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This paper is concerned with invariant and contractive barycenters on the Wasser-
stein space of probability measures on metric spaces of non-positive curvature, where 
the center of gravity, also called the Cartan barycenter, is the canonical barycenter 
on Hadamard spaces. We establish an order inequality of probability measures on 
partially ordered symmetric spaces of non-compact type, namely symmetric cones 
(self-dual homogeneous cones), characterizing the Cartan barycenter among other 
invariant and contractive barycenters. The derived inequality and partially ordered 
structures on the probability measure space lead also to significant results on (norm) 
inequalities including the Ando–Hiai inequality for probability measures on symmet-
ric cones.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

An isometry invariant barycentric map on the space of probability measures on a metric space with fi-
nite first or second moment with respect to the Wasserstein distance (alternatively Kantorovich–Rubinstein 
distance) plays a fundamental role in the fields of metric geometry, convex analysis, geometric analysis, 
statistical analysis, probability measure theory, optimal transport theory [12,16], to cite only a few. In [30]
K.-T. Sturm develops a theory of barycenters of probability measures for metric spaces of nonpositive cur-
vature, particularly that class of metric spaces known as CAT(0)-spaces or alternatively Hadamard spaces. 
For these spaces one has available a method for finding the barycenter of a probability measure via an 
approach stretching back to Cartan by finding the point that minimizes the integral of the square of dis-
tances. The canonical barycenter on a Hadamard space is the least squares barycenter. This barycenter has 
appeared under a variety of other designations: center of gravity, Frechet mean, Riemannian center of mass, 
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Karcher barycenter, or frequently, Cartan barycenter, the terminology we adopt. The Cartan barycenter on 
a Hadamard metric space (M, d) is defined as the unique point Λ(μ) that minimizes the variance function 
z �→

∫
M

[d2(z, x) − d2(y, x)]dμ(x). It turns out that the Cartan barycentric map contracts the Wasserstein 
metric, a property that has been called the fundamental contraction property (Theorem 6.3, [30]).

A metric space admitting a contractive barycenter, called a barycentric metric space, is an important 
object to study in a variety of pure and applied areas, particularly in random variable theory (expectation 
and variance) on metric spaces. In fact, a complete, simply connected Riemannian manifold admits a 
contractive barycenter if and only if it has nonpositive curvature [30]. Another type of contractive barycenter 
on a Hadamard space, or generally on a Busemann NPC space, is the one by Es-Sahib and Heinich and 
Navas [10,28,2,19], which plays a fundamental role in geometric ergodic theory, fixed point theory and 
cocycle theory [28,7,2], and implies in particular that there are infinitely many invariant and contractive 
barycentric maps on the space of probability measures on Hadamard spaces. However, to the best of our 
knowledge, no one has found a characterizing property of the Cartan barycenter among other invariant (or 
contractive) barycenters on a Hadamard space. (Sturm’s result gives the less direct characterization that 
it is the probabilistic limit of the inductive mean [30].) This problem is quite natural and important, and 
depends heavily and clearly on certain structures of the given Hadamard space.

Our main goal in this paper is to settle this problem on a class of partially ordered symmetric spaces 
of non-compact type, namely the class of symmetric cones. Symmetric cones, also called domains of posi-
tivity, are open convex self-dual cones in Euclidean space which have a transitive group of symmetries. By 
the Koecher–Vinberg theorem (cf. [11]) these correspond to the cone of squares in finite-dimensional real 
Euclidean Jordan algebras, originally classified by Jordan, von Neumann and Wigner.

We first consider the symmetric cone of positive definite matrices of fixed size equipped with the trace 
Riemannian metric, an important example of symmetric cones, and then move to general symmetric cones 
with extensions of the key ingredients appeared in the cone of positive definite matrices. As positive matrices 
have gained increased prominence in theoretical, applied, and computational settings, finding appropriate 
methods for averaging them has become an important task. They appear in a diverse variety of settings: 
covariance matrices in statistics, in Gaussian measures on Euclidean spaces, elements of the search space in 
convex and semidefinite programming, kernels in machine learning, density matrices in quantum information, 
data points in radar imaging, and diffusion tensors in medical imaging [21,27,29].

Let P be the convex cone of all positive definite matrices of size m equipped with the Löwner order; A ≤ B

if and only if B−A is positive semidefinite. It is well known that P is a symmetric space of non-compact type 
with the trace metric ds = ||A−1/2dA A−1/2||2 =

(
tr(A−1dA)2

)1/2, and that congruence transformations 
A �→ MAM∗ over non-singular matrices M and inversion A �→ A−1 act as isometries on P. We introduce 
and develop the partially ordered structures on the probability measure space equipped with the “upper set 
ordering” from the Löwner order on P, and prove that the Cartan barycenter satisfies the following property

∫
P

logX dμ(X) ≤ 0 implies Λ(μ) ≤ I (1.1)

which characterizes the Cartan barycenter on the space of probability measures with finite second moment, 
where 0 and I stand for zero and identity matrices. As an important consequence of the main result we 
establish the Ando–Hiai inequality for the Cartan barycenter: for a probability measure μ with finite second 
moment,

Λ(μ) ≤ I implies Λ(μp) ≤ I, ∀p ≥ 1, (1.2)

where Ap is the matrix p-th power of A and μp(O) := μ({A 1
p : A ∈ O}) for O ∈ B(P), the algebra of Borel 

subsets of P. The Ando–Hiai inequality for two positive definite matrices plays a fundamental and significant 
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role in matrix theory and it has many important applications such as operator means, operator monotone 
functions, statistical mechanics, quantum information theory, matrix-norm inequalities for unitarily invari-
ant norms related to Araki–Lieb–Thirring, Golden–Thompson trace inequality, and log-majorizations, so 
our result will be a crucial ingredient in deriving these in the general setting of probability measures on 
the cone of positive definite matrices and generally on symmetric cones of Euclidean Jordan algebras. For 
instance, we establish a norm inequality for the Cartan barycenter: for the operator norm || · ||,

||Λ(μq)
1
q || ≤ ||Λ(μp)

1
p ||, 0 < p ≤ q

which is the first result on norm inequalities related to the Cartan barycenter overcoming the limitation of 
finite discrete probability measures.

The main tools of the paper involve the theory of nonpositively curved metric spaces and techniques from 
probability and partially ordered Hadamard spaces and the recent combination of the three, particularly by 
K.-T. Sturm [30] and Lawson and Lim [20]. Not only are these tools crucial for our developments, but also, 
we believe, significantly enhance the potential usefulness of the Cartan barycenter for geometric analysis 
and inequalities and (partially ordered) probability measure theory on symmetric cones.

2. Invariant and contractive barycenters

Let H be the Euclidean space of m × m Hermitian matrices equipped with 〈X, Y 〉 := Tr(XY ). The 
Frobenius norm || · ||2 defined by ||X||2 = (trX2)1/2 for X ∈ H gives rise to the Riemannian structure on 
the open convex cone P of positive definite matrices with 〈X, Y 〉A = Tr(A−1XA−1Y ), where A ∈ P and 
X, Y ∈ TA(P) ≡ H. Then P is a Cartan–Hadamard Riemannian manifold, a simply connected complete 
Riemannian manifold with non-positive sectional curvature (the canonical 2-tensor is non-negative). The 
Riemannian metric distance between A and B is given by d(A, B) = || logA− 1

2BA− 1
2 ||2, and the unique (up 

to parametrization) geodesic line containing A and B is t �→ A#tB := A
1
2 (A− 1

2BA− 1
2 )tA 1

2 . The Riemannian 
exponential at A ∈ P is given by

expA(X) = A
1
2 exp(A− 1

2XA− 1
2 )A 1

2 (2.3)

and its inverse is

logA(X) = A
1
2 log(A− 1

2XA− 1
2 )A 1

2 . (2.4)

The following metric inequalities reflect the non-positive curvature of the trace metric [18,3,30]

d(A#tB,C#sD) ≤ (1 − t)d(A,C) + td(B,D) + |t− s|d(C,D), s, t ∈ [0, 1] (2.5)

and

d2(A#tB,C#tD) ≤ (1 − t)d2(A,C) + td2(B,D) − (1 − t)t[d(A,B) − d(C,D)]2.

Let B := B(P) be the algebra of Borel sets, the smallest σ-algebra containing the open sets of P. We note 
that the Euclidean topology on P coincides with the metric topology of the trace metric d. Let P be the set 

of all probability measures on (P, B) and P0 the set of all μ ∈ P of the form μ = (1/n) 
n∑

j=1
δAj

, where δA is 

the point measure of mass 1 at A ∈ P. For p ∈ [1, ∞) let Pp be the set of probability measures with finite 



4 S. Kim et al. / J. Math. Anal. Appl. 442 (2016) 1–16
p-moment: for some (and hence all) Y ∈ P,
∫
P

dp(X,Y )dμ(X) < ∞.

For metric spaces M and N , a continuous f : M → N induces a push-forward map f∗ : P(X) → P(Y )
defined by f∗(μ)(B) = μ(f−1(B)) for μ ∈ P(M) and B ∈ B(N).

We say that ω ∈ P(P × P) is a coupling for μ, ν ∈ P if μ, ν are the marginals for ω, i.e., if for all 
B ∈ B, ω(B × P) = μ(B) and ω(P × B) = ν(B). Equivalently, μ and ν are the push-forwards of ω under 
the projection maps π1 and π2, respectively. We note that one such coupling is the product measure μ × ν, 
and that for any coupling ω it must be the case that supp(ω) ⊆ supp(μ) × supp(ν). We denote the set of 
all couplings for μ, ν ∈ P by Π(μ, ν).

The Wasserstein distance dWp on Pp is defined by

dWp (μ1, μ2) :=

⎡
⎣ inf
π∈Π(μ1,μ2)

∫
P×P

dp(X,Y )dπ(X,Y )

⎤
⎦

1
p

.

It is known that dWp is a complete metric on Pp and P0 is dense in Pp [8,30]. Note that P0 ⊂ Pq ⊂ Pp ⊂ P1

and dWp ≤ dWq for 1 ≤ p ≤ q < ∞.
For the following see the introduction of [31], also [28,7,9].

Example 2.1. For μ = 1
n

n∑
j=1

δAj
, ν = 1

n

n∑
j=1

δBj
, and 1 ≤ p < ∞

dWp (μ, ν) = min
σ∈Sn

⎡
⎣ 1
n

n∑
j=1

dp(Aj , Bσ(j))

⎤
⎦

1
p

where Sn denotes the permutation group on n-letters.

Explicit calculation of Wasserstein distance is very difficult for most concrete examples, except the pre-
vious cases, but the following estimation plays a crucial role for our main results.

Example 2.2. ([7]) For μ, ν1, ν2 ∈ P1 and t ∈ [0, 1],

dW1 ((1 − t)μ + tν1, (1 − t)μ + tν2) ≤ t · sup{d(A1, A2) : Aj ∈ supp νj}.

In particular, for any A, B ∈ P

dW1 ((1 − t)μ + tδA, (1 − t)μ + tδB) ≤ td(A,B). (2.6)

We note that these basic results on probability measure spaces hold in the general setting of complete 
metric spaces in which cases a separability assumption is necessary. In this paper we restrict our attention 
to the cases p = 1 and p = 2, the most important cases in probability measure theory.

Next, we introduce a GLm-action and p-th powers on P. For M ∈ GLm, the general linear group, A ∈ P, 
μ ∈ P, p ∈ R \ {0}, and O ∈ B(P), we let

M.A := MAM∗, M.O = {MAM∗ : A ∈ O}, Op := {Ap : A ∈ O}
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and

(M.μ)(O) = μ(M−1.O), μp(O) := μ(O 1
p ). (2.7)

For notational convenience, we let t.μ := (tI).μ ∈ P1 for positive reals t; that is,

(t.μ)(O) = μ(t−2O).

Note that M.μ, μp ∈ Pr if μ ∈ Pr. In terms of push forward measures,

M.μ = f∗μ and μp = g∗μ,

where f(X) = MXM∗ and g(X) = Xp.

Example 2.3. The actions in (2.7) are natural and comparable with finitely supported measures: for μ =
1
n

n∑
j=1

δAj
and for M ∈ GLm,

μp = 1
n

n∑
j=1

δAp
j

and M.μ = 1
n

n∑
j=1

δM.Aj
= 1

n

n∑
j=1

δMAjM∗ .

Definition 2.4. A map β : Pp → P is said to be a barycenter if it is idempotent in the sense that β(δX) = X

for all X ∈ P. A barycentric map β is said to be contractive if

d(β(μ1), β(μ2)) ≤ dWp (μ1, μ2)

for all μ1, μ2 ∈ Pp, and is said to be invariant if for all M ∈ GLm and μ ∈ Pp,

(i) β(M.μ) = M.β(μ); and
(ii) β(μ−1) = β(μ)−1.

The Cartan barycenter Λ : P2 → P is defined by

Λ(μ) = arg min
Z∈P

∫
P

d2(Z,X)dμ(X).

The uniqueness and existence of the minimizer is well known in general setting of Hadamard spaces (Propo-
sition 4.3, [30]). The Cartan barycenter Λ on P2 can be extended to P1: for μ ∈ P1, the unique minimizer 
of the uniformly convex, continuous function

Z �→
∫
P

[d2(Z,X) − d2(Y,X)]dμ(X).

This point is independent of Y and coincides with Λ(μ) for μ ∈ P2. One can directly see that it is invari-
ant under isometries on P. The contractive property of Λ follows immediately from Sturm’s fundamental 
contraction property on Hadamard spaces.

Theorem 2.5 (Fundamental contraction property, [30]). For μ, ν ∈ P2,

d(Λ(μ),Λ(ν)) ≤ dW1 (μ, ν) ≤ dW2 (μ, ν).



6 S. Kim et al. / J. Math. Anal. Appl. 442 (2016) 1–16
An alternative constructive scheme of contractive and invariant barycenters has been used by Es-Sahib 
and Heinich in [10]. Quite general conditions for constructing invariant and contractive barycenters in metric 
spaces including the Es-Sahib and Heinich barycenter are given by Lawson and Lim. From these construc-
tion schemes we conclude that there exist infinitely many distinct contractive and invariant barycenters 
on P.

3. The Cartan barycenter and Karcher equation

The logarithm map log : P → H satisfies d(X, I) = dF (logI X, 0), where the first distance is the trace 
metric and the second is the metric arising from the Frobenius norm. In the following, we simply denote 
logX = logI X. Then it follows for r ≥ 1 that 

∫
P
dr(X, I)dμ(X) < ∞ if and only if 

∫
H
drF (logX, 0)dμ∗ < ∞, 

where μ∗ = log∗(μ), the push-forward of μ. We conclude that the push-forward map log∗ carries Pr(P)
into Pr(H).

The Cartan barycenter on P2

Λ(μ) = arg min
Z∈P

∫
P

d2(Z,X)dμ(X)

arises as the unique point where the gradient of the variance function

Z �→
∫
P

d2(Z,X)dμ(X)

vanishes:
∫
P

logZ(X)dμ(X) = 0.

For the general setting of Riemannian manifolds with nonpositive curvature, see Karcher [15] and [29, 
Theorem 2]. Then from (2.4), the Cartan barycenter Λ(μ) is the unique positive definite solution Z of the 
Karcher equation

∫
P

log(Z− 1
2XZ− 1

2 )dμ(X) = 0. (3.8)

We observe that for a positive probability vector ω = (w1, . . . , wn) ∈ R
n and μ =

n∑
j=1

wjδAj
∈ P0, the 

Cartan barycenter of μ is determined by

Λ(ω;A1, . . . , An) := Λ(μ) = arg min
X∈P

n∑
j=1

wjd
2(X,Aj)

and the corresponding Karcher equation is given by

n∑
j=1

wj log(X− 1
2AjX

− 1
2 ) = 0.

Since the work of Lawson and Lim [20], the Cartan barycenter of finitely supported measures has served as a 
“geometric center” and as the most attractive averaging among other matrix geometric means. A currently 
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active research topic in matrix analysis is understanding, finding properties of, and computing efficiently 
the least squares mean [25,22,27].

We establish a characteristic property of the Cartan barycenter via the Karcher equation. For A ∈ P, 
t > 0 and μ ∈ P, we define a probability measure A#tμ as

(A#tμ)(O) := μ({A#tX : X ∈ O}).

That is,

A#tμ = A
1
2 .(A− 1

2 .μ) 1
t = f∗μ,

where f(X) = A# 1
t
X and the second equality follows from f−1(X) = A#tX. One can see directly that 

f∗μ ∈ Pr if μ ∈ Pr and for μ = 1
n

∑n
j=1 δAj

,

1
n

n∑
j=1

δA#tAj
= A# 1

t
μ.

We consider the equation

X = Λ(X#tμ), t > 0. (3.9)

Theorem 3.1. For μ ∈ P2, the Cartan mean Λ(μ) is the unique solution of (3.9).

Proof. Suppose that A = Λ(A#tμ). By the Karcher equation (3.8)

∫
P

log(A− 1
2XA− 1

2 )d(A#tμ)(X) = 0.

Set ν := (A− 1
2 .μ) 1

t = g∗μ and g(X) = (A− 1
2XA− 1

2 ) 1
t . Then by change of variable theorem for Bochner 

integral,

0 =
∫
P

logXdν(X) =
∫
P

log(A− 1
2XA− 1

2 ) 1
t dμ(X) = 1

t

∫
P

log(A− 1
2XA− 1

2 )dμ(X).

This shows that
∫
P

log(A− 1
2XA− 1

2 )dμ(X) = 0,

that is, A = Λ(μ). Hence, (3.9) has at most one solution, the Cartan barycenter Λ(μ). By the reverse 
implications in above, Λ(μ) is a solution of (3.9). This completes the proof. �

An important structure on the cone P is the Löwner ordering; A ≤ B if B − A is positive semidefinite. 
We introduce a partial order on P from the Löwner cone ordering ≤ on P.

Definition 3.2 (Partial ordering). A subset U ⊂ P is called an upper set, if whenever A ∈ U and A ≤ B, 
then B ∈ U . For μ, ν ∈ P, define μ ≤ ν if μ(U) ≤ ν(U) for any upper set U ∈ B(P), equivalently ∫
U dμ(X) ≤

∫
U dν(X).
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Remark 3.3. For μ ∈ P, A ≤ B implies δA ≤ δB . Moreover,

A ≤ B implies μA ≤ μB (3.10)

for μ ∈ P, where μA := 1
2μ + 1

2δA ∈ P.

In [17] Kim and Lee have established the monotonicity of the Cartan barycenter Λ : P2 → P,

Λ(μ) ≤ Λ(ν) for μ ≤ ν. (3.11)

This extends the same result for finite discrete measures, which is known as the monotonicity conjecture 
suggested by Bhatia and Holbrook [5] and settled by Lawson and Lim [20].

4. Main results

The main theorem of this paper is the following.

Theorem 4.1. Let β : P2 → P be an invariant barycenter on P satisfying
∫
P

logX dμ(X) ≤ 0 implies β(μ) ≤ I (4.12)

for all μ ∈ P2. Then β = Λ. Moreover, the Cartan barycenter satisfies (4.12).

Proof. (1) To prove (4.12) for the Cartan barycenter Λ, we proceed with the following steps. Let μ ∈ P2. 
Assume that 

∫
P

log(X)dμ(X) ≤ 0.

Step 1. By definition of Löwner ordering, there exists A ≥ I such that
∫
P

log(X)dμA(X) = 1
2

∫
P

log(X)dμ(X) + 1
2 log(A) = 0, (4.13)

where μA := 1
2μ + 1

2δA ∈ P2. By the Karcher equation, Λ(μA) = I.

Step 2. We consider the sequence Gk on P defined inductively by

G0 = Λ(μI) for μI = 1
2μ + 1

2δI and Gk+1 = Λ(μGk
), k = 0, 1, . . .

It follows from (3.10) and A ≥ I that μA ≥ μI . By monotonicity of the Cartan barycenter (3.11) and Step 1,

G0 = Λ(μI) ≤ Λ(μA) = I.

This together with (3.10) leads to μI ≥ μG0 and again by the monotonicity (3.11)

G1 = Λ(μG0) ≤ Λ(μI) = G0.

By induction Gk is a decreasing sequence in P bounded above by I:

0 < Gk ≤ · · · ≤ G1 ≤ G0 ≤ I.
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Step 3. We will show that lim
k→∞

Gk = Λ(μ).
Let Z = Λ(μ). Then by Karcher equation (3.8), we have

0 = 1
2

∫
P

log(Z− 1
2XZ−1/2)dμ(X)

= 1
2

∫
P

log(Z− 1
2XZ− 1

2 )dμ(X) + 1
2 log(Z− 1

2ZZ− 1
2 )

=
∫
P

log(Z− 1
2XZ− 1

2 )dμZ(X)

and therefore by the Karcher equation, Λ(μZ) = Z. Moreover, by Sturm’s fundamental contraction theorem 
(Theorem 2.5) and (2.6)

d(Z,Gk) = d(Λ(μZ),Λ(μGk−1)) ≤ dW1 (μZ , μGk−1) ≤
1
2d(Z,Gk−1).

By induction

d(Z,Gk) ≤
1
2k d(Z,G0)

for all k. This implies that Gk converges to Z = Λ(μ) as k → ∞.

Step 4. By preceding steps,

Λ(μ) = lim
k→∞

Gk ≤ I.

This completes our first claim.

(2) Let β : P2 → P be an invariant barycenter satisfying (4.12). Let μ ∈ P2 such that 
∫
P

logXdμ(X) ≥ 0. 

Then 
∫
P

logX−1dμ(X) ≤ 0, and alternatively

∫
P

logXdν(X) ≤ 0,

where ν := μ−1. Since ν ∈ P2, we have β(μ−1) = β(ν) ≤ I by (4.12). Or β(μ) ≥ I by invariance of β. This 
shows that for μ ∈ P2,

∫
P

logXdμ(X) = 0 implies β(μ) = I. (4.14)

Next, let μ ∈ P2 and set A = Λ(μ). Then by the Karcher equation (3.8),

∫
log(A− 1

2XA− 1
2 )dμ(X) = 0.
P
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By change of variables theorem,

∫
P

logXdφ(X) = 0,

where φ := A− 1
2 .μ. We then have β(φ) = I by (4.14). By the invariance of the Cartan barycenter,

β(μ) = β(A 1
2 .φ) = A

1
2β(φ)A 1

2 = A = Λ(μ).

Since μ varies arbitrary over P2, we have β = Λ. �
The inequality (4.12) extends the one by Yamazaki on the Cartan mean of finite discrete measures [32]. 

As applications of our main result, we establish several significant (norm) inequalities associated to the 
Cartan barycenter on P2.

We recall Hansen’s inequality [13, Theorem 2.1], a direct consequence of Löwner–Heinz inequality: let X
be a m ×m matrix with XX∗ ≤ I. Then for any A > 0,

XApX∗ ≤ (XAX∗)p for all p ∈ [0, 1]

and

XApX∗ ≥ (XAX∗)p for all p ∈ [1, 2].

The Ando–Hiai inequality [1] of positive definite matrices A and B is given by

A#tB ≤ I implies Ap#tB
p ≤ I

for any t ∈ [0, 1] and for all p ≥ 1. As a consequence of Theorem 4.1, we establish the Ando–Hiai inequality 
for the Cartan barycenter on P2.

Theorem 4.2. Let μ ∈ P2. Then Λ(μ) ≤ I implies Λ(μp) ≤ I for all p ≥ 1.

Proof. Let μ ∈ P2. Assume that Z := Λ(μ) ≤ I. Let p ∈ [1, 2]. Then

0 = p

∫
P

log(Z 1
2X−1Z

1
2 )dμ(X)

=
∫
P

log(Z 1
2X−1Z

1
2 )pdμ(X)

≤
∫
P

log(Z 1
2X−pZ

1
2 )dμ(X),

where the last inequality follows from the facts that log is operator monotone, Z ≤ I, and Hansen’s inequality 
for p ∈ [1, 2] holds. It is equivalent to

0 ≥
∫

log(Z− 1
2XpZ− 1

2 )dμ(X) =
∫

logX dν(X),

P P
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where ν := Z− 1
2 .μp. Indeed, the last equality follows from change of variables theorem and

ν(O) = (Z− 1
2 .μp)(O) = μ((Z 1

2OZ
1
2 )

1
p ).

It then follows from Theorem 4.1 that

Z− 1
2 Λ(μp)Z− 1

2 = Λ(ν) ≤ I.

That is,

Λ(μp) ≤ Z ≤ I.

Repeating inductively this procedure to Λ(μ p
2 ) ≤ I for p ∈ [2k, 2k+1] yields that Λ(μp) ≤ I for all p ≥ 1, 

which completes the proof. �
Remark 4.3. For μ ∈ P2,

∫
P

logXdμ(X) ≤ 0 implies Λ(μp) ≤ I,∀p > 0.

The implication follows from the fact that 
∫
P
logXdμ(X) ≤ 0 if and only if for any p > 0, 

∫
P
logXpdμ(X) =∫

P
logXdμp(X) ≤ 0, and from (4.12). It turns out [26] that the reverse implication holds true for finite 

discrete measures μ;
∫
P

logXdμ(X) ≤ 0 if and only if Λ(μp) ≤ I,∀p > 0.

A special consequence of Theorem 4.1 is the following operator norm inequality.

Corollary 4.4. Let μ ∈ P2, and let 0 < p ≤ q. Then

Λ(μp) ≤ I implies Λ(μq) ≤ I. (4.15)

Moreover for the operator norm || · ||,

||Λ(μq)
1
q || ≤ ||Λ(μp)

1
p ||. (4.16)

Proof. Let μ ∈ P2 and let 0 < p ≤ q. Suppose that Λ(μp) ≤ I. Set ν := μp. Applying Theorem 4.2 with ν
and q/p ≥ 1 we have

Λ(μq) = Λ(ν
q
p ) ≤ I.

Next, we shall prove (4.16). Set α := ||Λ(μp)
1
p || p2 . Then

Λ(α−1.μp)
1
p =

[
α−1.Λ(μp)

] 1
p = 1

α
2
p

Λ(μp)
1
p = 1

||Λ(μp)
1
p ||

Λ(μp)
1
p ≤ I

from invariance of the Cartan barycenter and from the definition of the operator norm and positive defi-
niteness of Λ(μp). This implies that Λ(α−1.μp) ≤ I, since A ≤ I implies At ≤ I for any t ≥ 0 and A ∈ P. 
We let ν := α−1.μp. Then ν

q
p = α− q

p .μq because
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(α−1.μp)
q
p (O) = (α−1.μp)(O

p
q ) = μp(α2O

p
q ) = μ([α2O

p
q ]

1
p )

= μ(α
2
pO 1

q ) = μ([α
2q
p ]

1
qO 1

q ) = μq(α
2q
p O)

= (α− q
p .μq)(O).

Applying Theorem 4.2 with ν and q/p ≥ 1 yields Λ(ν
q
p ) ≤ I and thus

α− 2q
p Λ(μq) = α− q

p .Λ(μq) = Λ(α− q
p .μq) = Λ(ν

q
p ) ≤ I.

This implies that 
[
α− 2q

p Λ(μq)
] 1

q ≤ I, and hence,

||Λ(μq)
1
q || ≤ α

2
p = ||Λ(μp)

1
p ||.

This establishes (4.16). �
Let A be an m ×m positive semidefinite matrix with eigenvalues λj(A) j = 1, . . . , m arranged in decreasing 

order, i.e., λ1(A) ≥ · · · ≥ λm(A). For A, B ≥ 0, we define A ≺
(log)

B if

k∏
i=1

λi(A) ≤
k∏

i=1
λi(B) for k = 1, 2, . . . ,m− 1, and detA = detB.

This relation is called log-majorization. It is well known that A ≺
(log)

B implies |||A‖| ≤ |||B‖| for all unitarily 

invariant norms ||| · |||.
For 1 ≤ k ≤ m, let Γk be the k-th asymmetric tensor power (see [1,6] for basic properties of Γk). Then

Λ(ω; ΓkA1, . . . ,ΓkAn) = ΓkΛ(ω;A1, . . . , An),

λ1(ΛkA) =
k∏

i=1
λi(A), A > 0,

Γk(Ap) = (ΓkA)p, p > 0, A > 0.

Using these properties, one can see (cf. [14]) that for μ = 1
n

∑n
j=1 δAj

∈ P0,

Λ(μq)
1
q ≺

(log)
Λ(μp)

1
p , 0 < p ≤ q, (4.17)

Λ(μp)
1
p ≺

(log)
Λ(μ) ≺

(log)
Λ(μ

1
p )p, p ≥ 1 (4.18)

and therefore

|||Λ(μq)
1
q ||| ≤ |||Λ(μp)

1
p |||, 0 < p ≤ q, (4.19)

|||Λ(μp)
1
p ||| ≤ |||Λ(μ)||| ≤ |||Λ(μ

1
p )p|||, p ≥ 1 (4.20)

for all unitarily invariant norms ||| · |||. Moreover, using the fact that

lim
p→0+

Λ(μp)
1
p = exp((1/n)

n∑
logAj),
j=1
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we obtain

lim
p→1−

|||Λ(ω;μ
1
p )p||| = |||Λ(μ)||| ≤ lim

p→0+
|||Λ(μp)||| 1p = |||e(1/n)

∑n
j=1 log Aj |||, (4.21)

which is a multivariate version of complementary Golden–Thompson inequality and settles a question of 
Bhatia and Grover [4]. We note that (4.19) extends (4.16) for the case of discrete measures but remains 
open for general μ ∈ P2. An appropriate version of (4.21) in the setting of μ ∈ P

2 is

|||Λ(μ)||| ≤ lim
p→0+

|||Λ(μp)||| 1p = |||e
∫
P
log Xdμ(X)|||. (4.22)

We believe that our main tools on μ ∈ P2 involving the theory of nonpositively curved metric spaces and 
techniques from probability [30] and partially ordered Hadamard manifolds will significantly enhance the 
potential usefulness of the Cartan barycenter on P2 in the further work on majorizations and unitarily 
invariant norm inequalities for probability measures, like (4.22).

Remark 4.5. The results in this section still hold in the infinite-dimensional case provided one restricts 
to Hilbert–Schmidt operators, since the underlying space is still a partially ordered Hadamard space. 
See [21,22].

5. Cartan barycenters on symmetric cones

In this section, we shall see that the techniques and results from the probabilistic treatment of the Cartan 
barycenter for positive definite matrices carry over, typically with little change, to the case of symmetric 
cones. We first briefly describe (following mostly [11]) some Jordan-algebraic concepts pertinent to our 
purpose. A Jordan algebra V over R is a finite-dimensional commutative algebra with identity e satisfying 
x2(xy) = x(x2y) for all x, y ∈ V . For x ∈ V , let L(x) be the linear operator defined by L(x)y = xy, and let 
P (x) = 2L(x)2−L(x2). The map P is called the quadratic representation of V . An element x ∈ V is said to be 
invertible if there exists an element x−1 in the subalgebra generated by x and e such that xx−1 = e. A useful 
property of Jordan algebras is power associative, that is, the subalgebra generated by x is associative.

An element c ∈ V is called an idempotent if c2 = c. We say that c1, . . . , ck is a complete system of 
orthogonal idempotents if c2i = ci, cicj = 0, i �= j, c1 + · · · + ck = e. An idempotent is primitive if it is 
non-zero and cannot be written as the sum of two non-zero idempotents. A Jordan frame is a complete 
system of primitive idempotents.

A Jordan algebra V is said to be Euclidean if there exists an inner product 〈·, ·〉 such that for all x, y, z ∈ V :

〈xy, z〉 = 〈y, xz〉. (5.23)

The following spectral theorem for Euclidean Jordan algebras appears in [11].

Theorem 5.1. Any two Jordan frames in an Euclidean Jordan algebra V have the same number of elements
(called the rank of V , denoted rank(V )). Given x ∈ V , there exists a Jordan frame c1, . . . , cr and real 
numbers λ1, . . . , λr such that

x =
r∑

i=1
λici.

Definition 5.2. Let V be a Euclidean Jordan algebra of rank(V ) = r. The spectral mapping λ : V → R
r

is defined by λ(x) = (λ1(x), . . . , λr(x)), where the λi(x)’s are eigenvalues of x (with multiplicities) as 
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in Theorem 5.1 in non-increasing order λmax(x) = λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x) = λmin(x). We define 
det(x) =

∏r
i=1 λi(x) and tr(x) =

∑r
i=1 λi(x). Then tr is a linear form on V and det is a homogeneous 

polynomial of degree r on V .

The trace inner product 〈x, y〉 = tr(xy) in a Euclidean Jordan algebra satisfies (5.23). We will assume 
that V is a Euclidean Jordan algebra of rank r and equipped with the trace inner product 〈x, y〉 = tr(xy). 
Let Q be the set of all square elements of V . Then Q is a closed convex cone of V with Q ∩−Q = {0}, and 
is the set of elements x ∈ V such that L(x) is positive semi-definite. It turns out that Q has non-empty 
interior Ω, and Ω is a symmetric cone, that is, the group G(Ω) = {g ∈ GL(V )|g(Ω) = Ω} acts transitively on 
it and Ω is a self-dual cone with respect to the inner product 〈·|·〉. Furthermore, for any a in Ω, P (a) ∈ G(Ω)
and is positive definite. We note that any symmetric cone (self-dual, homogeneous open convex cone) can 
be realized as an interior of squares in an appropriate Euclidean Jordan algebra [11].

Proposition 5.3. The symmetric cone Ω ⊆ V has the following properties:

Ω = {x2 : x is invertible} = {x : L(x) is positive definite} = {x : λmin(x) > 0}.

We further note that the symmetric cone can be obtained as Ω = exp(V ) := {exp(x) : x ∈ V }, where 
exp(x) =

∑∞
k=1

xn

n! , and the exponential map exp : V → Ω is bijective. The logarithm map log : Ω → V is 
defined as the inverse of the exponential map.

The space Hm of m ×m Hermitian matrices equipped with the trace inner product 〈X, Y 〉 = tr(X∗Y ) and 
the Jordan product X ◦ Y = 1

2 (XY + Y X) is a typical example of Euclidean Jordan algebras. In this case 
the corresponding symmetric cone is Pm, the convex cone of m ×m positive definite Hermitian matrices, 
and the quadratic representation is given by P (X)Y = XYX.

It turns out [11] that the symmetric cone Ω admits a G(Ω)-invariant Riemannian metric defined by 
〈u, v〉a = 〈P (a)−1u, v〉, a ∈ Ω, u, v ∈ V . The inversion j(x) = x−1 is an involutive isometry fixing e. It is a 
symmetric Riemannian space of non-compact type and hence is an NPC space with respect to its distance 
metric. The unique geodesic curve joining a and b is t �→ a#tb := P (a1/2)(P (a−1/2)b)t and the Riemannian 

distance d(a, b) is given by d(a, b) =
(∑r

i=1 log2 λi(P (a−1/2)b)
)1/2. See [18,23,24] for more details. The 

geodesic middle (geometric mean) of a and b is given by a#b := a#1/2b = P (a1/2)(P (a−1/2)b)1/2. In [24], 
it is shown that the geometric mean is monotone for the cone ordering, x ≤ y if and only if y − x ∈ Ω, 
and therefore we conclude that every symmetric cone is a Loewner–Heinz NPC space. See below for its 
definition and the monotonic property of the Cartan barycenter of finite discrete measures [20].

Definition 5.4. A Loewner–Heinz NPC space is an NPC space equipped with a closed partial order ≤
satisfying x1#x2 ≤ y1#y2 whenever xi ≤ yi for i = 1, 2. Here x#y denotes the unique midpoint between x
and y.

Theorem 5.5. Let (M, d, ≤) be a Loewner–Heinz NPC space. Then the Cartan barycenter is monotonic 
on P0. That is, for μ = 1

n

∑n
j=1 δxj

and ν = 1
n

∑n
j=1 δyj

with xj ≤ yj for all j, Λ(μ) ≤ Λ(ν).

Next, we consider the monotonicity of the Cartan barycenter on P2 for a symmetric cone Ω. Its monotonic 
property for the case of positive definite matrices is central for Theorem 4.1.

Let μ, ν ∈ P2 with μ ≤ ν and let

μn := μ|((1/n)e,ne] + μ

(
Ω \ ( 1

n
e, ne]

)
δ{ 1

n e}, (5.24)

νn := ν|((1/n)e,ne] + ν

(
Ω \ ( 1

e, ne]
)
δ{ 1

n e}, (5.25)

n
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where (x, y] = {z ∈ V : x < z ≤ y}, the Löwner interval determined by x and y. Then taking the methods for 
the cone of positive definite matrices [17], we can show that μn and νn have bounded (and hence compact) 
supports and satisfy μn ≤ νn and Λ(μn) ≤ Λ(νn) for all n, and the sequences μn and νn converge to μ and 
ν respectively for the Wasserstein distance dW2 . Then by Sturm’s contractive property for dW2 ,

d(Λ(μ),Λ(μn)) ≤ dW2 (μ, μn) → 0,

d(Λ(ν),Λ(νn)) ≤ dW2 (ν, νn) → 0

and therefore

Λ(μ) = lim
n→∞

Λ(μn) ≤ lim
n→∞

Λ(νn) = Λ(ν).

This establishes the monotonicity of the Karcher barycenter on P2.
The steps in the proof of Theorem 4.1 carry directly over on the setting of symmetric cones:

Theorem 5.6. The Cartan barycenteric map Λ : P2(Ω) → Ω on the symmetric cone is monotonic and 
satisfies

∫
Ω

log x dμ(x) ≤ 0 implies Λ(μ) ≤ e (5.26)

for all μ ∈ P2(Ω). Furthermore, if β is an invariant metric for the Riemannian metric (Ω, d) satisfying
(5.26), then β = Λ.

One can adapt methods in the proof of Theorem 4.2 to derive the Ando–Hiai inequality (and hence 
Corollary 4.4) on symmetric cones: for μ ∈ P2(Ω), Λ(μ) ≤ I implies Λ(μp) ≤ I for all p ≥ 1.

6. Final remarks and acknowledgments

Although the order inequality characterizing invariant barycenters is new and quite attractive, particu-
larly in the theory of matrix analysis, analysis on symmetric cones and probability measures, it depends 
heavily on the Karcher equation (also, monotonicity and Sturm’s fundamental contraction theorem for the 
Cartan barycenter) and it does not carry over in the P1-setting. The Cartan barycener on P1 is also an 
important object in related research areas and so finding a (order inequality) characterizing property still 
remains open in our context. We close with the following open problem.

Problem 1. Does the Cartan barycenter Λ on P1 satisfy the monotonic property, (5.26) and the Ando–Hiai 
inequality?
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