using a € (0,1) and the Young inequality, we have

2 M
4 (/(u+1)kdx+/ \Vv\zmd:p> i ¢ /]V =N *2dx

+M/ V|Vl 2dx (3.38)
m Q

Cs.

IN
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Finally, let y := [,,(u+ 1)"dz + [, [Vv|*"dz, we see from the same way as in [28] that (24)
yields

d h

Ly(1) + Coy (1) < Cuo
with some positive constant h. Thus a standard ODE comparison argument implies bound-
edness of y(t) for all t € (0, Thnae). Clearly, [[u(-,t)|[zr@) and [[Vo(-,t)||12mq) are bounded

for all t € (0, Tynaz). The proof of Lemma 3.3 is complete. O

Lemma 3.4. For any fized r > 1,6 > 1,xMy, Cry5-1 > 0, let

1 S R M -1
H(y) = y+ [ ] g (XM NG s o),

r+d6—11r+46—2 r+46—2
Then .
: MG
(R S N

Proof. Let pp =1+ 0 — 2 and

1 r4d—1] 0
Al_r+5—1[r—|—5—2] ' (3:39)
Then H(y) will be
XMw po+1
H(y) =y+ Alyipo < o ) Cpo-i—l‘
Hence,
M po+1
H'(y) =1~ Aipo <Xp d)) Coorry ™"
0
Let H'(y) = 0, we have
1 M,
Yo = (A1Cpe41p0) P07 %
Po
On the other hand, by lim,_,o+ H(y) = +oo and lim,_,; H(y) = 400, we have
1
. XMy Cli5
H(y)=H =T
Sap A W) = Hlwo) = =750
]

Lemma 3.5. Assume that 8+ 1 =1 and b is big enough. Let (u,v) be a solution to (1.1)

on (0, Traz). Then for any T € (s, Thax), for all § > 1, there exists a positive constant
C = C(0,],b, x, My, ug,vg) such that

/(u(m,t) +1)°dx < C  forall t€(s,T) (3.40)

18



holds.

Proof. Multiplying (1.1); by (u 4 1)°~! and integrating over (2, we get

1d
e+ 1||m 6=1) [ (a1 000 Vufds

= —x [ V- ((u)V 1)°'d 1) f(u)d
VT ) e [ ) (e

which, together with (1 4) implies that

L+ 12y + M5 — 1) / (u+ 1) Vuf2da

5dt
< —x/ V- (Y(u)Vo)(u+ 1)°tda + /(u + 1) f(u)dx
Q Q
that is,
1d
5@”“*‘ 13500
< I Z -1 /(u +1)%de —x [ V- @(u)Vo)(u+1)°"tde
Q )

Due to (1.2), we have
JRCRS
< f(u +1)° Y (a — bu")dx
Q

= a/(u 4+ 1)° e — b/(u + 1) " d.
0 Q

On the other hand, due to

§—lor/, r 6—1 r _ U r+d6—1 x
/Q(u+1) 2" (u +1)dm2/ﬂ(u+1) (u+1)dx—/9( +1) du,

we have
b [ty tedez o [yt [ ey
Q 2" Jo o

Inserting the above inequality into (3.43), we get

/Q(u + 1) f(u)de < (a+ b)/

Q

Hence, by Young inequality, we have

/Q (Hff_l(“* D+ (u+ 1>5—1f(u>> dz

< %/(uﬂ)édﬁ(a+b)/(u+1)é—1dx—%/(uﬂ)w—ldx
Q Q

Q

S (81 + &9 — y) / (U + 1)T+671d{L’ + Cl(El, 5) + OQ(€2, 5)7
Q

19

(u+ 1) dr — 2—6/(1& + 1)tz
Q

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)



where )

) S+r
r—1 O4+r—1\ =1 (r+0—-1\ 1
et~ () (22

5—1
r d+r—1\ s+
02(6276)_(54-7“—1(82 51 ) ((l+b)

Next, integrating by parts to the first term on the right hand side of (3.41), using 5+1 = r

and

and the Young inequality, we obtain

—X/V w)Vv)(u+ 1) de
= (6-1) /w Y(u+1)°72V(u+ 1) - Voda
= —(5—1)X/\I'(U)Avd:c
Q
< (06— 1))(/ U (u)| Av|dz (3.46)
Q

0—1
< B+o—1
S Fio-1 1xM,p/(u+1) |Av|dx

1

0 — _

< XM¢/S2(U+1)T+6_2|AU|CL%’,

where U(u) = [}'% 1)°~2dr. Here, we have used the fact that » > 1. For any fixed

Ao > 0, applying the Young inequality to (3.46), we have

—X/V u)Vo)(u+1)° '

1 r4 112 M. r46—1
A 1 r+§—1d A 71/) / A T+5—1d
O/Q(u—k) z+7’+5—1[0 ] < Q| v| x

IN

r+06—2 r+6—2

(r46-2) Xqu r+d—1
— 1)r+o-1 A \rto= ATy / Ap|rto-1
)\O/Q(u+ ) dr + A1)\ R Q| v| du,

(3.47)
where A; is given by (3.39). Thus, inserting (3.45) and (3.47) into (3.42), we get

1d
sl + s
< (er+ertro— Q—br) /(u 1)y — ”‘%1 /(u +1)0da
“ r+6—1 @
F AN <ﬂ> / | A" dx 4 Cy (&1, 8) + Co(ea, 6).
r+0—2 Q

20



Employing the variation-of-constants formula to the above inequality, we obtain

1
Sl + s

1 b t
< ge*(“&*l)(t*so)ﬂu(so) + 1H‘25(Q) +(e14+e2+ Ao — 5)/ e~ (rHo-1)(t=s) /(u + 1) dxds
S0 Q
s M r+o6—1 t
+A1>\0( +0-2) (*X ¥ ) / e~ (rHo-1)(t=s) / |Av|" 0 dads
T + 6 - 2 . S0 Q
+(Ol (51, 5) + 02(82, 5)) / 67(T+571)(t78)d8
S0
b t
< (@tetl-g) / ~(r+0-1)(-3) / (1 + 1) dads
XM r4+6—1 t @
+A1/\g(r+6—2) < > / o~ (r+3—1)(t—s) / ‘Av‘r—ké—ldxds . 8 03(57517 62)
r4+90—2 s Q

(3.48)

for all ¢ € (sp,T) and sg < 1, where

1 T
Cy 1= C3(0,61,82) = 5”“(30) + 1||6La(9) + (C4(e1,9) + Co(ea, 5))/ e~ rHo=E=9) g,

S0
Now, by Lemma 2.7, we have

r+d—1 t
Al)\a(r—&-é—Q XM,y / e~ (r+=1)(t=s) / |AU|T+6—1dde
r+90—2 s

)
r+0—1
_ Al)\a(rw—z) XMw 7(7‘+(5 1)t/ (r+6—1)s /|Av|r+6 Llrds
r4+6—2
(r+5-2) XMy iy (r+6—1)t (r+6—1)s, r+6—1
—(r+6— 77«+ 7+ s 7‘
< Ay <7r+5_2> Cris 1// dids (3 10
+el 0700 g (so, 1) |52t
(r+5-2) XM, i~ ! (r+6—1)(t—s) b
_ A)\—r - Cr 3 —(r4+6—1)(t—s 1r+—1dd
1% <r+5—2) " 1(/80/96 (ut )7 deds

el flug (s, )25

for all ¢ € (sg,T'). By substituting (3.49) into (3.48), we get

1
g“u(t) + %5

—(r+0-2) XMw e b ' —(r+0—-1)(t—s) r+6—1
< (51 + &2+ )\0 + A1>\0 m CT+5 1— 27') (& (u + 1) dxds
- XM r4+d6—1 @
+ AT (ﬁ) ef(wafl)(t*s‘))gwé—l||UO(507t)||$26,:+1571 + C3(0,€1,€2).
(3.50)
r4+d—1
Let 0,520,005 = Ao+ A1>\ (r+6-2) (rﬁ;’fz) Cyis5-1. Then by Lemma 3.4 and § > 1,
we have

XMwCTigﬁ
r+d6—2

min o, s x, ..M, =
Xo>0 N0
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L‘S?), then there exist 1 and g9 > satisfying

FES=T
XMy, Crr+571

Choosing b big enough such that b >

20 8,20,X,M.
27 7,0,A0,X5
€1 = &9 € (O, v

),

2
such that
e M r+6—1 b
€14 2+ Ao + ApAg TP <ij(%2> Cris1 = 5 < 0.
Therefore, (3.50) implies that
/(u(a;,t) +1)%dr < C (3.51)
0

for all t € (sg,T"), where

s M r+d—1 - o B
C =640 (%) e~ D=0 O oo (s0, ) | rds—s + 6Cs.
The proof Lemma 3.5 is complete. O

In the following, we will set up the iteration procedure to derive the main results.

Lemma 3.6. Let 5+ 1 < r. Then for any T € (0, T 4z), there exists a constant C > 0
independent on T such that ||u(-, )| o) < C for allt € (0,T).

Proof. Let py = by, iy = (r — B)pig—1 + (r — 5 — 1)(r — k), where &, is given in (3.9). Then

we have w = (r — (). By a simple computation, we obtain
HE—1 T — Ky
pe=7(r—B)F —r+k, forall k>0 (3.52)
and
: (r =B+~ 1
> pj=rx g (kD (b D forall k>0 (3.53)
r— 3 —
=0

On the other hand, Lemma 3.1 and Lemma 3.2 give us

/ utt (x, t)dx < MécMZ?:O“jCO(T +1) forall te€(s,T)and k>0, (3.54)
Q
that is,
k. 2?;0 Hj 1 1
(-, t) || powy < Mg* M me Cy* (T + 1)m for all t € (s,T) and k> 0. (3.55)
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Because 4+ 1 < r implies that pup — oo as k — oo. Thus letting & — oo on both sides of
(3.55), we have

(- £)]| gy < M7 57 for all t € (s, T). (3.56)
Here we have used the fact

lim — = 0.
k—o00 ,U’k

On the other hand, it follows from (2.3) that
u(-,t)|| Loy < K, forall t e (0,s]. (3.57)
Now, choosing C' := max{K, M }, we complete the proof. O

Based on Lemma 3.3 and Lemma 3.6, we can prove Theorem 2.1.

The proof of Theorem 2.1 Theorem 2.1 will be proved if we can show 7},,, = 00.
Suppose on contrary that T, < co. From Lemma A.1 in [25], we know that there is o > 0
such that if

Ju(- )l zr(e) < +oo (3.58)

for all v > 9 and t € (0, Tynaz), then there exists C; > 0 such that
[u(-, )Ly < Ch

for all t € (0, Tynaz). In view of Lemma 3.5, we have (3.58) holds. Thus, by Lemma A.1 in
[25], we have

[uls )] (@) < Ch
Now, using Lemma 3.3 and Lemma 3.6, we have ||u(-,t)||z@) < C for all t € (0, Tinaa),
where constant C' is independent of 7,,,,. This contradicts with Lemma 2.5. Hence the

classical solution (u,v) of (1.1) is global in time and bounded.
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