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We give existence theorems of global solutions in L∞
loc((0, ∞); W 1,∞

0 ) to the initial 
boundary value problem for quasilinear degenerate parabolic equations of the form 
ut − div{σ(|∇u|2)∇u} = 0, where the class of σ(v2) includes the logarithmic case 
σ(|∇u|2) = log (1 + |∇u|2) for a typical example. We assume that the initial data 
belong to W 1,p0

0 , p0 ≥ 2, or Lr, r ≥ 1, and we derive precise estimates for ‖∇u(t)‖∞
near t = 0.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider the initial-boundary value problem of the quasilinear parabolic equation of the 
form:

ut − div{σ(|∇u|2)∇u} = 0 in Ω × (0,∞) (1.1)

with the initial-boundary conditions

u(x, 0) = u0(x) and u(x, t)|∂Ω = 0, (1.2)

where Ω is a bounded domain in RN with C2,α, α > 0, class boundary ∂Ω. Concerning σ(v2) we assume
Hyp.A. σ(·) is a nonnegative function in C1,α((0, ∞)) ∩ C([0, ∞)), 0 < α ≤ 1, satisfying:

(1)

σ(v2) + 2σ′(v2)v2 ≥ k0σ(v2).

(2) |σ′(v2)|v2 ≤ k1σ(v2).
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(3)
k0|v|l̃ ≤ σ(v2) ≤ k1|v|L if |v| ≥ 1, with some l̃, L ≥ 0.

(4) There exists ν ≥ 0 and m ≥ 0 such that for any K ≥ 1,

σ(v2) ≥ k0K
−ν |v|m if |v| ≤ K.

In the above k0, k1 are some positive constants and we assume l̃ ≤ m.
The functions σ(v2) = log(1 + v2) and σ(v2) = |v|m satisfy Hyp.A with ν = m = 2, l̃ = 0, any L > 0, 

and ν = 0, l̃ = L = m, respectively. These functions have a common property in the sense that they are 
growing up to infinity as |v| → ∞ and degenerate at v = 0. When σ(v2) = |v|m, m > 0, the equation is 
called as m-Laplacian type or p-Laplacian type, and the problem (1.1)–(1.2) and related problems have been 
investigated by many authors from various points of view (cf. [1–4,6,5,7,17–20,8,9,13–16] etc.). However, the 
techniques treating the nonlinearity σ = |v|m do not seem to be directly applied to the logarithmic type 
nonlinearity because σ = log(1 + v2) has not the property such that k0|v|m ≤ σ(v) ≤ k1|v|m, k0, k1 > 0 for 
any m ≥ 0.

Recently we have proved in [11] the existence of global classical solutions of some general parabolic 
equations as in Hyp.A (except for (3), (4)) with the additional condition σ(v2) ≥ k0 > 0, and as an 
application we have discussed the problem (1.1)–(1.2) with σ(|∇u|2) = log(1 + |∇u|2) and shown that if 
u0 ∈ W 1,p0

0 , p0 > 2, the problem admits a unique weak solution u(t) in L∞([0, ∞); W 1,p0
0 ) ∩W 1,2([0, ∞); L2), 

satisfying Γ(t) ≡ 1
2
∫
Ω
∫∇u(t)‖2

0 log (1 + η)ηdx ≤ (Γ(0) +Ct)−2. Further, we have shown that if u0 ∈ W 1,∞
0 , 

the solution belongs to L∞([0, ∞); W 1,∞
0 ) ∩W 1,2([0, ∞); L2) and satisfies the decay estimate ‖∇u(t)‖∞ ≤

C(‖∇u0‖∞)(1 + t)−1/2.
Since our problem (1.1)–(1.2) is of parabolic type we can expect some smoothing effect near t = 0

and it is desirable for the above logarithmic case to show the global existence of solution in the class 
L∞
loc((0, ∞); W 1,∞

0 ) for the initial data u0 ∈ W 1,p0
0 , p0 > 2, or more weakly u0 ∈ Lr, r ≥ 1. The object of 

this paper is to establish such results and derive precise estimates for ‖∇u(t)‖∞ near t = 0 for a wider 
class of quasilinear parabolic equations satisfying Hyp.A. For the proof we employ Moser’s technique (cf. 
[20,1,8,13,14] etc.) and a delicate ‘loan’ method (see section 5).

Our class of functions σ(v2) in Hyp.A includes {log (1 + |v|m1)}m2 , m1, m2 ≥ 0 (where L > 0, ̃l = 0, ν =
m = m1m2), |v|m1 log (1 + |v|m2) (where L > m1, ̃l = m1, ν = m2, m = m1 + m2) and |v|m1/

√
1 + |v|m2

with m1 ≥ m2/2 ≥ 0 (where L = l̃ = m1 −m2/2, ν = m2/2, m = m1) etc. Since the most typical example 
is σ(v2) = log(1 + v2) and we are interested in the case l̃ < m we call, conveniently, our class of functions in 
Hyp.A as ‘logarithmic type’. We note that if l̃ ≥ m, then we have σ(v2) ≥ k0|v|l̃ for all v with some k0 > 0, 
and the problem becomes easier. Indeed, all of the results below hold with m replaced by m̃ = max{m, ̃l}.

2. Statement of the results

We use only familiar function spaces and omit their definitions. But, we note that a function u belongs 
to W 1,∞

0 iff u ∈ W 1,p
0 for any p ≥ 1 and |∇u| ∈ L∞. We denote by ‖ · ‖p the Lp norm on Ω. We use ‖ · ‖ for 

‖ · ‖2 and the inner product in L2 is denoted by (, ). We set

Γ(t) = 1
2

∫
Ω

|∇u(t)|2∫
0

σ(τ)dτdx and Γ̃(t) =
∫
Ω

σ(|∇u(t)|2)|∇u(t)|2dx

for functions u(x, t) if the right-hand sides are convergent. By Hyp.A,(1),(2) we see

k̃0Γ̃(t) ≤ Γ(t) ≤ k̃1Γ̃(t) (2.1)
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with some k̃0, ̃k1 > 0. Indeed, by Hyp.A,(1) we have

k0

v2∫
0

σ(η)dη ≤
v2∫
0

(σ(η) + 2σ′(η)η)dη

=
v2∫
0

(
2 d

dη
(σ(η)η) − σ(η)

)
dη = 2σ(v2)v2 −

v2∫
0

σ(η)dη.

Hence,

v2∫
0

σ(η)dη ≤ 2
k0 + 1σ(v2)v2.

On the other hand, by Hyp.A,(2) we have

k1

v2∫
0

σ(η)dη ≥
v2∫
0

σ′(η)ηdη =
v2∫
0

(σ(η)η)′dη −
v2∫
0

σ(η)dη,

which implies

v2∫
0

σ(η)dη ≥ 1
k1 + 1σ(v2)v2.

Thus, (2.1) holds.
We employ the following definitions of solution of the problem (1.1)–(1.2).

Definition 2.1. Let u0 ∈ W 1,p0
0 for some p0 ≥ L + 2. A function u(t) belonging to Lp0([0, ∞); W 1,p0

0 ) ∩
W 1,2([0, ∞); L2) is called a solution of the problem (1.1)–(1.2) iff

t∫
0

(ut(s), φ(s))ds +
t∫

0

∫
Ω

σ(|∇u(s)|2)∇u(s) · ∇φ(s)dxds = 0

for all φ(·) ∈ Lp0([0, ∞); W 1,p0
0 ), and u(0) = u0.

Definition 2.2. Let u0 ∈ Lr for some r ≥ 1. A function u(t) belonging to Lp0
loc((0, ∞); W 1,p0

0 ) ∩
W 1,2

loc ((0, ∞); L2) ∩ C([0, ∞); Lr) for some p0 ≥ L + 2 is called a solution of the problem (1.1)–(1.2) iff

t∫
δ

(ut(s), φ(s))ds +
t∫

δ

∫
Ω

σ(|∇u(s)|2)∇u(s) · ∇φ(s)dxds = 0

for any 0 < δ < t and for any φ(·) ∈ Lp0
loc((0, ∞); W 1,p0

0 ) ∩W 1,2
loc ((0, ∞); L2) ∩ C([0, ∞); Lr), and u(0) = u0.

Remark 2.1. By the condition Hyp.A,(3) we see that if p0 ≥ L + 2 and |∇u| ∈ Lp0 , then σ(|∇u|2)|∇u| ∈
Lp0/(p0−1).
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Our results read as follows.

Theorem 2.1. Let u0 ∈ W 1,p0
0 for some p0 such that p0 ≥ L + 2 and p0 > N(ν −m)/2. Then there exists a 

unique solution u(t) ∈ L∞([0, ∞); W 1,p0
0 ) ∩L∞

loc((0, ∞); W 1,∞
0 ) ∩W 1,2([0, ∞); L2) of the problem (1.1)–(1.2)

in the sense of Definition 2.1, satisfying the estimates

Γ(t) ≤ (Γ(0)−m/(m+2) + mC−1
1 t)−(m+2)/m and

∞∫
0

‖ut(s)‖2ds ≤ Γ(0), (2.2)

‖∇u(t)‖2
p0

≤ ‖∇u0‖2
p0

+ Cpα0 Γ(0)2/(m+2), 0 ≤ t < ∞, (2.3)

with a certain α > 1, and

‖∇u(t)‖∞ ≤
{

C1
(
‖∇u0‖p0 + Γ(0)1/(m+2))2p0/(mN+2p0)

t−N/2p0 , 0 < t ≤ 1,
C1(1 + t)−1/m, t ≥ 1,

(2.4)

where C1 denotes a constant continuously depending on ‖∇u0‖p0 and Γ(0), which may be different from line 
to line.

Theorem 2.2. Let ν < m + 4/N in Hyp.A,(4). Let u0 ∈ Lr for some r ≥ 1, where if 1 ≤ r < 2 we assume

2(4 + NL)r + (L + 2)l̃(2r + N(2 − r)) ≥ 4LN. (2.5)

Then the problem (1.1)–(1.2) admits a unique solution u(t) ∈ L∞
loc((0, ∞); W 1,∞

0 ) ∩ W 1,2
loc ((0, ∞); L2) ∩

C([0, ∞); Lr) in the sense of Definition 2.2, satisfying

‖u(t)‖r ≤ ‖u0‖r, 0 ≤ t < ∞, (2.6)

Γ(t) ≤

⎧⎨
⎩

C0‖u0‖2(1−θ)(m+2+2θ)/(m+2)
r t−2ν0 , 0 < t ≤ 1,

C0

(
‖u0‖−2m(1−θ)(m+2+2θ)/(m+2)2

r + m(t− 1)
)−(m+2)/m

, t ≥ 1,
(2.7)

with

θ = N(2 − r)+

2r + (2 − r)+N and ν0 = 2r + (2 − r)+N
l̃(2r + (2 − r)+N) + 4r

,

and

‖∇u(t)‖∞ ≤
{

C0‖u0‖8(1−θ)/(m+2)(mN+4)
r t−(N+4ν0)/4, 0 < t ≤ 1,

C0(1 + t)−1/m, 1 ≤ t < ∞.
(2.8)

Further we have

∞∫
δ

‖ut(t)‖2dt ≤ Γ(δ) ≤ C0‖u0‖2(1−θ)(m+2+2θ)/(m+2)
r δ−2ν0 , 0 < δ ≤ 1. (2.9)

In the above C0 denotes a constant continuously depending on ‖u0‖r which may be different from line to 
line.
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Remark 2.2. When m = 0 the first inequality of (2.2), the second inequalities of (2.4) and (2.8) should be 
replaced by Γ(t) ≤ Γ(0)e−λt, ‖∇u(t)‖∞ ≤ C1e

−λt and ‖∇u(t)‖∞ ≤ C0e
−λt, respectively with some λ > 0.

Remark 2.3. For all of the examples stated in the introduction we can take ν ≤ m, and the condition 
ν < m + 4 in Theorem 2.2 does not seem to be restrictive.

Remark 2.4. The assumption σ ∈ C1,α((0, ∞)) in Hyp.A is made only for the construction of approximate 
functions σε(v2) ∈ C1,α([0, ∞)), ε > 0, such that σε(v2) → σ in C([0, ∞) as ε → 0 (see the section 3). 
Therefore Theorems 2.1, 2.2 can be applied also to an example like σ(v2) = min{|v|m1 , |v|m2), m1, m2 ≥ 0
for which we can easily construct such approximate functions σε(v2).

3. Estimate for Γ(t)

Let ε > 0 and we first take u0 ∈ C3
0 (Ω). We consider the approximate problem

ut − div{σε(|∇u|2)∇u} = 0 in Ω × (0,∞), (3.1)

with the initial-boundary conditions

u(x, 0) = u0(x) and u(x, t)|∂Ω = 0, (3.2)

where σε(|∇u|2) = σ(ε + |∇u|2). Then σε belongs to C1,α([0, ∞)) and satisfies Hyp.A (with the same k0, k1), 
and hence, (2.1) holds with Γ(t) and Γ̃(t) replaced by Γε(t) and Γ̃ε(t), respectively, where we set

Γε(t) = 1
2

∫
Ω

|∇u(s)|2∫
0

σε(τ)dτdx

and

Γ̃ε(t) =
∫
Ω

σε(|∇u(t)|2)|∇u(t)|2dx.

Further we know σε(v2) ≥ Cε > 0. Therefore the problem (3.1)–(3.2) admits a unique classical solution 
uε(t) ∈ C1([0, ∞); C(Ω̄)) ∩C([0, ∞); C2(Ω̄). This fact is proved in [11] on the basis of a classical result in [5]. 
Our solution u(t) of the original problem will be given as a limit of uε(t) as ε → 0. For the case u0 ∈ W 1,p0

0 or 
Lr we further take a sequence {u0,n} ⊂ C3

0 (Ω) such that u0,n → u0 in W 1,p0
0 or Lr and consider approximate 

solutions un(t) with un(0) = u0,n. We shall derive various estimates for uε(t) essentially independent of ε, 
which will be required for the proofs of Theorems 2.1 and 2.2. For simplicity of notation we write u(t) for 
uε(t).

Proposition 3.1. Let r ≥ 1. Then, for the approximate solution u(t) we have

‖u(t)‖r ≤ ‖u0‖r, 0 ≤ t < ∞, (3.3)

‖∇u(t)‖ ≤ C0‖u0‖2(1−θ)/(m+2)
r and Γε(t) ≤ C0‖u0‖2(1−θ)(m+2+2θ)/(m+2)

r t−2ν0 (3.4)

for 0 < t ≤ 1 with
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θ = N(2 − r)+

2r + (2 − r)+N and ν0 = 2r + (2 − r)+N
l̃(2r + (2 − r)+N) + 4r

,

Γε(t) ≤ C0

(
C−1

0 ‖u0‖−m/(m+2)ν0
r + m(t− 1)

)−(m+2)/m
, 1 ≤ t, (3.5)

and

Γε(t) ≤
(
Γε(0)−m/(m+2) + mC−1

1 t
)−(m+2)/m

, 0 ≤ t < ∞. (3.6)

When m = 0 we replace (3.5) and (3.6) by Γε(t) ≤ C0‖u0‖re−λt and Γε(t) ≤ Γε(0)e−λt, respectively, with 
some λ > 0.

Proof. If r ≥ 2 we multiply the equation (3.1) by |u|r−2u and integrate it to obtain

1
r
‖u(t)‖rr + r

t∫
0

∫
Ω

σε(|∇u|2)|∇u|2|u|r−2dxds = 1
r
‖u0‖rr (3.7)

which implies (3.3). When 1 ≤ r < 2 we use a C1 nondecreasing function ρδ(u), δ > 0, for |u|r−2u such that 
ρδ(u) = |u|r−2u if |u| ≥ δ. Taking the limit as δ → 0 in the resulted inequality, we obtain (3.3).

To derive (3.4) a device is needed (a rather simple ‘loan’ method). Let K̃ > 0 and λ̃ > 0. Then we may 
assume

‖∇u(t)‖ ≤ K̃t−λ̃, 0 < t ≤ Tε, (3.8)

with some Tε ≤ 1. Multiplying the equation by ut and integrating it we have

d

dt
Γε(t) + ‖ut(s)‖2 = 0. (3.9)

On the other hand, multiplying the equation by u and integrating it we have

Γ̃ε(t) = −(ut, u) ≤ ‖ut(t)‖‖u(t)‖ ≤ C‖ut(t)‖‖u(t)‖1−θ
r ‖∇u(t)‖θ

≤ C‖ut(t)‖(K̃t−λ̃)θ‖u0‖1−θ
r , 0 < t ≤ Tε, (3.10)

with θ = N(2 − r)+/(2r + 2N − rN). We denote by C a general positive constant which may be changed 
from line to line.

It follows from (3.9) and (3.10) that

d

dt
Γε(t) + C−1K̃−2θt2θλ̃‖u0‖2(θ−1)

r Γε(t)2 ≤ 0, 0 ≤ t ≤ Tε. (3.11)

Solving (3.11) we have

Γε(t) ≤
(
Γε(0)−1 + C−1K̃−2θ‖u0‖−2(1−θ)

r t2θλ̃+1
)−1

≤ CK̃2θ‖u0‖2(1−θ)
r t−(2θλ̃+1), 0 < t ≤ Tε ≤ 1. (3.12)

Here, setting Ω1 = {x ∈ Ω||∇u(x, t)| ≤ 1} and Ω2 = Ω \ Ω1 we have from Hyp.A,(3), (4),
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‖∇u(t)‖2 =
∫
Ω1

|∇u(t)|2dx +
∫
Ω1

|∇u(t)|2dx

≤ C

⎛
⎝∫

Ω1

|∇u|m+2

⎞
⎠

2/(m+2)

dx + C

⎛
⎝∫

Ω2

|∇u(t)|l̃+2dx

⎞
⎠

2/(l̃+2)

≤ C
(
Γε(t)2/(m+2) + Γε(t)2/(l̃+2)

)
. (3.13)

Then, by (3.12) and (3.13) we see

‖∇u(t)‖ ≤ C
(
K̃2θ/(m+2)‖u0‖2(1−θ)/(m+2)

r + K̃2θ/(l̃+2)‖u0‖2(1−θ)/(l̃+2)
)

×t−(2θλ̃+1)/(l̃+2), 0 < t ≤ Tε. (3.14)

Now we choose λ̃ as (2θλ̃ + 1)/(l̃ + 2) = λ̃, that is,

λ̃ = 2r + N(2 − r)+

l̃(2r + N(2 − r)+) + 4r
≡ ν0.

Then (3.14) implies

‖∇u(t)‖ ≤ C
(
K̃2θ/(m+2) + K̃2θ/(l̃+2)‖u0‖2(1−θ)(m−l)/(m+2)(l̃+2)

)
‖u0‖2(1−θ)/(m+2)

r

×t−λ̃, 0 < t ≤ Tε. (3.15)

Since θ < 1 we can take a constant K̃ = K̃(‖u0‖r)(> 0) continuously depending on ‖u0‖r such that

C
(
K̃2θ/(m+2) + K̃2θ/(l̃+2)‖u0‖2(1−θ)(m−l)/(m+2)(l̃+2)

)
‖u0‖2(1−θ)/(m+2)

r < K̃,

and we have from (3.15)

‖∇u(t)‖ < K̃t−λ̃, 0 < t ≤ Tε ≤ 1. (3.16)

Due to (3.8) and (3.16) we can take Tε = 1 and the following estimate holds:

‖∇u(t)‖ ≤ C(‖u0‖r)‖u0‖2(1−θ)/(m+2)
r t−ν0 , 0 < t ≤ 1. (3.17)

We also obtain from (3.12),

Γε(t) ≤ C(‖u0‖r)‖u0‖2(1−θ)(m+2+2θ)/(m+2)
r t−2ν0 , 0 < t ≤ 1. (3.18)

We proceed to the decay estimate for Γε(t), t ≥ 1. We first see from (3.9) that Γε(t) ≤ Γε(1), t ≥ 1, and 
hence, by (3.13),

‖u(t)‖ ≤ C‖∇u(t)‖ ≤ C(1 + Γε(1)(m−l̃))/(m+2))Γε(t)1/(m+2).

Thus, instead of (3.11), we have

d Γε(t) + C−1(Γ(1) + 1)−(m−l̃)/(l̃+2)(m+2)Γε(t)2(m+1)/(m+2) ≤ 0, (3.19)

dt
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which gives

Γε(t) ≤
(
Γε(1)−m/(m+2) + C−1m(Γε(1) + 1)−(m−l̃)/(l̃+2)(m+2)(t− 1)

)−(m+2)/m
(3.20)

≤ C0

(
C−1

0 ‖u0‖−2m(1−θ)(m+2+2θ)/(m+2)2
r + m(t− 1)

)−(m+2)/m
, t ≥ 1. (3.21)

(When m = 0 we replace (3.21) by Γε(t) ≤ C0‖u0‖2(1−θ)(1+θ)
r e−λt with some λ > 0.)

Concerning the estimates depending on ‖∇u0‖p0 we first see Γε(t) ≤ Γε(0) by (3.9), and ‖u(t)‖ ≤
C‖∇u(t)‖ ≤ C1Γε(t)1/(m+2) by (3.13). Thus, by the same argument as the one obtaining (3.20) we get 
(3.6).

Proposition 3.1 and (3.9) give immediately the following estimates for ‖ut(t)‖.

Proposition 3.2. For the approximate solutions u(t) = uε(t) we have

∞∫
0

‖ut(t)‖2dt ≤ Γε(0) (3.22)

and

∞∫
δ

‖ut(t)‖2dt ≤ Γε(δ) ≤ C0‖u0‖2(1−θ)(m+2+2θ)/(m+2)
r δ−2ν0 (3.23)

for any δ, 0 < δ < 1.

4. Estimates for ‖∇u(t)‖p, 0 < t ≤ Tε, with 2 ≤ p < ∞

We estimate ‖∇u(t)‖p, 0 < t ≤ Tε, for p, 2 ≤ p < ∞.
First we recall the basic inequality for the solution u(t) = uε(t).

Proposition 4.1. For any p, 2 ≤ p < ∞, we have

1
p

d

dt
‖∇u(t)‖pp + ε0

p2

(
‖√σε|∇u|p/2‖2

H1
+ ‖√σε∇(|∇u|p/2)‖2

)
≤ Cp2‖

√
σε(|∇u|2)|∇u|p/2‖2. (4.1)

Proof. The proof follows by multiplying the equation by −∇(|∇u|p−2∇u), integrating it by parts and 
estimating carefully the boundary integral. For details see [11].

Here, by the Gagliardo–Nirenberg inequality we have

Cp2‖
√
σ|∇u|p/2‖2

≤ Cp2‖
√
σ|∇u|p/2‖2(1−θ)

1 ‖
√
σ|∇u|p/2‖2θ

H1
, θ = N/(N + 2),

≤ ε0
2p2 ‖

√
σ|∇u|p/2‖2

H1
+ Cpα‖

√
σ|∇u|p/2‖2

1

with α = 2(N + 4)/N , and hence (4.1) implies,
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1
p

d

dt
‖∇u(t)‖pp + ε0

p2

(
‖√σε|∇u|p/2‖2

H1
+ ‖√σε∇(|∇u|p/2)‖2

)
≤ Cpα‖

√
σε(|∇u|2)|∇u|p/2‖2

1 (4.2)

where we have changed ε0/2 by ε0. Further we easily see that

‖
√

σε(|∇u|2)|∇u|p/2‖2
1 ≤ CΓε(t)‖∇u(t)‖p−2

p−2

and the inequality (4.2) implies, in particular,

d

dt
‖∇u(t)‖2

p0
≤ Cpα0 Γε(t), p0 ≥ 2. (4.3)

Using the estimate (3.6) we obtain from (4.3),

‖∇u(t)‖2
p0

≤ ‖∇u0‖2
p0

+ Cpα0

t∫
0

(
Γε(0)−m/(m+2) + mC−1

1 s
)−(m+2)/m

ds

≤ ‖∇u0‖2
p0

+ Cpα0 Γε(0)2/(m+2)), 0 ≤ t < ∞. (4.4)

((4.4) will show (2.3).) Also, by Hyp.A,(4), we see

‖
√
σε(|∇u|2)|∇u|p/2‖2

1 ≤ C

∫
Ω1

|∇u|pdx +
∫
Ω2

σε(|∇u|2)dx
∫
Ω2

|∇u|pdx.

Here, by Hyp.A,(3),
∫
Ω2

σε(|∇u|2)dx ≤ C

∫
Ω2

(σε(|∇u|2)|∇u|2)L/(L+2)dx

≤ CΓε(t)L/(L+2) ≤
{

C0t
−2Lν0/(L+2)

C1
(4.5)

for 0 < t ≤ 1.
Therefore we obtain from (4.2),

1
p

d

dt
‖∇u(t)‖pp + ε0

p2

(
‖√σε|∇u|p/2‖2

H1
+ ‖√σε∇(|∇u|p/2)‖2

)

≤
{

C0p
αt−2Lν0/(L+2)‖∇u(t)‖pp

C1p
α‖∇u(t)‖pp

(4.6)

for 0 < t ≤ 1. These are the starting inequalities to estimate ‖∇u(t)‖∞, 0 < t ≤ 1.

Proposition 4.2. If 1 ≤ r < 2 we make the condition (2.5) stated in Theorem 2.2. Let K > 1 and assume

‖∇u(t)‖∞ ≤ Kt−λ, 0 < t ≤ Tε ≤ 1, (4.7)

with some λ ≥ 0. Then, making the additional assumption

‖∇u(t)‖q ≤ ηqt
−λq , 0 < t ≤ Tε, (4.8)
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for some q ≥ 2, we obtain

‖∇u(t)‖p ≤
(
C0ε

−1
0 pα+2Kν

)N(p−q)/p(mN+2q)
η1−mN(p−q)/(mN+2q)p
q

×t−(mλ+1)N(p−q)/p(mN+2q)−λq(mN+2p)q/(mN+2q)p, 0 < t ≤ Tε, (4.9)

for p ≥ q, where we recall C0 = C(‖u0‖r).
The estimate (4.9) also holds even if we replace C0 by C1 = C(Γ(0), ‖∇u0‖p0) and in this case the 

assumption (2.5) is unnecessary.

Proof. By (4.7) and the Hyp. A,(4), we see from (4.6) that

1
p

d

dt
‖∇u(t)‖pp + ε0

p2K
−νtmλ‖|∇u|(p+m)/2‖2

H1
≤

{
C0p

αt−2Lν0/(L+2)‖∇u(t)‖pp
C1p

α‖∇u(t)‖pp
(4.10)

for 0 < t ≤ Tε, where ε0 is changed. By the Gagliardo–Nirenberg inequality we see

‖∇u(t)‖p ≤ C1/p‖∇u(t)‖1−θ̃
q ‖|∇u|(p+m)/2‖2θ̃/(p+m)

H1
(4.11)

with

θ̃ =
(
p + m

2 (1
q
− 1

p
)
)(

1
N

− 1
2 + p + m

2 · 1
q

)−1

= N(p + m)(p− q)
p(mN + 2q + N(p− q)) . (4.12)

It follows from (4.10) and (4.11) that

d

dt
‖∇u(t)‖p + ε0

p2K
−νtmλ‖∇u(t)‖((1−θ̃)p+m)/θ̃+1

p ‖∇u(t)‖−(1−θ̃)(p+m)/θ̃
q

≤
{

C0p
αt−2Lν0/(L+2)‖∇u(t)‖p

C1p
α‖∇u(t)‖p

, 0 < t ≤ Tε,

and hence, by the assumption (4.8),

d

dt
‖∇u(t)‖p + ε0

p2K
−νtmλ+λq(1−θ̃)(p+m)/θ̃‖∇u(t)‖((1−θ̃)p+m)/θ̃+1

p

≤
{

C0p
αt−2Lν0/(L+2)‖∇u(t)‖p

C1p
α‖∇u(t)‖p

(4.13)

for 0 < t ≤ Tε.

Now, we know the following lemma concerning a singular differential inequality which is a special case 
of Lemma 2.2 in [16].

Lemma 4.1. Let y(t) be an absolutely continuous function on (0, T ], T > 0, and satisfy the inequality

d

dt
y(t) + Atνα−1y1+α(t) ≤ Bt−δy(t), 0 < t ≤ T,

where we assume A > 0, B ≥ 0, να ≥ 1 and 0 ≤ δ ≤ 1. Then we have

y(t) ≤ A−1/α(ν + BT 1−δ)1/αt−ν , 0 < t ≤ T.
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Applying this with T = Tε ≤ 1 to the first inequality of (4.13) we obtain (4.9) after some careful 
calculations. For this we have used the assumption (2.5) which is equivalent to (δ ≡)2Lν0/(L + 2) ≤ 1. In 
(4.9) we can replace C0 by C1 by using the second inequality of (4.12).

We prepare the following proposition which is easily deduced from Proposition 4.2.

Proposition 4.3. Under the assumption (4.7), we have for p > p0 ≥ 2,

‖∇u(t)‖p ≤
(
C1ε

−1
0 pα+2Kν

)N(p−p0)/p(mN+2p0)

×
(
(‖∇u0‖p0 + Γε(0)1/(m+2)

)1−mN(p−p0)/(mN+2p0)p

×t−(mλ+1)N(p−p0)/(mN+2p0)p, 0 < t ≤ Tε. (4.14)

We have also for p > 2,

‖∇u(t)‖p ≤
(
C0ε

−1
0 pα+2Kν

)N(p−2)/(mN+4)p ‖u0‖2(1−θ)/(m+2)−2mN(p−2)(1−θ)/p(mN+4)(m+2)
r

×t−(mλ+1)N(p−2)/p(mN+4)−2ν0(mN+2p)/(mN+4)p, 0 < t ≤ Tε ≤ 1, (4.15)

where we recall

θ = N(2 − r)+

2r + N(2 − r)+ and ν0 = 2r + (2 − r)+N
l̃(2r + N(2 − r)+) + 4r

.

(The condition (2.5) is required for the estimate (4.14).)

Proof. We know by (4.4) and (3.17),

‖∇u(t)‖2
p0

≤ ‖∇u0‖2
p0

+ Cpα0 Γε(0)2/(m+2)

and

‖∇u(t)‖ ≤ C0‖u0‖2(1−θ)/(m+2)
r t−ν0 , 0 < t ≤ Tε ≤ 1.

Taking q = p0 and q = 2 and applying (4.9) to these cases we get the estimates (4.13) and (4.15), respectively.

5. Estimates for ‖∇u(t)‖∞, 0 < t ≤ 1

On the assumption (4.6) we shall derive estimates for ‖∇u(t)‖∞, 0 < t ≤ Tε ≤ 1, for the approxi-
mate smooth solution u(t) based on the results in previous sections. The aim is to derive an estimate like 
‖∇u(t)‖∞ ≤ C(K)t−λ, 0 < t ≤ Tε ≤ 1 with some C(K) and a certain λ > 0. In this estimate, if we can take 
a large K > 1 such that C(K) < K we can conclude, by a continuity principle, that ‖∇u(t)‖∞ < Kt−λ for 
0 < t ≤ 1. Such an argument we call ‘a loan method’. The argument is delicate. For other types of ‘loan’ 
method see [10,12,11] and the references cited therein. We use Moser’s iteration method (cf. [1,8,13,14]). 
First we consider the estimate depending on ‖∇u0‖p0 .

We take p1 > p0 and define pn, n ≥ 2, by pn +m = 2pn−1, that is, pn = 2n−1(p1 −m) +m, n = 1, 2, · · · . 
We shall derive, by induction, the estimate

‖∇u(t)‖pn
≤ ηnt

−λn , 0 < t ≤ Tε ≤ 1, (5.1)

where η1 and λ1 are determined through (4.13) as follows:
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η1 =
(
C1ε

−1
0 pα+2

1 Kν
)N(p1−p0)/p1(mN+2p0)

×
(
‖∇u0‖p0 + Cp

α/2
0 Γε(0)1/(m+2)

)1−mN(p1−p0)/(mN+2p0)p1
(5.2)

and

λ1 = (mλ + 1)N(p1 − p0)/(mN + 2p0)p1. (5.3)

Then we see from (4.8) with p = pn, q = pn−1 and from the assumption of induction that

‖∇u(t)‖pn
≤

(
C1ε

−1
0 pα+2

n Kν
)N(pn−pn−1)/pn(mN+2pn−1)

η
1−mN(pn−pn−1)/(mN+2pn−1)pn

n−1

×t−(mλ+1)N(pn−pn−1)/pn(mN+2pn−1)−λn−1(mN+2pn)pn−1/(mN+2pn−1)pn . (5.4)

This means that (5.1) is valid for n ≥ 2 if we define

ηn =
(
C1ε

−1
0 pα+2

n Kν
)N(pn−pn−1)/pn(mN+2pn−1)

η
1−mN(pn−pn−1)/(mN+2pn−1)pn

n−1 (5.5)

and

λn = (mλ + 1)N(pn − pn−1)/pn(mN + 2pn−1)

+λn−1(mN + 2pn)pn−1/(mN + 2pn−1)pn. (5.6)

Setting

βn = pn(mN + 2pn−1)
N(pn − pn−1)

(5.7)

we see

ηn =
(
C1ε

−1
0 pα+2

n Kν
)1/βn

η
1−m/βn

n−1 (5.5′)

and

λn = mλ + 1 − (m− βn)λn−1

βn
. (5.6′)

From (5.6′) we have

λn − mλ + 1
m

= (1 − m

βn
)(λn−1 −

mλ + 1
m

) = Πn
k=2(1 − m

βk
)(λ1 −

mλ + 1
m

).

Here, setting wn = 2pn + mN , we know

1 − m

βn
= wn

pn
· pn−1

wn−1

and hence,

Πn
k=2(1 − m

βk
) = wn

pn
· p1

w1
→ 2p1

2p1 + mN
as n → ∞. (5.8)

Consequently,
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λn → 2p1λ1

2p1 + mN
+ N(mλ + 1)

mN + 2p1
≡ λ̄. (5.9)

Further, by (5.3) we see

λ̄ = (mλ + 1)N
mN + 2p0

, (5.10)

which is independent of p1.
Next, we consider ηn. We may assume C1ε

−1
0 p6

nK
ν > 1 and by (5.5′),

log ηn ≤ (α + 2)log pn + νlog K + C1

βn
+ (1 − m

βn
)log ηn−1

≤
n∑

k=1

(α + 2)log pk + νlog K + C1

βk
+ Πn

k=2(1 − m

βk
)log η1, (5.11)

where we have used the fact βn > m.
Since βn ≥ pn(mN + 2pn)/N(pn −m) > 2pn/N we easily see

n∑
k=1

1
βk

≤ N

2

∞∑
k=1

1
pk

<
2N
p1

(5.12)

if p1 ≥ m + 2. Further we know by (5.2) and (5.8),

lim
n→∞

Πn
k=2(1 − m

βk
)log η1

≤ log C1 + 2p0

(mN + 2p0)
log

(
‖∇u0‖p0 + Cp

α/2
0 Γε(0)1/(m+2)

)
+ν(p1)log K, (5.13)

where we set

ν(p1) = 2p1Nν(p1 − p0

(2p1 + mN)(mN + 2p0)
.

Thus we have from (5.11) and (5.13)

limn→∞log ηn ≤ log C1 + 2p0

mN + 2p0
log (‖∇u0‖p0 + Cp

α/2
0 Γε(0)1/(m+2))

+ (μ(p1) + ν(p1)) log K (5.14)

with μ(p1) = ν
∑∞

k=1 1/βk. Note that

lim
p1→∞

ν(p1) = νN

mN + 2p0
and lim

p1→∞
μ(p1) = 0.

We assume here p0 > N(ν −m)/2. Then νN/(mN + 2p0) < 1. Therefore, taking a sufficiently large p1 and 
fixing it, we obtain

limn→∞ηn ≤ C1(‖∇u0‖p0 + Γε(0)1/(m+2))2p0/(mN+2p0)Kμ (5.15)

with some μ < 1. It follows from (5.1), (5.9) and (5.15) that
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‖∇u(t)‖∞ ≤ C1(‖∇u0‖p0 + Γε(0)1/(m+2))2p0/(mN+2p0)Kμt−λ̄, 0 < t ≤ Tε ≤ 1, (5.16)

where we recall λ̄ = (mλ + 1)N/(mN + 2p0). Now we take λ satisfying λ = λ̄, that is,

λ = N

2p0
. (5.17)

Then we have

‖∇u(t)‖∞ ≤ C1(‖∇u0‖p0 + Γε(0)1/(m+2))2p0/(mN+2p0)Kμt−λ, 0 < t ≤ Tε ≤ 1. (5.18)

Now, letting p0 ≥ L + 2 we can take a large K = K(‖∇u0‖p0) which is independent of ε, 0 < ε 
 1, and 
depends continuously on ‖∇u0‖p0 such that

C1(‖∇u0‖p0 + Γε(0)1/(m+2))2p0/(mN+2p0)Kμ < K. (5.19)

Then we arrive at the desired estimate

‖∇u(t)‖∞ < Kt−λ, 0 < t ≤ Tε ≤ 1. (5.20)

Thus, starting from the assumption (4.6) which is certainly valid for a small Tε > 0, we have derived a 
sharper estimate (5.20). This means that the following estimate holds:

‖∇u(t)‖∞ < Kt−λ, 0 < t ≤ 1. (5.21)

Further, all of the estimates established so far for 0 < t ≤ Tε are in fact valid for 0 < t ≤ 1. We summarize 
the above result.

Proposition 5.1. Let p0 > N(ν −m)/2 and p0 ≥ L + 2. Then there exists C1 = C(‖∇u0‖p0) > 0 such that 
the approximate solution u(t) = uε(t) satisfies

‖∇u(t)‖∞ ≤ C1

(
‖∇u0‖p0 + Γε(0)1/(m+2)

)2p0/(mN+2p0)
t−N/2p0 , 0 < t ≤ 1. (5.22)

Next, we shall derive a similar estimate to (5.22) which depends only on ‖u0‖r. For this we refine the 
above argument. We shall derive again the estimate (5.1) where in the present case we determine η1 and λ1
through (4.14) as follows:

η1 = C0
(
ε−1
0 pα+2

1 Kν
)N(p1−2)/p1(mN+4) ‖u0‖4(2p1+mN)(1−θ)/p1(m+2)(mN+4)

r (5.23)

and

λ1 = (mλ + 1)N(p1 − 2)/p1(mN + 4) + 2ν0(mN + 2p1)/(mN + 4)p1. (5.24)

We knew already that (5.1) is valid for n if we define ηn, λn by (5.5) and (5.6), respectively. Thus, by the 
same argument as above we have (see (5.8) and (5.9))

λn → p1

p1 + N
(λ1 −

mλ + 1
2 ) + mλ + 1

m

= 2p1 + λ1 + N(mλ + 1) ≡ λ̄
2p1 + mN
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as n → ∞, and

limn→∞log ηn ≤
∞∑
k=1

(α + 2)log pk + νlog K + C0

βk
+ Π∞

k=2(1 − m

βk
)log η1

≤ log C0 + ν
∞∑
k=1

1
βk

log K + 2p1

2p1 + mN
log η1.

Substituting (5.24) we see

λ̄ = N(mλ + 1) + 4ν0

mN + 4 (5.25)

which is independent of p1. We take λ satisfying λ = λ̄, that is,

λ = N + 4ν0

4 . (5.26)

Next, substituting (5.23) into the inequality for ηn we have

limn→∞log ηn ≤ log C0 + log p1 + (μ(p1) + ν(p1))log K

+ 8p1(1 − θ)
(m + 2)(mN + 4)log ‖u0‖r, (5.27)

where we set ν(p1) = 2νN(p1 − 2)/(2p1 + mN)(mN + 4). Thus we obtain

‖∇u(t)‖∞ ≤ C0‖u0‖8(1−θ)/(m+2)(4+mN)
r Kμ(p1)+ν(p1)t−λ, 0 < t ≤ Tε ≤ 1. (5.28)

We see that μ(p1) → 0 and ν(p1) → νN/(mN + 4) as p1 → ∞. Let us assume here ν < m + 4/N . Then we 
can fix a large p1 and take a large K = C(‖u0‖r) such that

‖∇u(t)‖∞ ≤ C0‖u0‖8(1−θ)/(m+2)(4+mN)
r Kμt−λ < Kt−λ, 0 < t ≤ Tε ≤ 1, (5.29)

with some μ < 1. Thus we conclude that the estimate (5.29) holds in fact for 0 < t ≤ 1 and all of the 
estimates depending on ‖u0‖r derived so far under the assumption ‖∇u(t)‖∞ ≤ Kt−λ, 0 < t ≤ Tε, hold in 
fact for 0 < t ≤ 1.

We summarize the result.

Proposition 5.2. Assume that ν < m +4/N . Then there exists a large K = K(‖u‖0) continuously depending 
on ‖u0‖r such that the estimate (5.29) holds for Tε = 1 for the approximate solution u(t) = uε(t).

6. Decay estimate for ‖∇u(t)‖∞, t ≥ 1

Finally we derive the boundedness and also the decay estimate for ‖∇u(t)‖∞ as t → ∞. When σ(|∇u|2) =
log (1 +|∇u|2) we know the estimate ‖∇u(t)‖∞ ≤ C(‖∇u0‖∞)(1 +t)−1/2, 0 ≤ t < ∞ (see [11]). The general 

case is treated similarly. So we give an outline of the proof. It suffices to consider an assumed smooth solution 
u(t) for the original problem.

Since ‖∇u(1)‖∞ ≤ C0 we see from an argument similar to the one deriving (4.3) that

‖∇u(t)‖p1 ≤ C0p
α
1 < ∞, 1 ≤ t < ∞, (6.1)
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for any p1 ≥ m + 2. We return to the inequality (4.1). Using a similar argument to the one deriving (4.12)
we have

1
p

d

dt
‖∇u(t)‖pp + ε0

p2

(
‖√σε|∇u|p/2‖2

H1
+ ‖√σε∇(|∇u|p/2)‖2

)
≤ C0p

α‖∇u‖p−2
p−2 ≤ C0p

α(1 + ‖∇u(t)‖pp). (6.2)

Let K > ‖∇u(1)‖∞. Then we may assume

‖∇u(t)‖∞ ≤ K, 1 ≤ t ≤ T, (6.3)

for some T > 1. Setting pn = 2pn−1 −m with p1 ≥ m + 2 we can derive, by induction, the estimate

‖∇u(t)‖pn
≤ ηn, 1 ≤ t ≤ T, (6.4)

with η1 = max{1, C‖∇u(1)‖∞, sup1≤t<∞, ‖∇u(t)‖p1}. Indeed, by the inequality

‖∇u(t)‖pn
≤ C1/pn‖∇u(t)‖1−θn

pn−1
‖|∇u(t)|(pn+m)/2‖2θn/(pn+m)

H1

with θn = 2N(1 − pn−1/pn)/(N + 2) we have from (6.2),

1
pn

d

dt
‖∇u(t)‖pn

pn
+ ε0

p2
nK

ν
η
(pn+m)(1−θn)/θn
n−1 ‖∇u(t)‖(pn+m)/θn

pn

≤ C0p
α
n(1 + ‖∇u(t)‖pn

pn
), 1 ≤ t ≤ T. (6.5)

If ‖∇u(t)‖pn
≥ 1 for some t we see

d

dt
‖∇u(t)‖pn

+
(

ε0
p2
nK

ν
η
(pn+m)(1−θn)/θn
n−1 ‖∇u(t)‖(pn(1−θn)+m)/θn

pn
− 2C0p

α
n

)
‖∇u(t)‖pn

≤ 0 (6.6)

at the time t, which implies for all t, 1 ≤ t ≤ T ,

‖∇u(t)‖pn
≤ max{1, C‖∇u(1)‖∞, η̃n}, (6.7)

where we set

η̃n ≡
(
C0p

α+2
n Kνη

(pn+m)(1−θn)/θn
n−1

)θn/((1−θn)pn+m)
=

(
C0p

α+2
n Kν

)m/βn
η
1−m/βn

n−1

with βn = m((1 − θn)pn + m)/θn.
Since ηn−1 ≥ 1 and we may assume C0p

2
nK

ν ≥ 1, the right-hand side of (6.7) is dominated by

max{C‖∇u(1)‖∞,
(
C0p

α+2
n Kν

)m/βn
ηn−1} =

(
C0p

μ+2
n Kν

)m/βn
ηn−1.

Thus we have

‖∇u(t)‖pn
≤

(
C0p

α+2
n Kν

)m/βn
ηn−1 ≡ ηn. (6.8)

We see as in the argument deriving (5.14) that

ηn ≤ C0p
α
1 ‖∇u(1)‖p1K

μ(p1) (6.9)
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with some μ(p1) which tends to 0 as p1 → ∞. Thus, we can take a large p1 to obtain

‖∇u(t)‖∞ ≤ C0K
μ, 1 ≤ t ≤ T (6.10)

with some μ < 1, where we fix p1. Therefore, by taking a large K = K(‖u0‖r), we see ‖∇u(t)‖∞ < K, 1 ≤
t ≤ T . We conclude that

‖∇u(t)‖∞ ≤ C0 < ∞, 1 ≤ t < ∞. (6.11)

It is clear that C0 can be replaced by C1.
We proceed to the decay estimate for ‖∇u(t)‖∞. Once the boundedness of ‖∇u(t)‖∞ has been established 

we see

σ(|∇u(t)|2) ≥ C−1
0 |∇u(t)|m, t ≥ 1,

with some positive constant C0. (We can replace C0 by C1.) Therefore we have from (4.1) and (3.5) (or 
(3.6))

1
p

d

dt
‖∇u(t)‖pp + 1

C0p2 ‖|∇u|(p+m)/2‖2
H1

≤ CpμΓ(t)‖∇u(t)‖p−2
p−2

≤ C0p
α(1 + t)−(m+2)/m‖∇u(t)‖p−2

p , 1 ≤ t < ∞. (6.12)

Setting w(τ) = (1 + t)1/m∇u(t) and τ = log(1 + t), (6.12) is rewritten as

1
p

d

dτ
‖w(τ)‖pp + 1

C1p2 ‖w(τ)|(p+m)/2‖2
H1

≤ C0p
α(‖w(τ)‖pp + ‖w(τ)‖p−2

p ) ≤ C0p
α(‖w(τ)‖pp + 1). (6.13)

This is essentially the same form as (6.2) with K fixed. Further we have, instead of (3.13),

‖∇u(t)‖m+2
m+2 ≤ C

∫
Ω1

σε(|∇u(t)|2)|∇u(t)|2dx + C0

∫
Ω2

|∇u(t)|2dx

≤ C0Γ(t) ≤ C0(1 + t)−(m+2)/m, t ≥ 1.

Therefore we have

‖w(t)‖m+2 ≤ (1 + t)−1/m‖∇u(t)‖m+2 ≤ C0, t ≥ 1. (6.14)

Thus, repeating an argument similar to the one deriving (6.11) with p1 = m +2 we can derive the estimate

‖w(τ)‖∞ ≤ C0 < ∞, log 2 ≤ τ < ∞

and consequently,

‖∇u(t)‖∞ ≤ C0(1 + t)−1/m, 1 ≤ t < ∞. (6.15)

Proposition 6.1. The approximate solution u(t) satisfies the estimate (6.15). We can replace also C0 by C1.
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7. Proofs of Theorems 2.1 and 2.2

We have proved that the set of approximate solutions uε(t), 0 < ε < 1, is bounded in L∞([0, ∞); W 1,p0) ∩
L∞
loc((0, ∞); W 1,∞

0 ) ∩W 1,2([0, ∞); L2) and the boundedness depends on ‖∇u0‖p0 , p0 ≥ L + 2, and further, 
the set is also bounded in L∞([0, ∞); Lr) ∩ L∞

loc((0, ∞); W 1,∞
0 ) ∩ W 1,2

loc ((0, ∞); L2) and the boundedness 
depends on ‖u0‖r. We begin with the proof of Theorem 2.1.

We first assume that u0 ∈ C3
0 (Ω). By the first boundedness of uε(t) we can extract a subsequence as 

ε → 0, which we denote again by uε(t) for simplicity, such that

uε(t) → u(t) weakly* in L∞
loc([0,∞);Lp0),

∇uε → ∇u(t) weakly* in L∞
loc((0,∞);L∞)),

uε(t) → u(t) strongly in L2
loc([0,∞);L2),

uε,t → ut(t) weakly in L2
loc([0,∞);L2)

and

Aε(∇uε) ≡ − div{σε(|∇uε(t)|2))∇uε(t)} → χ(t)

weakly in Lp0/(p0−1)([0,∞);W−1,p0/(p0−1)

in the sense that

< Aε(∇uε), φ(t) >T≡
T∫

0

∫
Ω

σε(|∇uε(t)|2))∇uε(t) · ∇φ(t)dxdt

→< χ(t), φ(t) >T

for any T > 0 and any φ(t) ∈ Lp0([0, T ]; W 1,p0
0 ), where <, >T denotes the pairing of

Lp0/(p0−1)([0, T ];W−1,p0/(p0−1)
0 ) and Lp0([0, T ];W 1,p0

0 ).

The limit function u(t) satisfies

T∫
0

(ut(t), φ(t))+ < χ(t), φ(t) >T= 0 (7.1)

for any T > 0 and for any φ(t) ∈ Lp
0([0, T ]; W 1,p0

0 ), and also we have

u(t) =
t∫

0

ut(s)ds + u0 in L2, 0 ≤ t < ∞. (7.2)

All of the estimates established for uε(t) are still valid for u(t) (with ε = 0). To complete the proof it 
suffices to show that χ(t) = −div{σ(|∇u(t)|2)∇u(t)}. For this we note that if p0 ≥ L + 2,

lim
ε→0

σε(|∇u(t)|2))∇u(t)

= σ(|∇u(t)|2))∇u(t) in L
p0/(p0−1)([0,∞;Lp0/(p0−1)) (7.3)
loc
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for any u ∈ Lp0
loc([0, ∞); W 1,p0

0 ), which follows from Hyp.A,(3). Further, we see by Hyp.A,(1),

(σε(|∇u|2)∇u− σε(|∇v|2)∇v,∇u−∇v)
≥ (σε(|∇u|2)|∇u| − σε(|∇v|2)|∇v|, |∇u| − |∇v|) ≥ 0.

Then the identity χ(t) = −div{σ(|∇u(t)|2)∇u(t)} follows from the standard monotonicity argument on the 
operator Aε(∇u) ≡ −div{σε(|∇u(t)|2)∇u(t)} in Lp0/(p0−1)([0, T ]; W−1,p0/(p0−1)), T > 0.

The uniqueness follows easily also from the monotonicity of A(|∇u(t)|) = −div{σ(|∇u(t)|2)∇u(t)}.
Next, we assume that u0 ∈ W 1,p0

0 . Then we can take a sequence {u0,n} ⊂ C3
0 (Ω) such that u0,n → u0

in W 1,p0
0 as n → ∞. The solutions un(t) with un(0) = u0,n satisfy essentially the same estimates for uε(t)

with u0 replaced by u0,n, and repeating the above argument with uε(t) replaced by un(t) we get the desired 
weak solution u(t) in the sense of Definition 2.1. It is clear that all of the estimates (3.4), (3.5), (3.6), (3.18)
and (5.29) with Tε = 1 (and ε = 0) hold for this u(t).

Finally, when u0 ∈ Lr, r ≥ 1, we take a sequence {u0,n} ⊂ C3
0 (Ω) such that u0,n → u0 in Lr as n → ∞. 

The corresponding solutions un(t) satisfy all of the estimates for uε(t) with u0 replaced by u0,n (and with 
ε = 0), in particular, the estimates depending on ‖u0,n‖r. To check the convergency of un(t) we first note 
that

‖um(t) − un(t)‖r ≤ ‖u0,m − u0,n‖r (7.4)

which follows by multiplying the difference of two equations for un(t) and um(t) by |un(t) −um(t)|r−2(un(t) −
um(t)) and integrating it (when 1 ≤ r < 2 we make a device as in the one deriving the estimate (3.3)). Thus 
{un(t)} converges uniformly to a function u(t) ∈ C([0, ∞); Lr). Of course we see u(0) = limn→∞ un(0) = u0. 
Along a subsequence, {un(t)} converges to u(t) ∈ L∞

loc((0, ∞); W 1,∞
0 ) ∩W 1,2

loc ((0, ∞); L2) ∩ C([0, ∞); Lr) in 
the following way:

un(t) → u(t) in C([0,∞);Lr) and weakly* in L∞
loc((0,∞);W 1,∞

0 ),
un,t → ut(t) weakly in L2

loc((0,∞);L2)

and

< A(∇un(t), φ(t) >δ,T=
T∫
δ

∫
Ω

σ(∇un(t)|2))∇un(t) · φ(t)dxdt

→< χ(t), φ(t) >δ,T

for any 0 < δ < T and any φ(t) ∈ Lp0([0, T ]; W 1,p0
0 ). Note that

T∫
δ

(ut(t), φ(t))+ < χ(t), φ(t) >δ,T= 0

for any φ(t) ∈ L∞
loc((0, ∞); W 1,p0

0 ) ∩W 1,2
loc ((0, ∞); L2), p0 ≥ L + 2. Then, the monotonicity argument shows 

that χ(t) = A(∇u(t)) = −div{σ(|∇u(t)|2)∇u(t)} in Lp0/(p0−1)
loc ((0, ∞); W−1,p0/(p0−1)). Therefore u(t) is a 

solution in the sense of Definition 2.2.
Let u1(t), u2(t) be two possible solutions with u1(0) = u2(0) = u0 in the same class as above. Then we 

have easily

‖u1(t) − u2(t)‖r ≤ ‖u1(δ) − u2(δ)‖r → 0 as δ → 0, (7.5)

which implies u1(t) = u2(t). The uniqueness for he case u0 ∈ Lr is also proved.



1604 M. Nakao / J. Math. Anal. Appl. 462 (2018) 1585–1604
References

[1] N.D. Alikakos, R. Rostamian, Gradient estimates for degenerate diffusion equations, Math. Ann. 259 (1982) 827–868.
[2] D. Andreucci, A.F. Tedeev, A Fujita type result for a degenerate Neumann problem in domains with noncompact boundary, 

J. Math. Anal. Appl. 231 (1999) 543–567.
[3] E. DiBenedetto, Degenerate Parabolic Equations, Springer, New York, NY, 1993.
[4] Z. Junning, The asymptotic behaviour of solutions of a quasilinear degenerate parabolic equation, J. Differential Equations 

102 (1993) 35–52.
[5] O.A. Ladyzenskaya, V.A. Solonnikov, N.N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. 

Soc., Providence, RI, 1968.
[6] H. Levine, The role of critical exponents in blow-up theorems, SIAM Rev. 37 (1990) 262–288.
[7] G.M. Lieberman, Time-periodic solutions of quasilinear parabolic differential equations, J. Math. Anal. Appl. 264 (2001) 

617–638.
[8] M. Nakao, Global solutions for some nonlinear parabolic equations with non-monotonic perturbations, Nonlinear Anal. 

10 (1986) 455–466.
[9] M. Nakao, Remarks on Lp −Lq estimates and Fujita exponent for the quasilinear parabolic equation of m-Laplacian type, 

Adv. Math. Sci. Appl. 19 (2009) 245–267.
[10] M. Nakao, Existence of global decaying solutions to the exterior problem for the Klein–Gordon equation with a nonlinear 

localized dissipation and a derivative nonlinearity, J. Differential Equations 255 (2013) 3940–3970.
[11] M. Nakao, On solutions to the initial-boundary value problem for some quasilinear parabolic equations of divergence form, 

J. Differential Equations 263 (2017) 8565–8580.
[12] M. Nakao, Global existence to the initial-boundary value problem for a system of nonlinear diffusion and wave equations, 

J. Differential Equations 254 (2018) 134–162.
[13] M. Nakao, C. Chen, Global existence and gradient estimates for the quasilinear parabolic equations of m-Laplacian type 

with a nonlinear convection term, J. Differential Equations 162 (2000) 224–250.
[14] M. Nakao, A. Naimah, On global attractor for nonlinear parabolic equations of m-Laplacian type, J. Math. Anal. Appl. 

331 (2007) 793–809.
[15] M. Nakao, Y. Ohara, Gradient estimates of periodic solutions for some quasilinear parabolic equations, J. Math. Anal. 

Appl. 204 (1996) 868–883.
[16] Y. Ohara, L∞ estimates of solutions of some nonlinear degenerate parabolic equations, Nonlinear Anal. 18 (1992) 413–426.
[17] M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy 

problems, J. Differential Equations 46 (1982) 268–299.
[18] M. Tsutsumi, Existence and nonexistence of global solutions for nonlinear parabolic equations, Publ. RIMS, Kyoto Univ. 

8 (1972) 27–229.
[19] M. Tsutsumi, On solutions of some doubly nonlinear degenerate parabolic equations with absorption, J. Math. Anal. Appl. 

132 (1988) 187–212.
[20] L. Véron, Coercivité et propriétés régularisantes des semi-groupes non-linéaires dans les espaces de Banach, Faculte des 

Sciences et Techniques, Université Francois Rabelais, Tours, France, 1976.

http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4152s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4154s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4154s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib44s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4A75s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4A75s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4C5355s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4C5355s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4Cs1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4C69s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4C69s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4E612D31s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4E612D31s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4E612D32s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4E612D32s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4E612D33s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4E612D33s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4E612D35s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4E612D35s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4E612D34s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4E612D34s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4E43s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4E43s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4E41s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4E41s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4E4Fs1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4E4Fs1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4Fs1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4F68s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib4F68s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib547331s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib547331s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib547332s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib547332s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib56s1
http://refhub.elsevier.com/S0022-247X(18)30195-1/bib56s1

	Smoothing effects of the initial-boundary value problem for logarithmic type quasilinear parabolic equations
	1 Introduction
	2 Statement of the results
	3 Estimate for Γ(t)
	4 Estimates for ||∇u(t)||p, 0 < t <=Tε, with  2 <=p < ∞
	5 Estimates for ||∇u(t)||∞, 0 < t <=1
	6 Decay estimate for ||∇u(t)||∞, t >=1
	7 Proofs of Theorems 2.1 and 2.2
	References


