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1. Introduction

One of the classical problems in complex analysis is to reconstruct an entire function from a countable 
set of data. This article considers reconstruction of an entire function F from its values and the values of 
its derivatives up to a specified order at a discrete set of points on the real line. The entire function F will 
be an element of a reproducing kernel Hilbert space in the sense of de Branges [5] (we review the pertinent 
facts of de Branges spaces in Section 2.1). We are interested in reconstruction formulas that converge to F
in the norm of the space.

To motivate the results, we briefly describe the situation in the classical Paley–Wiener space. Given τ > 0
the Paley–Wiener space PW (τ) is defined as the space of entire functions of exponential type at most τ
such that their restriction to the real axis belongs to L2(R). These are special spaces with a reproducing 
kernel structure. The reproducing kernel of PW (τ) is given by

K(w, z) = sin τ(z − w)
π(z − w)
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and

F (w) =
∫
R

F (x)K(w, x)dx,

for every F ∈ PW (τ).
A basic result of the theory of Paley–Wiener spaces is that for all F ∈ PW (τ) we have

F (z) = sin(τz)
π

∑
n∈Z

(−1)nF (πn/τ)
z − πn/τ

, (1.1)

where the sum converges in L2(R) as well as uniformly on compact sets of C (this is sometimes called the 
Shannon–Whittaker interpolation formula). The existence of interpolation formulas using derivatives is also 
known in Paley–Wiener spaces. In [28, Theorem 9], J. Vaaler proved that

F (z) =
(

sin τx

τ

)2 ∑
n∈Z

(
F (πn/τ)

(z − πn/τ)2 + F ′(πn/τ)
z − πn/τ

)
, (1.2)

for every F ∈ PW (2τ).
The Paley–Wiener space is a particular case of a wider class of spaces of entire functions called de Branges 

spaces (see [5, Chapter 2]). A generalization of Vaaler’s result in de Branges spaces was obtained by the first 
named author in [20] which we describe next. For a given Hermite–Biehler function E, a de Branges space 
H(E2) can be constructed where the intended interpolation formulas will take place. With E∗(z) = E(z̄)
we define A(z) = 2−1(E(z) + E∗(z)) and B(z) = (i/2)(E(z) − E∗(z)). Furthermore, ϕ denotes the phase 
of E, that is, E(x)eiϕ(x) ∈ R for all real x (it can be shown that ϕ is analytic in a neighborhood of R and 
ϕ′(x) > 0 for all real x). We denote by TB the set of (real) zeros of B.

Throughout this paper we use for f, g in a set F the notation f � g to mean that there exist positive 
constants C, D with Cf ≤ g ≤ Df , and the constants are uniform in F . Similarly, f � g stands for the 
statement f ≤ Cg with uniform C > 0.

Theorem A. ([20, Theorem 1]) Let E be a Hermite–Biehler function such that H(E2) is a de Branges space 
closed under differentiation, AB /∈ H(E2) and ϕ′(t) ≥ δ > 0 for some δ > 0 and all t ∈ TB. Then

F (z) = B(z)2
∑
t∈TB

(
F (t)

B′(t)2(z − t)2 + F ′(t)B′(t) − F (t)B′′(t)
B′(t)3(z − t)

)
,

and the series converges in H(E2) as well as uniformly on compact subsets of C.

This result immediately leads to questions regarding necessity and sufficiency of the assumptions under 
which the conclusions of the theorem hold. Our main results provide answers to most of these questions.

(1) The requirement that H(E2) is closed under the differentiation operator is a natural condition, since 
we use derivatives for reconstruction, but it is usually hard to check directly. A sufficient criterion 
was given by A. Baranov [1, Theorem 3.2] who showed that if E′/E ∈ H∞(C+) (see Section 6), then 
differentiation defines a bounded operator on H(E). He also showed that the reverse implication is not 
true (see [1, Section 4.2]). Our first result connects here, we prove in Theorem 1 that E′/E ∈ H∞(C+)
is actually equivalent to H(E2) being closed under differentiation.
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(2) The uniform lower bound for ϕ′ is necessary. We show in Theorem 2 that a relation of the form

∑
t∈TB

|F (t)|2 + |F ′(t)|2
K(t, t) � ‖F‖2

H(E2) (1.3)

holds for F ∈ H(E2) (with constants independent of F ), and we prove in Theorem 3 that if the series in 
(1.3) bounds the norm, then it follows already that ϕ′ ≥ δ on TB for some positive δ. This is essentially 
due to the fact that the norm of B(z)ν/(z − t) in H(Eν) and the value of its (ν − 1)st derivative at 
z = t can be estimated by distinct powers of ϕ′(t) if ν ≥ 2. We remark further that boundedness of the 
differentiation operator on H(Eν) for ν ≥ 2 implies that ϕ′ is bounded from above on R and we provide 
a proof in Proposition 6 (it is worth emphasizing that none of these implications are valid for ν = 1).

(3) Reconstruction formulas for all derivatives hold. Theorem A suggests that reconstruction from {F (j)(t) :
t ∈ TB , 0 ≤ j ≤ ν − 1} requires us to work in H(Eν) which is the setting for this article (a fact already 
suggested by Vaaler’s reconstruction (1.2), where in order to maintain the same interpolation nodes the 
type was doubled). We give the precise formulation in Theorem 2.

(4) The condition AB /∈ H(E) does not need to be assumed, it will follow if differentiation is a bounded 
operator on H(Eν) for ν ≥ 2. This is shown in Corollary 7.

(5) An interesting and mainly still open question concerns the existence of corresponding formulas in Hp(Eν)
where 1 < p < ∞ (the Lp version of de Branges spaces). We include a few results in this direction in 
Section 6.

For reconstruction with derivatives one needs to work in H(Eν) rather than in H(E). This is something 
of a drawback, in practice it would be preferable to have interpolation formulas that converge in the norm of 
L2(R, μ) (μ some non-negative measure). On the other hand, the structure of the interpolation series leads 
naturally to convergence in H(Eν). This leads to the question when there exists E such that the restriction 
of the norm of L2(R, μ) to functions of exponential type τ and the norm on H(Eν) are equivalent. This is 
largely unknown, except in special cases. For example, [20] includes calculations for homogeneous spaces 
and we extend those results in Corollary 5.

We mention that formulas like (1.1) and (1.2) have been used to construct extremal functions related to 
Beurling–Selberg extremal problems. These are functions F of prescribed exponential type that minimize 
the L1(R, μ)-distance (μ is some non-negative measure) from a given function g and such that F lies below 
or above g on R. These functions have the special property that they interpolate the target function g (an 
its derivative) at a certain sequence of real points and have several special properties that are very useful in 
applications to analytic number theory, being the key to provide sharp (or improved) estimates. For instance, 
in connection to: large sieve inequalities [24,28], Erdös–Turán inequalities [15,28], Hilbert-type inequalities 
[12,14,15,22,28], Tauberian theorems [22] and bounds in the theory of the Riemann zeta-function and general 
L-functions [7–9,11,16,18,19]. Further constructions and applications can also be found in [6,10,13,21,25].

2. Results

2.1. De Branges spaces

Since our results are formulated in the language of de Branges spaces, we briefly review the basics (see 
[5, Chapter 2]). A function F analytic in the open upper half-plane

C
+ = {z ∈ C : Im z > 0}

has bounded type if it can be written as the quotient of two functions that are analytic and bounded in C
+. 

If F has bounded type in C+ then, according to [5, Theorems 9 and 10], we have
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lim sup
y→∞

y−1 log |F (iy)| = v(F ) < ∞. (2.1)

The number v(F ) is called the mean type of F . We say that an entire function F : C → C, not identically 
zero, has exponential type if

lim sup
|z|→∞

|z|−1 log |F (z)| = τ(F ) < ∞.

In this case, the non-negative number τ(F ) is called the exponential type of F . If F : C → C is entire we 
define F ∗ : C → C by F ∗(z) = F (z) and if F (z) = F ∗(z) we say that it is real entire.

A Hermite–Biehler function E : C → C is an entire function that satisfies the fundamental inequality

|E∗(z)| < |E(z)|,

for all z ∈ C
+. We define the de Branges space H(E) to be the space of entire functions F : C → C such 

that

‖F‖2
E :=

∞∫
−∞

|F (x)|2 |E(x)|−2 dx < ∞ ,

and such that F/E and F ∗/E have bounded type and non-positive mean type in C+. This forms a Hilbert 
space with respect to the inner product

〈F,G〉E :=
∞∫

−∞

F (x)G(x) |E(x)|−2 dx.

The Hilbert space H(E) has the special property that, for each w ∈ C, the map F �→ F (w) is a continuous 
linear functional on H(E). Therefore, there exists a function z �→ K(w, z) in H(E) such that

F (w) = 〈F,K(w, ·)〉E . (2.2)

The function K(w, z) is called the reproducing kernel of H(E). If we write

A(z) := 1
2
{
E(z) + E∗(z)

}
and B(z) := i

2
{
E(z) − E∗(z)

}
,

then A and B are real entire functions with only real zeros and E(z) = A(z) − iB(z). The reproducing 
kernel is then given by [5, Theorem 19]

π(z − w)K(w, z) = B(z)A(w) −A(z)B(w),

or alternatively by

2πi(w − z)K(w, z) = E(z)E∗(w) − E∗(z)E(w). (2.3)

When w = z we have

πK(z, z) = B′(z)A(z) −A′(z)B(z). (2.4)

We may apply the Cauchy–Schwarz inequality in (2.2) to obtain that
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|F (w)|2 ≤ ‖F‖2
EK(w,w), (2.5)

for every F ∈ H(E). Also, it is not hard to show that K(w, w) = 0 if and only if w ∈ R and E(w) = 0 (see 
[24, Lemma 11]).

We denote by ϕ a phase function associated to E. This is an analytic function in a neighborhood of R
defined by the condition eiϕ(x)E(x) ∈ R for all real x (ϕ is uniquely defined modulo the sum of a constant 
of the form πk for k ∈ Z). We obtain that

ϕ′(x) = Re
{
i
E′(x)
E(x)

}
= π

K(x, x)
|E(x)|2 > 0, (2.6)

for all real x and thus ϕ(x) is an increasing function of real x. We also have that

e2iϕ(x) = A(x)2

|E(x)|2 − B(x)2

|E(x)|2 + 2iA(x)B(x)
|E(x)|2 ,

for all real x. As a consequence, the points t ∈ R such that ϕ(t) ≡ 0 mod π coincide with the real zeros of 
B/E and the points s ∈ R such that ϕ(s) ≡ π/2 mod π coincide with the real zeros of A/E and by (2.6), 
these zeros are simple. In particular, the function B/A has only simple real zeros and simple real poles that 
interlace.

Denote by TB the set of real zeros of the function B. This set plays a special role in the theory of de 
Branges associated with a function E with no real zeros. In this case, by (2.4) and the reproducing kernel 
property, we easily see that the functions {B(z)/(z − t)}t∈TB

form an orthogonal set in H(E) and, by [5, 
Theorem 22] form a basis if and only if B /∈ H(E). In that case the identities

‖F‖2
H(E) =

∑
t∈TB

|F (t)|2
K(t, t) (2.7)

and

F (z) = B(z)
∑
t∈TB

F (t)
B′(t)(z − t)

hold for all F ∈ H(E).
Finally, we say that H(E) is closed under differentiation if F ′ ∈ H(E) whenever F ∈ H(E). Inequality 

(2.5) together with the fact that w ∈ C �→ K(w, w) is a continuous functions implies that convergence in the 
norm of H(E) implies uniform convergence in compact sets of C. As a consequence, differentiation defines 
a closed linear operator on H(E) and therefore by the Closed Graph Theorem defines a bounded linear 
operator on H(E).

2.2. Main results

We prove in Section 4 the following statement about the differentiation operator on H(Eν) for ν ≥ 2.

Theorem 1. The following statements are equivalent:

(1) E′/E ∈ H∞(C+);
(2) H(Eν) is closed under differentiation for some integer ν ≥ 2;
(3) H(Eν) is closed under differentiation for all integers ν ≥ 1.
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The next definitions set up the interpolation formula in H(Eν). Let ν ≥ 2 be an integer and E be a 
Hermite–Biehler function with no real zeros (hence the zeros of B are simple). Denote by Aν and Bν the 
real entire functions that satisfy Eν = Aν − iBν and by Kν(w, z) the reproducing kernel associated with 
H(Eν). We define the collection Bν of functions z �→ Bν,j(z, t) given by

Bν,j(z, t) = B(z)ν

(z − t)j (2.8)

where t ∈ TB and 1 ≤ j ≤ ν. For � ≥ 0 we denote by Pν,�(z, t) the Taylor polynomial of degree � of 
Bν,ν(z, t)−1 expanded into a power series at z = t as a function of z, that is,

1
Bν,ν(z, t)

=
�∑

n=0
aν,n(t)(z − t)n

︸ ︷︷ ︸
Pν,�(z,t)

+
∑
n>�

aν,n(t)(z − t)n.
(2.9)

Finally, we denote by Gν the collection of functions z �→ Gν,j(z, t) defined by

Gν,j(z, t) = Bν,ν−j(z, t)
Pν,ν−j−1(z, t)

j! , (2.10)

for j = 0, ..., ν − 1 and t ∈ TB . We note that

Gν,j(z, t) = (z − t)j

j! − B(z)ν

j!
∑

n≥ν−j

aν,n(t)(z − t)n+j−ν .

We easily see that these functions satisfy the following property

G
(�)
ν,j(s, t) = δ0(s− t)δ0(�− j) (2.11)

for �, j = 0, ..., ν − 1 and s, t ∈ TB (G(�)
ν,j(s, t) = ∂�

zGν,j(z, t)|z=s). We prove in Section 5 the following 
statement.

Theorem 2. Let E be a Hermite–Biehler function such that E′/E ∈ H∞(C+). Assume that the phase 
function ϕ associated with E satisfies 1 � ϕ′(t) for t ∈ TB. Then for ν ≥ 2 the following statements hold:

(1) For every F ∈ H(Eν)

F (z) =
∑
t∈TB

ν−1∑
j=0

F (j)(t)Gν,j(z, t), (2.12)

where the series converges to F in the norm of H(Eν) (hence, also uniformly in compact subsets of C);
(2) For F ∈ H(Eν)

∑
t∈TB

ν−1∑
j=0

|F (j)(t)|2
Kν(t, t)

� ‖F‖2
H(Eν) (2.13)

and
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∑
t∈TB

ν−1∑
j=0

Kν(t, t)|〈F,Gν,j(·, t)〉Eν |2 � ‖F‖2
H(Eν), (2.14)

where the implied constants are independent of F ;
(3) If any of the terms of the series in (2.13) (respect. (2.14)) is removed, the modified formula fails to hold.

The necessity of the boundedness of the phase at points in TB is the focus of the following statement.

Theorem 3. Let E be a Hermite–Biehler function such that E′/E ∈ H∞(C+), and let ν ≥ 2. If

‖F‖2
H(Eν) �

∑
t∈TB

ν−1∑
j=0

|F (j)(t)|2
Kν(t, t)

,

for all F ∈ H(Eν), then 1 � ϕ′(t) for t ∈ TB.

Finally, we remark that there exist Hermite–Biehler functions E with E′/E ∈ H∞(C+) and ϕ′(x) → 0
as |x| → ∞. For example, let wn = xn − iyn with yn > 0 be such that

∑
n

1
yn

< ∞

and define

E(z) =
∏
n

(
1 − z

wn

)
ezRe (1/wn).

The identity e2iϕ(x) = E∗(x)/E(x), valid for x ∈ R, convergence of 
∑

n y
−1
n , and the representation

ϕ′(x) =
∑
n

yn
(x− xn)2 + y2

n

may be used to show that ϕ′(x) → 0 as |x| → ∞. Logarithmic differentiation of E(z) for Im z > 0 gives

∣∣∣∣E
′(z)

E(z)

∣∣∣∣ =
∣∣∣∣∑

n

{
1

z − wn
+ xn

x2
n + y2

n

} ∣∣∣∣ ≤ ∑
n

1
yn

+ |xn|
x2
n + y2

n

≤
∑
n

1
yn

+ 1
2yn

< ∞,

that is, E′/E is uniformly bounded in C+. This example shows that the condition E′/E ∈ H∞(C+) alone 
is not strong enough to imply the statements of Theorem 2.

2.3. Applications

We mention finally the following two applications. As was already pointed out in [20], Theorem 2 gives 
a sufficient condition for complete interpolating sequences with derivatives in Paley–Wiener space. We say 
that a sequence of real numbers {λm} is complete interpolating with derivatives up to order ν − 1 in the 
Paley–Wiener space PW = PW (τ), if the system

F (n)(λm) = fn,m

has a unique solution F ∈ PW for all
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({f0,m}, {f1,m}, ..., {fν−1,m}) ∈
ν times︷ ︸︸ ︷

�2(Z) × ...× �2(Z) .

We note that this condition is equivalent to

‖F‖2
L2 �

ν−1∑
n=0

∑
m

|F (n)(λm)|2,

for all F ∈ PW , and the above norm equivalence does not hold if one node λm0 is removed from the sequence 
{λm}.

Corollary 4. Assume that PW = H(Eν) (as sets) and inft∈TB
ϕ′(t) > 0. Then TB is a complete interpolating 

sequence with derivatives up to order ν − 1 for PW .

We now describe another application of our main results. There is a variety of examples of de Branges 
spaces that can be found in [5, Chapter 3]. A basic example would be the classical Paley–Wiener space 
H(e−iτz) which consists of entire functions of exponential type at most τ that have finite L2(R)-norm when 
restricted to the real axis. A natural extension of these spaces by using power weights in the L2-norm is 
the so called homogeneous de Branges spaces. In what follows we briefly review the main aspects of these 
spaces (see also [24, Section 5]).

For every real number α > −1 let Jα denote the classical Bessel function of the first kind. Let

Eα(z) = Aα(z) − iBα(z),

where

Aα(z) = Γ(α + 1)(z/2)−αJα(z),

Bα(z) = Γ(α + 1)(z/2)−αJα+1(z).

It is known that Eα is a Hermite–Biehler function of bounded type in C+ and of exponential type exactly 1. 
Due to well known estimates for Bessel functions we can deduce that

|Eα(x)| |x|α+1/2 � 1, for 1 � |x|. (2.15)

The defining differential equation of Jα can also be used to deduce the following equations

A′
α(z) = −Bα(z),

B′
α(z) = Aα(z) − (2α + 1)Bα(z)/z.

In particular we have

i
E′

α(z)
Eα(z) = 1 − (2α + 1) Bα(z)

zEα(z) ,

and we conclude that E′
α/Eα ∈ H∞(C+). Also, since

ϕ′
α(x) = Re

[
i
E′

α(x)
]

= 1 − (2α + 1)Aα(x)Bα(x)
2
Eα(x) x|Eα(x)|
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for real x, we deduce that lim|x|→∞ ϕ′
α(x) = 1 (ϕα being the phase associated with Eα). This in turn implies 

that

Kα,ν(x, x)−1 � |E(x)|−2ν � |x|(2α+1)ν

for real x such that 1 � |x|, where Kα,ν(w, z) is the reproducing kernel of H(Eν
α) and ν ≥ 1 is an integer.

The space H(Eν
α) is then well-defined and by [24, Lemma 12] and (2.15) it coincides with the space of 

entire functions F of exponential type at most ν and such that

∫
R

|F (x)|2ωα(x)νdx < ∞, (2.16)

where ωα(x) = |x|2α+1 if |x| ≥ 1 and ωα(x) = 1 if |x| ≤ 1. Let {aα,n}n∈Z\{0} denote the real zeros of Aα

(note that these are exactly the non-zero Bessel zeros of Jα).

Corollary 5. Let α > −1 be a real number and ν ≥ 1 be an integer. Let F be an entire function of exponential 
type at most ν such that (2.16) is finite. Then we have

∫
R

|F (x)|2ωα(x)νdx �
∑

n∈Z\{0}

ν−1∑
j=0

|F (j)(aα,n)|2|aα,n|(2α+1)ν ,

where the implied constant does not depend on F . Moreover, there exists functions {Gα,ν,n}n∈Z\{0} such 
that

F (z) =
∑

n∈Z\{0}

ν−1∑
j=0

F (j)(aα,n)Gα,ν,n(z),

where the series converges to F (z) in the norm (2.16) and uniformly in compact sets of C.
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4. Differentiation operator on H(Eν)

We prove Theorem 1 in this section. We require some auxiliary results about spaces H(Eν) on which the 
derivative defines a bounded operator. Throughout this section E denotes a Hermite–Biehler entire function 
with phase ϕ.

Proposition 6. Let ν ≥ 2 be an integer. Assume that differentiation defines a bounded operator on H(Eν)
with norm D. Then:

(1) For all real x

ϕ′(x) ≤ D
√
ν; (4.1)
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(2) The zeros of E are separated from the real axis, that is, if E(x − iy) = 0 for x, y ∈ R then

y ≥ 1
D√

ν
. (4.2)

Proof. Item (1). Using the reproducing kernel definition (2.3) we deduce that

Kν(x, x) = ν|E(x)|2(ν−1)K(x, x),

for all real x, where Kν(w, z) and K(w, z) are respectively the reproducing kernels associated with H(Eν)
and H(E). This implies that

Kν(t, t) = ν

π
A(t)2ν−1B′(t), (4.3)

for all t ∈ TB . We prove (4.1) first for x = t ∈ TB . Consider the entire function F defined by

F (z) = E(z)ν−2B(z)K(t, z).

Evidently, F ∈ H(Eν) and by (2.5) we obtain

|F ′(t)|2 ≤ ‖F ′‖2
EνKν(t, t) ≤ D2‖F‖2

EνKν(t, t).

A direct calculation gives

‖F‖2
Eν ≤ ‖K(t, z)‖2

E = B′(t)A(t)/π

and F ′(t) = A(t)ν−1B′(t)2/π. Using identity (2.6) in the form ϕ′(t) = B′(t)/A(t) for t ∈ TB implies (4.1)
for t ∈ TB .

Now, let θ ∈ R be arbitrary and denote by ϕθ(x) the phase of Eθ(z) = eiθE(z) = Aθ(z) −iBθ(z). Observe 
that ϕθ(x) = ϕ(x) + θ for all real x and Eν and Eν

θ generate the same space. Thus Eθ does not have real 
zeros and the real zeros of Bθ coincide with the points ϕ(x) ≡ θ mod π. Hence, the above argument for 
the space H(Eν

θ ) gives the claim for arbitrary x ∈ R.
Item (2). By [2, Proposition 1.2] the function E is of exponential type. Moreover, it cannot have a real 

zero z0, since every function F ∈ H(Eν) would vanish at z0. This is not possible since F ′ ∈ H(Eν) for all 
F ∈ H(Eν).

We conclude that E has the following form (see [4, Theorem 7.8.3])

E(z) = Ce−iaz
∏(

1 − z

wn

)
ezRe ( 1

wn
),

where C is a constant, Re a ≥ 0 and wn = xn − iyn are the zeros of E which satisfy

∑
n

1 + yn
|wn|2

< ∞.

This allow us to deduce that the derivative of the phase function associated with E is given by

ϕ′(x) = Re a +
∑
n

yn
(x− xn)2 + y2

n

.

We deduce that ϕ′(xn) ≥ y−1
n . The proof of this item is concluded once we use (4.1). �
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Corollary 7. Let ν ≥ 2 be an integer. If differentiation defines a bounded operator on H(Eν), then A, B /∈
H(E).

Proof. We can apply [3, Corollary 2] to deduce that if B ∈ H(E) (or A ∈ H(E)) then the zeros xn − iyn of 
E satisfy 

∑
n yn < ∞. This contradicts (4.2). �

Proof of Theorem 1. If E′/E ∈ H∞(C+), then [1, Theorem 3.2] applied to Eν shows that differentiation 
defines a bounded operator on H(Eν) for all ν ≥ 1.

If differentiation defines a bounded operator on H(Eν) for some ν ≥ 2, then (4.2) holds. It follows that 
E′/E ∈ H∞(C+) by [2, Theorem A]. �
5. Frames for H(Eν)

As in the previous section E is a Hermite–Biehler function with phase ϕ. Recall that Bν is the collection 
of functions

Bν,j(z, t) = B(z)ν

(z − t)j

where t ∈ TB and 1 ≤ j ≤ ν, and Gν is the collection of functions Gν,j(z, t) defined in (2.10). The recipe for 
the proof of Theorem 2 is the following:

(1) We show that the span of the collection Gν is dense in H(Eν), which by (2.11) implies that there exists 
a dense set of functions in H(Eν) for which (2.12) holds;

(2) We derive estimates involving the inner products of the collection Gν in order to prove Theorem 2
item (2) for a dense set of functions (and hence for the whole space).

Lemma 8. Assume E has no real zeros, B /∈ H(E), and ν ≥ 1. Then the span of Bν and the span of Gν

defined in (2.8) and (2.10) are both dense in H(Eν).

Proof. First we show via induction on ν that the span of the collection Bν is dense in H(Eν). It follows 
from [5, Theorem 22] that the span of B1 is dense in H(E). Let ν ≥ 1 and assume that the span of Bν is 
dense in H(Eν). It follows from [1, Lemma 4.1] that if Ea and Eb are two Hermite–Biehler functions then

H(EaEb) = E∗
aH(Eb) ⊕ EbH(Ea)

where the sum is orthogonal. This implies that

H(Eν+1) = AH(Eν) ⊕BH(Eν),

where the sum is direct but possibly non-orthogonal. Thus, by induction assumption the span of the collec-
tion C = ABν ∪ BBν is dense in H(Eν+1). Evidently BBν is a subset of Bν+1. It remains to show that the 
collection ABν can be arbitrarily approximated in the norm of H(Eν+1) by elements of the span of Bν+1. 
We start by showing that ABν,ν is contained in the closure of the span of Bν+1 in H(Eν+1).

The identity

A(z)Bν,ν(z, t) = A(t)
B′(t) [Bν+1,ν+1(z, t) −B(z)C(z, t)]

holds for t ∈ TB , where
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C(z, t) = Bν−1,ν−1(z, t)
A(t)B(z) −B′(t)(z − t)A(z)

A(t)(z − t)2

is an element of H(Eν). The induction assumption in conjunction with inequality ‖BG‖Eν+1 ≤ ‖G‖Eν for 
G ∈ H(Eν) may be used to show that BC is contained in the span of BBν ⊆ Bν+1 in H(Eν+1). It follows 
that ABν,ν is contained in the closure of the span of Bν+1 in H(Eν+1). If 1 ≤ j ≤ ν − 1 then evidently 
A(z)Bν,j(z, t) = B(z)H(z) for some H ∈ H(Eν) and the same argument may be applied. This proves the 
first part of the lemma.

Now, by (2.9) and (2.10) we deduce that

Gν,j(z, t) = 1
j!

ν−j−1∑
n=0

aν,n(t)Bν,ν−j−n(z, t)

= 1
j!

ν−j∑
n=1

aν,ν−j−n(t)Bν,n(z, t).

(5.1)

Suppressing the arguments t and z, this is in matrix notation

⎡
⎢⎢⎣

Gν,0
Gν,1

...
Gν,ν−1

⎤
⎥⎥⎦ =

⎛
⎜⎜⎜⎝

aν,ν−1
0! . . .

aν,1
0!

aν,0
0!

aν,ν−2
1! . . .

aν,0
1! 0

... 0 0
aν,0

(ν−1)! . . . 0 0

⎞
⎟⎟⎟⎠

⎡
⎢⎢⎣
Bν,1
Bν,2

...
Bν,ν

⎤
⎥⎥⎦ . (5.2)

Since aν,0(t) = 1/B′(t)ν �= 0, it follows that the above matrix is invertible and, in particular, any element 
of Bν is a linear combination of elements from Gν and vice versa, which finishes the proof. �
Lemma 9. Let ν ≥ 2 be an integer. Assume that differentiation defines a bounded operator on H(Eν) with 
norm D. Then:

(1) The zeros of B are separated, that is, we have

|t− s| ≥ π

D√
ν
, (5.3)

for all s, t ∈ TB;
(2) For all real x and t ∈ TB we have

∣∣∣∣ B(x)
E(x)(x− t)

∣∣∣∣ ≤ D
√
ν. (5.4)

Proof. The positivity of ϕ′ and the bound ϕ′(x) ≤ D
√
ν from (4.1) imply

|ϕ(s) − ϕ(t)| ≤ D
√
ν|s− t|,

for any s, t ∈ R. If s, t ∈ TB are consecutive elements, then the left side equals π.
Inequality (2.5) gives |K(w, z)|2 ≤ K(w, w)K(z, z) for all w, z ∈ C. We obtain

∣∣∣∣ B(x)
E(x)(x− t)

∣∣∣∣
2

= π2 K(t, x)2

A(t)2|E(x)|2 ≤ π2K(t, t)
A(t)2

K(x, x)
|E(x)|2 = ϕ′(t)ϕ′(x) ≤ D2ν

which finishes the proof. �
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Lemma 10. Assume A /∈ H(E). Then for any integer ν ≥ 2 and any F ∈ H(E) we have

ν−1/2‖F‖E ≤ ‖Bν−1F‖Eν ≤ ‖F‖E . (5.5)

In particular, we have that

∥∥∥∥ B(z)ν

(z − t)

∥∥∥∥
2

Eν

� ϕ′(t),

for all t ∈ TB.

Proof. The right hand side inequality in (5.5) follows from |B(x)| ≤ |E(x)| for real x. For every ν ≥ 2 let 
E(z)ν = Aν(z) − iBν(z), where Aν(z) and Bν(z) are real entire functions. It is simple to see that when ν
is even Bν/A is entire and when ν is odd Aν/A is entire. In either case, the zeros of A form a subset of the 
zeros that occur in (2.7) for H(Eν), and we obtain

‖Bν−1F‖2
Eν ≥

∑
A(s)=0

|B(s)|2ν−2|F (s)|2
Kν(s, s)

= π

ν

∑
A(s)=0

|B(s)|2ν−2|F (s)|2
|A′(s)B(s)2ν−1|

= ν−1
∑

A(s)=0

|F (s)|2
K(s, s) = ν−1‖F‖2

E

with another application of (2.7). �
Lemma 11. Let ν ≥ 1 be an integer. Then for all distinct s, t ∈ TB we have

〈Bν,1(·, s), Bν,1(·, t)〉Eν = 0.

Proof. We define an entire function I = Is,t by

I(z) = B(z)2ν

(E(z)(E∗(z))ν(z − s)(z − t)

where s and t are two zeros of B. The decomposition

B(z)2ν

(E(z)E∗(z))ν = iν

2ν
2ν∑
j=0

(
2ν
j

)
E(z)jE∗(z)2ν−j

(E(z)E∗(z))ν (−1)2ν−j

= iν

2ν
2ν∑
j=0

(
2ν
j

)(
E(z)
E∗(z)

)j−ν

(−1)2ν−j

suggests to consider Ij for j ∈ {0, ..., 2ν} defined by

Ij(z) = 1
(z − s)(z − t)

(
E(z)
E∗(z)

)j−ν

.

Evidently each Ij is meromorphic with poles at s and t, and additional poles in the upper half plane if 
j > ν and the lower half plane if j < ν. This suggest to consider a contour CK consisting of a deformation of 
[−K, K] by small semicircles avoiding s and t, and closed by a large semicircle in the appropriate half-plane 
of radius K and center at the origin. Since E∗/E is bounded by 1 in the upper half plane (and E/E∗
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analogously in the lower half plane), a standard residue theorem argument and the identities E(t) = E∗(t)
for t ∈ TB may be used to show

1
2πi

∫
CK

Ij(z)dz = 0,

the details are left to the reader. �
Lemma 12. Assume differentiation defines a bounded operator on H(Eν) with norm D. Then the following 
statements hold:

(1) For any distinct s, t ∈ TB and j = 2, ..., ν we have

|〈Bν,j(·, s), Bν,j(·, t)〉Eν | � 1
(s− t)2 ;

(2) For any t ∈ TB and j = 1, ..., ν we have

‖Bν,j(·, t)‖Eν � 1;

(3) Denote by aν,j(t) the coefficient of (z− t)j in the Taylor series expansion of Bν,ν(z, t)−1 about the point 
z = t. Assume also that δ = inft∈TB

ϕ′(t). Then

|aν,j(t)|2 � 1
Kν(t, t)

,

for all t ∈ TB and j = 0, ..., ν − 1.

All the implied constants above depend only on ν, D and δ.

Proof. Item (1). Using the fact that |B(x)| ≤ |E(x)| for all real x we deduce that

〈B2,2(z, s), B2,2(z, t)〉E2 ≤
∥∥∥∥ B(z)

(z − t)(z − s)

∥∥∥∥
2

E

= π

(
ϕ′(t) + ϕ′(s)

(t− s)2

)

� (t− s)−2,

where the identity above is due to formula (2.7) and the last inequality due to (4.1). Now, for any j = 2, . . . , ν
we have the following sequence of estimates

∣∣∣∣Bν,j(x, t)Bν,j(x, s)
|E(x)|2ν

∣∣∣∣ = B(x)2ν

|x− t|j |x− s|j |E(x)|2ν

≤ B(x)2j

|x− t|j |x− s|j |E(x)|2j

� B(x)4

|x− t|2|x− s|2|E(x)|4 ,

where the last inequality above is due to (5.4). We conclude that

|〈Bν,j(z, s), Bν,j(z, t)〉Eν | � 〈B2,2(z, s), B2,2(z, t)〉E2 � (t− s)−2.
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Item (2). We apply (5.4) and |B/E| ≤ 1 on R to deduce that
∣∣∣∣ B(x)ν

(x− t)jE(x)ν

∣∣∣∣ �
∣∣∣∣ B(x)
(x− t)E(x)

∣∣∣∣ ,
for all real x and j = 1, . . . , ν. It follows that

‖Bν,j(z, t)‖2
Eν �

∥∥∥∥B(z)
z − t

∥∥∥∥
2

E

= πϕ′(t) ≤ πD
√
ν.

Item (3). Denote by bν,j(t) the coefficients of the power series expansion of Bν,ν(z, t) as a function of 
z about z = t. The assumption that ϕ′(t) ≥ δ whenever B(t) = 0 in conjunction with identity (4.3) and 
estimate (4.1) implies that

|bν,0(t)|2 = |B′(t)ν |2 � Kν(t, t).

Also, for j = 1, . . . , ν we have

|bν,j(t)|2 = 1
(j!)2 |B

(j)
ν,ν(t, t)|2 ≤ 1

(j!)2 ‖B
(j)
ν,ν(·, t)‖2

EνKν(t, t) � Kν(t, t).

We obtain

|bν,j(t)|
|bν,0(t)|

� 1. (5.6)

Now note that for � = 1, . . . , ν − 1

0 = ∂�
z

[
Bν,ν(z, t)
Bν,ν(z, t)

]
z=t

= �!
�∑

j=0
aν,j(t)bν,�−j(t).

Hence the relation between aν,j(t) and bν,j(t) is given by a triangular matrix with diagonal terms equal to 
bν,0(t). Using (5.6) we conclude that

|aν,j(t)|2 � 1/Kν(t, t).

This concludes the lemma. �
For the sake of completeness we state here a result about Hilbert-type inequalities [14, Corollary 22].

Lemma 13. Let λ1, λ2, . . . , λN be real numbers such that |λn − λm| ≥ σ whenever m �= n, for some σ > 0. 
Let a1, a2, . . . , aN be complex numbers. Then

− π2

6σ2

N∑
n=1

|an|2 ≤
N∑

m,n=1
m�=n

anam
(λn − λm)2 ≤ π2

3σ2

N∑
n=1

|an|2. (5.7)

The constants appearing in these inequalities are the best possible (as N → ∞).

The next lemma estimates the norm of the linear combination of elements from Gν. This is one of the 
two inequalities needed to show that this collection is a (weighted) frame (see [23, Chapter 5]).
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Lemma 14. Assume ϕ′(t) ≥ δ > 0 for all t ∈ TB, and assume differentiation defines a bounded operator on 
H(Eν) with norm D. Let cj(t) ∈ C for t ∈ TB and j ∈ {0, ..., ν − 1} be such that

∑
t∈TB

ν−1∑
j=0

|cj(t)|2
Kν(t, t)

< ∞.

Then the series

C(z) =
∑
t∈TB

ν−1∑
j=0

cj(t)Gν,j(z, t)

converges in the norm of H(Eν) and we have

‖C‖2
H(Eν) �

∑
t∈TB

ν−1∑
j=0

|cj(t)|2
Kν(t, t)

,

where the implies constant depends only on ν, D and δ.

Proof. Define

dm(t) =
ν−m∑
j=0

aν,ν−m−j(t)
cj(t)
j! .

By item (3) of Lemma 12 we trivially obtain

∑
t∈TB

ν∑
m=1

|dm(t)|2 �
∑
t∈TB

ν−1∑
j=0

|cj(t)|2
Kν(t, t)

< ∞. (5.8)

Let S ⊂ TB be any finite set. Using (5.1) we obtain

∥∥∥∑
t∈S

ν−1∑
j=0

cj(t)Gν,j(z, t)
∥∥∥2

Eν
=

∥∥∥∑
t∈S

ν−1∑
j=0

cj(t)
j!

ν−j∑
m=1

aν,ν−m−j(t)Bν,m(z, t)
∥∥∥2

Eν

=
∥∥∥∑

t∈S

ν∑
m=1

dm(t)Bν,m(z, t)
∥∥∥2

Eν

�
ν∑

m=1

∑
t∈S

|dm(t)|2 +
ν∑

m=2

∑
s,t∈S
s �=t

|dm(t)||dm(s)|
(t− s)2

�
ν∑

m=1

∑
t∈S

|dm(t)|2

�
∑
t∈S

ν−1∑
j=0

|cj(t)|2
Kν(t, t)

,

where the first inequality is due to Lemmas 11 and 12, and the third inequality follows from (5.8). The 
second term on the right hand side of the third line in the above calculation is in the form of a Hilbert-Type 
inequality. By (5.3) the points TB are uniformly separated, hence the second inequality above follows by (5.7). 
Since the constants do not depend on the subset S, the lemma follows. �
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5.1. Proof of Theorem 2

We aim to show first that for F ∈ H(Eν) the series in (2.12) converges to F in H(Eν). Since E′/E ∈
H∞(C+), we obtain from Theorem 1 that F (j) ∈ H(Eν) for every j ≥ 0. Since TB ⊂ TBν

, we may apply 
(2.7) in H(Eν) to F (j) to obtain

ν−1∑
j=0

∑
t∈TB

|F (j)(t)|2
Kν(t, t)

� ‖F‖2
Eν . (5.9)

Thus, we may apply Lemma 14 to deduce that the interpolation formula (2.12) converges in H(Eν) to a 
function F0. We claim that F0 = F . By Lemma 8, the span of Gν is dense in H(Eν) and by property (2.11)
any function H in the span of Gν satisfies interpolation formula (2.12). Evidently F0 is in the closure of the 
span of Gν , hence we have

‖H − F0‖2
Eν �

ν−1∑
j=0

∑
t∈TB

|H(j)(t) − F (j)(t)|2
Kν(t, t)

,

for all H ∈ Gν . An application of (5.9) bounds the sum on the right in terms of ‖H − F‖Eν . Adding and 
subtracting suitable H in ‖F − F0‖Eν shows that this norm equals zero, that is, F = F0.

We prove next relation (2.14). Define

Δν,j,t(z) = Kν(t, t)−
1
2Dν,j(z, t).

Equation (2.13) implies that {Δν,j,t : j = 0, ..., ν − 1; t ∈ TB} is an (unweighted) frame for H(Eν). 
Consider the frame operator U : H(Eν) → H(Eν) defined by

UF (z) =
∑
t∈TB

ν−1∑
j=0

〈F,Δν,j,t〉H(Eν)Δν,j,t(z).

It is a basic result of frame theory (see [23, Corollary 5.1.3]) that U is invertible and positive, and that 
the collection {U−1Δν,j,t : j = 0, ..., ν − 1; t ∈ TB} is also a frame, sometimes called the canonical dual 
frame. It follows immediately that

UGν,j = Kν(t, t)−
1
2 Δν,j,t(z),

which implies that {Kν(t, t)
1
2Gν,j(., t) : j = 0, ..., ν − 1; t ∈ TB} is a dual frame of Dν . This implies (2.14). 

We remark that since for every fixed t ∈ TB the functions Gν,j(z, t) and Bν,j(z, t) are connected via an 
invertible matrix transformation, the inequalities can also be shown from the bounds for Bν established in 
Lemma 12. Finally, the fact that the relations (2.13) and (2.14) fail to hold if a term is removed is a direct 
consequence of property (2.11) and relation (5.2). The proof of Theorem 2 is complete.

5.2. Proof of Theorem 3

Let ν ≥ 2. We assume that E′/E ∈ H∞(C+) and

‖F‖Eν �
∑
t∈TB

ν−1∑
j=0

|F (j)(t)|2
Kν(t, t)

(5.10)



JID:YJMAA AID:21732 /FLA Doctopic: Complex Analysis [m3L; v1.223; Prn:9/10/2017; 14:36] P.18 (1-24)
18 F. Gonçalves, F. Littmann / J. Math. Anal. Appl. ••• (••••) •••–•••
for all F ∈ H(Eν). Using Corollary 7 in conjunction with Lemma 10 we deduce that

∥∥∥∥B(z)ν

z − t

∥∥∥∥
2

Eν

� ϕ′(t),

for any t ∈ TB . From (5.10) and identity (4.3) we deduce that

∥∥∥∥ B(z)ν

(z − t)

∥∥∥∥
2

Eν

� B′(t)2ν((ν − 1)!)2

Kν(t, t)
= π((ν − 1)!)2

ν
ϕ′(t)2ν−1.

Since the implicit constants are independent of t, division by ϕ′(t) gives 1 � ϕ′(t) for all t ∈ TB .

6. The Lp case

De Branges spaces are closely related to Hardy spaces in the upper half-plane C+. For a given p ∈ [1, ∞], 
the Hardy space Hp(C+) is defined as the space of holomorphic functions F : C+ → C such that

sup
y>0

‖F (x + iy)‖Lp < ∞,

where ‖ · ‖Lp denotes the standard Lp-norm in the variable x-variable. In this situation, the limit F (x) =
limy→0 F (x + iy) exists in the Lp-sense and

sup
y>0

‖F (x + iy)‖Lp = ‖F (x)‖Lp .

This space endowed with the above norm defines a Banach space of holomorphic functions on the upper 
half-plane.

Given a Hermite–Biehler function E one can prove that an entire function F belongs to H(E) if and only 
if F/E and F ∗/E belong to the space H2(C+). This equivalent definition allows us to define de Branges 
spaces for any given exponent p ∈ [1, ∞]. The Lp de Branges space Hp(E) is defined as the space of entire 
functions F such that F/E and F/E∗ belong to Hp(C+) (hence H2(E) = H(E)). Using the fact that 
Hp(C+) is a Banach space one can easily prove that Hp(E) is a Banach space of entire functions with norm 
given by

‖F‖E,p =
(∫

R

∣∣∣∣F (x)
E(x)

∣∣∣∣
p

dx
)1/p

for finite p, or

‖F‖E,∞ = sup
x∈R

∣∣∣∣F (x)
E(x)

∣∣∣∣
for p = ∞. For all these facts see [20, Section 3] and [1,2].

Evidently ‖K(w, .)‖E,q < ∞ for every 1 < q ≤ ∞ and w ∈ C. It follows that these spaces have a 
reproducing kernel structure given by the Cauchy formula for functions of Hardy spaces (see [26, Theorems 
13.2 and 13.5]), namely if p ∈ [1, ∞) and F ∈ Hp(E) then

F (w) =
∫

F (x)K(w, x)
|E(x)|2 dx (6.1)
R
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for every w ∈ C, where K(w, z) is defined in (2.3). Using Hölder’s inequality we obtain an important 
estimate

|F (w)| ≤ ‖F‖E,p‖K(w, ·)‖E,p′ , (6.2)

where p′ is the conjugate exponent of p. Using the known fact that the space Hp′(C+) can be identified 
with the dual space of Hp(C+) for p ∈ (1, ∞) one can deduce that Hp(E)′ = Hp′(E) if p ∈ (1, ∞), that is, 
if Λ is a functional over Hp(E) then there exists a function Λ ∈ Hp′(E) such that

〈Λ, F 〉 =
∫
R

F (x)Λ(x)
|E(x)|2 dx,

for all F ∈ Hp(E). The proof of this duality result deals with model spaces which diverges from the purposes 
of this article. For the interested reader we refer to [2, Proposition 1.1] and [17, Lemma 4.2].

It is the goal of this section to prove that the interpolation series of F ∈ Hp(Eν) represents F . We 
conjecture that convergence of the series takes place in Hp(Eν) as well, but we do not have a proof of this 
statement.

Theorem 15. Let ν ≥ 2 be an integer and let 1 ≤ p < ∞. Let E be a Hermite–Biehler function with 
E′/E ∈ H∞(C+), and assume that there exists δ > 0 so that ϕ′(t) ≥ δ for all t ∈ TB. Then

F (z) =
∑
t∈TB

ν−1∑
j=0

F (j)(t)Gν,j(z, t) (6.3)

where the formula converges uniformly in compact subsets of C.

6.1. Preliminaries

We collect facts about Hp(Eν) that will be needed in the proof of Theorem 15.

Lemma 16. Assume that the phase ϕ of E has bounded derivative on R. Then for 1 ≤ p < q < ∞ we have 
Hp(E) ⊂ Hq(E) continuously. Also, if p > 1 then Hp(E) is dense in Hq(E).

Proof. The inclusion part is [20, Lemma 9]. The second part is an straightforward application of the Hahn–
Banach Theorem and the reproducing kernel property (6.1). �

The following proposition collects relations between the condition E
′

E ∈ H∞(C+) and boundedness of the 
differentiation operator on Hp(Eν). It is not clear if boundedness of differentiation on Hp(Eν) for ν ≥ 2
and E′/E ∈ H∞(C+) are equivalent. We are not able to prove it for p �= 2, but we are also not aware of 
any counterexample.

We say that the zeros wn = xn − iyn of E are separated from the real line if infn yn > 0.

Proposition 17. Let ν ≥ 2 and p ∈ (1, ∞).

(1) If E′/E ∈ H∞(C+) then Hp(Eν) is closed under differentiation and the zeros of E are separated from 
the real line.

(2) Assume Hp(Eν) is closed under differentiation. Then E′/E ∈ H∞(C+) if and only if the zeros of E are 
separated from the real line.

(3) If Hp(Eν) is closed under differentiation and v(E∗/E) < 0 then E′/E ∈ H∞(C+).
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Proof. Item (1). If E′/E ∈ H∞(C+) then by Theorem 1 the space H2(Eν) is closed under differentiation. By 
Proposition 6 the zeros of E are separated from the real line, and by [2, Proposition 1.2] the function E is of 
exponential type. We can now apply [2, Theorem A] to deduce that Hp(Eν) is closed under differentiation.

Item (2). Assume Hp(Eν) is closed under differentiation. If E′/E ∈ H∞(C+) then by Theorem 1 the 
space H2(Eν) is closed under differentiation. By Lemma 6 the zeros of E are separated from the real line. 
Conversely, if the zeros of E are separated from the real line then [2, Theorem A] implies E′/E ∈ H∞(C+).

Item (3). This is a direct consequence of [2, Theorem A]. �
We say that a sequence of real numbers {λn} is ε-separated, for some ε > 0, if |λn − λn| ≥ ε for every 

m �= n. We now prove a generalized (weighted) version of the Pólya–Plancherel theorem (see [27]).

Lemma 18. Let E be a Hermite–Biehler function with zeros wn = xn − iyn such that h = infn yn > 0 and 
τ = supx ϕ

′(x) < ∞. If {λn} is an ε-separated sequence of real numbers, p ∈ [1, ∞) and F ∈ Hp(E), then

∑
n

∣∣∣∣F (λn)
E(λn)

∣∣∣∣
p

≤ 1 + e6τpα

πα

∫
R

∣∣∣∣F (x)
E(x)

∣∣∣∣
p

dx

where α = min{ε/2, h/2}.

Proof. Step 1. Since E∗/E is bounded on the upper half-plane and has modulo one in the real line, by 
Nevanlinna’s factorization (see [5, Theorem 8]) we obtain

Θ(z) := E∗(z)
E(z) = e2aiz

∏
n

1 − z/wn

1 − z/wn

where 2a = −v(E∗/E) ≥ 0 (v(·) denotes the mean type of a function defined in (2.1)). If z = x + iy with 
y ≥ 0 we have the following identity

1
2∂y log |Θ∗(z)| =a +

∑
n

yn[(x− xn)2 + y2
n − y2]

|z − wn|2|z − wn|2
.

If 0 ≤ y ≤ h/2 then y2
n − y2 ≤ 3(yn − y)2 and we deduce that

1
2∂y log |Θ∗(z)| ≤ a + 3

∑
n

yn
(x− x2

n) + y2
n

≤ 3
2∂y log |Θ∗(x)|

= 3ϕ′(x) ≤ 3τ.

Integrating in y, we obtain |Θ∗(z)| ≤ e6τy for 0 ≤ y ≤ h/2.
Step 2. Let α = min{h/2, ε/2}. Since the function |F (z)/E(z)|p is sub-harmonic in the half-plane Im z >

−h, its value at the center of a disk is not greater than its mean value over the disk. We obtain

|F (λn)/E(λn)|p ≤ 1
πα2

α∫
0

2π∫
0

|F (λn + ρeit)/E(λn + ρeit)|pdtρdρ

≤ 1
πα2

α∫ λn+α∫
|F (x + iy)/E(x + iy)|pdxdy.
−α λn−α
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Using the separability of {λn} we can sum the above inequality for all values of n to obtain

∑
n

|F (λn)/E(λn)|p ≤ 1
πα2

α∫
−α

∫
R

|F (x + iy)/E(x + iy)|pdxdy

= 1
πα2

α∫
0

∫
R

|F (x + iy)/E(x + iy)|pdxdy

+ 1
πα2

α∫
0

∫
R

|F ∗(x + iy)/E∗(x + iy)|pdxdy.

Since |Θ∗(z)| ≤ e6τy for 0 ≤ y ≤ h/2 we conclude that

∑
n

|F (λn)/E(λn)|p ≤ 1
πα2

α∫
0

∫
R

|F (x + iy)|p + e6τpα|F ∗(x + iy)|p
|E(x + iy)|p dxdy.

By definition, F/E and F ∗/E belong to the Hardy space Hp(C+). A basic property of Hardy spaces is that

sup
y>0

‖G(x + iy)‖Lp = lim
y→0

‖G(x + iy)‖Lp

for every G ∈ Hp(C+) (see [26, Theorems 13.2 and 13.5]). Using this last fact we obtain

∫
R

|F (x + iy)|p + e6τpα|F ∗(x + iy)|p
|E(x + iy)|p dx ≤ (1 + e6τpα)

∫
R

∣∣∣∣F (x)
E(x)

∣∣∣∣
p

dx

for every y > 0. This concludes the lemma. �
6.2. Proof of Theorem 15

We show first that the singular part of the function F (z)/B(z)ν at a given zero t ∈ TB is

ν−1∑
j=0

F (j)(t)Gν,j(z, t)
Bν(z) =

ν−1∑
j=0

F (j)(t)Pν,ν−j−1(z, t)
j!(z − t)ν−j

.

To see this, define for any complex number w a linear operator Sw on the space of meromorphic functions 
by

Sw(G)(z) =
∑
n≤−1

gn(z − w)n

if G has the series representation

G(z) =
∑
n∈Z

gn(z − w)n

about z = w. That is, Sw(G) is defined as the singular part of the function G at the point z = w. Since G
is meromorphic, Sw(G) is always a rational function. It is a simple, but useful characterization that Sw(G)
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is the unique rational function R having exactly one pole which is located at z = w, such that G(z) − R

has a removable singularity at the point z = w and

lim
|z|→∞

R(z) = 0. (6.4)

Using (2.10) we obtain

St

(
F

Bν

)
(z) =

ν−1∑
j=0

F (j)(t)Pν,ν−j−1(z, t)
j!(z − t)ν−j

=
ν−1∑
j=0

F (j)(t)Gν,j(z, t)
B(z)ν . (6.5)

Now, for a given complex number w ∈ C we define another linear operator Mw on the space of entire 
functions F by

Mw(F )(z) = F (z)B(w)ν −B(z)νF (w)
z − w

.

We observe that for every t ∈ TB and every w ∈ C \ TB we have

St

(
Mw(F )(·)
B(w)νB(·)ν

)
(z) = St(F/Bν)(z) − St(F/Bν)(w)

z − w
. (6.6)

One can deduce this last identity by observing that

Mw(F )(z)
B(w)νB(z)ν − St(F/Bν)(z) − St(F/Bν)(w)

z − w

has a removable singularity at the point z = w and also that the right hand side of (6.6) is a rational 
function in the variable z with exactly one pole located at z = t and it satisfies condition (6.4).

Step 1. We begin with the case p ∈ [1, 2). The assumption that E′/E ∈ H∞(C+) implies with Theorem 1
that H2(Eν) is closed under differentiation. Since ϕ′(x) = Re iE

′(x)
E(x) , we can apply Lemma 16 to conclude 

that Hp(Eν) ⊂ H2(Eν), hence formula (6.3) is a direct consequence of Theorem 2.
Step 2. Now, we deal with the case p ∈ (2, ∞). A crucial observation is that if F ∈ Hp(Eν) then 

Mw(F ) ∈ H2(Eν). Thus, we can apply Theorem 2 together with (6.5) to obtain

Mw(F )(z) =
∑
t∈TB

B(z)νSt

(
Mw(F )(·)

B(·)ν
)

(z)

where the last sum converges uniformly in the variable z in every compact subset of C for every fixed w ∈ C. 
By (6.6), we conclude that

F (z)
B(z)ν − F (w)

B(w)ν =
∑
t∈TB

{ ν−1∑
j=0

F (j)(t)Gν,j(z, t)
B(z)ν −

ν−1∑
j=0

F (j)(t)Gν,j(w, t)
B(w)ν

}
(6.7)

for every w, z ∈ C \ TB . We claim that (6.7) implies that

F (z) = Λ(F )B(z)ν +
∑ ν−1∑

F (j)(t)Gν,j(z, t) (6.8)

t∈TB j=0
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for some constant Λ(F ), where the sum converges uniformly in compact sets of C. Assuming that (6.8) is 
valid, clearly the map F �→ Λ(F ) defines a linear functional in the space Hp(Eν). In the next steps we will 
show that formula (6.8) holds and that F �→ Λ(F ) is a continuous functional that vanishes in a dense set of 
functions in Hp(Eν) hence it vanishes identically. This would conclude the proof.

Step 3. Recall that aν,j(t) is defined as the coefficients of the Taylor expansion of Bν,ν(z, t)−1 at the point 
z = t with t ∈ TB . By item (3) Lemma 12 these coefficients satisfy the estimate

|aν,j(t)|2 � 1
Kν(t, t)

for j = 0, ..., ν − 1, where Kν(w, z) is the reproducing kernel associated with E(z)ν . Since

Gν,j(z, t) = B(z)ν

j!

ν−j−1∑
�=0

aν,�(t)
(z − t)ν−�−j

,

we obtain

Kν(t, t)|Gν,j(i, t)|2 � 1
1 + t2

(6.9)

for every t ∈ TB and j = 0, ..., ν − 1.
The condition E′/E ∈ H∞(C+) implies, by Proposition 17, that Hp(Eν) is closed under differentiation 

and that the zeros of E are separated from the real line. Also, the assumption that ϕ′(t) ≥ δ for all t ∈ TB
together with formula (2.6) implies that

|E(t)|2ν � Kν(t, t), (6.10)

for all t ∈ TB . From the condition E′/E ∈ H∞(C+) we obtain with Theorem 1 and (5.3) that TB is a 
sequence of uniformly separated points. We can now apply Proposition 18 together with (6.10) to obtain

∑
t∈TB

∣∣∣∣ F (t)
Kν(t, t)1/2

∣∣∣∣
p

�
∫
R

∣∣∣∣ F (x)
E(x)ν

∣∣∣∣
p

dx (6.11)

for every F ∈ Hp(Eν). Finally, we obtain the following estimate

ν−1∑
j=0

∑
t∈TB

|F (j)(t)Gν,j(i, t)| ≤
ν−1∑
j=0

[ ∑
t∈TB

∣∣∣∣ F (j)(t)
Kν(t, t)1/2

∣∣∣∣
p]1/p[ ∑

t∈TB

∣∣∣∣ Gν,j(i, t)
Kν(t, t)−1/2

∣∣∣∣
p′]1/p′

�
ν−1∑
j=0

[ ∑
t∈TB

∣∣∣∣ F (j)(t)
Kν(t, t)1/2

∣∣∣∣
p]1/p

� ‖F (x)/E(x)ν‖Lp ,

(6.12)

where the first inequality is Hölder’s inequality, the second one due to (6.9) and the separation of TB, the 
third one due to (6.11) and the closure under differentiation of Hp(Eν).

Step 4. Estimate (6.12) together with formula (6.7) for w = i clearly implies that (6.8) is valid. We can use 
Hölder’s inequality (6.2) together with (6.12) again to conclude that F �→ Λ(F ) is a continuous functional 
over Hp(Eν). By Lemmas 8 and 16 the functions {Gν,j(z, t)} for j = 0, ..., ν − 1 and t ∈ TB form a dense 
set in Hp(Eν) and trivially Λ(Gν,j(z, t)) = 0. Hence Λ vanishes identically. This concludes the proof.
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