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A STUDY OF THE MATRIX CARLESON EMBEDDING THEOREM
WITH APPLICATIONS TO SPARSE OPERATORS

KELLY BICKEL† AND BRETT D. WICK‡

Abstract. In this paper, we study the dyadic Carleson Embedding Theorem in the matrix
weighted setting. We provide two new proofs of this theorem, which highlight connections
between the matrix Carleson Embedding Theorem and both maximal functions and H1-
BMO duality. Along the way, we establish boundedness results about maximal functions
associated to matrix A2 weights and duality results concerningH1 and BMO sequence spaces
in the matrix setting. As an application, we then use this Carleson Embedding Theorem to
show that if S is a sparse operator, then the operator norm of S on L2(W ) satisfies

‖S‖L2(W )→L2(W ) � [W ]
3
2

A2
,

for every matrix A2 weight W .

Keywords. Matrix Carleson Embedding Theorem; Matrix A2 weights; Sparse operators

1. Introduction

The subject of this paper is the dyadic Carleson Embedding Theorem– an important tool
for establishing the boundedness of paraproducts via testing conditions– and its applications
and shortcomings in the matrix weighted setting. This paper is particularly motivated by
interest in the matrix A2 conjecture. To set the scene, let us briefly review the scalar
situation.

1.1. Scalar A2 Conjecture. Let T be a Calderón-Zygmund operator and w(x) a weight,
i.e. a locally integrable function on R that is positive almost everywhere. It is classically
known that every Calderón-Zygmund operator T extends to a bounded operator on L2(w)
if and only if w is an A2 Muckenhoupt weight, namely, if and only if

[w]A2 ≡ sup
I

〈
w〉I〈w−1

〉
I
< ∞,

where the supremum is taken over all intervals I and 〈w〉I ≡ 1
|I|
∫
I
w(x)dx. In contrast, the

question of the dependence of the operator norm of T on [w]A2 , called the A2 conjecture,
remained open for decades. Mathematicians first established linear bounds for simpler op-
erators including the martingale transforms, Hilbert transform, and more generally, dyadic
shifts [12, 19, 20, 21, 25]. A key strategy for proving the linear bound reduces general
Calderón-Zygmund operators to simpler operators. Using a refined method of decomposing
Calderón-Zygmund operators as sums of dyadic shifts, Hytönen resolved the A2 conjecture
in 2012 in [9], showing

‖T‖L2(w)→L2(w) � [w]A2
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for all Calderón-Zygmund operators T and A2 weights w. More recently, Conde-Alonso
and Rey, Lerner, and Lacey [6, 11, 15, 16] developed simpler proofs of the A2 conjecture
by controlling Calderón-Zygmund operators using simple operators called sparse operators,
which easily satisfy the linear bound.

An important tool when controlling these easier operators is the dyadic Carleson Embed-
ding Theorem, which says:

Theorem 1.1 (Carleson Embedding Theorem). Let {aI}I∈D be a sequence of nonnegative
numbers indexed by the grid of dyadic intervals D. Then∑
I∈D

aI〈w
1
2f〉2I ≤ C1‖f‖2L2 ∀f ∈ L2(R) if and only if

1

|J |
∑
I:I⊆J

aI 〈w〉2I ≤ C2 〈w〉J ∀J ∈ D.

Moreover, C2 ≤ C1 ≤ 4C2.

We are interested in the development of these ideas in the matrix setting.

1.2. Matrix A2 Conjecture. The relevant definitions are as follows: a d×d matrix-valued
function W (x) is a matrix weight if its entries are locally integrable and if W (x) is a positive
definite matrix for almost every x ∈ R. Given a matrix weight W , one can define

L2(W ) ≡
{
f ∈ L2(R,Cd) : ‖f‖2L2(W ) ≡

∫
R

∥∥∥W 1
2 (x)f(x)

∥∥∥2 dx < ∞
}
.

Many scalar results have already been generalized to this setting. For example, Nazarov-
Treil [18] and Volberg [24] characterized the boundedness of Calderón-Zygmund operators on
these matrix weighted L2 spaces. Indeed, they showed that for each classical scalar Calderón-
Zygmund operator T , the matrix Calderón-Zygmund operator T̃ defined on L2(R,Cd) by
applying T component-wise is bounded on L2(W ) if W is a matrix A2 weight, namely if[

W
]
A2

≡ sup
I

∥∥∥〈W 〉
1
2
I 〈W−1〉

1
2
I

∥∥∥2 < ∞.

Here ‖ · ‖ denotes the norm of the matrix acting on C
d. In this paper, we also use ‖ · ‖

to denote the norm of a vector in C
d, but it will be clear from the context whether we are

considering matrices or vectors. For ease of notation, we will denote L2(R,Cd) by simply L2.
In the interim, the study of operators on matrix-weighted spaces has received a great

deal of attention. See [1, 2, 3, 4, 8, 10, 13, 17, 22, 24]. However, the question of the sharp
dependence of the operators’ norms on [W ]A2 , termed the Matrix A2 Conjecture is still open.
In [1], the two authors with S. Petermichl showed that for the Hilbert transform H,

(1.1) ‖H‖L2(W )→L2(W ) � [W ]
3
2
A2
log [W ]A2 ,

for all matrix A2 weights W . Although this is the best known estimate, the bound is unlikely
to be sharp. One initial obstruction to better norm bounds was the following matrix version
of Theorem 1.1. This theorem was mentioned by Isralowitz-Kwon-Pott in the final remarks
of an earlier version of [10] and discussed in depth in [2]:

Theorem 1.2. Let W be an A2 weight and let {AI}I∈D be a sequence of positive semi-definite
d× d matrices. Then∑
I∈D

〈
AI

〈
W

1
2f
〉
I
,
〈
W

1
2f
〉
I

〉
Cd

≤ C1 ‖f‖2L2 ∀f ∈ L2 iff
1

|J |
∑
I:I⊆J

〈W 〉I AI 〈W 〉I ≤ C2 〈W 〉J ,

for all J ∈ D, where C2 ≤ C1 � C2[W ]R2 [W ]A2 .
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Here, the notation A � B indicates A ≤ CB, where C is a constant typically depending
on the dimension d. This initial Carleson Embedding Theorem held only for A2 weights and
the guaranteed relationship between the testing constant C2 and embedding constant C1 was

C1 � [W ]A2 [W ]R2C2.

The term [W ]R2 is a reverse Hölder constant, which is discussed in detail in [2]. For our
purposes, it suffices that [W ]R2 � [W ]A2 . The appearance of this (essentially) extra [W ]2A2

in Theorem 1.2 made it very difficult to use this result to prove sharp bounds.
However, this theorem is no longer an obstruction. Specifically, the authors recently

learned that A. Culiuc and S. Treil have obtained an improved Carleson Embedding Theorem.
Indeed, in [7], they established Theorem 1.2 without the A2 dependence, for arbitrary matrix
weights in a more general non-homogeneous setting. Nevertheless, the estimate (1.1) has
proved resistant to improvement. The problem lies in the fact that proving the testing
conditions needed to use Theorem 1.2 also constitute difficult, open problems.
Rather, the estimate (1.1) was established using the following alternate Carleson Embed-

ding Theorem, which was proved by Treil-Volberg in [23] and extended by Isralowitz-Pott-
Kwon in [10].

Theorem 1.3. Let W be a matrix A2 weight and let {AI}I∈D be a sequence of positive
semi-definite d× d matrices. Then∑

I∈D

〈
AI

〈
W

1
2f
〉
I
,
〈
W

1
2f
〉
I

〉
Cd

≤ C1 ‖f‖2L2 ∀f ∈ L2 if
1

|J |
∑
I:I⊆J

∥∥∥〈W 〉
1
2
I AI 〈W 〉

1
2
I

∥∥∥ ≤ C2

for all J ∈ D, where C1 � [W ]R2C2 � [W ]A2C2.

1.3. Summary of Results. In this paper, we offer two new proofs of Theorem 1.3. The
only drawback is that these proofs give C1 � [W ]2A2

C2, which is not the optimal constant.
Nevertheless, these new proofs show that this matrix embedding theorem has close ties
to both the boundedness of maximal functions and H1-BMO duality. We end with an
application of Theorem 1.3 to the study of sparse operators, which shows that Theorem 1.3
is a useful tool for studying operators acting on matrix weighted L2 spaces. Here is the
overview of the paper.

In Section 2, we prove Theorem 1.3 using maximal function ideas. It is worth noting
that many of the ideas used in this section originate in the influential paper [4] by Christ
and Goldberg. In this section, we first fix a matrix A2 weight W and consider the maximal
function MW defined by

MWf(x) ≡ sup
I∈D:x∈I

∥∥∥〈W 〉−
1
2

I

〈
W

1
2f
〉
I

∥∥∥1I(x).

This maximal function is closely related to operators studied by Christ-Goldberg in [4] and
extended by Goldberg in [8]. Indeed, in Subsection 2.1, we use straightforward estimates
to bound this maximal function with a related maximal function from [4]. Then, using
Christ-Goldberg’s arguments, we conclude in Corollary 2.2 that

‖MW‖L2→L2 � [W ]A2 ,

for all matrix A2 weights W . Finally, in Subsection 2.2, we give a stopping-time argument
that, when paired with the maximal function bound, yields a simple proof of Theorem 1.3.
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In Section 3, we consider the following two spaces of sequences of d× d matrices indexed
by the dyadic intervals D :

S ≡
{
{SI} : S2(x) ≡

∑
I∈D

‖SI‖2
1I(x)

|I| ∈ L1(R) and ‖{SI}‖S ≡ ‖S(x)‖L1(R)

}
;

T ≡
{
{TI} : ‖{TI}‖2T ≡ sup

J∈D

∥∥∥∥∥ 1

|J |
∑
I⊆J

TIT
∗
I

∥∥∥∥∥ < ∞
}
.

Notice that the sequences in S are related to functions whose square functions are in L1(R).
This shows S is an H1-type space and similarly, T is a space of BMO-type sequences. These
spaces are similar to matrix analogues of scalar sequence spaces studied by Lee-Lin-Lin in
[14]. In Theorem 3.1, we modify arguments of Lee-Lin-Lin to establish that each {TI} ∈ T
induces a linear functional on S. Then in Subsection 3.2, we use this duality relationship,
paired with the maximal function bound, to provide another proof of Theorem 1.3.

Finally, in Section 4, we consider an application of Theorem 1.3. Specifically, we say that
an operator S : L2(R,Cd) → L2(R,Cd) is sparse if

Sf(x) ≡
∑
I∈S

〈f〉I 11(x),

where S ⊆ D is a collection of dyadic intervals satisfying the following sparsity condition:
for each I ∈ S,

(1.2)
∑

J∈chS(I)

|J | ≤ 1

2
|I|,

where the sum is restricted to the S-children of I, namely the maximal elements of S that
are strictly contained in I. The constant 1

2
is largely unimportant; any 0 < c < 1 will work

to define sparse families. We use Theorem 1.3 to establish the following result:

Theorem 1.4. Let W be a d×d matrix A2 weight and let S be a sparse operator on L2(R,Cd).
Then

‖S‖L2(W )→L2(W ) � [W ]
3
2
A2
.

It is worth noting that this dependence of a sparse operator’s norm on [W ]A2 is better
than the known dependence of the Hilbert transform’s norm. Also, alternate proofs of this
have recently been obtained by Isralowitz-Kwon-Pott [10]. Finally, recall that in the scalar
setting, sparse operators are used in [6, 11, 15] to prove bounds for general Calderón-Zgymund
operators. Unfortunately, those exact reduction arguments do not appear to generalize to
the matrix setting. Thus, we conclude that further study is needed to determine if sparse
operators can be used to control general Calderón-Zgymund operators in the matrix setting.

2. Theorem 1.3 via Maximal Functions & A Stopping-Time Argument

2.1. The Relevant Maximal Function. Recall the maximal function of interest:

MWf(x) ≡ sup
I:x∈I

∥∥∥〈W 〉−
1
2

I

〈
W

1
2f
〉
I

∥∥∥1I(x),

where the supremum is taken over dyadic intervals. Although this is the maximal function
most closely related to the matrix Carleson Embedding Theorem, it is difficult to control
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directly. Instead, first notice that we have the following simple pointwise bound:

MWf(x) = sup
I:x∈I

∥∥∥〈W 〉−
1
2

I

〈
W−1

〉− 1
2

I

〈
W−1

〉 1
2

I

〈
W

1
2f
〉
I

∥∥∥
≤ sup

I:x∈I

∥∥∥〈W 〉−
1
2

I

〈
W−1

〉− 1
2

I

∥∥∥ ∥∥∥〈W−1
〉 1

2

I

〈
W

1
2f
〉
I

∥∥∥
≤ sup

I:x∈I

∥∥∥〈W−1
〉 1

2

I

〈
W

1
2f
〉
I

∥∥∥
= sup

I:x∈I

∥∥∥∥ 1

|I|

∫
I

〈
W−1

〉 1
2

I
W

1
2 (y)f(y) dy

∥∥∥∥
≤ sup

I:x∈I

1

|I|

∫
I

∥∥∥〈W−1
〉 1

2

I
W

1
2 (y)f(y)

∥∥∥ dy.

Here, we used the fact that for each I ∈ D, one can show that ‖〈W 〉−
1
2

I 〈W−1〉−
1
2

I ‖ ≤ 1. For
example, this inequality can be easily deduced from Corollary 3.3 in [23].

Now, given a matrix weight V, recall the following auxiliary maximal function M̃V of
Christ-Goldberg from [4]:

M̃V f(x) ≡ sup
I:x∈I

1

|I|

∫
I

∥∥∥〈V 〉
1
2
I V − 1

2 (y)f(y)
∥∥∥ dy,

where the supremum is again taken over dyadic intervals. Then, as long as W and W−1 are
both matrix weights, as is the case when W is an A2 matrix weight, our previous arguments
show that pointwise

(2.1) MWf(x) ≤ M̃W−1f(x).

In their Lemma 2.2, Christ-Goldberg showed that if V is an A2 matrix weight, then the

maximal operator M̃V is bounded on L2(R,Cd). A close reading of their proof also reveals
the dependence of the operator norm on the A2 characteristic of V . We summarize their
result in the following theorem:

Theorem 2.1. If V is a d× d matrix A2 weight, then

‖M̃V ‖L2→L2 � [V ]A2 ,

where the implied constant depends on the dimension d.

For the ease of the reader, we include the following modified version of their arguments to
track the exact dependence of the operator’s norm on [V ]A2 :

Proof. Fix a matrix weight V ∈ A2. We first establish the following inequality:

1

|I|

∫
I

∥∥∥V − 1
2 (y) 〈V 〉

1
2
I

∥∥∥2+2ε

dy � [V ]1+ε
A2

,

for some small ε > 0 and all I ∈ D. To obtain this, fix e ∈ C
d and I ∈ D. Recall that [23,

Lemma 3.5] says that

〈V 〉
1
2
I V −1(x) 〈V 〉

1
2
I

is also in A2 with A2 characteristic [V ]A2 . Then, as in [13, Lemma 1.5], it is not too difficult
to show that the function 〈

〈V 〉
1
2
I V −1(x) 〈V 〉

1
2
I e, e

〉
Cd
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is a scalar A2 weight with A2 characteristic at most [V ]A2 for each e ∈ C
d. Furthermore,

as noted by Wittwer in [25], a careful reading of Coifman-Fefferman’s proof of the reverse
Hölder inequality for scalar A2 weights in [5] shows that if v is a scalar A2 weight and ε ≡ c

[v]A2

for a small-enough constant c, then

1

|I|

∫
I

v1+ε(y)dy ≤
(

2

|I|

∫
I

v(y)dy

)1+ε

.

We will apply this to the scalar A2 weights〈
〈V 〉

1
2
I V −1(x) 〈V 〉

1
2
I ei, ei

〉
Cd

,

where the {ei}di=1 are the standard unit normal vectors in C
d. Then, by equating norm and

trace of positive definite matrices (up to a dimensional constant), one can compute

1

|I|

∫
I

∥∥∥V − 1
2 (y) 〈V 〉

1
2
I

∥∥∥2+2ε

dy =
1

|I|

∫
I

∥∥∥〈V 〉
1
2
I V −1(y) 〈V 〉

1
2
I

∥∥∥1+ε

dy

� 1

|I|

∫
I

(
Tr
(
〈V 〉

1
2
I V −1(y) 〈V 〉

1
2
I

))1+ε

dy

� 1

|I|

∫
I

max
1≤i≤d

〈
〈V 〉

1
2
I V −1(y) 〈V 〉

1
2
I ei, ei

〉1+ε

Cd
dy

≤
d∑

i=1

1

|I|

∫
I

〈
〈V 〉

1
2
I V −1(y) 〈V 〉

1
2
I ei, ei

〉1+ε

Cd
dy

≤
d∑

i=1

(
2

|I|

∫
I

〈
〈V 〉

1
2
I V −1(y) 〈V 〉

1
2
I ei, ei

〉
Cd

dy

)1+ε

� [V ]1+ε
A2

.

Set r = 2 + 2ε and let r′ < 2 be conjugate to r. Then, for f ∈ L2(R,Cd),

M̃V f(x) = sup
I:x∈I

1

|I|

∫
I

∥∥∥〈V 〉
1
2
I V − 1

2 (y)f(y)
∥∥∥ dy

≤ sup
I:x∈I

(
1

|I|

∫
I

∥∥∥V − 1
2 (y) 〈V 〉

1
2
I

∥∥∥r dy) 1
r
(

1

|I|

∫
I

‖f(y)‖r′dy
) 1

r′

� [V ]
1
2
A2

(
M(‖f‖r′)(x)

) 1
r′
.

Define p = 2
r′ . Then p > 1 and so, the maximal function M maps Lp(R,Cd) to Lp(R,Cd).

But, then ∥∥∥M̃V f
∥∥∥2
L2

� [V ]A2

∥∥∥∥(M(‖f‖r′)
) 1

r′
∥∥∥∥2
L2

= [V ]A2

∥∥∥M(‖f‖r′)
∥∥∥p
Lp

� p

p− 1
[V ]A2

∥∥∥(‖f‖r′)∥∥∥p
Lp

� [V ]2A2
‖f‖2L2 ,
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using the maximal function bound and the fact that p
p−1

≈ ε−1 ≈ [V ]A2 . This immediately

implies that ∥∥∥M̃V

∥∥∥
L2→L2

� [V ]A2 ,

as desired. �

The pointwise bound (2.1) paired with Theorem 2.1 immediately gives the following corol-
lary:

Corollary 2.2. If V is a d× d matrix A2 weight, then

‖MV ‖L2→L2 � [V ]A2 ,

where the implied constant depends on the dimension d.

2.2. Proof One of Theorem 1.3. Our first proof of the matrix Carleson Embedding The-
orem is motivated by a classical proof of the standard embedding result Theorem 1.1, which
uses a stopping time argument and maximal function bound. Here is a stopping-time proof
of Theorem 1.3 using the same types of arguments that appear in the scalar set-up:

Proof. Fix f ∈ L2(R,Cd) and for each k ∈ Z, let Jk be the set of maximal dyadic intervals
I with

2k−1 ≤
∥∥∥〈W 〉−

1
2

I

〈
W

1
2f
〉
I

∥∥∥ ≤ 2k.

We say that J ∈ J ∗
k if k is the largest integer such that J ⊆ I for some I ∈ Jk. Now recall

that the related maximal function

MWf(x) = sup
I

∥∥∥〈W 〉−
1
2

I

〈
W

1
2f
〉
I

∥∥∥1I(x)

is in L2(R,Cd) by Corollary 2.2. Using this, it is clear that for each J ∈ D, either J ∈ J ∗
k for

some k ∈ Z or 〈W 1
2f〉J is the zero vector. Now, as a way to further explore the relationship

between this stopping-time set up and the maximal function, consider the function

g(x) ≡
∑
k∈Z

∑
I∈Jk

∥∥∥〈W 〉−
1
2

I

〈
W

1
2f
〉
I

∥∥∥1I(x).

Again, as MWf ∈ L2(R,Cd), we know that for almost every x ∈ R, there is a largest K ∈ Z

such that x ∈ I ∈ JK . Then, we can conclude MWf(x) ≈ 2K and further, as each Jk is a
disjoint collection of intervals,

g(x) =
∑

k∈Z:k≤K

∑
I∈Jk

∥∥∥〈W 〉−
1
2

I

〈
W

1
2f
〉
I

∥∥∥1I(x) ≤
∑

k∈Z:k≤K

2k � 2K � MWf(x).

Then this pointwise inequality and our definition of Jk gives

‖MWf‖2L2 � ‖g‖2L2 ≥
∑
k∈Z

∑
I∈Jk

∥∥∥〈W 〉−
1
2

I

〈
W

1
2f
〉
I

∥∥∥2 |I| �∑
k∈Z

22k

∣∣∣∣∣ ⋃
I∈Jk

I

∣∣∣∣∣ .
Now, assume the testing condition from Theorem 1.3:∑

J⊆I

∥∥∥〈W 〉
1
2
J AJ 〈W 〉

1
2
J

∥∥∥ ≤ C2|I|.
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Then, we can compute∑
J∈D

〈
AJ

〈
W

1
2f
〉
J
,
〈
W

1
2f
〉
J

〉
Cd

=
∑
k∈Z

∑
J∈J ∗

k

〈
AJ

〈
W

1
2f
〉
J
,
〈
W

1
2f
〉
J

〉
Cd

=
∑
k∈Z

∑
I∈Jk

∑
J⊆I
J∈J ∗

k

〈
AJ

〈
W

1
2f
〉
J
,
〈
W

1
2f
〉
J

〉
Cd

≤
∑
k∈Z

∑
I∈Jk

∑
J⊆I
J∈J ∗

k

∥∥∥〈W 〉−
1
2

J

〈
W

1
2f
〉
J

∥∥∥2 ∥∥∥〈W 〉
1
2
J AJ 〈W 〉

1
2
J

∥∥∥
�
∑
k∈Z

22k
∑
I∈Jk

∑
J⊆I

∥∥∥〈W 〉
1
2
J AJ 〈W 〉

1
2
J

∥∥∥
≤ C2

∑
k∈Z

22k
∑
I∈Jk

|I|

= C2

∑
k∈Z

22k

∣∣∣∣∣ ⋃
I∈Jk

I

∣∣∣∣∣
� C2 ‖MWf‖2L2

� C2[W ]2A2
‖f‖2L2 ,

which gives the desired embedding result. �

3. Theorem 1.3 via H1
-BMO Duality and A Maximal Function

In this section, we offer an alternate proof of Theorem 1.3. The idea is to prove the result
via duality using a pairing between H1-type sequences and BMO-type sequences.

3.1. Relevant Sequence Spaces. To establish the needed duality result, we study related
spaces of sequences S and T , which are composed of sequences of d × d matrices indexed
by the dyadic intervals. As mentioned in the introduction, we study this H1-type space of
matrix sequences

S ≡
{
{SI} : S2(x) ≡

∑
I∈D

‖SI‖2
1I(x)

|I| ∈ L1(R) and ‖{SI}‖S ≡ ‖S(x)‖L1(R)

}
,

and this BMO-type space of matrix sequences

T ≡
{
{TI} : ‖{TI}‖2T ≡ sup

J∈D

∥∥∥∥∥ 1

|J |
∑
I⊆J

TIT
∗
I

∥∥∥∥∥ < ∞
}
.

Now, we modify the arguments of Lee-Lin-Lin from [14], which were used to study different,
but related scalar sequence spaces to obtain the following result.

Theorem 3.1. For each {TI} in T , the linear functional

{SI} �→
∑
I∈D

Tr (SIT
∗
I )
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is continuous on S. Namely, there is a dimensional constant c(d) (not depending on {TI})
such that for all {TI} ∈ T ,

(3.1)

∣∣∣∣∣∑
I∈D

Tr (SIT
∗
I )

∣∣∣∣∣ ≤ c(d)‖{TI}‖T ‖{SI}‖S ∀ {SI} ∈ S.

A complete analogue of the Lee-Lin-Lin result from [14] would also show that every con-
tinuous linear functional on S is induced by a sequence {TI} in T . Although such a result is
likely true in the context, we do not prove it because we do not require that fact to obtain
Theorem 1.3.

Proof. For a fixed {TI} ∈ T , we will establish (3.1). To this end, fix {SI} ∈ S and for each
k ∈ Z, define the sets

Ωk ≡
{
x ∈ R : S(x) > 2k

}
;

Bk ≡
{
I ∈ D : |I ∩ Ωk| >

1

2
|I| and |I ∩ Ωk+1| ≤

1

2
|I|
}
,

and let Ĩ denote the maximal intervals in Bk. Further, define the enlargement Ω̃k of Ωk as
follows:

Ω̃k ≡
{
x ∈ R : M(1Ωk

)(x) >
1

2

}
,

where M denotes the maximal function. Furthermore, notice that if I ∈ Bk then I ⊂ Ω̃k.
Further, as S(x) ∈ L1(R), observe that if I �∈ Bk for every k ∈ Z, then it must be the case
that SI ≡ 0. Then, we can compute the following:∑

I∈D
Tr (SIT

∗
I ) =

∑
k∈Z

∑
Ĩ∈Bk

∑
I⊆Ĩ
I∈Bk

Tr (SIT
∗
I )

≤
∑
k∈Z

∑
Ĩ∈Bk

⎛⎜⎜⎝∑
I⊆Ĩ
I∈Bk

‖SI‖2

⎞⎟⎟⎠
1
2
⎛⎜⎜⎝∑

I⊆Ĩ
I∈Bk

‖TI‖2

⎞⎟⎟⎠
1
2

≤ c(d)
∑
k∈Z

∑
Ĩ∈Bk

⎛⎜⎜⎝∑
I⊆Ĩ
I∈Bk

‖SI‖2

⎞⎟⎟⎠
1
2 ⎛⎝∥∥∥∥∥∑

I⊆Ĩ

TIT
∗
I

∥∥∥∥∥
⎞⎠ 1

2

≤ c(d)‖{TI}‖T
∑
k∈Z

∑
Ĩ∈Bk

|Ĩ| 12

⎛⎜⎜⎝∑
I⊆Ĩ
I∈Bk

‖SI‖2

⎞⎟⎟⎠
1
2

≤ c(d)‖{TI}‖T
∑
k∈Z

|Ω̃k|
1
2

(∑
I∈Bk

‖SI‖2
) 1

2

.

In the above computations, we used Cauchy-Schwarz several times, the equivalence of norm
and trace (up to a dimensional constant) for positive semi-definite matrices, the linearity of
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trace, and the fact that the Ĩ in each Bk are disjoint. Now we show:

(3.2)
∑
I∈Bk

‖SI‖2 ≤ 22k+3|Ω̃k|.

First observe that ∫
Ω̃k\Ωk+1

S2(x) dx ≤ 22k+2|Ω̃k|,

using the definition of Ωk+1 and similarly∫
Ω̃k\Ωk+1

S2(x)dx ≥
∫
Ω̃k\Ωk+1

∑
I∈BK

‖SI ||2
1I(x)

|I| dx

=
∑
I∈Bk

‖SI‖2
|I ∩ (Ω̃k \ Ωk+1)|

|I|

=
∑
I∈Bk

‖SI‖2
|I \ (I ∩ Ωk+1)|

|I|

≥ 1

2

∑
I∈Bk

‖SI‖2.

Combining those two estimates gives (3.2). Given (3.2), our previously-calculated inequality
becomes: ∣∣∣∣∣∑

I∈D
Tr (SIT

∗
I )

∣∣∣∣∣ ≤ c(d)‖{TI}‖T
∑
k∈Z

|Ω̃k|
1
2

(∑
I∈Bk

‖SI‖2
) 1

2

≤ c(d)‖{TI}‖T
∑
k∈Z

|Ω̃k|2k+2

� c(d)‖{TI}‖T
∑
k∈Z

|Ωk|2k

� c(d)‖{TI}‖T ‖S(x)‖L1(R)

= c(d)‖{TI}‖T ‖{SI}‖S ,
which is the desired inequality. �

3.2. Proof Two of Theorem 1.3.

Proof. Let W be a d × d matrix A2 weight and assume {AI}I∈D is a sequence of positive
semidefinite d× d matrices satisfying the testing condition:∑

I⊂J

∥∥∥〈W 〉
1
2
I AI 〈W 〉

1
2
I

∥∥∥ ≤ C2|J |,

for all J ∈ D. Then we can write:∑
I∈D

〈
AI

〈
W

1
2f
〉
I
,
〈
W

1
2f
〉
I

〉
Cd

=
∑
I∈D

∥∥∥A 1
2
I

〈
W

1
2f
〉
I

∥∥∥2
=
∥∥∥{A 1

2
I

〈
W

1
2f
〉
I

}∥∥∥2
�2(D,Cd)

.
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We estimate this quantity via duality. Specifically, for each {bI} ∈ �2(D,Cd), we compute∑
I∈D

〈
A

1
2
I

〈
W

1
2f
〉
I
, bI

〉
Cd

=
∑
I∈D

Tr
(
A

1
2
I

〈
W

1
2f
〉
I
b∗I

)
=
∑
I∈D

Tr
(
A

1
2
I 〈W 〉

1
2
I 〈W 〉−

1
2

I

〈
W

1
2f
〉
I
b∗I

)
.

To invoke Theorem 3.1, define the sequences {SI} and {TI} by

TI = 〈W 〉
1
2
I A

1
2
I and SI = 〈W 〉−

1
2

I

〈
W

1
2f
〉
I
b∗I ∀ I ∈ D.

Notice that the testing condition implies that

‖{TI}‖2T = sup
J∈D

∥∥∥∥∥ 1

|J |
∑
I⊆J

TIT
∗
I

∥∥∥∥∥ = sup
J∈D

∥∥∥∥∥ 1

|J |
∑
I⊆J

〈W 〉
1
2
I AI 〈W 〉

1
2
I

∥∥∥∥∥ ≤ c(d)C2.

Then Theorem 3.1 implies that∑
I∈D

〈
A

1
2
I

〈
W

1
2f
〉
I
, bI

〉
Cd

=
∑
I∈D

Tr (T ∗
I SI)

=
∑
I∈D

Tr (SIT
∗
I )

� ‖{TI}‖T ‖{SI}‖S
�
√
C2 ‖{SI}‖S .

Now observe that

S2(x) =
∑
I∈D

‖SI‖2
1I(x)

|I|

≤
∑
I∈D

∥∥∥〈W 〉−
1
2

I

〈
W

1
2f
〉
I

∥∥∥2 ‖bI‖21I(x)|I|

≤ sup
I:x∈I

∥∥∥〈W 〉−
1
2

I

〈
W

1
2f
〉
I

∥∥∥2∑
I∈D

‖bI‖2
1I(x)

|I| .

Notice that this is exactly the maximal function we studied earlier. Then Corollary 2.2
implies that

‖S(x)‖L1(R) ≤ ‖MWf‖L2(R)

(∫
R

∑
I∈D

‖bI‖2
1I(x)

|I| dx

) 1
2

� [W ]A2‖f‖L2(R)‖{bI}‖�2(D,Cd),

as desired. So we can combine this with our previous estimates to conclude∑
I∈D

〈
A

1
2
I

〈
W

1
2f
〉
I
, bI

〉
Cd

�
√
C2[W ]A2‖f‖L2(R)‖{bI}‖�2(D,Cd).

Since this estimate holds for all {bI} ∈ �2(D,Cd), we immediately have∑
I∈D

∥∥∥A 1
2
I

〈
W

1
2f
〉
I

∥∥∥2 = ∥∥∥{A 1
2
I

〈
W

1
2f
〉
I

}∥∥∥2
�2(D,Cd)

� C2[W ]2A2
‖f‖2L2(R),
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which completes the proof. �

4. Application: The Bound for Sparse Operators and the Proof of

Theorem 1.4

Recall that an operator S : L2(R,Cd) → L2(R,Cd) is called sparse if

Sf =
∑
I∈S

〈f〉I 1I ,

where the collection of intervals S ⊆ D satisfies the sparseness condition given in (1.2). Now
we use Theorem 1.3 to establish Theorem 1.4, which basically says:

‖S‖L2(W )→L2(W ) � [W ]
3
2
A2
,

for every d× d matrix A2 weight W . Here is the proof:

Proof. Let S be a sparse operator and observe that standard arguments give

‖S‖L2(W )→L2(W ) = ‖SMW−1‖L2(W−1)→L2(W ).

So, we will study the second term instead and prove the desired bound using duality. Specif-
ically, fix f ∈ L2(W−1) and g ∈ L2(W ). Then

〈SMW−1f, g〉L2(W ) =
∑
I∈S

〈〈
W−1f

〉
I
1I , g

〉
L2(W )

=
∑
I∈S

〈〈
W−1f

〉
I
, 〈Wg〉I

〉
Cd |I|

≤
∑
I∈S

∥∥∥〈W 〉
1
2
I

〈
W−1

〉 1
2

I

∥∥∥ ∥∥∥〈W−1
〉− 1

2

I

〈
W−1f

〉
I

∥∥∥ ∥∥∥〈W 〉−
1
2

I 〈Wg〉I
∥∥∥ |I|

≤ [W ]
1
2
A2

(∑
I∈S

∥∥∥〈W−1
〉− 1

2

I

〈
W−1f

〉
I

∥∥∥2 |I|) 1
2
(∑

I∈S

∥∥∥〈W 〉−
1
2

I 〈Wg〉I
∥∥∥2 |I|) 1

2

.

We will show how to control the first sum above. The second will follow using symmetric
arguments. First, observe that∑

I∈S

∥∥∥〈W−1
〉− 1

2

I

〈
W−1f

〉
I

∥∥∥2 |I| =∑
I∈S

〈〈
W−1

〉−1

I
|I|
〈
W−1f

〉
I
,
〈
W−1f

〉
I

〉
Cd

=
∑
I∈D

〈
AI

〈
W−1f

〉
I
,
〈
W−1f

〉
I

〉
Cd ,

where {AI}I∈D is the sequence of positive semidefinite matrices indexed by the dyadic inter-
vals defined by:

AI =

{
〈W−1〉−1

I |I| if I ∈ S
0 if I �∈ S.
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We wish to apply Theorem 1.3 with the weight W−1. To do this, we must establish the
appropriate testing conditions. Specifically, notice that if J ∈ D, then

1

|J |
∑
I:I⊆J

∥∥∥〈W−1
〉 1

2

I
AI

〈
W−1

〉 1
2

I

∥∥∥ =
1

|J |
∑

I⊆J :I∈S

∥∥∥〈W−1
〉 1

2

I

〈
W−1

〉−1

I
|I|
〈
W−1

〉 1
2

I

∥∥∥
=

1

|J |
∑

I⊆J :I∈S
|I|

≤ 1

|J |

(
|J |+ |J |

2
+

|J |
4

+ . . .

)
= 2,

where we used the sparsity condition on J , the S-children of J , the S-children of the S-
children of J , and so on. Now, by Theorem 1.3, we can conclude that∑

I∈S

∥∥∥〈W−1
〉− 1

2

I

〈
W−1f

〉
I

∥∥∥2 |I| � [W ]A2‖W− 1
2f‖2L2 = [W ]A2‖f‖2L2(W−1).

We can similarly conclude that∑
I∈S

∥∥∥〈W 〉−
1
2

I 〈Wg〉I
∥∥∥2 |I| � [W ]A2‖W

1
2 g‖2L2 = [W ]A2‖g‖2L2(W ).

It immediately follows that

〈SMW−1f, g〉L2(W ) � [W ]
3
2
A2
‖f‖L2(W−1)‖g‖L2(W ).

As f and g were arbitrary, we can conclude that

‖S‖L2(W )→L2(W ) = ‖SMW−1‖L2(W−1)→L2(W ) � [W ]
3
2
A2
,

as desired. �
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