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1. Introduction

Recently, we have been very interested in the structure of so-called Jordan triple endomorphisms of 
the set of all positive definite matrices or, more generally, those of the positive definite cones in operator 
algebras. These are maps which are morphisms with respect to the operation of the Jordan triple product 
(A, B) �→ ABA which is a well-known operation in ring theory. Our main reason for investigating those 
maps comes from the fact that they naturally appear in the study of surjective isometries and surjective 
maps preserving generalized distance measures between positive definite cones. For details see [9–11].

In the paper [9] we have proved the following statement which appeared as Theorem 1 there. In what 
follows we denote by Mn the algebra of all n ×n complex matrices and Pn stands for the cone of all positive 
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definite matrices in Mn. When we use the word “continuity” we mean the topology of the operator norm, in 
other word, spectral norm (or any other norm on the finite dimensional linear space Mn). The usual trace 
functional and the determinant are denoted by Tr and Det, respectively, and tr stands for the transpose 
operation.

Theorem. Assume n ≥ 3. Let φ : Pn → Pn be a continuous map which is a Jordan triple endomorphism, 
i.e., φ is a continuous map which satisfies

φ(ABA) = φ(A)φ(B)φ(A), A,B ∈ Pn.

Then there exist a unitary matrix U ∈ Mn, a real number c, a set {P1, . . . , Pn} of mutually orthogonal 
rank-one projections in Mn, and a set {c1, . . . , cn} of real numbers such that φ is of one of the following 
forms:

(a1) φ(A) = (DetA)cUAU∗, A ∈ Pn;
(a2) φ(A) = (DetA)cUA−1U∗, A ∈ Pn;
(a3) φ(A) = (DetA)cUAtrU∗, A ∈ Pn;
(a4) φ(A) = (DetA)cUAtr−1

U∗, A ∈ Pn;
(a5) φ(A) =

∑n
j=1(DetA)cjPj, A ∈ Pn.

Observe that the converse statement in Theorem is also true meaning that any transformation of any of 
the forms (a1)–(a5) is necessarily a continuous Jordan triple endomorphism of Pn.

One may immediately ask why we assume the condition n ≥ 3, what happens in the case where n = 2. 
The fact is that in the proof of Theorem we used such tools which are applicable only if n ≥ 3. Of course, 
we were very interested in the remaining case n = 2 but unfortunately could not come up with a solution. 
Therefore, we proposed it as an open problem in our papers [9] (see Remark 11) and [10] (see Remark 23).

One may think that when n = 2, one can simply compute and obtain the solution straightforwardly. But 
this is far from being true as it will turn out below. Indeed, the aim of this paper is to solve that problem 
and also present a few applications.

2. Main result and some applications

Our main result reads as follows.

Theorem 1. Let φ : P2 → P2 be a continuous Jordan-triple endomorphism. Then we have the following 
possibilities:

(b1) there is a unitary matrix U ∈ M2 and a real number c such that

φ(A) = (DetA)cUAU∗, A ∈ P2;

(b2) there is a unitary matrix V ∈ M2 and a real number d such that

φ(A) = (DetA)dV A−1V ∗, A ∈ P2;

(b3) there is a unitary matrix W ∈ M2 and real numbers c1, c2 such that

φ(A) = WDiag[(DetA)c1 , (DetA)c2 ]W ∗, A ∈ P2.
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Before presenting the proof we introduce some notation and make some useful observations.
In what follows we denote by Hn the space of all Hermitian (or, in other words, self-adjoint) elements 

of Mn.
We equip H2 with the inner product 〈X, Y 〉 = (1/2)TrXY . The induced norm is denoted by ‖·‖. The set

{
σ0 = I =

[
1 0
0 1

]
, σx =

[
0 1
1 0

]
, σy =

[
0 i

−i 0

]
, σz =

[
1 0
0 −1

]}
(1)

is a convenient orthonormal basis in H2. Let H2,0 denote the traceless subspace of H2 (the subspace of all 
elements in H2 with zero trace).

In the proof of our theorem we shall use the following two observations. We first claim that

• for X ∈ H2,0, the equality X2 = I holds iff ‖X‖ = 1.

Indeed, let us denote the eigenvalues of X by λ and −λ, λ ≥ 0. We have

X2 = I ⇔ λ2 = 1 ⇔ 1
2
(
λ2 + (−λ)2

)
= 1 ⇔ ‖X‖ = 1

verifying our first claim.
Next, we assert that

• for any 0 
= X ∈ H2,0 we have eX = (cosh ‖X‖) I + (sinh ‖X‖) (X/‖X‖).

To see this, using (X/‖X‖)2 = I, we compute

eX = e‖X‖ X
‖X‖ =

∞∑
k=0

1
k! ‖X‖k

(
X

‖X‖

)k

=
∞∑
k=0

1
(2k)! ‖X‖2k

I +
∞∑
k=0

1
(2k + 1)! ‖X‖2k+1 X

‖X‖ .

This proves our assertion.
Now we turn to the proof of the main result.

Proof of Theorem 1. Let φ : P2 → P2 be a continuous Jordan triple endomorphism. Then, by [9, Lemma 6]
there exists a commutativity preserving linear transformation f : H2 → H2 such that

φ(A) = exp(f(logA)), A ∈ P2.

In fact, similar conclusion holds for all continuous Jordan triple endomorphisms between the positive definite 
cones of general C∗-algebras as it has been shown in [10, Lemma 16]. By a commutativity preserving linear 
map we simply mean a transformation which sends commuting elements to commuting elements.

We have two possibilities for f(I): It is either a scalar multiple of the identity or it is not. We divide the 
argument accordingly.

Assume first that f(I) is not a scalar multiple of the identity. Then up to unitary similarity we may and 
do assume that f(I) is a diagonal matrix with two different eigenvalues. By the commutativity preserving 
property of f , for every A ∈ H2 we have that f(A) commutes with f(I) and then it follows that f(A) is 
diagonal, too. Therefore, we have linear functionals ϕ, ψ : H2 → R such that

f(A) =
[
ϕ(A) 0

0 ψ(A)

]
, A ∈ H2
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and hence

φ(A) =
[
eϕ(log A) 0

0 eψ(log A)

]
, A ∈ P2.

Since φ is a Jordan triple endomorphism, we deduce easily that

ϕ(logABA) = 2ϕ(logA) + ϕ(logB), A,B ∈ P2

and similar equality holds for ψ as well. Since ϕ is a linear functional on H2, by Riesz representation theorem 
we have an element T ∈ H2 such that ϕ(·) = 〈·,T 〉. It follows that we have

Tr((logABA)T ) = 2Tr((logA)T ) + Tr((logB)T ), A,B ∈ P2.

Following the argument given on p. 2844 in [8] from the displayed equality (2) on, one can verify that T is 
necessarily a scalar multiple of the identity and that means that ϕ(A) = cTrA, A ∈ H2 holds for some real 
number c. The same observation applies for ψ, too, and then we conclude that there are real numbers c1, 
c2 such that we have

φ(A) =
[

(DetA)c1 0
0 (DetA)c2

]
, A ∈ P2,

which gives us (b3).
In the remaining part of the proof we assume that f(I) is a scalar multiple of the identity.
Let us define the linear functional f0 : H2 → R by f0(·) = 〈f(·), σ0〉, that is, by f0(A) = (1/2)Trf(A), 

A ∈ H2.
The first crucial step in the proof follows.

Claim 1. The linear functional f0 vanishes on H2,0.

The subspace H2,0 is generated by σx, σy, σz. We show that f0(σx) = f0(σy) = 0, the remaining equality 
f0(σz) = 0 can be verified similarly. In what follows we consider arbitrary positive real parameters s, t. 
Direct calculations show that for all such s, t we have

e
s
2σxetσye

s
2σx =

(
cosh

(s
2

)
I + sinh

(s
2

)
σx

)
(cosh(t)I + sinh(t)σy)

(
cosh

(s
2

)
I + sinh

(s
2

)
σx

)
= cosh(t) cosh2

(s
2

)
I + 2 cosh(t) cosh

(s
2

)
sinh

(s
2

)
σx + cosh2

(s
2

)
sinh(t)σy

+ sinh
(s

2

)
sinh(t) cosh

(s
2

)
σxσy + cosh

(s
2

)
sinh(t) sinh

(s
2

)
σyσx

+ cosh(t) sinh2
(s

2

)
σ2
x + sinh2

(s
2

)
sinh(t)σxσyσx

= cosh(s) cosh(t)I + cosh(t) sinh(s)σx + sinh(t)σy.

Here we have used the equalities σxσy + σyσx = 0, σ2
x = I, σxσyσx = −σy and some identities of the 

hyperbolic functions.
Since, by the multiplicativity of the determinant, we have Det

(
e

s
2σxetσye

s
2σx

)
= 1, hence

e
s
2σxetσye

s
2σx = erW

holds for some W ∈ H2,0 with ‖W‖ = 1 and r ≥ 0 (observe that W depends on s, t). Since erW =
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cosh(r)I + sinh(r)W we obtain the equality

cosh(r)I + sinh(r)W = cosh(s) cosh(t)I + cosh(t) sinh(s)σx + sinh(t)σy.

Taking trace we first deduce that

r = cosh−1 (cosh(s) cosh(t)) (2)

and next that

sinh(r)W = cosh(t) sinh(s)σx + sinh(t)σy.

Clearly, due to s, t > 0, the possibility r = 0 is ruled out and hence we infer that

W = 1
sinh(r) (cosh(t) sinh(s)σx + sinh(t)σy) = cosh(t) sinh(s)σx + sinh(t)σy√

cosh2(s) cosh2(t) − 1
. (3)

Now, on the one hand, we compute

Det
(
φ
(
e

s
2σxetσye

s
2σx

))
= Det

(
e
f
(
log

(
e

s
2σxetσy e

s
2σx

)))
= e

Trf
(
log

(
e

s
2σxetσy e

s
2σx

))
= e2f0(rW ). (4)

Furthermore, since φ is a Jordan triple endomorphism, the quantity (4) is equal to

Det
(
φ
(
e

s
2σx

)
φ
(
etσy

)
φ
(
e

s
2σx

))
= Det

(
e

s
2f(σx)etf(σy)e

s
2f(σx)

)
= e

s
2Trf(σx)etTrf(σy)e

s
2Trf(σx) = e2(sf0(σx)+tf0(σy)). (5)

Let us introduce the auxiliary function

N(s, t) = cosh−1 (cosh(s) cosh(t))√
cosh2(s) cosh2(t) − 1

, 0 < s, t ∈ R.

By (2), (3), (4), (5) we have

sf0(σx) + tf0(σy) = f0(rW ) = N(s, t) cosh(t) sinh(s)f0(σx) + N(s, t) sinh(t)f0(σy)

for all 0 < s, t ∈ R. It is not difficult to check that the two-variable functions g(s, t) =
N(s, t) cosh(t) sinh(s) − s and h(s, t) = N(s, t) sinh(t) − t are linearly independent. Indeed, one can see 
that the determinant of the matrix

[
g(1, 1) h(1, 1)
g(2, 2) h(2, 2)

]

is nonzero (its value is close to −0.5) which implies the desired linear independence. It then follows that 
f0(σx) = f0(σy) = 0 and we obtain Claim 1.

As a consequence we infer that the subspace f(H2,0) is orthogonal to σ0 = I meaning that it consists of 
traceless matrices, f(H2,0) ⊂ H2,0. Since f(I) is a scalar multiple of the identity, we also have f(H⊥

2,0) ⊂ H
⊥
2,0. 

We will use these facts in the second crucial step of the proof which follows.
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Claim 2. The restriction of f to H2,0 is a non-negative scalar multiple of an isometry.

To see this, it is sufficient to show that f(σx), f(σy), f(σz) are mutually orthogonal and of the same 
norm. Clearly, we are done if we verify this for any two elements of the collection f(σx), f(σy), f(σz). We 
shall consider, for example, f(σx) and f(σy). Recalling that f(W ) is traceless, in the case where f(W ) 
= 0, 
we compute

l(s, t) := 1
2Trφ

(
e

s
2σxetσye

s
2σx

)
= 1

2Tr
(
e
f
(
log

(
e

s
2σxetσy e

s
2σx

)))
= 1

2Trerf(W )

= 1
2Tr

(
cosh (r ‖f(W )‖) I + sinh (r ‖f(W )‖) f(W )

‖f(W )‖

)
= cosh (r ‖f(W )‖) .

If f(W ) = 0, then we again have l(s, t) = cosh (r ‖f(W )‖) and, by (3), we can further compute

l(s, t) = cosh
(
‖f(W )‖ cosh−1 (cosh(s) cosh(t))

)
= cosh

(
cosh−1 (cosh(s) cosh(t))√

cosh2(s) cosh2(t) − 1
×
√

sinh2(s) cosh2(t) ‖f(σx)‖2

+ 〈f(σx), f(σy)〉 2 sinh(s) sinh(t) cosh(t) + sinh2(t) ‖f(σy)‖2

)

= cosh
(

cosh−1 (cosh(s) cosh(t))√
cosh2(s) cosh2(t) − 1

×
√(

cosh2(s) cosh2(t) − cosh2(t)
)
‖f(σx)‖2

+ 〈f(σx), f(σy)〉 2 sinh(s) sinh(t) cosh(t) +
(
cosh2(t) − 1

)
‖f(σy)‖2

)
. (6)

Since φ is a Jordan triple endomorphism, (6) is equal to

m(s, t) := 1
2Tr

(
φ
(
e

s
2σx

)
φ
(
etσy

)
φ
(
e

s
2σx

))
= 1

2Tr
(
e

s
2 f(σx)etf(σy)e

s
2f(σx)

)
= 1

2Tr
(
esf(σx)etf(σy)

)
.

Assume f(σx), f(σy) 
= 0 and denote X = f(σx)/ ‖f(σx)‖ and Y = f(σy)/ ‖f(σy)‖. Then, since f(σx), 
f(σy) are traceless, we can continue

m(s, t) = 1
2Tr

(
cosh (s ‖f(σx)‖) I + sinh (s ‖f(σx)‖) f(σx)

‖f(σx)‖

)

×
(

cosh (t ‖f(σy)‖) I + sinh (t ‖f(σy)‖)
f(σy)

‖f(σy)‖

)
= cosh (s ‖f(σx)‖) cosh (t ‖f(σy)‖) + 〈X, Y 〉 sinh (s ‖f(σx)‖) sinh (t ‖f(σy)‖) . (7)

We show that ‖f(σx)‖ = ‖f(σy)‖. To this, set α := ‖f(σx)‖ , β := ‖f(σy)‖ , γ := 〈X, Y 〉. It is easy to check 
that

lim
t→∞

1
t

cosh−1 (cosh2(t)
)

= 2

and

lim
t→∞

√(
cosh4(t) − cosh2(t)

)
α2 + 2αβγ sinh2(t) cosh(t) +

(
cosh2(t) − 1

)
β2

4 = α.

cosh (t) − 1
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From these we get that for every 0 < ε(< 2) there exists some 0 < Tε such that l(t, t) ≥ cosh ((2 − ε)αt)
holds for t > Tε. On the other hand, it is easy to see that

m(t, t) = 1
4e

(α+β)t (1 + γ + o(1)) .

Therefore, the inequality

m(t, t) = l(t, t) ≥ cosh ((2 − ε)αt)

is equivalent to

1
4 (1 + γ + o(1)) ≥ 1

2

(
e((1−ε)α−β)t + e−((3−ε)α+β)t

)
. (8)

Taking the limit t → ∞ in (8) we infer that β ≥ (1 −ε)α. This is true for any 0 < ε < 2, hence letting ε → 0
we obtain β ≥ α, that is, ‖f(σy)‖ ≥ ‖f(σx)‖. By changing the roles of σx and σy we get the desired equality 
‖f(σy)‖ = ‖f(σx)‖. Having this in mind, it is clear that the function m(·, ·) is symmetric in the sense that 
we have m(s, t) = m(t, s) for all 0 < s, t ∈ R, see (7). It follows that l(·, ·) is also symmetric which can 
happen only when 〈f(σx), f(σy)〉 = 0, see (6). Therefore, we have ‖f(σx)‖ = ‖f(σy)‖, 〈f(σx), f(σy)〉 = 0
and we are done in the case where f(σx), f(σy) 
= 0.

Assume now that f(σx) = 0, f(σy) 
= 0. By (6), (7) we have

cosh

⎛
⎝cosh−1 (cosh(s) cosh(t))√

cosh2(s) cosh2(t) − 1

√(
cosh2(t) − 1

)
‖f(σy)‖2

⎞
⎠ = cosh (t ‖f(σy)‖) .

It follows that

cosh−1 (cosh2(t)
)

t

√(
cosh2(t) − 1

)
‖f(σy)‖2

cosh4(t) − 1
= ‖f(σy)‖ .

Letting t tend to infinity, we obtain f(σy) = 0, a contradiction.
Assume f(σx) 
= 0, f(σy) = 0. Again, by (6), (7) we have

cosh

⎛
⎝cosh−1 (cosh(s) cosh(t))√

cosh2(s) cosh2(t) − 1

√(
cosh2(s) cosh2(t) − cosh2(t)

)
‖f(σx)‖2

⎞
⎠ = cosh (s ‖f(σx)‖) .

It follows that

cosh−1 (cosh2(t)
)

t

√(
cosh4(t) − cosh2(t)

)
‖f(σx)‖2

cosh4(t) − 1
= ‖f(σx)‖ .

Letting t tend to infinity, we deduce 2 ‖f(σx)‖ = ‖f(σx)‖, i.e., ‖f(σx)‖ = 0, a contradiction again. So it 
remains only the possibility f(σx) = f(σy) = 0 and this proves Claim 2.

To complete the proof of our theorem, let us see what happens when the restriction of f onto H2,0
is zero. We have f(I) = (2c)I with some real number c. Then f(A) = c(TrA)I, A ∈ H2 and we obtain 
φ(A) = (DetA)cI, A ∈ P2. This means that φ is of the form (b3).

Now assume that the restriction of f onto H2,0 is a positive scalar multiple of an isometry. It follows that 
in the orthonormal basis (1), the transformation f has the block-matrix form



L. Molnár, D. Virosztek / J. Math. Anal. Appl. 438 (2016) 828–839 835
f = p

[
v 0
0 M

]
,

where p is a positive real number, v is a real number and M is a 3 × 3 orthogonal matrix.
If M ∈ SO(3), then

f = p

[
1 + 2c 0

0 R

]

for some c ∈ R and R ∈ SO(3). Similarly, if −M ∈ SO(3), then

f = p

[
−1 + 2c 0

0 −R

]

for some c ∈ R and R ∈ SO(3).
For any R ∈ SO(3) there exists a U ∈ SU(2) such that the matrix of the transformation A �→ UAU∗ is

[
1 0
0 R

]
,

see [12, Proposition VII.5.7]. Therefore, in the case where M ∈ SO(3) we have

φ(A) = exp(f(log(A))) = exp(f(logA− (Tr(logA)/2)I)) + f((Tr(logA)/2)I))

= exp(pU(logA− (Tr(logA)/2)I)U∗) exp(p(1 + 2c)Tr(logA)/2)

= exp(pU(logA)U∗) exp((pc)Tr(logA)) = (DetA)pcUApU∗.

Since φ(ABA) = φ(A)φ(B)φ(A), we infer (ABA)p = ApBpAp, A, B ∈ P2 which holds only if p = 1. 
Consequently, we have φ(A) = (DetA)cUAU∗, A ∈ P2. This means that φ is of the form (b1). Similarly, in 
the case where −M ∈ SO(3) one can conclude φ(A) = (DetA)cUA−1U∗, A ∈ P2, i.e., φ is of the form (b2). 
The proof of the theorem is complete. �

One can notice that in Theorem describing the structure of continuous Jordan triple endomorphisms 
of Pn, in the case where n ≥ 3 the transpose operation and its composition with the inverse operation also 
appear and one may ask why it is not so in the case where n = 2. There is no contradiction here, it is easy 
to see that in fact those two possibilities do appear in Theorem 1 in a hidden way. Indeed, when n = 2, the 
transpose operation can be written in the form (a2) above. Namely, for the unitary matrix

U =
[

0 1
−1 0

]

we have Atr = (DetA)UA−1U∗ for all A ∈ P2.
The following structural result concerning the continuous Jordan triple automorphisms of P2 follows from 

the proof of Theorem 1.

Theorem 2. If φ : P2 → P2 is a continuous Jordan triple automorphism, then φ is of one of the following 
two forms:

(c1) there is a real number c 
= −1/2 and U ∈ SU(2) such that

φ(A) = (DetA)cUAU∗, A ∈ P2;
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(c2) there is a real number d 
= 1/2 and V ∈ SU(2) such that

φ(A) = (DetA)dV A−1V ∗, A ∈ P2.

The result above has the following immediate consequence. In the case where n ≥ 3, in [11, Theorem 1]
we obtained a general result describing the possible structure of surjective maps on Pn which preserve 
a generalized distance measure of a certain quite general kind. It is easy to see that, following the proof of 
[11, Theorem 1] and applying Theorem 2, the result in [11] remains valid also in the case where n = 2.

In the rest of the paper we present an application of Theorem 1 for the description of so-called sequential 
endomorphisms of effect algebras.

Effects play an important role in certain parts of quantum mechanics, for instance, in the quantum 
theory of measurement [1]. Mathematically, effects are represented by positive semi-definite Hilbert space 
operators which are bounded (in the natural order ≤ among self-adjoint operators) by the identity. The set 
of all Hilbert space effects are called the Hilbert space effect algebra (although it is clearly not an algebra in 
the classical algebraic sense). In [5] Gudder and Nagy introduced the operation ◦ called sequential product 
on effects which has an important physical meaning and which is closely related the Jordan triple product. 
Namely, they defined

A ◦B = A1/2BA1/2

for arbitrary Hilbert space effects A, B. The corresponding endomorphism, i.e., maps φ on Hilbert space 
effects which satisfy

φ(A ◦B) = φ(A) ◦ φ(B)

for all pairs A, B of effects are called sequential endomorphisms. In the literature one can find results related 
to sequential automorphisms or isomorphisms (bijective sequential endomorphisms). For example, Gudder 
and Greechie proved in [3, Theorem 1] that, supposing the dimension of the underlying Hilbert space is at 
least 3, the sequential automorphisms of the Hilbert space effect algebra are exactly the transformations φ

which are of the form φ : A �→ UAU∗, where U is either a unitary or an antiunitary operator on the 
underlying Hilbert space. As a byproduct of one of our results concerning certain preserver transformations 
on Hilbert space effects, in [6, Corollary 7] we obtained that the latter result holds also in the 2-dimensional 
case. Afterwards, in [7] we substantially generalized the previous results and described the structure of 
sequential isomorphisms between von Neumann algebra effects (i.e., between sets of effects on Hilbert 
spaces belonging to given von Neumann algebras).

In the paper [2] we studied sequential endomorphisms of effect algebras over finite dimensional Hilbert 
spaces of dimension at least 3. Anybody can easily be convinced that the problem of describing non-bijective 
morphisms is usually much harder than that of describing bijective ones. In [2, Theorem 1] we managed 
to give the precise description of all continuous sequential endomorphisms assuming the dimension is at 
least 3. However, the 2-dimensional case remained unresolved and in [2, Remark 6] we proposed it as an 
open problem. Now, using the main result of the present paper we can present a solution of the problem.

For any positive integer n denote by En the set of all positive semi-definite n ×n matrices A which satisfy 
A ≤ I (recall that in the natural order ≤ on self-adjoint matrices we have A ≤ B iff B − A is positive 
semi-definite).

Theorem 3. Assume φ : E2 → E2 is a continuous sequential endomorphism. Then we have the following 
four possibilities:

(d1) there exist a unitary U ∈ M2 and a non-negative real number c such that
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φ(A) = (DetA)cUAU∗, A ∈ E2;

(d2) there exists a unitary V ∈ M2 such that

φ(A) = V (adjA)V ∗, A ∈ E2;

(d3) there exist a unitary V ∈ M2 and a real number d > 1 such that

φ(A) =
{

(DetA)dV A−1V ∗, if A ∈ E2 is invertible;
0, otherwise;

(d4) there exist a unitary W ∈ M2 and non-negative real numbers c1, c2 such that

φ(A) = WDiag[(DetA)c1 , (DetA)c2 ]W ∗, A ∈ E2.

Here, we mean 00 = 1.

Proof. First observe that every sequential endomorphism φ : E2 → E2 is automatically a Jordan triple map. 
Indeed, we clearly have φ(A2) = φ(A)2, A ∈ E2. It implies that φ(

√
A) =

√
φ(A), A ∈ E2 and hence it 

follows that φ is a Jordan triple map, i.e., φ satisfies φ(ABA) = φ(A)φ(B)φ(A), A, B ∈ E2. Moreover, we 
infer that φ sends projections to projections implying that φ(I) is a projection. If φ(I) = 0, we easily have 
that φ is identically zero. If φ(I) = P is a rank-one projection, then by φ(A) = φ(IAI) = Pφ(A)P it follows 
the map A �→ φ(A) + (I − P ), A ∈ E2 is a sequential endomorphism of E2 which is unital, i.e., it sends I
to I.

Therefore, in what follows we may and do assume that our original transformation φ is a continuous 
unital sequential endomorphism (and hence a Jordan triple map).

Consider the function λ �→ Detφ(λI), λ ∈ [0, 1]. Clearly, this is a continuous multiplicative map of the 
interval [0, 1] into itself which sends 1 to 1. Lemma 3 in [2] tells us that such a function is either everywhere 
equal to 1 or it is a power function corresponding to a positive exponent. This means that φ(λI) is invertible 
for all 0 < λ ≤ 1. We claim that φ sends invertible elements of E2 to invertible elements. To see this, first 
observe that φ preserves the usual order ≤. Indeed, by [4, Theorem 5.1] we know that for any A, B ∈ E2 we 
have A ≤ B if and only if there is a C ∈ E2 such that A = B ◦C. This clearly shows that for any A, B ∈ E2

with A ≤ B we have φ(A) ≤ φ(B). Now, if A ∈ E2 is invertible, then there is a scalar 0 < λ ≤ 1 such 
that λI ≤ A holds which implies that φ(λI) ≤ φ(A). Since φ(λI) is invertible, it follows that φ(A) is also 
invertible.

The sequential endomorphism φ preserves commutativity. This follows from the fact that for any pair A, 
B of effects we have A ◦B = B ◦A if and only A, B as matrices commute (see, e.g., Corollary 2.2 in [5]). It 
follows that the effects φ(λI), λ ∈ [0, 1] all commute and hence they are jointly diagonalizable. This means 
that up to unitary similarity we can write

φ(λI) =
[
ϕ(λ) 0

0 ψ(λ)

]
, λ ∈ [0, 1]

where ϕ, ψ : [0, 1] → [0, 1] are continuous multiplicative functions which send 1 to 1. Therefore, by [2, 
Lemma 3] again, we have real numbers c, d ≥ 0 such that

φ(λI) =
[
λc 0

d

]
, λ ∈ [0, 1].
0 λ
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We now distinguish two cases. Assume first that there is φ(A) which is not diagonal. Since φ(A) necessarily 
commute with φ(λI), λ ∈ [0, 1], one can easily deduce that we necessarily have c = d. It follows that 
φ(λI) = λcI and hence we have φ(λA) = λcφ(A) for all λ ∈ [0, 1], A ∈ E2.

We next define Φ : P2 → P2 by

Φ(A) = ‖A‖cφ(A/‖A‖), A ∈ E2. (9)

In contrast to the proof of our main result, ‖.‖ stands here for the operator norm (spectral norm) of matrices; 
we do hope it does not cause serious confusion. It follows that for any invertible effect A ∈ E2 we have

Φ(A) = ‖A‖cφ(A/‖A‖) = φ(‖A‖(A/‖A‖)) = φ(A).

We assert that Φ is a Jordan triple endomorphism of P2. Indeed, for any A, B ∈ P2 we compute

Φ(A)Φ(B)Φ(A) = ‖A‖2c‖B‖φ
(

A

‖A‖

)
φ

(
B

‖B‖

)
φ

(
A

‖A‖

)

= ‖A‖2c‖B‖φ
(

ABA

‖A‖‖B‖‖A‖

)
= ‖A‖2c‖B‖φ

(
‖ABA‖

‖A‖‖B‖‖A‖
ABA

‖ABA‖

)

= ‖A‖2c‖B‖c
(

‖ABA‖
‖A‖‖B‖‖A‖

)c

φ

(
ABA

‖ABA‖

)
= ‖ABA‖cφ

(
ABA

‖ABA‖

)
= Φ(ABA),

where we have used the facts that ‖ABA‖/(‖A‖‖B‖‖A‖) ≤ 1 and that (ABA)/‖ABA‖ is an effect. Clearly, 
Φ is continuous and hence Theorem 1 applies and we obtain that Φ is of one of the forms (b1), (b2). 
In the case of (b1), we have that φ(A) = (DetA)cUAU∗ holds for all invertible A ∈ E2 with a given 
unitary matrix U and real number c. Since φ sends effects to effects, it follows easily that c is necessarily 
non-negative. By continuity we deduce

φ(A) = (DetA)cUAU∗, A ∈ E2

yielding the possibility (d1). Consider now the case where φ(A) = (DetA)dV A−1V ∗ holds for all invertible 
A ∈ E2 with a given unitary matrix V and real number d. Again, since φ sends effects to effects, one can 
easily verify that d ≥ 1. If d = 1, then we have

φ(A) = V (adjA)V ∗

for all invertible A ∈ E2 and by continuity it follows that the same formula remains valid for any A ∈ E2, 
too. This gives us (d2). Assume d > 1. Letting A be an invertible effect tending to some non-invertible one, 
it follows that φ(A) = (DetA)dV A−1V ∗ tends to 0. Hence, we obtain that

φ(A) =
{

(DetA)dV A−1V ∗, if A ∈ E2 is invertible;
0, otherwise

and this is the possibility (d3).
It remains to discuss the case where all φ(A) are diagonal, that is when we have

φ(A) =
[
ϕ(A) 0

0 ψ(A)

]
, A ∈ E2

for continuous (unital) Jordan triple maps ϕ, ψ : E2 → [0, 1]. As in (9), we can extend ϕ, ψ from the set of 
all invertible elements of E2 to continuous Jordan triple functionals ϕ̃, ψ̃ : P2 →]0, ∞[. Applying Theorem 1, 
it follows that ϕ̃, ψ̃ are non-negative powers of the determinant function. Hence we obtain that
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φ(A) =
[

(DetA)c 0
0 (DetA)d

]
, A ∈ E2

holds for some non-negative real numbers c, d. This gives (d4) and the proof of the theorem is complete. �
We conclude the paper with the following remark. In [2, Theorem 1] we considered effects as linear 

operators and the statement was formulated accordingly. One can notice that the operators U , V , W in [2]
were unitaries and antiunitaries. However, in our present result Theorem 3 only unitary matrices appear. 
The reason for this is the following. For an antiunitary U , the transformation A �→ UA∗U∗ is a linear 
antiautomorphism which hence can be written in the form A �→ U ′AtrU ′ ∗ with some unitary U ′. But, as 
we have already seen, Atr = (DetA)U ′′A−1U ′′ ∗ holds for all A ∈ P2 with some 2 × 2 unitary matrix U ′′. 
That means that we have Atr = U ′′(adjA)U ′′ ∗ for all A ∈ E2. One can now readily verify that if any of U , 
V , W in Theorem 3 would be an “antiunitary matrix” the corresponding map could still be written in one 
of the forms (d1)–(d3) with an appropriate unitary matrix.
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