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We investigate the stochastic evolution equations describing the motion of a non-
Newtonian fluids excited by multiplicative noise of Lévy type. We show that the 
system we consider has a unique global strong solution. We also give some results 
concerning the properties of the solution. We mainly prove that the unique solution 
satisfies the Markov–Feller property. This enables us to prove by means of some 
results from ergodic theory that the semigroup associated to the unique solution 
admits at least an invariant measure which is ergodic and tight on a subspace of 
the Lebesgue space L2.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Turbulence in Hydrodynamics is one of the most fascinating and difficult problems in Mathematics and 
in applied sciences in general. Many scientists believe that Newtonian fluid or the Navier–Stokes Equations 
(NSE for short) can accurately describe the most intricate complexities of turbulence in fluids flows. However, 
there are mainly two major obstacles for the mathematical study of turbulent flows. First, it is well known 
that the question of whether the three dimensional NSE admits or not a unique weak solution for all 
time still remains open. As it is not always easy to prove the existence of a global attractor in the case 
of lack of uniqueness of solution, this becomes a daunting obstacle for the investigation of the long-time 
behavior of the Navier–Stokes equations which is very important for a better understanding of turbulence 
and some physical features of the fluids. We refer, for instance, to [3,22,23,51], and [57] for some results in 
this direction. Second, there are a lot of fluid models exhibiting turbulent behavior that cannot be described 
by the Navier–Stokes equations. To overcome these problems one generally has to use other models of 
fluids or some regularizations, which might be of mathematical nature, of the Newtonian fluid. This has 
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motivated many scientists to consider fluids such that their stress tensors are a nonlinear function of the 
strain rate. This class of fluids forms the family of non-Newtonian fluids. One example of such fluids is 
the nonlinear bipolar fluids which are themselves contained in the class of multipolar fluids. The theory of 
viscous multipolar fluids was initiated by Necas and Silhavy [43], and developed later on in numerous works
of prominent scientists such as Necas, Novotny and Silhavy [42], Bellout, Bloom and Necas [4]. Although 
bipolar fluids resemble the models that Ladyzhenskaya considered in [37] and [38] they differ in two aspects. 
First both bipolar fluids and Ladyzhenskaya models allow for a nonlinear velocity dependent viscosity, 
but in contrast to the bipolar fluids the Ladyzhenskaya models do not incorporate a higher-order velocity 
gradients. Second, in contrary to the Ladyzhenskaya models the theory of multipolar fluids is compatible 
with the basic principles of thermodynamics such as the Clausius–Duhem inequality and the principle of 
frame indifference. Moreover, results up to date indicate that the theory of multipolar fluids may lead to a 
better understanding of hydrodynamic turbulence, see for example [7].

Around the 70s Bensoussan and Temam [10] started the investigation of stochastic version of dynamical 
equations for Newtonian turbulent fluids. The Stochastic Partial Differential Equations they analyzed are 
obtained by adding noise terms to the deterministic NSE. This approach is basically motivated by Reynolds’ 
work which stipulates that the velocity of a fluid particle in turbulent regime is composed of slow (deter-
ministic) and fast (stochastic) components. While this belief was based on empirical and experimental data, 
Rozovskii and Mikulevicius were able to derive the models rigorously in their recent work [41], thereby con-
firming the importance of this approach in hydrodynamic turbulence. It is also pointed out in some recent 
articles such as [29] and [36] that some rigorous information on questions in Turbulence might be obtained 
from stochastic versions of the equations of fluid dynamics. Since the pioneering work of Bensoussan and 
Temam [10] on stochastic Navier–Stokes equations, stochastic models for Newtonian fluid dynamics and 
SPDEs in general have been the object of intense investigations which have generated several important 
results. We refer, for instance, to [1,9,12,13,16,15,17,19,18,25,24,26,27,41,44,45,54,53,55]. However, there are 
only very few results for the dynamical behavior of stochastic models for non-Newtonian fluids (see [31,47,
46,48,34]).

In this paper, we are interested in the Lévy driven SPDEs for the nonlinear bipolar fluids. More precisely, 
let d = 2, 3, and O ⊂ R

d be a smooth bounded open domain, we consider⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
du + [u · ∇u −∇ ·T(E(u)) + ∇π] dt =

∫
Z
σ(t,u, z)η̃(dz, dt), x ∈ O, t ∈ (0, T ],

u(x, 0) = u0, x ∈ O,

∇ · u = 0, x ∈ O, t ∈ [0, T ],
u(x, t) = τijlnjnl = 0, x ∈ ∂O, t ∈ (0, T )

(1)

where u is the velocity of the fluids, π its pressure, n denotes the normal exterior to the boundary and

E(u) = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, |E(u)|2 =

n∑
i,j=1

|Eij(u)|2,

T(E(u)) = 2κ0(κ + |E(u)|2) p−2
2 E(u) − 2κ1ΔE(u).

The quantities κ0, κ1 and κ denote positive constants. Here η̃ is a compensated Poisson random measure 
defined on a prescribed probability space (Ω, F , P) and taking its values in a separable Hilbert space H to 
be defined later. The system (1) describes the equations of motion of isothermal incompressible nonlinear 
bipolar fluids excited by random forces.

For p = 2, κ1 = 0, σ ≡ 0, (1) is the Navier–Stokes equations which has been extensively studied, see, 
for instance, [56]. If 1 < p < 2 then the fluid is shear thinning, and it is shear thickening when 2 < p. 
The problem (1) is as interesting as the Navier–Stokes equations. It contains two nonlinear terms which 
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makes the problem as difficult as any nonlinear evolution equations. During the last two decades, the 
deterministic version of (1) has been the object of intense mathematical investigation which has generated 
several important results. We refer to [5,6,8,39,40] for relevant examples. Despite these numerous results 
there are still a lot of open problems related to the mathematical theory of multipolar fluids. Some examples 
are the existence of weak solution for all values of p, the uniqueness of such weak solutions and many more. 
We refer, for instance, to [6,30] and [40] for some discussions about these challenges.

For 1 < p and the noise is replaced by a cylindrical Wiener process, the existence of martingale and 
stationary solution of (1) was established in [31]. In [50] Razafimandimby and Sango studied the exponential 
stability and some stabilization of (1) with 1 < p ≤ 2 and with a Wiener noise. It seems that this article 
is the first work studying the Lévy driven SPDEs (1). Our first main goal is to prove the existence and 
uniqueness of strong solution which should be understood in the sense of stochastic differential equations. 
To achieve this goal we mainly follow the idea initially developed by Breckner in [12] (see also [11]) and used 
later in many articles such as [19,26,49]. This method is based on Galerkin approximation and it allows 
to prove that the whole sequence of the Galerkin approximation converges in mean square to the exact 
solution. The second goal of the present paper is to give some partial results concerning the properties 
of the solution. We concentrate on proving that the solution satisfies the Markov–Feller property which 
enables us to prove that (1) admits at least an invariant measure which is ergodic and tight on a subspace 
of the Lebesgue space L2(O). Unfortunately, we could not proceed further and prove the uniqueness of the 
invariant measure. The investigation of the uniqueness of ergodic SPDEs driven by pure jump noise seems 
to be very difficult and out of reach of the most recent methods used to prove the uniqueness of invariant 
measure of SPDEs. We postpone this investigation in future work.

To close this introduction we give the outline of the article. In Section 2 we give most of the notations 
and necessary preliminary used throughout the work. By means of Galerkin approximation we show the 
existence of strong solution in Section 3. The pathwise uniqueness of the solution and the convergence of 
the whole sequence of Galerkin approximate solution to the exact solution are proved in Section 4. Section 5
is devoted to the investigation of some properties of the strong solution.

Notations. By N we denote the set of nonnegative integers, i.e. N = {0, 1, 2, · · · } and by N̄ we denote the 
set N ∪ {+∞}. Whenever we speak about N (or N̄)-valued measurable functions we implicitly assume that 
the set is equipped with the trivial σ-field 2N (or 2N̄). By R+ we will denote the interval [0, ∞) and by R∗
the set R \ {0}. If X is a topological space, then by B(X) we will denote the Borel σ-field on X. By λd we 
will denote the Lebesgue measure on (Rd, B(Rd)), by λ the Lebesgue measure on (R, B(R)).

If (S, S) is a measurable space then by M(S) we denote the set of all real valued measures on (S, S), and 
by M(S) the σ-field on M(S) generated by the functions iB : M(S) 	 μ 
→ μ(B) ∈ R, B ∈ S. By M+(S)
we denote the set of all nonnegative measures on S, and by M(S) the σ-field on M+(S) generated by the 
functions iB : M+(S) 	 μ 
→ μ(B) ∈ R+, B ∈ S. Finally, by MI(S) we denote the family of all N-valued 
measures on (S, S), and by MI(S) the σ-field on MI(S) generated by functions iB : M(S) 	 μ 
→ μ(B) ∈ N̄, 
B ∈ S. If (S, S) is a measurable space then we will denote by S ⊗B(R+) the product σ-field on S×R+ and 
by ν ⊗ λ the product measure of ν and the Lebesgue measure λ.

2. Mathematical settings of the problem (1)

Throughout this paper we mainly use the same notations as in [31]. By Lq(O) we denote the Lebesgue 
space of q-th integrable functions with norm ‖ · ‖Lq . For the particular case q = 2, we denote its norm 
by ‖ · ‖. For q = ∞ the norm is defined by ‖u‖L∞ = ess supx∈O |u(x)|, where |x| is the Euclidean norm of 
the vector x ∈ R

n. The Sobolev space {u ∈ Lq(O) : Dku ∈ Lq(O), k ≤ σ} with norm ‖ · ‖q,σ is denoted by 
W q,σ(O). C(I, X) is the space of continuous functions from the interval I = [0, T ] to X, and Lq(I, X) is 
the space of all measurable functions u : [0, T ] → X, with the norm defined by
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‖u‖qLq(I,X) =
T∫

0

‖u(t)‖qXdt, q ∈ [1,∞),

and when q = ∞, ‖u‖L∞(I,X) = ess supt∈[0,T ] ‖u(t)‖X .
The mathematical expectation associated to the probability space (Ω, F , P) is denoted by E and as above 

we also define the space Lq(Ω, X).
We proceed with the definitions of some additional spaces frequently used in this work. We define a space 

of smooth functions with support strictly contained in O and satisfying the divergence free condition:

V = {u ∈ C∞
c (O) : ∇ · u = 0}.

We denote by H the closure of V with norm | · | in L2(O). It is a Hilbert space when equipped with the 
L2(O)-inner product (., .). Hσ is the closure of V in W 2,σ(O) with the norm ‖ · ‖2,σ. We denote by ‖u‖σ the 
norm induced by ‖u‖2,σ on Hσ. We denote by H−σ the dual space of Hσ (σ ≥ 1) wrt the norm ‖u‖σ. If 
σ = 2, then V = H2 and V ∗ is the dual space of V . The duality product between V and V ∗ is denoted by 
〈., .〉. It should be noted that V is not the usual space of divergence-free functions of W 2,1(O) used for the 
Navier–Stokes equations. Here it is a space of divergence-free functions of W 2,2(O). We assume throughout 
the paper that there exists a positive constant λ1 such that the Poincaré inequalities type

‖u‖2
σ ≤ 1

λ1
‖u‖2

σ+1, ∀u ∈ Hσ+1, σ ≥ 0, (2)

hold.
As mentioned in the introduction we will study a stochastic model for a nonlinear bipolar fluids excited 

by random forces. In the following lines we describe the forces acting on the fluids. Let (Z, Z) be a separable 
metric space and let ν be a σ-finite positive measure on it. Suppose that P = (Ω, F , F, P) is a filtered 
probability space, where F = (Ft)t≥0 is a filtration satisfying the usual conditions, and η : Ω × B(R+) ×
Z → N̄ is a time homogeneous Poisson random measure, with intensity measure ν, defined over the filtered 
probability space P. A time homogeneous Poisson random measure defined over P is given in the following 
definition.

Definition 2.1. Let Z be a metric space and Z its Borel σ-algebra, ν a positive σ-finite measure on (Z, Z).
A Poisson random measure, with intensity measure ν, η defined on (Z, Z) over P is a measurable map 

η : (Ω, F) → (MI(Z × R+), MI(Z × R+)) satisfying the following conditions:

(i) for all B ∈ B(Z ⊗ R+), η(B) : Ω → N is a Poisson random measure with parameter E[η(B)];
(ii) η is independently scattered, i.e., if the sets Bj ∈ B(Z⊗R+), j = 1, . . . , n, are disjoint then the random 

variables η(Bj), j = 1, . . . , n, are independent;
(iii) for all U ∈ Z and I ∈ B(R+)

E[η(U × I)] = λ(I)ν(U);

(iv) for all U ∈ Z the N̄-valued process (N(U, t))t≥0 defined by N(U, t) := η(U × (0, t]), t ≥ 0, is F-adapted 
and its increments are independent of the past, i.e., if t > s ≥ 0, then the random variable N(U, t) −
N(U, s) = η(U × (s, t]) is independent of Fs.

We will denote by η̃ the compensated Poisson random measure defined by η̃ := η−γ, where the compensator
γ : B(Z × R+) → R+ is defined by

γ(A× I) = λ(I)ν(A), I ∈ B(R+), A ∈ Z.
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While items (i) and (ii) are the classical definition, see for e.g. [45, Definition 6.1], of a Poisson Random 
measure η, the remaining items implicitly indicate that our η is associated to a certain Lévy process L̃, see, 
for instance [45, Proposition 4.16].

Let M2(R+, L2(Z, ν, H)) be the class of all progressively measurable processes ξ : R+ × Z × Ω → V

satisfying the condition

E

T∫
0

∫
Z

|ξ(r, z)|2Hν(dz) dr < ∞, ∀T > 0. (3)

If T > 0, the class of all progressively measurable processes ξ : [0, T ] × Z × Ω → V satisfying the condition 
(3) just for this one T , will be denoted by M2(0, T, L2(Z, ν, H)). Also, let M2

step(R+, L2(Z, ν, H)) be the 
space of all processes ξ ∈ M2(R+, L2(Z, ν, H)) such that

ξ(r) =
n∑

j=1
1(tj−1,tj ](r)ξj , 0 ≤ r,

where {0 = t0 < t1 < . . . < tn < ∞} is a partition of [0, ∞), and for all j, ξj is an Ftj−1 measurable random 
variable. For any ξ ∈ M2

step(R+, L2(Z, ν, H)) we set

Ĩ(ξ) =
n∑

j=1

∫
Z

ξj(z)η̃ (dz, (tj−1, tj ]) . (4)

This is basically the definition of stochastic integral of a random step process ξ with respect to the compound 
random Poisson measure η̃. The extension of this integral on M2(R+, L2(Z, ν, H)) is possible thanks to the 
following result which is taken from [14, Theorem C.1].

Theorem 2.2. There exists a unique bounded linear operator

I : M2(R+, L
2(Z, ν;H)) → L2(Ω,F ;H)

such that for ξ ∈ M2
step(R+, L2(Z, ν; H)) we have I(ξ) = Ĩ(ξ). In particular, there exists a constant C =

C(H) such that for any ξ ∈ M2(R+, L2(Z, ν, H)),

E|
t∫

0

∫
Z

ξ(r, z)η̃(dz, dr)|2H ≤ C E

t∫
0

∫
Z

|ξ(r, z)|2H ν(dz) dr, t ≥ 0. (5)

Moreover, for each ξ ∈ M2(R+, L2(Z, ν, H)), the process I(1[0,t]ξ), t ≥ 0, is an H-valued càdlàg martingale. 
The process 1[0,t]ξ is defined by [1[0,t]ξ](r, z, ω) := 1[0,t](r)ξ(r, z, ω), t ≥ 0, r ∈ R+, z ∈ Z and ω ∈ Ω.

As usual we will write

t∫
0

∫
Z

ξ(r, z)η̃(dz, dr) := I(ξ)(t), t ≥ 0.

Now, we assume that p ∈ (1, 2] which will be fixed in the whole section. We will rewrite (1) in the 
following equivalent form
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{
du + [κ1Au + 2κ0Apu + B(u,u)] dt =

∫
Z
σ(t,u, z)η̃(dz, dt),

u(0) = u0,
(6)

where the operator A is defined through the relation

〈Au,v〉 = a(u,v) =
∫
O

∂Eij(u)
∂xk

∂Eij(v)
∂xk

dx, u ∈ D(A),v ∈ V.

Here and after the summation over repeated indices is enforced.
Note that

D(A) = {u ∈ V : ∃f ∈ H ⊂ V ∗ for which a(u,v) = (f,v),∀v ∈ V },

A = PΔ2, where P is the orthogonal projection defined on L2(O) onto H.

Remark 2.3. It is shown in [8] that there exist two positive constants k1 and k2 depending only on O such 
that

k1‖u‖2
2 ≤ 〈Au,u〉 ≤ k2‖u‖2

2, (7)

for any u ∈ V . Thanks to this we will just write ‖u‖2
2 in place of 〈Au, u〉, u ∈ V . Also, it is not difficult to 

see that A is symmetric. This fact together with (7) yields that A is self-adjoint.

The bilinear form B(u, v) : H1 ×H1 → H−1 is defined as follows:

〈B(u,v),w〉 = b(u,v,w) =
∫
O

ui
∂vj

∂xi
wjdx, u,v,w ∈ H1,

where b(., ., .) is the well-known trilinear form used in the mathematical analysis of Navier–Stokes equations 
(see for instance [56]). The bilinear form B(·, ·) enjoys the following properties:

• for any u, v, w ∈ H1, we have

〈B(u,v),w〉 = −〈B(u,w),v〉 and 〈B(u,v),v〉 = 0. (8)

• There exists a constant C0 such that

〈B(u,v),w〉 ≤ C0|u|‖v‖1‖v‖2 (9)

for any u ∈ H1, v ∈ V , w ∈ V .

The inequality (9) can be proved by using Hölder’s and Sobolev inequalities (see [56]).
The nonlinear term Ap : V → V ∗ is defined as follows:

(Apu,v) =
∫
O

Γ(u)Eij(u)Eij(v)dx,u,v ∈ V,

where Γ(u) = (κ + |E(u)|2) p−2
2 . Some of the properties of Ap is given below.
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Lemma 2.4.

(i) There exists a positive constant C(κ, p) such that

‖Apu −Apv‖V ∗ ≤ C‖u − v‖1, u,v ∈ V. (10)

(ii) For any u, v ∈ V

〈Apu −Apv,u − v〉 ≥ 0. (11)

To check the results in the above lemma we need to recall the following results whose proofs can be found 
in [30].

Lemma 2.5 (Korn’s inequalities). Let 1 < p < ∞ and let O ⊂ R
d be of class C1. Then there exist two 

positive constants kip = ki(O, p), i = 1, 2 such that

k1
p‖u‖1 ≤

⎛⎝∫
O

|E(u)|2dx

⎞⎠
1
2

≤ k2
p‖u‖1,

for any u ∈ H1.

Proof of Lemma 2.4. Let w be an arbitrary element of V . Let us set δ = |e|√
κ

and κ̃ = max(κ p−2
2 , κ

p−5
2 ). 

Let us first note that ∣∣∣∣ ∂T∂eij
(e)

∣∣∣∣ ≤ κ
p−2
2 (1 + δ2)

p−2
2 + κ

p−5
2 δ(1 + δ2)

p−4
2 ,

which implies that ∣∣∣∣ ∂T∂eij
(e)

∣∣∣∣ ≤ 3κ̃(1 + δ2)
p−2
2 .

Since p ∈ (1, 2] we have that ∣∣∣∣ ∂T∂eij
(e)

∣∣∣∣ ≤ 3κ̃. (12)

Secondly, we have

〈T(E(u)) − T(E(v)),w〉 = 2κ0

∫
O

[T(E(u)) − T(E(v))] · E(w)dx,

= 2κ0

∫
O

E(w) ·
1∫

0

∂T(E(v) + s(E(u) − E(v)))
∂s

dsdx,

= 2κ0

∫
O

E(w) · (E(u) − E(v))
1∫

0

∂T(E(v) + s(E(u) − E(v)))
∂eij

dsdx.

By using (12) in the last equation yields

|〈T(E(u)) − T(E(v)),w〉| ≤ 6κ0

∫
|E(w)| · |E(u) − E(v)|dx.
O
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Invoking Hölder’s and Korn’s inequalities implies the existence of a positive constant K such that

|〈T(E(u)) − T(E(v)),w〉| ≤ 6κ̃κ0K‖u − v‖1‖w‖1,

for any u, v, w ∈ V . We easily conclude from this the proof of (i).
It is known from [40] that for any p ∈ (1, ∞) and for all D, E ∈ R

d×d
sym :

(T(D) − T(E)) · (D − E) ≥ 0,

where

R
d×d
sym = {D ∈ R

d×d : Dij = Dji, i, j = 1, 2, . . . , d}.

Therefore, we see that for any u, v ∈ V

〈Apu −Apv,u − v〉 =
∫
O

[T(E(u)) − T(E(v))] · [E(u) − E(v)] dx ≥ 0,

which proves (ii). �
To close this section we introduce the main set of hypotheses used in this article. Throughout this work 

we suppose that we are given a function σ satisfying the following set of constraints:

Condition 1. There exist nonnegative constants �0, �1, �2, �3 such that, for any t ∈ [0, T ] and all u, v ∈ H, 
we have

(1) |σ(t, u)|2L2(Z,ν;H) ≤ �0 + �1|u|2;
(2) |σ(t, u) − σ(t, v)|2L2(Z,ν;H) ≤ �2|u − v|2.
(3) |σ(t, u)|4L4(Z,ν;H) ≤ �3(1 + |u|4).

3. Existence of a strong solution

In this section, we will show that (1) admits at least one strong solution. The proof is based on Galerkin 
approximation and idea borrowed from [12]. But before we proceed further we define explicitly what we 
mean by strong solution of (1) or (6).

Definition 3.1. Let (Z, Z) be a separable metric space on which is defined a σ-finite measure ν and u0 ∈ H. 
A strong solution to the problem (6) is a stochastic process u such that:

(1) u = {u(t); t ≥ 0} is a F-progressively measurable process such that

E sup
s∈[0,T ]

|u(s)|4 + E

T∫
0

‖u(t)‖2
2dt < ∞;
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(2) the following holds

(u(t),w) = (u0,w) − κ1

t∫
0

(〈Au(s),w〉 − 〈B(u(s),u(s)),w〉) ds

− 2κ0

t∫
0

〈Apu(s),w〉ds +
t∫

0

∫
Z

(σ(s,u(s), z),w)η̃(dz, ds),

(13)

for any w ∈ V , for almost all t ∈ [0, T ] and P-almost surely.

Theorem 3.2. Let the set of constraints in Condition 1 be satisfied and r = 1, 2. Then, for any initial value ξ

with E|ξ|2r < ∞, there exists a solution u to problem (6) which satisfies

E

⎛⎝ sup
0≤t≤T

|u(t)|2r +
T∫

0

‖u(s)‖2
2 |u(s)|2r−2

ds

⎞⎠ ≤ C
(
E |ξ|2r + 1

)
, T ≥ 0. (14)

Before we prove this result let us recall an important statement which is borrowed from [21].

Lemma 3.3. Let X, Y , I and φ be non-negative processes and Z be a nonnegative integrable random variable. 
Assume that I is non-decreasing and that there exist nonnegative constants C, α, β, γ, δ and T satisfying 
first

T∫
0

φ(s) ds ≤ C, a.s., 2βeC ≤ 1, 2δeC ≤ α,

and secondly for all t ∈ [0, T ] there exists a constant C̃ > 0 such that

X(t) + αY (t) ≤ Z +
t∫

0

φ(r)X(r) dr + I(t), a.s.,

EI(t) ≤ βEX(t) + γ

t∫
0

EX(s) ds + δEY (t) + C̃.

If X ∈ L∞([0, T ] × Ω), then we have

E [X(t) + αY (t)] ≤ 2 exp
(
C + 2tγeC

) (
EZ + C̃

)
, t ∈ [0, T ].

The proof of Theorem 3.2 will be split into five steps.

A priori uniform estimates:
The operator A is self-adjoint and it follows from Rellich’s theorem that it is compact on H. Therefore, 

there exists a sequence of positive numbers {λ̃i : i = 1, 2, 3 . . .} and a family of smooth function {φi : i =
1, 2, 3, . . .} satisfying

Aφi = λ̃iφi, (15)

for any i ∈ N. We can assume that the family {φi : i = 1, 2, 3, . . .} is an orthonormal basis of H which is 
orthogonal and dense in V .
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Let Πm denote the projection of V ∗ onto Hm := span{φ1, · · · , φm}. That is

Πmx =
m∑
i=1

〈x, φi〉φi, x ∈ V ∗.

Also, Πm|H is the orthogonal projection of H onto Hm.
For every m ∈ N, we consider the finite dimensional system of SDEs on Hm given by

dum(t) = ΠmF (um(t)) dt +
∫
Z

Πmσ(t,um(t), z) η̃(dz, dt), t ≥ 0, (16)

um(0) = Πmξ,

where F (um(s)) = −Aum(s) −Apum(s) + B(um(s), um(s)). To shorten notation we set

Bm(·, ·) = ΠmB(·, ·) and σm(·, ·, ·) = Πmσ(·, ·, ·).

We note that since Πm is a contraction of V ∗, we infer from (8), (9) and item (2) of Condition 1 that F
is locally Lipschitz and σm := Πmσ is globally Lipschitz. As we know from e.g. Albeverio, Brzeźniak and 
Wu [1], on the basis of Condition 1, equation (16) has a unique Hm-valued càdlàg local strong solution um. 
The following proposition implies that it is in fact a global solution.

Proposition 3.4. Let the assumptions be as in Theorem 3.2. Then there exists a constant C > 0 such that 
for r = 1, 2 we have

sup
m

E

⎛⎝ sup
t∈[0,T ]

|um(t)|2r +
T∫

0

‖um(s)‖2
2 |um(s)|2r−2

ds

⎞⎠ ≤ C
(
E |ξ|2r + 1

)
.

Proof of Proposition 3.4. As mentioned above, it follows from [1, Theorem 2.8] that Equation (16) has a 
unique càdlàg local strong solution um in Hm. That means that for any m ∈ N there exists a unique solution 
on a short interval [0, Tm] satisfying

um(t) = Πmξ +
t∫

0

ΠmF (um(s)) ds +
t∫

0

∫
Z

σm(s,um(s), z) η̃(dz, ds), t ∈ [0, Tm].

We begin by checking the estimate in the proposition with the case r = 1. We argue as in [1, Proof of 
Theorem 3.1]. Let (τM )M be an increasing sequence of stopping times defined by

τM = inf{t ∈ [0, T ] : |um(t)|2 +
t∫

0

‖um(s)‖2ds ≥ M2} ∧ T,

for any integer M . Throughout, we fix r ∈ [0, T ] and 0 ≤ t ≤ r∧τM . Since we can identify the space Hm with 
R

m then we can apply the finite dimensional Itô’s formula (see, for example, [35, Chapter II, Theorem 5.1]) 
to the function | · |2r and the process um. This procedure along with (8) yields
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|um(t)|2 = |Πmξ|2 − 2κ1

t∫
0

‖um(s)‖2
2 ds− 2κ0

t∫
0

〈Apum(s),um(s)〉ds

+ 2
t∫

0

∫
Z

(um(s−), σm(s,um(s), z))η̃(dz, ds)

+
t∫

0

∫
Z

Ψ(s, z)η(dz, ds),

(17)

where

Ψ(s, z) = |um(s−) + σm(s,um(s), z)|2 − |um(s−)|2 − (um(s−), σ(s,um(s), z)) .

From the fact that |x|2 − |y|2 + |x − y|2 = 2〈x − y, x〉, x, y ∈ H and (11), we derive from (17) that

|um(t)|2 + 2
t∫

0

κ1‖um(s)‖2
2ds ≤ |Πmξ|2 + 2

t∫
0

∫
Z

(um(s−), σ(s,um(s), z))η̃(dz, ds)

+
t∫

0

∫
Z

|σ(s,um(s), z)|2η(dz, ds)

(18)

for any t ∈ [0, r ∧ τM ], r ∈ [0, T ]. For any r ∈ [0, T ] and t ∈ [0, r ∧ τm] we define the following stochastic 
processes

X(t) := sup
0≤s≤t

|um(s)|2;

Y (t) :=
t∫

0

‖um(s)‖2
2 ds;

I(t) := sup
0≤s≤t

(
2
∣∣∣ s∫

0

∫
Z

(um(τ−), σ(τ,um(τ), z))η̃(dz, dτ)
∣∣∣ +

s∫
0

∫
Z

|σ(τ,um(τ), z)|2η(dz, dτ)
)
,

:= sup
s∈[0,t]

|I1(s)| + I2(t),

where

I1(t) =
t∫

0

∫
Z

(σ(s,um(s−), z),um(s−))η̃(dz, ds),

and

I2(t) = sup
0≤s≤t

s∫
0

∫
Z

|σ(τ,um(τ−), z)|2η(dz, dτ).

Since I1(t) is a local martingale we can apply Burkholder–Davis–Gundy’s inequality and get
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E sup
s∈[0,r∧τM ]

|I1(s)| ≤ CE

⎛⎝ r∧τm∫
0

∫
Z

(um(s−), σ(s,um(s), z))2ν(dz)ds

⎞⎠
1
2

.

Thanks to Hölder’s and Young’s inequalities we have

E sup
s∈[0,t]

|I1(s)| ≤ C

[
εE sup

s∈[0,t]
|um(s)|2

] 1
2
⎡⎣1
ε
E

t∫
0

∫
Z

|σ(s,um(s), z)|2ν(dz)ds

⎤⎦
1
2

≤ CεE sup
s∈[0,t]

|um(s)|2 + C

ε
E

t∫
0

∫
Z

|σ(s,um(s), z)|2ν(dz)ds.

Invoking item (2) of Condition 1 we see that

E sup
s∈[0,t]

|I1(s)| ≤ CεEX(t) + C

ε
�0t + C

ε
�1

t∫
0

EX(s)ds. (19)

Next, we will deal with the second term of I(t). Taking into account that the process

t∫
0

∫
Z

|σm(r,um(r))|2η(dz, dr)

has only positive jumps, we obtain

EI2(t) ≤ E

t∫
0

∫
Z

|σ(s,um, z)|2ν(dz)ds.

Thanks to the item (1) of Condition 1 we see that

EI2(t) ≤ �0t + �1

t∫
0

EX(s)ds. (20)

Thanks to (18) along with (19) and (20) we apply Lemma 3.3 and derive that there exists a positive 
constant C such that

E

⎡⎣ sup
0≤s≤t

|um(s)|2 + 2κ1

t∫
0

‖um(s)‖2ds

⎤⎦ ≤ C(E|ξ|2 + 1),

for any m ∈ N and t ∈ [0, r ∧ τm], r ∈ [0, T ]. We have just shown that

E

⎡⎣ sup
0≤s≤t∧τM

|um(s)|2 + 2κ1

t∫
0

‖um(s)‖2ds

⎤⎦ ≤ C(E|ξ|2 + 1)∀t ∈ [0, T ], (21)

from which we can infer that

P(τM < t) ≤ CM−2, ∀t ∈ [0, T ], ∀M > 0.
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Hence, limM→∞ P(τM < t) = 0, for all t ∈ [0, T ]. That is, τM → ∞ in probability. Therefore, there exists a 
subsequence τMk

such that τMk
→ ∞, a.s. Since the sequence (τM )M is increasing, we infer that τMk

↗ ∞
a.s. Now we use Fatou’s lemma and pass to the limit in (21) and derive that

E

⎡⎣ sup
0≤s≤t

|um(s)|2 + 2κ1

t∫
0

‖um(s)‖2ds

⎤⎦ ≤ C(E|ξ|2 + 1).

The proposition is then proved for r = 1. Thus, it remains to show that it is true for the case r = 2. We 
again apply Itô’s formula to obtain

|um(t)|2r = 2r
t∫

0

∫
Z

|um(s−)|2(r−1)(um(s−), σm(s,um(s), z))η̃(dz, ds)

+ |Πmξ|2r + 2r
t∫

0

|um(s)|2(r−1)(Fm(um(s)),um(s))ds

+
t∫

0

∫
Z

Φ(s, z)η(dz, ds),

(22)

where

Φ(s, z) = |um(s−) + σm(s,um(s), z)|2r − |um(s−)|2r − 2r|um(s−)|2(r−1)(um(s−), σ(s,um(s), z)).

Thanks to (8) and (11) the estimate (22) becomes

|um(t)|2r + 2rκ1

t∫
0

|um(s)|2(r−1)‖um(s)‖2
2ds− |Πmξ|2r −

t∫
0

∫
Z

Φ(s, z)η(dz, ds)

≤ 2r
t∫

0

∫
Z

|um(s−)|2(r−1)(um(s−), σm(s,um(s), z))η̃(dz, ds).

Taking the supremum over [0, t] on both sides of the above estimate leads to

sup
s∈[0,t]

|um(s)| + 2rκ1

t∫
0

|um(s)|2(r−1)‖um(s)‖2
2ds ≤ |Πmξ|2r + J(t), (23)

where J(t) = J1(t) + J2(t) with

J1(t) = 2r sup
s∈[0,t]

∣∣∣∣∣∣
s∫

0

∫
Z

|um(s−)|2(r−1)(u(τ−), σm(s,um(τ), z))η̃(dz, dτ)

∣∣∣∣∣∣ ,
J2(t) = sup

s∈[0,t]

∣∣∣∣∣∣
s∫

0

∫
Z

Φ(τ, z)η(dz, dτ)

∣∣∣∣∣∣ .
First, we apply the Burkholder–Davis–Gundy inequality
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EJ1(t) ≤ 2rCE

⎛⎝ t∫
0

∫
Z

|um(s)|4(q−1)|um(s)|2|σm(s,um(s), z))|2 ν(dz)ds

⎞⎠
1
2

.

Then using item (1) of Condition 1 and Hölder’s inequality implies

EJ1(t) ≤

⎛⎝1
ε
E

t∫
0

|um(s)|2r−2
(
�0 + �1|um(s)|2

)
ds

⎞⎠
1
2

× 2rC
(
εE sup

s∈[0,t]
|um(s)|2r

) 1
2

.

Invoking Young’s inequality yields

EJ1(t) ≤
2rC
2 εE sup

s∈[0,t]
|um(s)|2r + rC�0

2ε E

t∫
0

|um(s)|2r−2ds + 2rC�1
2ε E

t∫
0

|um(s)|2rds.

Using the fact that for r ≥ 2, |x|2r−2 ≤ C(1 + |x|2r), we deduce from the last inequality that

EJ1(t) ≤
2rC�0T

2ε + 2rC
2 εE sup

s∈[0,t]
|um(s)|2r + 2rC(�0 + �1)

2ε E

t∫
0

|um(s)|2rds. (24)

Now we deal with J2(t). First, note that

EJ2(t) ≤
(
r2 + r

2

)
E

t∫
0

∫
Z

(
|um(s−)|2(r−1)|σm(s,um(s), z)|2 + |σm(s,um(s), z)|2r

)
ν(dz)ds, (25)

where we have used the fact that∣∣∣|x + h|2r − |x|2r − 2r|x|2(r−1)(x, h)
∣∣∣ ≤ r2 + r

2 (|x|2(r−1)|h|2 + |h|2r), (26)

for all x, h ∈ H. Let us set Cr = r2+r
2 . Now thanks to items (1) and (3) of Condition 1 we derive from (25)

that there exist positive constants �r and Cr such that

EJ2(t) ≤ Cr�rE

t∫
0

(1 + |um(s)|2r + |um(s)|2(r−1)‖um(s)‖2r
2 )ds

≤ Cr�rT + Cr�r

t∫
0

|um(s)|2rds + Cr�r

t∫
0

|um(s)|2(r−1)‖um(s)‖2
2ds. (27)

Therefore, we see from (24) and (27) that there exist positive constants C ′
r, Mr, �′r, and L′

r such that

EJ(t) ≤ C ′
rT + MrεE sup

s∈[0,t]
|um(s)|2r + �′r

2ε

t∫
E|um(s)|2rds + L′

rE

t∫
|um(s)|2(r−1)‖um(s)‖2

1ds, (28)

0 0
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for any m ∈ N and t ∈ [0, T ]. Set

X(t) = sup
s∈[0,t]

|um(s)|2r,

and

Y (t) =
t∫

0

|um(s)|2(r−1)‖um(s)‖2
2ds.

Thanks to (23), (28) and an appropriate choice of ε > 0 we find that X(·) and Y (·) verify the conditions in 
Lemma 3.3. Therefore we infer the existence of a positive constant C such that

E sup
s∈[0,t]

|um(s)|2r + C(q, κ1)
t∫

0

|um(s)|2(r−1)‖um(s)‖2
2ds ≤ C(E|ξ|2r + 1), r = 2,

for any t ∈ [0, T ] and m ∈ N. This completes the proof of the proposition. �
Passage to the limit:
To prove the existence of the solution of (6) we need to pass to the limit in the terms of (16) and in the 

estimate of Proposition 3.4. Before we do so we recall that there exists a constant C > 0 such that

sup
m∈N

⎛⎝E sup
s∈[0,T ]

|um(s)|2r + E

T∫
0

|um(s)|2(r−1)‖um(s)‖2
2ds

⎞⎠ < C. (29)

We have the following weak compactness result.

Proposition 3.5. We can find a subsequence um which is not relabeled and a stochastic process u such that

um ⇀ u(weak star) in L4(Ω;L∞([0, T ];H)), (30)

um ⇀ u in L2(Ω × [0, T ];V ). (31)

Moreover, there exist three elements B, Σ, A such that

Bm(um,um) ⇀ B in L2(Ω × [0, T ];V ∗), (32)

Apum ⇀ A in L2(Ω × [0, T ];V ∗), (33)

σm(t,um, ·) ⇀ Σ in L2(Ω × [0, T ];L2(Z, ν;H)). (34)

Proof. Since L2(Ω × [0, T ]; V ) is a Hilbert space and L4(Ω; L∞(0, T ; H)) is a Banach space and the dual 
of L 4

3 (Ω; L1(0, T ; H)), we easily infer from Banach-Alaoglu’s theorem and the uniqueness of weak limit 
that there exist a subsequence of um (which is denoted with the same fashion) and a stochastic process u
belonging to L4(Ω; L∞(0, T ; H)) ∩ L2(Ω × [0, T ]; V ) such that (30) and (31) hold true.

It remains to show (32)-(34). To prove (32) we first recall that there exists a positive constant C0 such 
that

|〈Bm(Φ,v),w〉| ≤ C0|Φ|‖v‖1‖w‖2,

for any Φ ∈ H, v ∈ V and w ∈ V . This inequality implies that
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E

T∫
0

‖Bm(um(s),um(s))‖2
V ∗ ≤ CE

T∫
0

|um(s)|2‖um(s)‖2
1ds,

from which and (29) we get that Bm(um, um) is a bounded sequence in the Hilbert space L2(Ω × [0, T ]; V ∗). 
Thus, there exists an element of L2(Ω × [0, T ]; V ∗) that we denote by B such that Bm(um, um) converges 
weakly to B in L2(Ω × [0, T ]; V ∗).

By invoking (10) and (29) we see that the following uniform estimate holds

sup
m∈N

E

T∫
0

‖Apum(s)‖2
V ∗ds ≤ C.

Therefore, the proof of (33) follows the same lines as for the proof of (32).
From item (1) of Condition 1 and estimate (29) we easily obtain the uniform estimate

sup
m∈N

E

T∫
0

‖σm(s,um(s), z)‖2
L2(Z,ν;H) ≤ K0T + K1E

T∫
0

|um(s)|2ds + K ′
1E

T∫
0

‖um(s)‖2ds ≤ C,

which implies that σm(s, um(s), z) is a bounded sequence in L2(Ω × [0, T ]; L2(Z, ν; H)). Therefore, by 
Banach-Alaoglu we deduce the existence of Σ belonging to L2(Ω × [0, T ]; L2(Z, ν; H)) such that (34) holds. 
This completes the proof of the proposition. �

With the convergences in Proposition 3.5 we can pass to the limit in each term of (16) and obtain that

u(t) + κ1

t∫
0

Au(s)ds + κ0

t∫
0

A(s)ds = u0 +
t∫

0

∫
Z

Σ(s, z)η̃(dz, ds), (35)

P-a.s. and for any t ∈ [0, T ] as an equality in V ∗. Also, passing to the limit in (29) gives the estimate in 
Theorem 3.2. Thanks to (32) and (34) we can deduce from [32] that the stochastic process u has a càdlàg 
modification taking values in H. From now on we will identify u with its càdlàg modification. Henceforth, 
we need to show the following identities to complete the proof of Theorem 3.2.

Proposition 3.6. We have the following identities

B = B(u,u) in L2(Ω × [0, T ];V ∗), (36)

A = Apu in L2(Ω × [0, T ];V ∗), (37)

Σ = σ(t,u, ·) in L2(Ω × [0, T ];L2(Z, ν;H)). (38)

For any integer M ≥ 1 we consider the sequence of stopping times {τM : M ≥ 1} defined by

τM = inf{t ∈ [0, T ] : |u(t)|2 +
T∫

0

‖u(s)‖2
2 ≥ M2} ∧ T.

The proof of Proposition 3.6 requires the following convergences.
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Lemma 3.7. For any M ≥ 1 we have that, as m → ∞,

1[0,τM ] (um − u) → 0 in L2(Ω × [0, T ];V ), (39)

and

E|um(τM ) − u(τM )| → 0. (40)

Proof of Lemma 3.7. Let ũm be the orthogonal projection of u onto Span{φ1, . . . , φm}, that is

ũm =
m∑
i=1

(u, φi)φi.

It is clear that as m → ∞

ũm → u in L2(Ω × [0, T ];H). (41)

We can also check that

E|ũm(τM ) − u(τM )|2 → 0, (42)

as m → ∞.
First we should note that

〈Aũm(t), ũm(t)〉 = 〈
∑
j

Aφj(ũm(t), φj),
∑
i

(ũm(t), φi)φi〉.

Thanks to (15) we have

〈Aũm(t), ũm(t)〉 =
∑
i,j

(ũm(t), φj)(ũm(t), φi)(λjφj , φi),

=
∑
j

(ũm(t), φj)2(λjφj , φj).

Thanks to (15) again we have

〈Aũm(t), ũm(t)〉 =
∑
j

(ũm(t), φj)2〈Aφj , φj〉.

From this, we can easily derive that

‖ũm(t)‖2
2 ≤ ‖A‖ |u(t)|2, (43)

for almost all (ω, t) ∈ Ω × [0, T ]. Also,

‖ũm(s) − u(s)‖2
2 ≤ 〈Aũm(s) −Au(s), ũm(s) − u(s)〉

≤ 〈
∞∑

i=m+1
(u(s),Aφi)φi,

∞∑
j=m+1

(u(s), φj)φj〉,

≤ 〈
∞∑

(u(s), φi)λ̃iφi,
∞∑

(u(s), φj)φj〉,

i=m+1 j=m+1
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≤
∞∑

j=m+1
(u(s), φj)2〈Aφj , φj〉

≤ ‖A‖
∞∑

j=m+1
(u(s), φj)2, (44)

for any m. Since u ∈ H for almost all (ω, t) ∈ Ω × [0, T ], we see that the right hand side of the last inequality 
converges to 0 as m → ∞. Therefore

ũm(s) → u in V for almost all (ω, t) ∈ Ω × [0, T ]. (45)

Furthermore, owing to (43) and the dominated convergence theorem we can state that

ũm → u in L2(Ω × [0, T ];V ). (46)

Next, it is not difficult to see that ũm satisfies the following equations

ũm(t) + κ1

t∫
0

Aũm(s)ds + κ0

t∫
0

ΠmA(s)ds +
t∫

0

ΠmB(s) = Πmξ +
t∫

0

∫
Z

ΠmΣ(s, z)η̃(dz, ds).

Let Xm be the stochastic processes defined by Xm = um − ũm. From the last line and (16) we obtain

Xm(t) + κ0

t∫
0

[Apum(s) − ΠmA(s)]ds +
t∫

0

[Bm(um(s),um(s)) − ΠmB(s)]ds

=
t∫

0

∫
Z

[σm(s,um(s), z) − ΠmΣ(s, z)]η̃(dz, ds) − κ1

t∫
0

AXm(s)ds.

Applying Itô’s formula to the function Φ(x) = |x|2 and Xm(t) yields

|Xm(t)|2 + 2κ1

t∫
0

〈AXm(s), Xm(s)〉ds + 2κ0

t∫
0

〈Apum(s) − ΠmA(s), Xm(s)〉ds

= 2
t∫

0

〈ΠmB(s) −Bm(um(s),um(s)), Xm(s)〉ds +
t∫

0

∫
Z

Ψ(s, z)η(dz, ds)

+ 2
t∫

0

∫
Z

(σm(s,um(s), z) − ΠmΣ(s, z), Xm(s))η̃(dz, ds),

where

Ψ(s, z) = |Xm(s−) + σm(s,um(s), z) − ΠmΣ(s, z)|2 − |Xm(s−)|2

− 2(σm(s,um(s), z) − ΠmΣ(s, z), Xm(s−))

= |σm(s,um(s), z) − ΠmΣ(s, z)|2.

Let r(t) be the real valued stochastic process defined by r(t) = K1t + C2
0

4κ1

∫ t

0 ‖u(s)‖2
2ds. Applying Itô’s 

formula to e−r(t)|Xm(t)|2 leads to
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e−r(t)|Xm(t)|2 + 2κ1

t∫
0

e−r(s)‖Xm(s)‖2
2ds + 2κ0

t∫
0

e−r(s)〈Apum(s) − ΠmA(s), Xm(s)〉ds

= 2
t∫

0

e−r(s)〈ΠmB(s) −Bm(um(s),um(s)), Xm(s)〉ds− C2
0

4κ1

t∫
0

e−r(s)|Xm(s)|2‖Xm(s)‖2
2ds

−K1

t∫
0

e−r(s)|Xm(s)|2ds +
t∫

0

∫
Z

e−r(s)|σm(s,um(s), z) − ΠmΣ(s, z)|2η(dz, ds)

+ 2
t∫

0

e−r(s)
∫
Z

(σm(s,um(s), z) − ΠmΣ(s, z), Xm(s))η̃(dz, ds).

(47)

Let us study each term of (47). For the nonlinear term involving Bm and B we have that

Bm(ũm, ũm) −Bm(um,um) = Bm(Xm, ũm) + Bm(um, Xm). (48)

Out of this and (8) we obtain that

〈ΠmB(s) −Bm(um(s),um(s)), Xm(s)〉 = 〈ΠmB(s) −Bm(ũm(s), ũm(s)), Xm(s)〉

+ 〈Bm(Xm(s), ũm(s)), Xm(s)〉,

which along with (9) and Young’s inequality imply that

〈ΠmB(s) −Bm(um(s),um(s)), Xm(s)〉 ≤ 〈ΠmB(s) −Bm(ũm(s), ũm(s)), Xm(s)〉
C2

0
4κ1

|Xm(s)|2‖ũm(s)‖2
2 + κ1‖Xm(s)‖2

2.
(49)

Next, we have

〈Apum(s) − A(s), Xm(s)〉 = 〈Apum(s) −Apũm(s), Xm(s)〉

+ 〈Apũm(s) − A(s), Xm(s)〉.
(50)

Invoking the item (ii) of Lemma 2.4 we see that

〈Apum(s) −Apũm(s), Xm(s)〉 ≥ 0. (51)

Setting S = |σm(s, um(s), z) − ΠmΣ(s, z)|2 we see that

S = |Πm[σ(s,um(s), z) − σ(s,u(s), z)]|2 − |Πm[σ(s,u(s), z) − Σ(s, z)]|2

2 (Πm[σ(s,um(s), z) − Σ(s, z)],Πm[σ(s,u(s), z) − Σ(s, z)]) .

Owing to item (1) of Condition 1 we have that

S ≤ �2|Xm(s)|2 + �2|ũm(s) − u(s)|2 − |Πm[σ(s,u(s), z) − Σ(s, z)]|2

2 (Π [σ(s,um(s), z) − Σ(s, z)],Π [σ(s,u(s), z) − Σ(s, z)]) .
(52)
m m
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Inserting (49), (50), (51) and (52) into (47), replacing t by τM and taking the mathematical expectation 
lead to

Ee−r(τM )|Xm(τM )|2 + E

τM∫
0

∫
Z

e−r(s)|Πm[σ(s,u(s), z) − Σ(s, z)]|2η(dz, ds)

≤ −κ1E

τM∫
0

e−r(s)‖Xm(s)‖2
2ds + 2κ0E

τM∫
0

e−r(s)〈ΠmA(s) −Apũm(s), Xm(s)〉ds

+ 2E
τM∫
0

∫
Z

e−r(s) (Πm[σ(s,um(s), z) − Σ(s, z)],Πm[σ(s,u(s), z) − Σ(s, z)]) η(dz, ds)

+ E

τM∫
0

e−r(s)〈ΠmB(s) −Bm(ũm(s), ũm(s)), Xm(s)〉ds

+ K1E

τM∫
0

|ũm(s) − u(s)|2e−r(s)ds.

(53)

Now we will show that the last four terms of the right hand side of (53) will tend to 0 as m → 0. Thanks 
to (41) we have

E

T∫
0

1[0,τM ](s)e−r(s)|ũm(s) − u(s)|2ds → 0. (54)

Owing to (48) and (9) we see that

∥∥∥1[0,τM ](t)e−r(t)[B(ũm(t), ũm(t)) −B(u(t),u(t))]
∥∥∥
V ∗

≤ 1[0,τM ](t)C0‖ũm(t)‖1 |ũm(t) − u(t)|

+ 1[0,τM ](t)C0|u(t)| ‖ũm(t) − u(t)‖2, (55)

which with (45) implies that

∥∥∥1[0,τM ](t)e−r(t)[B(ũm(t), ũm(t)) −B(u(t),u(t))]
∥∥∥
V ∗

→ 0 a.e. (ω, t) ∈ Ω × [0, T ],

as m → ∞. Furthermore, owing to (43) and (44) we see from (55) that

∥∥∥1[0,τM ](t)e−r(t)[B(ũm(t), ũm(t)) −B(u(t),u(t))]
∥∥∥
V ∗

≤ 2C0M‖A‖ 1
2 |u(t)|. (56)

Note that |u(t)| is bounded in L2(Ω × [0, T ], R). Thus, the Dominated Convergence Theorem implies that

∥∥∥1[0,τM ](t)e−r(t)[B(ũm(t), ũm(t)) −B(u(t),u(t))]
∥∥∥
V ∗

→ 0 in L2(Ω × [0, T ];R) (57)

By the convergences (31) and (46) we have

ũm − um ⇀ 0 in L2(Ω;L2(0, T ;V )). (58)
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We derive from this, (56) and (57) that

E

τM∫
0

e−r(s)〈B(ũm(s), ũm(s)) −B(u(s),u(s)), ũm(s) − um(s)〉ds → 0

as m → ∞. Hence

lim
m→∞

E

τM∫
0

e−r(s)〈B(ũm(s), ũm(s)) −B∗(s), ũm(s) − um(s)〉ds

= lim
m→∞

E

τM∫
0

e−r(s)〈B(ũm(s), ũm(s)) −B(u(s),u(s)), ũm(s) − um(s)〉ds

+ lim
m→∞

E

τM∫
0

e−r(s)〈B(u,u) −B∗(s), ũm(s) − um(s)〉ds

= 0.

Since Πm ◦ Πm = Πm and ‖Πm‖ ≤ 1, it follows that 1[0,τM ]e
−r(s)Πm[σ(s, u(s), z) − Σ(s, z)] is bounded in 

L2(Ω × [0, T ]; L2(Z, ν; H)). Therefore we see from (34) that

2E
τM∫
0

∫
Z

e−r(s) (Πm[σ(s,um(s), z) − Σ(s, z)],Πm[σ(s,u(s), z) − Σ(s, z)]) η(dz, ds) → 0

as m → ∞.
Now it is not difficult to check that

E

t∫
0

e−r(s)〈Πm[A(s) −Apũm(s)], Xm(s)〉ds = E

t∫
0

e−r(s)〈Πm[A(s) −Apu(s)], Xm(s)〉ds

+ E

t∫
0

e−r(s)〈Πm[Apu(s) −Aũm(s)], Xm(s)〉ds.

Since 〈Πmv, Xm〉 = 〈v, Xm〉 for any v ∈ V ∗ and e−r(s)(A(s) − Apu(s)) is a bounded element of L2(Ω ×
[0, T ]; V ∗), we derive from (58) that the first term of the right hand side of the above equation tends to zero 
as m → ∞. Owing to item (i) of Lemma 2.4, the strong convergence (46) and the weak convergence (58) we 
see that the second term of the right hand side converges to zero as well. Thus, we have just proved that

E

t∫
0

e−r(s)〈ΠmA(s) −Aũm(s), Xm(s)〉ds → 0,

as m → ∞. With this we have just shown that the last four terms of (53) converges to zero as m → ∞. 
Then, we can conclude that

Ee−r(τM )|Xm(τM )|2 + κ1E

τM∫
e−r(s)‖Xm(s)‖2

2ds → 0, (59)

0
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E

τM∫
0

∫
Z

e−r(s)|Πm[σ(s,u(s), z) − Σ(s, z)]|2η(dz, ds) → 0, (60)

as m → ∞. We easily terminate the proof of the lemma by plugging equations (42) and (46) into (59). �
Now, we give the promised proof of the proposition.

Proof of Proposition 3.6. First note that for any w ∈ V

S = 〈B(um,um) −B(u,u),w〉
= 〈B(um − u,um),w〉 + 〈B(u,um − u),w〉. (61)

We also have the following equations

〈B(um − u,um),w〉 = 〈B(um,um),w〉 − 〈B(u,um),w〉,
〈B(um,u − um),w〉 = 〈B(um,u),w〉 − 〈B(um,um),w〉.

Therefore,

S = 〈B(u,u − um),w〉 − 〈B(um,u − um),w〉 + 〈B(um,u),w〉

− 〈B(u,um),w〉.
(62)

The operator

Ba,. : V → V ∗

v 
→ Ba,.(v) = B(a,v)

is linear continuous for any fixed a ∈ V . Due to this fact and (31), it is true that

B(u,um) ⇀ B(u,u) weakly in L2(Ω × [0, T ];V ∗). (63)

By a similar argument, we also prove the following convergence

B(um,u) ⇀ B(u,u) weakly in L2(Ω × [0, T ];V ∗). (64)

Now let w be an element of L∞(Ω × [0, T ]; V ). We deduce from the property (9) that

∣∣∣∣∣∣E
T∫

0

1[0,τM ]〈B(u(s),u(s) − um(s)),w(s)〉 − 〈B(um(s),u(s) − um(s)),w(s)〉ds

∣∣∣∣∣∣
≤ CE

τM∫
0

|u(s)|‖um(s) − u(s)‖2ds + CE

τM∫
0

|um(s)| ‖um(s) − u(s)‖2ds,

from which and (39) we derive that

lim
m→∞

E

T∫
1[0,τM ]〈B(u(s),u(s) − um(s)),w(s)〉 − 〈B(um(s),u(s) − um(s)),w(s)〉ds = 0 (65)
0
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Since τM ↗ T almost surely and L∞(Ω × [0, T ]; V ) is dense in L2(Ω × [0, T ]; V ), we deduce from (62)–(65)
that the identity (36) holds.

Next, thanks to the property (10) of Ap we see that

E

τM∫
0

‖Ap(um(s)) −Ap(u)‖2
V ∗ds ≤ CE

τM∫
0

‖um − u‖2
2ds.

Owing to (39) and the fact that τM ↗ T almost surely as M → ∞, we obtain the equation (37).
The identity (38) easily follows from (60). This completes the proof of the Proposition 3.6. �

4. Pathwise uniqueness and convergence of the whole sequence of Galerkin approximation

In this section we show the pathwise uniqueness of the solution and some (strong) convergences of the 
Galerkin approximate solution to the exact solution of (1). For a F0-measurable and square integrable 
H-valued random variable ξ, we denote by u(·, ξ) the solution to (1) with initial data ξ.

Theorem 4.1. Let ξ1 and ξ2 be two F0-measurable and square integrable H-valued random variables. Let 
u1(·, ξ1) and u2(·, ξ2) be the strong solutions to (6) corresponding to ξ1 and ξ2, respectively. Then, for any 
t ∈ [0, T ] there exists a constant C > 0 such that

E

(
e−

C2
0

κ1

∫ t
0 ‖u1(s,ξ1)‖2

2ds|u1(t, ξ1) − u2(t, ξ2)|2
)

≤ CE|ξ1 − ξ2|2.

Moreover, if ξ1 = ξ2 almost surely, then for any t ∈ [0, T ]

P(u1(t, ξ1) = u2(t, ξ1)) = 1.

Proof. Let u1 (resp., u2) be a strong solution to (6) with initial condition ξ1 (resp., ξ2). Let w = u1 − u2
and ξ = ξ1 − ξ2. It is not hard to see that

w(t) + κ1

t∫
0

Aw(s)ds + κ0

t∫
0

(Apu1(s) −Apu2(s)) ds

= ξ +
t∫

0

∫
Z

(σ(s,u1(s), z) − σ(s,u2(s), z)) η̃(dz, ds)

+
t∫

0

(B(u2(s),u2(s)) −B(u1(s),u1(s))) ds.

Applying Itô’s formula to the function Φ(x) = |x|2 and w(t) implies that

|w(t)|2 + 2κ1

t∫
0

‖w(s)‖2
2ds + 2κ0

t∫
0

〈Apu1(s) −Apu2(s),w(s)〉ds

= |ξ|2 + 2
t∫

0

∫
Z

(σ(s,u1(s), z) − σ(s,u2(s), z),w(s)) η̃(dz, ds)
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− 2
t∫

0

〈B(u1(s),u1(s)) −B(u2(s),u2(s)),w(s)〉ds

+
t∫

0

∫
Z

|σ(s,u1(s), z) − σ(s,u2(s), z)|2η(dz, ds).

Next we introduce the real valued process

ρ(t) = e−
C2

0
κ1

∫ t
0 ‖u1(s)‖2

2ds.

Now we apply Itô’s formula to ρ(t)|w(t)|2 and we get

ρ(t)|w(t)|2 + 2κ1

t∫
0

ρ(s)‖w(s)‖2
2ds + 2κ0

t∫
0

ρ(s)〈Apu1(s) −Apu2(s),w(s)〉ds

= −2
t∫

0

ρ(s)〈B(u1(s),u1(s)) −B(u2(s),u2(s)),w(s)〉ds− C2
0

κ1

t∫
0

ρ(s)|w(s)|2‖u1(s)‖2
2ds

+ 2
t∫

0

∫
Z

ρ(s) (σ(s,u1(s), z) − σ(s,u2(s), z),w(s)) η̃(dz, ds)

+
t∫

0

∫
Z

ρ(s)|σ(s,u1(s), z) − σ(s,u2(s), z)|2η(dz, ds) + |ξ|2.

By making use of (8), (9), (11), (61) and Young’s inequality with ε = κ1 in the above estimate and by 
taking the mathematical expectation to both sides of the resulting estimate yield

Eρ(t)|w(t)|2 + 2κ1E

t∫
0

ρ(s)‖w(s)‖2
2ds ≤ E

t∫
0

∫
Z

ρ(s)|σ(s,u1(s), z) − σ(s,u2(s), z)|2ν(dz)ds + |ξ|2.

Using item (1) of Condition 1 yields that

Eρ(t)|w(t)|2 ≤ E|ξ|2 + E

t∫
0

ρ(s)|w(s)|2ds,

from which and Gronwall’s lemma we deduce the existence of a constant C > 0 such that

Eρ(t)|w(t)|2 ≤ CE|ξ|2,

for any t ∈ [0, T ], which completes the first part of the theorem.
Since ρ(t) is bounded and positive P-a.s, we conclude easily the second part of the theorem from the last 

estimate. �
Next we will show that the whole sequence of solutions to the Galerkin approximation system (16)

converges in mean square to the exact strong solution of (1).
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Theorem 4.2. The whole sequence of Galerkin approximation {um : m ∈ N} defined by (16) satisfies

lim
m→∞

E|um(T−) − u(T−)|2 = 0, (66)

lim
m→∞

E

T∫
0

‖um(s) − u(s)‖2
2ds = 0. (67)

The main ingredient of the proof of this result is the following lemma, its proof follows a very small 
modification of the proof of [11, Proposition B.3].

Lemma 4.3. Let {Qm; m ≥ 1} ⊂ L2(Ω × [0, T ]; R) be a sequence of càdlàg real-valued process, and let 
{TM ; M ≥ 1} be a sequence of F t-stopping times such that TM is increasing to T , supm≥1 E|Qm(T )|2 < ∞, 
and limm→∞ E|Qm(TM )| = 0 for all M ≥ 1. Then limm→∞ E|Qm(T−)| = 0.

Proof of Theorem 4.2. It follows from Lemma 3.7 that

lim
m→∞

E

τM∫
0

‖um(t) − u(t)‖2
2dt = 0, (68)

and

lim
m→∞

E|um(τM ) − u(τM )|2 = 0, (69)

for any M ≥ 1. So by applying the preceding lemma to Qm(t) = |um(t) − u(t)|2, TM = τM and taking into 
account (69), the estimates in Proposition 3.4 and the uniqueness of u, we see that the whole sequence um

defined by (16) satisfies (66). To prove (67) we need an extra estimate for the sequence {um : m ∈ N}. Since

t∫
0

∫
Z

Ψ(s, z)η̃(dz, ds) =
t∫

0

∫
Z

Ψ(s, z)η(ds, dz) −
t∫

0

∫
Z

Ψ(s, z)ν(dz)ds,

and |v|2 + 2(v, w) = |v + w|2 − |w|2 we deduce from (18) that

4κ2
1E

( t∫
0

‖um(s)‖2
2ds

)2

≤ 2E|ξ|4 + 4E
( t∫

0

∫
Z

|σ(s,um(s), z)|ν(dz)ds
)2

+ 4E
( t∫

0

∫
Z

[
|σ(s,um(s), z) + um(s−)|2 − |um(s−)|2

]
η̃(dz, ds)

)2

.

Using item (1) of Condition 1 and the estimate in Proposition 3.4 we infer from the last inequality that

4κ2
1E

( t∫
0

‖um(s)‖2
2ds

)2

≤ 4E
( t∫

0

∫
Z

[
|σ(s,um(s), z) + um(s−)|2 − |um(s−)|2

]
η̃(dz, ds)

)2

+ 2E|ξ|4 + 4�20T 2 + 4C�21T
2(E|ξ|4 + 1).

Now invoking [52, Theorem 4.14] we see that
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4κ2
1E

( t∫
0

‖um(s)‖2
2ds

)2

≤ 4E
t∫

0

∫
Z

[∣∣∣∣|σ(s,um(s), z) + um(s−)|2 − |um(s−)|2
∣∣∣∣2]ν(dz)ds

+ 2E|ξ|4 + 4�20T 2 + 4C�21T
2(E|ξ|4 + 1),

from which with item (3) of Condition 1 and Proposition 3.4 we derive that

4κ2
1E

( t∫
0

‖um(s)‖2
2ds

)2

≤
(
2 + 4C�21T

2 + C�3T + CT
)
E|ξ|4 + 4�20T 2 + 4C�21T

2 + CT.

This also implies that

4κ2
1E

( t∫
0

‖u(s)‖2
2ds

)2

≤
(
2 + 4C�21T

2 + C�3T + CT
)
E|ξ|4 + 4�20T 2 + 4C�21T

2 + CT.

We see easily from the last two estimates and (68) that Qm(t) =
∫ t

0 ‖um(s) − u(s)‖2
2ds, TM = τM sat-

isfy the hypotheses of the above lemma, therefore we can deduce that (67) holds. This ends the proof of 
Theorem 4.2. �
5. Existence and ergodicity of invariant measure

In this section we are interested in the study of some qualitative properties of the solution of (1). We will 
mainly analyze the Markov, Fellerian properties of the solution. We will also derive the existence of ergodic 
invariant measures. For these goals we will assume that the noise coefficient σ is time independent, i.e.,

σ(t,v, z) = σ(v, z), for any t ≥ 0,v ∈ H, z ∈ Z.

To start with our investigation we denote by u(t; ξ) the solution of (1) with initial condition ξ ∈ H, and 
by Cb(H) we describe the space of all continuous real-valued functionals defined on H. Next, we define the 
family of linear mappings {Pt, t ≥ 0} (Pt for short) defined on Cb(H) by

Ptφ(ξ) = Eφ(u(t; ξ)),

for any φ ∈ Cb(H), ξ ∈ H, and t ≥ 0. Some properties of the solution u(t; ξ) and the semigroup Pt are 
given in the following results.

Theorem 5.1. If σ is time independent and satisfies Condition 1, then the solution u(t; ξ) defines a Markov 
process and Pt defines a semigroup satisfying Pt+s = PtPs for any t, s ≥ 0. Moreover, Pt has the Feller 
property, i.e, the semigroup Pt satisfies

Pt (Cb(H)) ⊂ Cb(H),

for any t ≥ 0.

Remark 5.2. Note that all, but the property Pt+s = PtPs, properties in the above theorem are still true 
even if σ is time-dependent.

Before we proceed to the proof of these statements let us give an auxiliary result.
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Lemma 5.3. Let ξ1, ξ2 be two distinct initial conditions satisfying the assumption of Theorem 4.1, and 
u(t; ξ1) and u(t; ξ2) be two solutions of (1) associated to them. Let

τ ξR = inf{t : |u(t; ξ)| > R}, ∀R > 0, ξ ∈ H. (70)

Let us also set τ ξ1,ξ2R = τ ξ1R ∧ τ ξ2R , tR = t ∧ τ ξ1,ξ2R and w(t) = u(t; ξ1) − u(t; ξ2), t ∈ [0, ∞). Then, for any 
R > 0 and t ∈ [0, ∞) there exists a positive constant C such that

E|w(tR)|2 ≤ CE|ξ1 − ξ2|2. (71)

Proof of Lemma 5.3. As in the proof of Theorem 4.1 we can check by making use of Itô’s formula that 
|w(tR)|2 satisfies

|w(tR)|2 + 2κ1

tR∫
0

‖u(s; ξ)‖2
2ds ≤ |ξ1 − ξ2|2 + 2

tR∫
0

〈B(w(s),u(s; ξ1),w(s)〉ds

+
tR∫
0

∫
Z

|σ(u(s; ξ1), z) − σ(u(s; ξ2), z)|2η(dz, ds)

+ 2
tR∫
0

∫
Z

(σ(u(s; ξ1), z) − σ(u(s; ξ2), z),w(s−)) η̃(dz, ds).

Using the skew-symmetricity of B and Hölder’s inequality we derive from the last inequality that

|w(tR)|2 + 2κ1

tR∫
0

‖u(s; ξ)‖2
2ds ≤ |ξ1 − ξ2|2 + 2C

tR∫
0

(
|w(s) · ∇w(s)| × |u(s; ξ1)|

)
ds

+
tR∫
0

∫
Z

|σ(u(s; ξ1), z) − σ(u(s; ξ2), z)|2η(dz, ds)

+ 2
tR∫
0

∫
Z

(σ(u(s; ξ1), z) − σ(u(s; ξ2), z),w(s−)) η̃(dz, ds).

Owing to Hölder’s inequality and the fact |u(s; ξ1)| ≥ R on [0, tR] we infer the existence of a constant 
CR = C(R) > 0 such that

|w(tR)|2 + 2κ1

tR∫
0

‖u(s; ξ)‖2
2ds ≤ |ξ1 − ξ2|2 + 2CR

tR∫
0

(
|w(s)| × |∇w(s)|Lq

)
ds

+
tR∫
0

∫
Z

|σ(u(s; ξ1), z) − σ(u(s; ξ2), z)|2η(dz, ds)

+ 2
tR∫ ∫

(σ(u(s; ξ1), z) − σ(u(s; ξ2), z),w(s−)) η̃(dz, ds),

0 Z
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where 2 < q ≤ 2n
n−2 . Thanks to Young’s inequality and the continuous embedding H1 ⊂ Lq we easily see 

that

|w(tR)|2 + 2κ1

tR∫
0

‖u(s; ξ)‖2
2ds ≤ |ξ1 − ξ2|2 + 2CR

ε

tR∫
0

|w(s)|2ds + ε

tR∫
0

‖w(s)‖2
2ds

+
tR∫
0

∫
Z

|σ(u(s; ξ1), z) − σ(u(s; ξ2), z)|2η(dz, ds)

+ 2
tR∫
0

∫
Z

(σ(u(s; ξ1), z) − σ(u(s; ξ2), z),w(s−)) η̃(dz, ds).

Choosing ε = κ1, using item (2) of Condition 1 and taking the mathematical expectation yield that

E|w(tR)|2 + κ1E

tR∫
0

‖u(s; ξ)‖2
2ds ≤ E|ξ1 − ξ2|2 +

(
2CR

κ1
+ L1

) tR∫
0

E|w(s)|2ds, (72)

where we have used the fact that

E

tR∫
0

∫
Z

|σ(u(s; ξ1), z) − σ(u(s; ξ2), z)|2η(dz, ds)

= E

tR∫
0

|σ(u(s; ξ1), z) − σ(u(s; ξ2), z)|2ν(dz)ds,

and

2E
tR∫
0

∫
Z

(σ(u(s; ξ1), z) − σ(u(s; ξ2), z),w(s−)) η̃(dz, ds) = 0.

Notice that (72) can be rewritten in the following form

E|w(tR)|2 + κ1E

tR∫
0

‖u(s; ξ)‖2
2ds ≤ E|ξ1 − ξ2|2 +

(
2CR

κ1
+ L1

) t∫
0

E|w(s ∧ τR)|2ds,

from which along with the application Gronwall’s lemma we deduce the existence of a positive constant 
C = C(t, R) such that

E|w(tR)|2 ≤ CE|ξ1 − ξ2|2.

The proof of the lemma is now finished. �
Now we continue with the proof of Theorem 5.1.

Proof of Theorem 5.1. Owing to the Theorem 4.1 and the fact that η̃(A × [0, t]), A × [0, t] ∈ B(Z × R+) is 
time homogeneous, the Markovian property of u(t; ξ), ξ ∈ H, can be checked using the same argument as 
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in [25, Theorem 9.14] (see also [2, Theorem 6.1] or [45, Theorem 9.30]). More precisely, we will show that 
for arbitrary φ ∈ Bb(H), ξ ∈ H and 0 ≤ r ≤ s ≤ t ≤ T we have

E[φ(u(t, s, ξ))|Fs] = E(φ(u(t, s, θ))), P-a.s., (73)

where θ = u(s, u, ξ) and u(t, s, ξ), s ≤ t ≤ T , is the solution of (6) on the time interval [s, T ] with the initial 
data ξ at the initial time s. Thanks to the uniqueness in Theorem 4.1 we have

u(t, s, x) = u(t, s,u(s, u, x)), for any P-a.s.

Thus, (73) is equivalent to

E[φ(u(t, s, θ))|Fs] = E(φ(u(t, s, θ))), P-a.s. (74)

Hence, as in [25, Theorem 9.14] (see also [2, Theorem 6.1] or [45, Theorem 9.30]) it is enough to prove (74)
for any φ ∈ Cb(H) and any square integrable Fs-measurable random variable θ ∈ H. Since the argument 
in the above three references do not use the coefficients’ structure of the stochastic system, we can exactly 
argue as in these references to establish (74) when θ is a simple Fs-measurable random variable. For a 
general Fs-random variable θ satisfying E|θ|2 < ∞, we can find a sequence of simple Fs-measurable random 
variables (θn)n∈N such that E|θ − θn|2 → 0 as n → ∞. Moreover, (74) holds for θn, n ∈ N. Owing to 
Theorem 4.1 the sequence of process Δn defined by

Δn(t) = E

(
e−

C2
0

2κ1

∫ t
0 ‖u(r,s,θ)‖2

2dr|u(t, s, θ) − u(t, s, θn)|
)
,

converges to zero as n → ∞. This implies that one can find a subsequence, still denoted by θn, such that 
θn → θ and u(t, s, θ) → u(t, s, θn) in H almost surely. Thanks to (14) we can pass to the limit and infer 
that (74) is verified for any square integrable Fs-measurable random variable θ ∈ H. This completes the 
proof of the first claim of the theorem.

To prove that Pt is a semigroup satisfying Pt+s = PtPs, it is sufficient to check that for any s ≥ 0
the process u(s, 0, ξ) and u(t + s, t, ξ) are identical in law. In fact, if this is the case, then, by the Markov 
property above and equality of laws, we have

Eφ(u(t, 0, ξ)) = E (E[φ(t, 0, ξ)|Fs])

= E (Eφ(u(t, s,u(s, 0, ξ)))) = E (Eφ(u(t− s, 0,u(s, 0, ξ))))

= EPt−sφ(u(s, 0, x)) = PsPt−sφ(x), for any 0 ≤ s ≤ t,

where we have set u(t, 0, ξ) = u(t, ξ). Now, let us prove that for u(s, 0, ξ) and u(t + s, t, ξ) have the same 
distribution. Since u(t + s, t, ξ) is solution of (6) with initial data ξ at time t, we have
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u(t + s, t, ξ) = ξ −
t+s∫
t

[
(A + Ap) (u(r, t, ξ)) + B(u(r, t, ξ),u(r, t, ξ))

]
dr

+
t+s∫
t

∫
Z

σ(u(r, t, ξ))η̃(dz, dr)

= ξ −
s∫

0

[
(A + Ap) (u(r + t, t, ξ)) + B(u(r + t, t, ξ),u(r + t, t, ξ))

]

+
s∫

0

∫
Z

σ(u(r + t, t, ξ))ˆ̃η(dz, dr)

= ξ −
s∫

0

[
(A + Ap) (u(r + t, t, ξ)) + B(u(r + t, t, ξ),u(r + t, t, ξ))

]

+
s∫

0

∫
Z

σ(u(r + t, t, ξ))η̃(dz, dr)

where we used the fact that the compensated Poisson random measure ˆ̃η, defined by ˆ̃η(K, (r, τ ]) =
η̃(K, (r + t, τ + t]) for K × (r, τ ] ∈ Z × B(R0), and η̃ are equally distributed. The last line of the chain of 
identities above and Theorem 4.1 imply that u(t + s, t, ξ) and u(s, 0, ξ) are identical in law.

Now, we show that Pt has the Feller, i.e., we prove that Pt (Cb(H)) ⊂ Cb(H). For this purpose, let us 
consider ξ ∈ H and a sequence {ξm : m ∈ N} ⊂ H such that ξm → ξ as m → ∞. Let us prove that

Ptφ(ξm) → Ptφ(ξ),∀φ ∈ Cb(H),

as m tends to infinity. To shorten notation we set τR = τ ξmR ∧ τ ξR where the stopping time τ ξR is defined as 
in (70). For any t ∈ [0, T ], T ≥ 0 and φ ∈ Cb(H), we have

|Ptφ(ξm) − Ptφ(ξ) =
∣∣∣∣E([φ(u(t; ξm)) − φ(u(t; ξ))

]
1[t<τR]∪[t≥τR]

)∣∣∣∣,
≤

∣∣∣∣E([φ(u(t; ξm)) − φ(u(t; ξ))
](

1[t≥τξm
R ] + 1[t≥τξ

R]

))∣∣∣∣
+
∣∣∣∣E([φ(u(t; ξm)) − φ(u(t; ξ))

]
1[t<τR]

)∣∣∣∣.
Thanks to the fact that E|u(t; ξ)|2 < C(ξ), ∀ξ ∈ H (see the estimate in Theorem 3.2), we obtain that for 
any ε > 0 there exists m1 such that for any R > m1

P

(
τ ξmR ≥ t

)
+ P

(
τ ξR ≥ t

)
≤ ε

4‖φ‖∞
,

where

‖φ‖∞ = sup
ξ∈H

|φ(x)|.

Thus
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|Ptφ(ξm) − Ptφ(ξ)| ≤
∣∣∣∣E([φ(u(t; ξm)) − φ(u(t; ξ))

]
1[t<τR]

)∣∣∣∣ + 2‖φ‖∞
ε

4‖φ‖∞
.

That is,

|Ptφ(ξm) − Ptφ(ξ)| ≤
∣∣∣∣E([φ(u(t; ξm)) − φ(u(t; ξ))

]
1[t<τR]

)∣∣∣∣ + ε

2 .

Since 1[t<τR] ≤ 1 and t ∧ τR = t when t < τR, we readily have that

|Ptφ(ξm) − Ptφ(ξ)| ≤
∣∣∣∣E([φ(u(tR; ξm)) − φ(u(tR; ξ))

])∣∣∣∣ + ε

2 , (75)

where we have put tR = t ∧ τR. By the continuity of φ, for the same ε > 0 as above we can find κ > 0 such 
that if |u(tR; ξm) − u(tR; ξ)| < κ we have

|φ(u(tR; ξm)) − φ(u(tR; ξ))| < ε

4 . (76)

Note that from (75) we derive that

|Ptφ(ξm) − Ptφ(ξ)| ≤
∣∣∣∣E([φ(u(tR; ξm)) − φ(u(tR; ξ))

]
1{|u(tR;ξm)−u(tR;ξ)|≥κ}

)∣∣∣∣
+ E

([
φ(u(tR; ξm)) − φ(u(tR; ξ))

]
1{|u(tR;ξm)−u(tR;ξ)|<κ}

)∣∣∣∣ + ε

2 ,

from which all together with (76) we derive that

|Ptφ(ξm) − Ptφ(ξ)| ≤ 2‖φ‖∞P

(
|u(tR; ξm) − u(tR; ξ)| ≥ κ

)
+ E

([
φ(u(tR; ξm)) − φ(u(tR; ξ))

]
1{|u(tR;ξm)−u(tR;ξ)|<κ}

)∣∣∣∣ + ε

2 .
(77)

Invoking the estimate (71) and Chebychev’s inequality we obtain that

2‖φ‖∞P

(
|u(tR; ξm) − u(tR; ξ)| ≥ κ

)
≤ 2‖φ‖∞C

κ2 |ξm − ξ|2. (78)

But as ξm → ξ as m → ∞ we have that for any δ > 0 there exists m2 > 0 such that if m > m2 we have 
|ξm − ξ|2 < δ. Choosing δ = εκ2

8C‖φ‖∞
we can derive from (78) that

2‖φ‖∞P

(
|u(tR; ξm) − u(tR; ξ)| ≥ κ

)
≤ ε

4 . (79)

So combining (76), (77) and (79) we see that for any ε > 0 there exists m0 > 0 such that if m > m0 then

|Ptφ(ξm) − Ptφ(ξ)| < ε,

which shows that Pt is a Fellerian semigroup. �
Owing to Theorem 5.1 we can discuss about the existence of the invariant measure associated to the 

semigroup Pt.
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Theorem 5.4. The Markovian semigroup Pt has at least one invariant measure μ. Moreover, μ is concentrated 
on V , i.e., μ(V ) = 1.

Proof. Let {Tn; n ∈ N} ⊂ [0, ∞) be a sequence such that Tn ↗ ∞ as n → ∞. For any A ∈ B(H) let us set

μn(A) = 1
Tn

Tn∫
0

P (u(t; ξ) ∈ A) dt.

It is clear that μn defines a measure on (H, B(H)). Let R > 0 and AR = {u : ‖u‖2 > R}. Using Chebychev’s 
inequality and Fubini’s Theorem we see that

μn(AR) ≤ 1
R2

1
Tn

E

Tn∫
0

‖u(s; ξ)‖2
2ds.

Owing to the estimate in Theorem 3.2 we have that

μn(AR) ≤ C(1 + |ξ|2)
R2 .

This implies that μn(AR) → 0 uniformly in n as R → ∞. Since the ball BR = V \AR is compact in H, we 
conclude that the family of measures μn is tight on H. This yields that there exists a subsequence μnk

and 
a measure μ defined on (H, B(H)) such that∫

H

φ(x)μnk
(dx) →

∫
H

φ(x)μ(dx),∀φ ∈ Cb(H).

Since Pt satisfies the Markov–Feller property, we can infer from Krylov–Bogoluibov’s theorem that it admits 
an invariant measure which is equal to μ.

It remains to show that μ is concentrated on V . For this purpose it is sufficient to show that μ(H\V ) = 0. 
To do so we will first show that

μn(H\V ) = 0, ∀n.

Thanks to the estimate in Theorem 3.2 we can find a set I × Ω0 ⊂ ΩTn
, Tn ≥ 0 (ΩTn

= [0, Tn] × Ω) with 
λ ⊗ P(Ωt\I × Ω0) = 0 and u(t; ξ)(ω) ∈ V for any (t, ω) ∈ I × Ω0. This fact implies that

P

( Tn∫
0

1N (t, ω)dt
)

= 0,

where

N = {(t, ω) ∈ ΩTn
: u(t; ξ)(ω) ∈ H\V }.

Owing to Fubini’s theorem we infer the existence of J ⊂ [0, Tn] with λ([0, Tn]\J) = 0 and

P ({ω ∈ Ω : u(t; ξ) ∈ H\V }) = 0,

for any t ∈ J . Setting Nt = {ω ∈ Ω; u(t; ξ) ∈ H\V } for any t ∈ J , we find that
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μn(H\V ) = 1
Tn

Tn∫
0

P(Nt)dt,

= 1
Tn

Tn∫
0

1J (t)P(Nt)dt,

= 0.

This means that the support of μn is included in V . Since μ is the weak limit of μn, we derive from [20, 
Theorem 2.2] that the support of μ is included in V . �

Our next concern is to check whether the invariant measure μ is ergodic or not. In fact we will find that 
it is ergodic provided that κ1 is large enough. We will make our claim clearer later on, but for now let us 
prove an important fact about the invariant measure μ.

Proposition 5.5. If 2κ1λ
2
1 − �1 > 0, then there exists a constant L̃ > 0 depending only on κ1, λ1, �0, �1 such 

that ∫
H

(
|ξ|2 + ‖ξ‖2

2
)
μ(dx) < L̃. (80)

Proof. First we should notice that by Itô’s formula we have

|u(t; ξ)|2 + 2κ1

t∫
0

‖u(s; ξ)‖2
2ds + 2

t∫
0

〈Apu(s; ξ),u(s, ξ)〉ds

= |ξ|2 +
t∫

0

∫
Z

|σ(u(s; ξ), z)|2η(dz, ds) + 2
t∫

0

∫
Z

(σ(u(s; ξ), z),u(s−; ξ))) η̃(dz, ds).

(81)

Now for any ε > 0 let Φ(y) = y
1+εy , y ∈ R+. It is clear that

Φ′(y) = 1
(1 + εy)2 ,

Φ′′(y) = −2ε
(1 + εy)3 ,

for any y ≥ 0. It is clear from the last equality that Φ′′(y) < 0, and |Φ′′| ≤ 2ε for any y ≥ 0. Notice also 
that η(dz, ds) = η̃(dz, ds) + ν(dz)ds and

|σ(u(s, ξ), z)|2 + 2 (σ(u(s, ξ), z),u(s−; ξ)) = |σ(u(s, ξ), z) + u(s−; ξ)|2 − |u(s−; ξ)|2.

By setting Y (t) = |u(t; ξ)|2 and Ψ = |σ(u(s, ξ), z) + u(s−; ξ)|2 − |u(s−; ξ)|2 we can rewrite (81) in the 
following form

Y (t) + 2κ1

t∫
0

‖u(s; ξ)‖2
2ds + 2

t∫
0

〈Apu(s; ξ),u(s; ξ)〉ds = |ξ|2 +
t∫

0

∫
Z

|σ(u(s; ξ), z)|2ν(dz)ds

+
t∫ ∫

Ψη̃(dz, ds).

0 Z



796 E. Hausenblas, P.A. Razafimandimby / J. Math. Anal. Appl. 441 (2016) 763–800
Applying Itô’s formula to Φ(Y ) we obtain that

Φ(Y (t)) + 2κ1

t∫
0

Φ′(Y (s))‖u(s; ξ)‖2
2ds + 2

t∫
0

Φ′(Y (s))〈Apu(s; ξ),u(s; ξ)〉ds

= Φ(|ξ|2) +
t∫

0

∫
Z

(
Φ(Y (s−) + Ψ) − Φ(Y (s−)) − Φ′(Y (s−))Ψ

)
η(dz, ds)

+
t∫

0

Φ′(Y (s))
∫
Z

|σ(u(s; ξ), z)|2ν(dz)ds +
t∫

0

∫
Z

(
Φ(Y (s−) + Ψ) − Φ(Y (s−))

)
η̃(dz, ds).

Since 〈Apu(s; ξ), u(s; ξ)〉 ≥ 0 and Φ′(y) > 0 for any y ≥ 0, we can drop out the third term from the left-hand 
side of the last equation. Therefore we obtain that

Φ(Y (t)) + 2κ1

t∫
0

Φ′(Y (s))‖u(s; ξ)‖2
2ds ≤ Φ(|ξ|2) +

t∫
0

Φ′(Y (s))
(∫

Z

|σ(u(s; ξ), z)|2ν(dz)
)
ds

+
t∫

0

∫
Z

( 1∫
0

Φ′′(Y (s−) + θΨ)Ψ2dθ

)
(η̃(dz, ds) + ν(dz)ds)

+
t∫

0

∫
Z

( 1∫
0

Φ′(Y (s−) + θΨ)Ψdθ

)
η̃(dz, ds),

where we have used the identities

Φ(y + ψ) − Φ(y) =
1∫

0

Φ′(y + θψ)ψdθ,

Φ(y + ψ) − Φ(y) − Φ′(y)ψ =
1∫

0

Φ′′(y + θψ)ψ2dθ.

Since |Φ′(·)| < 1 and |Φ′′| < 2ε and

EΨr ≤ CE(1 + |u(s; ξ)|2r) < C,

with r = 1, 2, the stochastic integrals

t∫
0

∫
Z

( 1∫
0

Φ′(Y (s) + θΨ)Ψdθ

)
η̃(dz, ds),

t∫
0

∫
Z

( 1∫
0

Φ′′(Y (s−) + θΨ)Ψ2dθ

)
η̃(dz, ds),

are martingales with zero mean. Hence taking the mathematical expectation yields
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EΦ(Y (t) − Φ(|ξ|2)) ≤ E

t∫
0

Φ′(Y (s))
(∫

Z

|σ(u(s; ξ), z)|2ν(dz)
)
ds

+ E

t∫
0

∫
Z

( 1∫
0

Φ′′(Y (s−) + θΨ)Ψ2dθ

)
ν(dz)ds

− 2κ1E

t∫
0

Φ′(Y (s))‖u(s; ξ)‖2
2ds.

(82)

Since

Φ′′(Y (s−) + θΨ)Ψ2 = −2εΨ2

(1 + εY (s) + εθΨ)3

= −2εΨ2

(1 + εθ|σ(u(s, ξ), z) + u(s−; ξ)|2 − ε(1 − θ)|u(s−; ξ)|2) ,

we see that Φ′′(Y (s−) + θΨ)Ψ2 ≤ 0 for any θ ∈ [0, 1]. Therefore we can drop out the second term in the 
right-hand side of (82), use item (2) in Condition 1 to obtain

EΦ(Y (t)) + 2κ1E

t∫
0

Φ′(Y (s))‖u(s; ξ)‖2
2ds ≤ Φ(|ξ|2) + �1E

t∫
0

Φ′(Y (s))|u(s; ξ)|2ds

+ �0E

t∫
0

Φ′(Y (s))ds.

(83)

By using Poincaré’s inequality (see (2)) the last estimate becomes

EΦ(Y (t)) + 2κ1λ
2
1E

t∫
0

Φ′(Y (s))|u(s; ξ)|22ds ≤ Φ(|ξ|2) + �1E

t∫
0

Φ′(Y (s))|u(s; ξ)|2ds

+ �0E

t∫
0

Φ′(Y (s))ds.

(84)

By integrating both side of this last inequality wrt μ on H and using the fact that∫
H

Eφ(u(s, ξ))μ(dx) =
∫
H

φ(ξ)μ(dx),∀φ ∈ Cb(H), (μ is an invariant measure) (85)

we obtain from (84) that

(
2κ1λ

2
1 − �1

) ∫
H

|ξ|2
(1 + ε|ξ|2)2μ(dx) ≤ �0

∫
H

1
(1 + ε|ξ|2)2μ(dx).

From this inequality we obtain that∫
H

|ξ|2
(1 + ε|ξ|2)2μ(dx) ≤ �0

2κ1λ2
1 − �1

, (86)

where we have used the facts that 1
2 2 ≥ 1, 2κ1λ

2
1 − �1 > 0 and μ(V ) + μ(H\V ) = 1.
(1+ε|ξ| )
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From (83) and (86) we derive that

2κ1

∫
H

E

t∫
0

Φ′(Y (s))‖u(s; ξ)‖2
2ds ≤

�0
2κ1λ2

1 − �1
(�1 + 1) + �0. (87)

Choosing φ(u(s; ξ)) =
∫ t

0 Φ′(Y (s))‖u(s; ξ)‖2
2ds and using (85) we see that

∫
H

‖ξ‖2
2

(1 + ε|ξ|2)2μ(dx) ≤ �0
2κ1(2κ1λ2

1 − �1)
(�1 + 1) + �0

2κ1
. (88)

Adding up (86) and (88) side by side, letting ε → 0 and using Fatou’s lemma imply that

∫
H

(
|ξ|2 + ‖ξ‖2

2
)
μ(dx) ≤ �0

2κ1λ2
1 − �1

(
�1 + 1
2κ1

+ 1
)

+ �0
2κ1

, (89)

which terminates the proof of the proposition. �
We can prove the ergodicity of the invariant measure under the condition that κ1 is large enough.

Theorem 5.6. Assume that 2κ1λ
2
1 > �1. Then, the Markovian semigroup Pt has an invariant measure μ

which is tight and ergodic on H.

Proof. Let M ⊂ M1(H) be the set of invariant measure of Pt and

�̃ = �0
2κ1λ2

1 − �1

(
�0
2κ1

+ 1
)

+ �0
2κ1

.

It is not difficult to show that M is convex (see for example [33, page 296]). As before let R > 0 and 
AR = {u ∈ H : ‖u‖2 > R}. We see from Chebychev–Markov’s inequality that

sup
μ∈M

μ (AR) ≤ 1
R2

∫
H

‖ξ‖2
2μ(dx).

Owing to (88) we have that

sup
μ∈M

μ (AR) ≤ �̃

R2 ,

which implies that for any ε > 0

μ(BV ( 1√
ε
)) ≥ 1 − ε,

where BV ( 1√
ε
) = V \A 1√

ε
. Since BV ( 1√

ε
) is compact in H we infer that the set M is tight on H. Since M

is non-empty, convex and tight, by Krein–Millman’s theorem (see, for instance, [28, Theorem 3.65, p. 110]) 
it has extrema which are ergodic. We deduce from the above argument that Pt has at least one invariant 
measure which is ergodic. �
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