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1. Introduction

Let C be the complex plane. The set D = {z ∈ C : |z| < 1}, is called the (open) unit disc. Let dA
denote the area measure on D, and for α ∈ R, α > −1, we define a positive Borel measure dmα on D by 
dmα(z) = (1 − |z|2)αdA(z). On the other hand, the set U = {ω ∈ C : �(ω) > 0} denotes the upper half of 
the complex plane C, and where �(ω) stands for the imaginary part of ω. For α > −1, we define a weighted 
measure on U by dμα(ω) = (�(ω))α dA(ω). The Cayley transform ψ(z) := i(1+z)

1−z maps the unit disc D
conformally onto the upper half-plane U with inverse ψ−1(ω) = ω−i

ω+i .
For an open subset Ω of C, let H(Ω) denote the Fréchet space of analytic functions f : Ω → C endowed 

with the topology of uniform convergence on compact subsets of Ω. Let Aut(Ω) ⊂ H(Ω) denote the group 
of biholomorphic maps f : Ω → Ω. For 1 ≤ p < ∞, the Hardy spaces of the upper half plane, Hp(U), are 
defined as

✩ This work is part of my PhD dissertation at the Mississippi State University, United States. Am forever grateful to my advisor 
Prof. T. L. Miller for introducing me to this topic.

E-mail address: jobbonyo@maseno.ac.ke.
http://dx.doi.org/10.1016/j.jmaa.2017.07.063
0022-247X/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2017.07.063
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:jobbonyo@maseno.ac.ke
http://dx.doi.org/10.1016/j.jmaa.2017.07.063


JID:YJMAA AID:21594 /FLA Doctopic: Functional Analysis [m3L; v1.221; Prn:7/08/2017; 16:51] P.2 (1-12)
2 J.O. Bonyo / J. Math. Anal. Appl. ••• (••••) •••–•••
HP (U) :=

⎧⎪⎨
⎪⎩f ∈ H(U) : ‖f‖Hp(U) := sup

y>0

⎛
⎝

∞∫
−∞

|f(x + iy)|pdx

⎞
⎠

1/p

< ∞

⎫⎪⎬
⎪⎭ ,

while the Hardy spaces of the unit disc, Hp(D), by

HP (D) :=

⎧⎨
⎩f ∈ H(D) : ‖f‖pHp(D) := sup

0<r<1

1
2π

π∫
−π

|f(reiθ)|p dθ < ∞

⎫⎬
⎭ .

We note that every function f ∈ Hp(U) (or Hp(D)) has non-tangential boundary values almost everywhere 
on ∂U (or ∂D), see for example [8]. In particular, Hp-functions may be identified with their boundary values 
and with this convention,

‖f‖Hp(U) =

⎛
⎝

∞∫
−∞

|f(x)|p dx

⎞
⎠

1
p

and ‖f‖Hp(D) =

⎛
⎝

2π∫
0

|f(eiθ)|p dθ

⎞
⎠

1
p

.

On the other hand, for 1 ≤ p < ∞, α > −1, the weighted Bergman spaces on the upper half plane, 
Lp
a(U, μα), are defined by

Lp
a(U, μα) :=

⎧⎪⎨
⎪⎩f ∈ H(U) : ‖f‖Lp

a(U,μα) =

⎛
⎝∫

U

|f(z)|p dμα(z)

⎞
⎠

1
p

< ∞

⎫⎪⎬
⎪⎭ ,

while the corresponding spaces on the disc, Lp
a(D, mα), by

Lp
a(D,mα) :=

⎧⎪⎨
⎪⎩f ∈ H(D) : ‖f‖Lp

a(D,mα) =

⎛
⎝∫

D

|f(z)|p dmα(z)

⎞
⎠

1
p

< ∞

⎫⎪⎬
⎪⎭ .

In particular, Lp
a(·) = LP (·) ∩H(·) where Lp(·) denotes the classical Lebesgue spaces. For a comprehensive 

theory of Hardy and Bergman spaces, we refer to [8,9,12,15,16]. As noted in [1] and [3], the Hardy space 
Hp(·) behaves in many ways as the limiting case of Lp

a(·) as α → −1+. Therefore, we shall let X denote 
either the Hardy space Hp(U) or the weighted Bergman space Lp

a(U, μα), and we associate with each X, 
a parameter γ = α+2

p , where α = −1 in the case that X = Hp(U). Also, we shall let X(D) denote the 
corresponding space of analytic functions on the unit disc D.

If X is an arbitrary Banach space, let L(X) denote the algebra of bounded linear operators on X. For 
a linear operator T with domain D(T ) ⊂ X, denote the spectrum and point spectrum of T by σ(T, X)
and σp(T, X) respectively. The resolvent set of T is ρ(T, X) = C \ σ(T, X) while r(T ) denotes its spectral 
radius. For a good account of the theory of spectra, see [6,7,13]. If X and Y are arbitrary Banach spaces and 
U ∈ L(X, Y ) is an invertible operator, then clearly (At)t∈R ⊂ L(X) is a strongly continuous group if and 
only if Bt := UAtU

−1, t ∈ R, is a strongly continuous group in L(Y ). In this case, if (At)t∈R has generator Γ, 
then (Bt)t∈R has generator Δ = UΓU−1 with domain D(Δ) = UD(Γ) := {y ∈ Y : Uy ∈ D(Γ)}. Moreover, 
σp(Δ, Y ) = σp(Γ, X), and σ(Δ, Y ) = σ(Γ, X), since if λ is in the resolvent set ρ(Γ, X) := C \ σ(Γ, X), we 
have that R(λ, Δ) = UR(λ, Γ)U−1. See for example [10, Chapter II] and [13, Chapter 3].
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2. Groups of automorphisms of the upper half plane

Motivated by the work of Arvanitidis and Siskakis in [2] where a specific automorphism of the upper half 
plane U was considered and used to study the Cesàro operator Cf(z) = 1

z

∫ z

0 f(ξ) dξ on U, the current author 
together with three others in [3] identified and classified all the one parameter groups of automorphisms of 
U into three distinct classes (scaling, translation and rotation) according to the location of the fixed points. 
More precisely, we state the following result;

Theorem 2.1 ([3, Theorem 2.2]). Let ϕ : R → Aut(U) be a nontrivial continuous group homomorphism. 
Then exactly one of the following cases holds:

1. There exists k > 0, k 
= 1, and g ∈ Aut(U) so that ϕt(z) = g−1(ktg(z)) for all z ∈ U and t ∈ R.
2. There exists k ∈ R, k 
= 0, and g ∈ Aut(U) so that ϕt(z) = g−1(g(z) + kt) for all z ∈ U and t ∈ R.
3. There exists k ∈ R, k 
= 0, and a conformal mapping g of U onto D such that ϕt(z) = g−1(eiktg(z)) for 

all z ∈ U and t ∈ R. Equivalently, there exist θ ∈ R \ {0} and h ∈ Aut(U) so that

ϕt(z) = h−1
(
h(z) cos(θt) − sin(θt)
h(z) sin(θt) + cos(θt)

)
.

Since every continuous one-parameter semigroup ϕ : R+ → Aut(U) extends uniquely to a continuous 
one-parameter group via ϕ(t) = ϕ−1(−t) for t < 0, continuous one-parameter semigroups of automorphisms 
are also of three types. We shall obtain two specific automorphisms of the upper half plane which interestingly 
correspond to the assertions 2 and 3 of Theorem 2.1 above. An example of an automorphism corresponding 
to the first assertion is ϕt(z) = e−tz, z ∈ U, t ∈ R which was considered in detail in [2] and [3, Section 3].

Let us first consider assertion 2 of Theorem 2.1. Let g(z) = z
1−z , then a straightforward calculation shows 

that �(g(z)) = �(z)
|1−z|2 > 0 and therefore g(U) ⊆ U. Clearly, g ∈ Aut(U) with the inverse g−1(z) = z

1+z . 
Now, taking k = 1, we have

ϕt(z) = g−1(g(z) + t) =
z

1−z + t

1 + z
1−z + t

= (1 − t)z + t

−tz + 1 + t
. (2.1)

Now consider assertion 3 of Theorem 2.1. Here, we consider g : U → D conformal and the natural candidate 
is the Cayley transform ψ with inverse ψ−1 already defined. Therefore, if we take g(z) = ψ−1(z) = z−i

z+i with 

g−1(z) = ψ(z) = i(1+z)
1−z , then for k = −2, a direct computation yields; 1 + eiθ = 2 cos

(
θ
2
)
e

iθ
2 and 1 −

eiθ = −2i sin
(
θ
2
)
e

iθ
2 , and thus

ϕt(z) = g−1(e−2itg(z)) =
i
(
1 + e−2it z−i

z+i

)
1 − e−2it z−i

z+i

=
i
(
(1 + e−2it)z + i(1 − e−2it)

)
(1 − e−2it)z + i(1 + e−2it)

=
i
(
(2 cos(−t)e−it)z + i(−2i sin(−t)e−it)

)
(−2i sin(−t)e−it)z + i(2 cos(−t)e−it)

= z cos t− sin t

z sin t + cos t . (2.2)

Apparently, (2.1) and (2.2) are one-parameter groups of automorphisms of the upper half-plane U.
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Let {V1, V2} = {D, U}, and let LF (Vi, Vj) denote the collection of conformal mappings from Vi onto Vj . 
Then LF (Vi, Vi) = Aut(Vi), and if h ∈ LF (Vi, Vj), then g ∈ Aut(Vj) �→ h−1 ◦ g ◦ h ∈ Aut(Vi) is an 
isomorphism from Aut(Vi) onto Aut(Vj). For each g ∈ LF (Vi, Vj), we define a weighted composition operator 
Sg : H(Vj) → H(Vi), by

Sgf(z) = (g′(z))γf(g(z)), for all z ∈ Vi. (2.3)

We note that if g ∈ LF (Vi, Vj) and h ∈ LF (Vj , Vi), then it is clear by chain rule that ShSg = Sgh and 
S−1
g = Sg−1 . Indeed,

ShSgf(z) = Sh ((g′)γf(g(z))) = (h′)γ (g′(h))γ f (g(h(z)))

= ((g ◦ h)′(z))γ f (g ◦ h) (z) = Sg◦hf(z). In particular Sg−1 = S−1
g .

Following [3, Proposition 2.1 and Theorem 2.3], the group (Sϕt
)t∈R is a strongly continuous surjective 

isometry in L(X) where X is either Hp(U) or Lp
a(U, μα). Semigroups and groups of isometries on the Hardy 

spaces of the unit disc have been well studied in literature in the past few decades. See for instance [4,5,11]
and references therein. The corresponding study on the upper half plane U is much less complete. For a 
complete account of the theory of strongly continuous semigroups of Banach space operators, we refer to 
[7, Chapter VIII], [10] or [14].

In this paper, we shall carry out a complete spectral analysis of the groups of weighted composition 
operators associated with the automorphism groups given by the equations (2.1) and (2.2). These groups 
of composition operators turns out to be strongly continuous groups of surjective isometries. Specifically, 
we employ the theory of similar semigroups detailed in section 1 as well as the results obtained in [3] to 
determine the infinitesimal generators of these groups of isometries. We further determine their spectra, 
their point spectra, as well as their resolvents. Finally, we then obtain the norms and the spectra of the 
resolvent operators on both Hardy and Bergman spaces.

3. The translation group

For every z ∈ U, let ut = z + t. Then by equation (2.1),

ϕt(z) := (1 − t)z + t

−tz + 1 + t
= g−1(g(z) + t)

= g−1 ◦ ut ◦ g(z).

Therefore it can be easily verified that Sϕt
= SgSut

S−1
g . From [3, Section 4], we see that, if Γ is the 

infinitesimal generator of the group Sut
on X, then the following theorem holds,

Theorem 3.1.

1. Γf(z) = f ′(z) with domain D(Γ) = {f ∈ X : f ′ ∈ X}.
2. σp(Γ, X) = ∅ and σ(Γ, X) = {is : s ≥ 0}.
3. If λ ∈ ρ(Γ), then R(λ, Γ)h(z) = eλz

∫∞
z

e−λωh(ω) dω := Rλh(z).
4. For 1 < p < ∞, if λ ∈ ρ(Γ), R∗

λ = −R−λ̄.

Proof. For assertions 1–3 see [3, Section 4]. To prove (4), recall from [15] that for 1 < p, q < ∞ with 
1
p + 1

q = 1, (Hp(U))∗ ≈ Hq(U) and (Lp
a(U, μα))∗ ≈ Lq

a(U, μα) under the sesquilinear pairings given by 
respectively,
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〈f, g〉 =
∫
R

f(x)g(x) dx (f ∈ Hp(U), g ∈ Hq(U)), (3.1)

and

〈f, g〉 =
∫
U

f(ω)g(ω) dμα (f ∈ Lp
a(μα), g ∈ Lq

a(μα)). (3.2)

We take note that under these pairings, the adjoint operator is conjugate linear. Let Ttf(z) = Sϕt
f(z) =

f(z+t) for every f ∈ X, and define T−tg(z) = g(z−t) for all g ∈ X∗. Then (Tt)t∈R and (T−t)t∈R are adjoints 
of each other, that is, T ∗

t = T−t. Indeed, if X = Hp(U), then X∗ = Hq(U) and for all f ∈ X, g ∈ X∗, 
z = x + yi ∈ U, we have

〈Ttf, g〉 =
∫
R

f(x + t)g(x) dx =
∫
R

f(u)g(u− t) du = 〈f, T−tg〉.

Similarly, if X = Lp
a(U, μα), we have X∗ = Lq

a(U, μα) and for every f ∈ X, z ∈ U,

〈Ttf, g〉 =
∫
U

f(z + t)g(z)(�(z))α dA(z)

=
∫
U

f(ω)g(ω − t)(�(ω))α dA(ω) = 〈f, T−tg〉, as desired.

Now, since X is reflexive, it follows from [14, Corollaries 10.2, 10.6] that Γ∗
p = −Γq and that for λ ∈ ρ(Γ, X), 

we have

R∗
λ = R(λ,Γp)∗ = R(λ̄,Γ∗

p) = R(λ̄,−Γq)

= −R(−λ̄,Γq) = −R−λ̄, as claimed. �
The next theorem which is our main result in this section details the analysis of the group of isometries 

obtained from the automorphism group given by (2.1).

Theorem 3.2. Let X = Hp(U) or Lp
a(U, μα), 1 ≤ p < ∞. Let ϕt ∈ Aut(U) be given by ϕt(z) = (1−t)z+t

−tz+1+t for 
t ∈ R, z ∈ U, and Sϕt

be the corresponding group of isometries. Then,

1. The infinitesimal generator Δ of Sϕt
⊂ L(X) is given by

Δ(h(z)) = −2γ(1 − z)h(z) + (1 − z)2h′(z)

with domain D(Δ) =
{
h ∈ X : −2γ(1 − z)h(z) + (1 − z)2h′(z) ∈ X

}
.

2. σp(Δ, X) = ∅ and σ(Δ, X) = {is : s ≥ 0}.
3. If λ ∈ ρ(Δ), then

R(λ,Δ)h(z) = 1
(1 − z)2γ e

λ z
1−z

∞∫
z

eλ
ω

1−ω (1 − ω)2γ−2h(ω) dω.

Proof. Since Γ is the generator of the group Sut
, and Sϕt

= SgSut
S−1
g and as remarked in the introduction, 

it follows that the generator Δ of the group Sϕt
is given by
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Δ = SgΓS−1
g with domain D(Δ) = SgD(Γ).

Now, let f ′ ∈ X, then f ∈ D(Γ) and h := Sgf belongs to D(Δ) with f = S−1
g h. Then

Δ(h(z)) = SgΓS−1
g h(z) = SgΓf(z) = Sgf

′(z)

= (g′(z))γf ′(g(z)) = 1
(1 − z)2γ f

′(g(z)). (3.3)

But f(z) = S−1
g h(z) = Sg−1h(z) = 1

(1+z)2γ h 
(
g−1(z)

)
, implying that

f ′(z) = −2γ(1 + z)−2γ−1h(g−1(z)) + 1
(1 + z)2γ+2h

′(g−1(z))

= (1 + z)−2γ−2 (−2γ(1 + z)h(g−1(z)) + h′(g−1(z))
)
, so that

f ′(g(z)) =
(

1 + z

1 − z

)−2γ−2 (
−2γ

(
1 + z

1 − z

)
h(z) + h′(z)

)

= (1 − z)2γ
(
−2γ(1 − z)h(z) + (1 − z)2h′(z)

)
.

Therefore, equation (3.3) becomes Δ(h(z)) = −2γ(1 − z)h(z) + (1 − z)2h′(z), as desired, with the domain

D(Δ) = SgD(Γ) = {Sgf : f ∈ D(Γ)} = {h = Sgf : Sgf
′ ∈ X}

=
{
h ∈ X : −2γ(1 − z)h(z) + (1 − z)2h′(z) ∈ X

}
.

Since Δ = SgΓS−1
g and Sg is invertible, it’s clear again from the theory of similar semigroups that σp(Δ, X) =

σp(Γ, X) = ∅ and σ(Δ, X) = σ(Γ, X) = {is : s ≥ 0}.
For the resolvents, we have: If λ ∈ ρ(Δ, X) = ρ(Γ, X), then

R(λ,Δ) = SgR(λ,Γ)S−1
g ,

and thus we have,

R(λ,Δ)h(z) = SgR(λ,Γ)S−1
g h(z) = Sg

⎛
⎝eλz

∞∫
z

e−λωS−1
g h(ω) dω

⎞
⎠

= Sg

⎛
⎝eλz

∞∫
z

e−λω 1
(1 + ω)2γ h(g−1(ω)) dω

⎞
⎠

= 1
(1 − z)2γ e

λg(z)
∞∫
z

e−λg(ω) 1
(1 + g(ω))2γ h(ω) dg(ω)

= 1
(1 − z)2γ e

λ z
1−z

∞∫
z

e−λ ω
1−ω (1 − ω)2γ−2h(ω) dω,

which completes the proof. �
We end this section by determining the norm and spectra of the resolvent operator.
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Theorem 3.3. If �(λ) 
= 0, denote the circle 
∣∣∣z − 1

2�(λ)

∣∣∣ = 1
|2�(λ)| by Cλ, and if λ = ib for some b < 0, take 

Cλ to be the imaginary axis.

1. If �(λ) 
= 0 and �(λ) ≥ 0, then σ(R(λ, Δ)) is the arc of the circle Cλ from 1
λ to 0 that contains the 

upper half of Cλ. Moreover, ‖R(λ, Δ)‖ = r(R(λ, Δ)) = 1
|�(λ)| .

2. If �(λ) < 0, then σ(R(λ, Δ)) is the arc of the circle Cλ from 1/λ to 0 contained in the upper half of 
Cλ. In this case, ‖R(λ, Δ)‖ = r(R(λ, Δ)) = 1

|λ| .

Proof. Take note that R(λ, Δ) = SgR(λ, Γ)S−1
g where Sg is invertible. Using the well known fact that 

similar operators have the same spectrum, the result follows immediately from [3, Proposition 4.3]. �
4. The rotation group

In this case for all z ∈ U, let ut(z) = e−2itz. Then as argued similarly in the previous section,

ϕt(z) := z cos t− sin t

z sin t + cos t = g−1(e−2itg(z))

= g−1 ◦ ut ◦ g(z).

Now by definition, Sut
f(z) = (u′

t)γf(ut(z)) = e−2itf(e−2itz). Comparing with the group of isometries under 
consideration for the rotation group (see [3, Section 5]), Ttf(z) = eictf(eikt) whose infinitesimal generator 
we denote by Γc,k, we see that c = −2γ and k = −2. Therefore the infinitesimal generator of the group Sut

will be denoted by Γ−2γ,−2 and whose properties can be summarized in the next theorem. Before stating 
the theorem, we take note that the operator Mzf(z) := zf(z) is bounded and bounded below on X(D) with 
range R(Mz) = {f ∈ X(D) : f(0) = 0}.

Theorem 4.1. For X(D) = Hp(D) or Lp
a(D, mα), let Sut

be the group of isometries on X(D) defined above, 
and Γ−2γ,−2 be its generator. Then

1. Γ−2γ,−2f(z) = i (−2γf(z) − 2zf ′(z)) for every f ∈ X(D), with domain D(Γ−2γ,−2, X(D)) =
{f ∈ X(D) : f ′ ∈ X(D)}.

2. σ(Γ−2γ,−2, X(D)) = σp(Γ−2γ,−2, X(D)) = {−2(γ + n)i : n ∈ Z+}, and for each n ≥ 0, 
ker (−2(γ + n)i− Γ−2γ,−2) = span(zn).

3. If μ ∈ ρ(Γ−2γ,−2), then R(Mm
z ) is R(μ, Γ−2γ,−2)-invariant for every m ∈ Z+, m > � (−(μ + 2γi)/2). 

Moreover, if h ∈ R(Mm
z ), then

R(μ,Γ−2γ,−2)h(z) = − i

2z
(μ+2iγ

2 )i
z∫

0

ω−(μ−2iγ
2 )i−1h(ω) dω := Rμh(z).

4. For 1 < p < ∞, if μ ∈ ρ(Γ−2γ,−2), then R∗
μ = −R−μ̄.

Before we prove this theorem, we first give the following two Lemmas;

Lemma 4.2. Let X(D) denote one of the spaces Hp(D) or Lp
a(D, mα), 1 ≤ p < ∞. Then the infinitesimal 

generator Γc,k of the group (Tt)t∈R ⊂ L(X(D)) is Γc,kf(z) = i (cf(z) + kzf ′(z)) with domain D(Γc,k) =
{f ∈ X(D) : f ′ ∈ X(D)}.
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Proof. By the definition,

Γc,kf(z) = ∂

∂t

(
eictf(eiktz)

)∣∣∣∣
t=0

=
(
iceictf(eiktz) + eictikeiktzf ′(eiktz)

)∣∣
t=0

= i(cf(z) + kzf ′(z)).

Therefore the domain D(Γc,k) ⊂ {f ∈ X(D) : zf ′ ∈ X(D)}. But zf ′ ∈ X(D) implies that zf ′ ∈ R(Mz) and 
therefore f ′ ∈ X(D). Thus {f ∈ X(D) : zf ′ ∈ X(D)} = {f ∈ X(D) : f ′ ∈ X(D)}.

Conversely if f ∈ X(D) is such that zf ′ ∈ X, then F (z) = i(cf(z) + kzf ′(z)) ∈ X(D), and for all t > 0

Ttf(z) − f(z)
t

= 1
t

t∫
0

∂s(Tsf(z)) ds

= 1
t

t∫
0

eics
[
i(cf(eiksz) + k(eiksz)f ′(eiksz))

]
ds = 1

t

t∫
0

TsF (z) ds.

Now, strong continuity of (Ts)s≥0 implies that

∥∥∥∥∥∥
1
t

t∫
0

TsF ds− F

∥∥∥∥∥∥ ≤ 1
t

t∫
0

‖TsF − F‖ ds → 0 as t → 0+.

Thus, D(Γc,k) = {f ∈ X(D) : f ′ ∈ X(D)}. �
Lemma 4.3. Let X(D) denote one of the spaces Hp(D) or Lp

a(D, mα), 1 ≤ p < ∞. Then

1. Γc,k = ic + kΓ0,1 with domain D(Γc,k) = D(Γ0,1) = {f : f ′ ∈ X(D)}.
2. σ(Γc,k) = {ic + kσ(Γ0,1)}, and σp(Γc,k) = {ic + kσp(Γ0,1)}.

In fact, λ ∈ ρ(Γ0,1) if and only if ic + kλ ∈ ρ(Γc,k), and

R(ic + kλ,Γc,k) = 1
k
R(λ,Γ0,1). (4.1)

Proof. From Lemma 4.2, Γ0,1f(z) = izf ′(z) for all f ∈ X(D). Therefore,

Γc,kf(z) = i (cf(z) + kzf ′(z)) = icf(z) + kΓ0,1f(z),

with same domain as claimed.
Now, let λ ∈ ρ(Γ0,1), then

(ic + kλ− Γc,k)
1
k
R(λ,Γ0,1) = (ic + kλ− (ic + kΓ0,1))

1
k
R(λ,Γ0,1)

= k

k
(λ− Γ0,1)R(λ,Γ0,1) = I,

and if f ∈ D(Γc,k), then
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k
R(λ,Γ0,1)(ic + kλ− Γc,k)f = 1

k
R(λ,Γ0,1) (ic + kλ− (ic + kΓ0,1)) f

= k

k
R(λ,Γ0,1)(λ− Γ0,1)f = f.

Conversely, if μ ∈ ρ(Γc,k), let μ = ic + kλ so that λ = μ−ic
k . Then

(λ− Γ0,1)kR(μ,Γc,k) = k

(
μ− ic

k
− Γ0,1

)
R(μ,Γc,k) = (μ− ic− kΓ0,1)R(μ,Γc,k)

= (μ− (ic + kΓ0,1))R(μ,Γc,k) = (λ− Γc,k)R(μ,Γc,k) = I,

and if f ∈ D(Γ0,1), then

kR(μ,Γc,k)(λ− Γ0,1)f = R(μ,Γc,k)(μ− ic− kΓ0,1)f

= R(μ,Γc,k)(μ− Γc,k)f = f.

Thus, σ(Γc,k) = {ic + kλ : λ ∈ σ(Γ0,1)}, σp(Γc,k) = {ic + kλ : λ ∈ σp(Γ0,1)}, and for all λ ∈ ρ(Γ0,1), R(ic +
kλ, Γc,k) = 1

kR(λ, Γ0,1), as desired. �
Proof of Theorem 4.1. Assertions 1–3 can easily be obtained from the above Lemmas 4.2 and 4.3 together 
with the results contained in [3, Section 5]. We omit the details.

To prove assertion (4), recall from [15,16] that for 1 < p, q < ∞, 1
p + 1

q = 1 and α > −1, (Lp
a(D, mα))∗ ≈

Lq
a(D, mα) and (Hp(D))∗ ≈ Hq(D) under the sesquilinear pairings given respectively by

〈f, g〉 =
∫
D

f(z)g(z) dmα(z) (f ∈ Lp
a(D,mα), g ∈ Lq

a(D,mα)),

and

〈f, g〉 =
2π∫
0

f(eiθ)g(eiθ) dθ (f ∈ Hp(D), g ∈ Hq(D)).

Again, under the above pairings, the adjoint operator is conjugate linear. Let γ = α+2
p and Ttf(z) =

e−2iγtf(e−2itz) for every f ∈ X(D), and define T−tg(z) = e2iγtf(e2itz) for all g ∈ X(D)∗. Then (Tt)t∈R

and (T−t)t∈R are adjoints of each other; that is, T ∗
t = T−t. To see this, we proceed as follows: If X(D) =

Lp
a(D, mα), then X∗ = Lq

a(D, mα) and for all f ∈ X(D), g ∈ X(D)∗, we have,

〈Ttf, g〉 =
∫
D

e−2iγtf(e−2itz)g(z) dmα(z)

=
∫
D

e−2iγtf(e−2itz)g(z)(1 − |z|2)α dA(z)

=
∫
D

f(ω)e2iγtg(e2itω) dmα(ω) = 〈f, T−tg〉;

If X(D) = Hp(D), then X∗ = Hq(D) and for all f ∈ X(D), g ∈ X(D)∗, we have
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〈Ttf, g〉 =
2π∫
0

e−2iγtf(e−2iteiθ)g(eiθ) dθ =
2π∫
0

f(ei(−2t+θ))e2iγtg(eiθ) dθ

=
2π∫
0

f(eiω)e2iγtg(ei(ω+2t)) dω = 〈f, T−tg〉, as desired.

Since X(D) = Hp(D) or Lp
a(D, mα), 1 < p < ∞, is reflexive, it follows from semigroup theory that Γ∗

−2γ,−2 =
−Γ−2γ,−2 and that if μ ∈ ρ(Γ−2γ,−2, X(D)), then

R∗
μ = (R(μ,Γ−2γ,−2))∗ = R(μ̄,Γ∗

−2γ,−2) = R(μ̄,−Γ−2γ,−2)

= −R(−μ̄,Γ−2γ,−2) = −R−μ̄, as claimed. �
Our main result in this section details the analysis of the group of isometries obtained from the auto-

morphism group given by (2.2) as we give in the following theorem;

Theorem 4.4. Let X = Hp(U) or Lp
a(U, μα), 1 ≤ p < ∞, α > −1. Let ϕt ∈ Aut(U) be given 

by ϕt(z) = z cos t−sin t
z sin t+cos t , for all t ∈ R, z ∈ U, and the corresponding group of isometries on X by 

Sϕt
f(z) := (ϕ′

t)γf(ϕt(z)). Then

1. The infinitesimal generator Δ of the group Sϕt
⊂ L(X) is given by

Δ(h(z)) = −2γzh(z) − (1 + z2)h′(z),

with domain D(Δ) = {h ∈ X(D) : 2γ(ω + i)h + (ω + i)2h′ ∈ X}.
2. σp(Δ) = σ(Δ) = {−2(γ + n)i : n ∈ Z+}, and for each n ≥ 0, ker(−2(γ + n)i − Δ) = span(Sgz

n).
3. If μ ∈ ρ(Δ) and if m ∈ Z+ is such that m > �(−(μ + 2iγ)/2). Then, if h ∈ R(Mm

z ), we have

R(μ,Δ)h(z) = (z − i)
μ+2iγ

2 i(z + i)−(μ+2iγ
2 i+2γ)

z∫
0

(ω − i)−(μ+2iγ
2 )i−1(ω + i)

μ+2iγ
2 i+2γ−1h(ω) dω. (4.2)

4. R(μ, Δ) is compact on X(D).
5. σ(R(μ, Δ)) = σp(R(μ, Δ)) =

{
w ∈ C :

∣∣∣w − 1
2�(μ)

∣∣∣ = 1
2�(μ)

}
. Moreover,

r(R(μ,Δ)) = ‖R(μ,Δ)‖ = 1
2�(μ) .

Proof. Since ϕt = g−1 ◦ ut ◦ g, it follows that Sϕt
= SgSut

Sg−1 = SgSut
S−1
g . Let Δ be the generator of Sϕt

and Γ := Γ−2γ,−2 be the generator of Sut
, then as noted before,

Δ = SgΓS−1
g with domain D(Δ) = SgD(Γ).

As in the proof of Theorem 3.2, let f ′ ∈ X(D). Then f ∈ D(Γ) and h := Sgf belongs to D(Δ) with 
f = S−1

g h. Then

Δ(h(z)) = SgΓS−1
g h(z) = SgΓf(z) = Sg (−2γif(z) − 2izf ′(z))

= − (2i)γ

(z + i)2γ (2γif(g(z)) + 2ig(z)f ′(g(z))) .
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But f(z) = S−1
g h(z) = Sg−1h(z) = (2i)γ

(1−z)2γ h(g−1(z)), implying that f(g(z)) = 1
(2i)γ (z + i)2γh(z). Moreover, 

f ′(z) = (2i)γ
(1−z)2γ+2

(
2γ(1 − z)h(g−1(z)) + 2ih′(g−1(z))

)
, implying that

f ′(g(z)) = 1
(2i)γ+1 (z + i)2γ+1 (2γh(z) + (z + i)h′(z)) .

Therefore,

Δ(h(z)) = − (2iγh(z) + 2γ(z − i)h(z) + (z − i)(z + i)h′(z))

= −2γzh(z) − (1 + z2)h′(z), as desired.

As noted before, the domain of Δ, D(Δ) is given by D(Δ) = SgD(Γ) = {Sgf : f ∈ D(Γ)}. Now h ∈ D(Δ) ⇔
S−1
g h ∈ D(Γ) ⇔ (Sg−1h)′ ∈ X(D). But

(Sg−1h)′ = ((ψ′)γh ◦ ψ)′

= (2i)γ

(1 − z)2γ

(
2γ

1 − ψ−1 ◦ ψ(z)h(ψ(z)) + 2i
1 − ψ−1 ◦ ψ(z)h

′(ψ(z))
)

= Sg−1

(
2γ

1 − ψ−1(ω)h(ω) + 2i
1 − ψ−1(ω)h

′(ω)
)
.

Therefore,

h ∈ D(Δ) ⇔ Sg−1

(
2γ

1 − ψ−1(ω)h(ω) + 2i
1 − ψ−1(ω)h

′(ω)
)

∈ X(D)

⇔
(

2γ
1 − ψ−1(ω)h(ω) + 2i

1 − ψ−1(ω)h
′(ω)

)
∈ X

⇔ ω + i

2i [2γh(ω) + (ω + i)h′(ω)] ∈ X,

which implies that D(Δ) = {h ∈ X(D) : 2γh(ω) + (ω + i)h′(ω) ∈ X}.
Again, it’s clear from Section 1 that,

σp(Δ) = σp(Γ) = σ(Γ) = σ(Δ) = {−2(γ + n)i : n ∈ Z+} ,

but with ker(−2(γ + n)i − Δ) = span(Sgz
n) for each n ≥ 0.

For the resolvents, if μ ∈ ρ(Δ) = ρ(Γ), then for m ∈ Z+, m > � (−(μ + 2γi)/2), and if h ∈ R(Mm
z ), we 

have R(μ, Δ) = SgR(μ, Γ)S−1
g and so

R(μ,Δ)h(z) = Sg

⎛
⎝− i

2z
μ+2γi

2 i

z∫
0

ω−(μ+2γi
2 )i−1Sg−1h(ω) dω

⎞
⎠

= Sg

⎛
⎝− i

2z
μ+2γi

2 i

z∫
0

ω−(μ+2γi
2 )i−1 (2i)γ

(1 − ω)2γ h(g−1(ω)) dω

⎞
⎠

= − i

2 · (2i)γ

(z + i)2γ (g(z))
μ+2γi

2 i

z∫
0

(g(ω))−(μ+2γi
2 )i−1 (2i)γ

(1 − g(ω))2γ h(ω) dg

dω
dω

=
(

z − i

(z + i)2γ

)μ+2iγ
2 i

z∫
0

(ω − i)−(μ+2iγ
2 )i−1(ω + i)

μ+2iγ
2 i+2γ−1h(ω) dω.
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The compactness of the resolvent operator R(μ, Δ) follows from the compactness of R(μ, Γ) by a similarity 
argument.

The spectral mapping theorem and the assertion 2 of this theorem imply that for all μ ∈ ρ(Δ),

σ(R(μ,Δ)) =
{

1
μ−z : z ∈ σ(Δ)

}
∪ {0}

=
{

1
μ+2(γ+n)i : n ∈ Z+

}
∪ {0}

=
{
w ∈ C :

∣∣∣w − 1
2�(μ)

∣∣∣ = 1
2�(μ)

}
.

The equality σ(R(μ, Δ)) = σp(R(μ, Δ)) follows from the compactness of R(μ, Δ) as given by [10, Corollary 
V.1.15]. From the spectrum, it is clear that the spectral radius of the resolvent is r(R(μ, Δ)) = 1

�(μ) . 
Moreover, the Hille–Yosida theorem yields r(R(μ, Δ)) = 1

�(μ) ≤ ‖R(μ, Δ)‖ ≤ 1
�(μ) . �
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