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The C∗-subalgebra B of all bounded linear operators on the space L2(R), which is 
generated by all multiplication operators by piecewise slowly oscillating functions, 
by all convolution operators with piecewise slowly oscillating symbols and by the 
range of a unitary representation of the group of all affine mappings on R, is studied. 
A faithful representation of the quotient C∗-algebra Bπ = B/K in a Hilbert space, 
where K is the ideal of compact operators on the space L2(R), is constructed by 
applying an appropriate spectral measure decompositions, a local-trajectory method 
and the Fredholm symbol calculus for the C∗-algebra of convolution type operators 
without shifts. This gives a Fredholm symbol calculus for the C∗-algebra B and a 
Fredholm criterion for the operators B ∈ B.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Let B := B(L2(R)) be the C∗-algebra of all bounded linear operators acting on the Lebesgue space 
L2(R) and let K := K(L2(R)) be the ideal of all compact operators in B. An operator B ∈ B is called 
Fredholm if its image is closed and the spaces kerB and kerB∗ are finite-dimensional, or equivalently, the 
coset Bπ := B +K is invertible in the Calkin algebra Bπ := B/K (see, e.g., [20]). Put A � B if A −B ∈ K.

Consider the unital C∗-algebras of convolution type operators

A := alg
{
aI,W 0(b) : a, b ∈ PSO�} ⊂ B, Z := alg

{
aI,W 0(b) : a, b ∈ SO�} ⊂ A (1.1)

generated by the multiplication operators aI and the convolution operators W 0(b) := F−1bF , where a, b ∈
PSO� and a, b ∈ SO�, respectively, and F is the Fourier transform: (Fϕ)(x) =

∫
R
eixyϕ(y)dy for x ∈ R. Here 

SO� is the C∗-algebra of functions admitting slowly oscillating discontinuities at every point λ ∈ R ∪ {∞}
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and PSO� is the C∗-algebra of piecewise slowly oscillating functions (see their definitions in Section 2). Since 
the C∗-algebras A and Z have the same classes of discontinuous data for multiplication and convolution 
operators, these algebras are invariant under the transform A → F−1AF .

Let G be the solvable group of all orientation-preserving affine mappings gk,h : x 	→ kx +h (k > 0, h ∈ R)
on R with product gk1,h1gk2,h2 = gk2k1,k2h1+h2 . The shifts g ∈ G possess the common fixed point ∞ for all 
g ∈ G and distinct fixed points h/(1 − k) for gk,h ∈ G if k 
= 1. Consider the unitary shift operators

Ug : L2(R) → L2(R), Ugf := |g′|1/2(f ◦ g), g ∈ G. (1.2)

The aim of this paper is to elaborate a Fredholm symbol calculus for the C∗-algebra of nonlocal convolution 
type operators

B := alg(A, UG) := alg{aI,W 0(b), Ug : a, b ∈ PSO�, g ∈ G} ⊂ B (1.3)

generated by all operators A ∈ A and by all unitary shift operators Ug (g ∈ G), or equivalently, to construct 
a faithful representation of the quotient C∗-algebra Bπ := B/K in an appropriate Hilbert space, where 
the C∗-algebra A is given by (1.1) and K ⊂ Z ⊂ A (see [29, Lemma 6.1]). To this end we apply the local-
trajectory method and spectral measures (see [22], [24] and [5]), suitable spectral measure decompositions 
and the Fredholm symbol calculus for the C∗-algebra of convolution type operators with piecewise slowly 
oscillating data elaborated in [27–29], with its improvement obtained in [25] in the setting of weighted 
Lebesgue spaces with Muckenhoupt weights that involve the two idempotents theorem (see [11], [35]), as 
well as results of [30] on convolution type operators with translations. Making use of the Fredholm symbol 
calculus for the C∗-algebra B, we establish a Fredholm criterion for the operators B ∈ B in terms of their 
Fredholm symbols.

The study of the spectral properties of operators from algebras generated by multiplication operators by 
functions and by convolution operators that reflect the Fourier duality of multiplication and differentiation, 
and extended by shift operators is an interesting and complicated mathematical problem. The difficulty here 
is that all three types of operators do not act separately on the Fourier and non-Fourier side. This makes 
the algebras generated by these operators highly noncommutative and extremely hard to study. Therefore, 
in view of complicated nature of the algebra, we decompose this algebra into several subalgebras studied by 
different non-trivial methods. As a result, a complete description of a Fredholm symbol calculus in terms of 
operators of multiplication by infinite matrix functions acting on suitable Hilbert spaces is obtained.

The C∗-algebra C ⊂ B(L2(T)) of nonlocal singular integral operators generated by the Cauchy singular 
integral operator ST, by the operators of multiplications by piecewise quasicontinuous (PQC) functions 
[36], and by the unitary shift operators Ug (g ∈ G), where G is a discrete amenable [21] group of shifts 
acting freely on T, was studied in [13]. Recall that the group of shifts G acts freely on T if the points g(t)
(t ∈ T, g ∈ G) are pairwise distinct. The C∗-algebra E ⊂ B(L2(T)) generated by all rotation operators 
on T, by all multiplication operators by piecewise slowly oscillating functions on T and by the operators 
eh,λSTe

−1
h,λI (h ∈ R, λ ∈ T), where eh,λ(t) = exp(h(t + λ)/(t − λ)) for t ∈ T \ {λ}, was studied in [4]. 

The C∗-algebra D ⊂ B(L2(T)) generated by the Cauchy singular integral operator ST, by the operators of 
multiplications by piecewise slowly oscillating functions on T, and by the unitary shift operators Ug (g ∈ G), 
where G is a discrete amenable group of shifts acting topologically freely on T and having the same finite 
set of fixed points, was studied in [5] (for more general actions of G see also [6–9]).

On the other hand, more complicated C∗-algebras B = alg(A, UG) of nonlocal convolution type operators 
were studied only in the case of piecewise continuous data (see [22], [23]). Algebras of convolution type 
operators A with piecewise continuous data were studied by R.V. Duduchava, R. Schneider, S. Roch and 
B. Silbermann, A. Böttcher and I.M. Spitkovsky (see [11], [14], [16], [19], [35] and the references therein). 
In the present paper, applying results of [27–29], [25] for the C∗-algebra A of convolution type operators 
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with PSO� data, we study the C∗-algebra B of nonlocal convolution type operators with such data. Since 
Bπ is an example of C∗-algebras associated with C∗-dynamical systems and the action of the group G on 
the maximal ideal space of the central subalgebra Zπ := Z/K of the quotient C∗-algebra Aπ := A/K is 
not topologically free, for studying the invertibility in Bπ we apply a version of the local-trajectory method 
combined with using spectral measures (see [22], [24], [5]). For other versions of the local-trajectory method 
and their applications see [1–3].

The paper is organized as follows. In Section 2 we define the C∗-algebras SO� and PSO� and describe 
their maximal ideal spaces, describe the Gelfand transform for the central subalgebra Zπ of Aπ and construct 
a faithful representation of the quotient C∗-algebra Aπ in a Hilbert space. In Section 3 we present main 
results of the paper: a Fredholm symbol calculus for the C∗-algebra B given by (1.3), a Fredholm criterion 
for the operators B ∈ B and the faithful representation of the C∗-algebra Bπ = B/K in a Hilbert space.

The local-trajectory method elaborated in [22], [24] to study the invertibility in the abstract C∗-algebra 
B = alg(A, UG) generated by a unital C∗-subalgebra A and a unitary representation U of an amenable group 
G is stated in Section 4. In contrast to the local-trajectory methods developed in [1–3], the method used 
here is related to the Allan-Douglas local principle (see, e.g., [18], [16]) and supply us with a convenient 
machinery for studying C∗-algebras of nonlocal type operators with discontinuous data in case A has a 
non-trivial central subalgebra Z.

In Section 5 we introduce another central C∗-algebra Z̃π of Aπ that properly contains Zπ and leads to 
simpler local representatives of the cosets Aπ ∈ Aπ. Since the action of the group G on the maximal ideal 
space of Z̃π is not topologically free, applying spectral measures, we construct here a spectral decompo-
sition of the C∗-algebra Bπ and give an abstract Fredholm criterion for the operators B ∈ B in terms 
of invertibility of their images in the C∗-algebras BR,∞, B∞,R\{0}, B◦

∞,0, B∞,0 and B∞,∞ related to the 
spectral decomposition mentioned above.

In Section 6 we study the invertibility of the operators in the C∗-algebra BR,∞, making use of two repre-
sentations Φ1 and Φ2 in Hilbert spaces, where Φ1 is defined by analogy with [9] and Φ2 is based on applying 
the local-trajectory method and the lifting theorem. Sections 7–9 are devoted to studying the invertibility 
in the C∗-algebras B∞,R\{0} and B◦

∞,0 with applications of spectral measures, the local-trajectory method 
and results from [30]. In Section 10 we show that the invertibility in the C∗-algebras B∞,0 and B∞,∞
follows from that in the C∗-algebras B∞,R\{0} and BR,∞, respectively. Section 11 contains the proofs of the 
main results of the paper on the basis of previous sections.

2. The C∗-algebra A of convolution type operators

2.1. The C∗-algebras SO� and PSO�

Let Ṙ := R ∪{∞} and R := [−∞, +∞]. For a bounded measurable function f : Ṙ → C and a set I ⊂ Ṙ, 
let osc (f, I) := ess sup

{
|f(t) − f(s)| : t, s ∈ I

}
. Similarly to [4], we say that a function f ∈ L∞(R) is called 

slowly oscillating at a point λ ∈ Ṙ if for every (equivalently, for some) r ∈ (0, 1),

lim
x→+0

osc
(
f, λ + ([−x,−rx] ∪ [rx, x])

)
= 0 if λ ∈ R,

lim
x→+∞

osc
(
f, [−x,−rx] ∪ [rx, x]

)
= 0 if λ = ∞.

For every λ ∈ Ṙ, let SOλ denote the C∗-subalgebra of L∞(R) defined by

SOλ :=
{
f ∈ C(Ṙ \ {λ}) ∩ L∞(R) : f slowly oscillates at λ

}
.

Let SO� be the minimal C∗-subalgebra of L∞(R) that contains all the C∗-algebras SOλ with λ ∈ Ṙ, let PC

denote the C∗-algebra of all piecewise continuous functions, that is, functions in L∞(R) that have one-sided 



Y.I. Karlovich, I. Loreto-Hernández / J. Math. Anal. Appl. 475 (2019) 1130–1161 1133
limits at each point t ∈ Ṙ, and let PSO� be the C∗-subalgebra of L∞(R) generated by the C∗-algebras PC

and SO�. All these algebras contain C(Ṙ). Elements of the algebras SO� and PSO� are called, respectively, 
slowly oscillating and piecewise slowly oscillating functions.

Identifying the points λ ∈ Ṙ with the evaluation functionals δλ on Ṙ given by δλ(f) = f(λ) for f ∈ C(Ṙ), 
we infer that the maximal ideal space M(SO�) of SO� is of the form M(SO�) =

⋃
λ∈Ṙ

Mλ(SO�), where 
Mλ(SO�) :=

{
ξ ∈ M(SO�) : ξ|C(Ṙ) = δλ

}
are fibers of M(SO�) over points λ ∈ Ṙ. Similarly, M(PSO�) =⋃

λ∈Ṙ
Mλ(PSO�). Applying [29, Corollary 2.2] and [10, Proposition 5], we infer that for every λ ∈ Ṙ,

Mλ(SO�) = Mλ(SOλ) = M∞(SO∞) = (closSO∗
∞R) \ R, (2.1)

where closSO∗
∞R is the weak-star closure of R in SO∗

∞, the dual space of SO∞ (cf. [12, Proposition 4.1]).
The maximal ideal space M(PC) of the algebra PC can be identified with Ṙ× {0, 1}: for each a ∈ PC,

a(λ, 0) = a(λ− 0), a(λ, 1) = a(λ + 0) if λ ∈ R; a(λ, 0) = a(+∞), a(λ, 1) = a(−∞) if λ = ∞.

The maximal ideal space M(PSO�) of the algebra PSO� has a similar form: M(PSO�) = M(SO�) ×{0, 1}. 
Identifying characters ζ ∈ Mλ(PSO�) for λ ∈ Ṙ with pairs (ξ, μ) ∈ Mλ(SO�) ×Mλ(PC) by [27, Lemma 3.4], 
where Mλ(PC) = {0, 1}, we get the following characterization of the fiber Mλ(PSO�) (cf. [4, Theorem 4.6]).

Theorem 2.1 ([27], Theorem 3.5). If (ξ, μ) ∈ Mλ(SO�) ×{0, 1} and λ ∈ Ṙ, then (ξ, μ)|SO� = ξ, (ξ, μ)|C(Ṙ) =
λ, (ξ, μ)|PC = (λ, μ).

As usual, we write a(ξ) := ξ(a) for a ∈ SO� and ξ ∈ M(SO�). For c ∈ PSO� and ξ ∈ M(SO�), we put

c(ξ−) := c(ξ, 0) and c(ξ+) := c(ξ, 1), (2.2)

where c(ξ, μ) = (ξ, μ)c for (ξ, μ) ∈ M(SO�) × {0, 1}. The Gelfand topology on M(PSO�) can be described 
as follows. A base of neighborhoods for (ξ, μ) ∈ M(PSO�) consists of all open sets of the form

U(ξ,μ) =
{

(Uξ,λ × {0}) ∪ (U−
ξ,λ × {0, 1}) if μ = 0,

(Uξ,λ × {1}) ∪ (U+
ξ,λ × {0, 1}) if μ = 1,

(2.3)

where Uξ,λ = Uξ ∩Mλ(SO�) if ξ ∈ Mλ(SO�) for some λ ∈ Ṙ, Uξ is an open neighborhood of ξ in M(SO�), 
and U−

ξ,λ, U+
ξ,λ consist of all ζ ∈ Uξ whose restrictions τ = ζ|C(Ṙ) belong, respectively, to the sets (λ − ε, λ)

and (λ, λ + ε) with ε > 0 if λ ∈ R, and to the sets (ε, +∞) and (−∞, −ε) with ε ∈ R if λ = ∞.

2.2. Faithful representation of the quotient C∗-algebra Aπ

Consider the C∗-algebras A and Z given by (1.1). As K ⊂ Z ⊂ A, it follows from [29, Theorem 4.4] that 
Zπ = Z/K is a central C∗-subalgebra of the quotient C∗-algebra Aπ = A/K. Put

ΩR,∞ :=
⋃
t∈R

Mt(SO�) ×M∞(SO�), Ω∞,R := M∞(SO�) ×
⋃
t∈R

Mt(SO�),

Ω∞,∞ := M∞(SO�) ×M∞(SO�).
(2.4)

Theorem 2.2 ([29], Theorem 6.2). The maximal ideal space M(Zπ) of the commutative C∗-algebra Zπ is 
homeomorphic to the set Ω := ΩR,∞∪Ω∞,R∪Ω∞,∞ equipped with topology induced by the product topology of 
M(SO�) ×M(SO�), and the Gelfand transform Γ : Zπ → C(Ω), Aπ 	→ A(·, ·) is defined on the generators 
Aπ = (aW 0(b))π (a, b ∈ SO�) of the algebra Zπ by A(ξ, η) = a(ξ)b(η) for all (ξ, η) ∈ Ω.
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Following [28, Subsection 3.2] and [25, Section 3] and using (2.4), we consider the set

Ω̃ =
(
ΩR,∞ × R

)
∪
(
Ω∞,R × R

)
∪
(
Ω∞,∞ × {±∞}

)
, (2.5)

where, by Theorem 2.2, the sets ΩR,∞ and Ω∞,R given by (2.4) are open in Ω, while the set Ω∞,∞ is closed 
in Ω. According to [28, Section 4.4], for each (ξ, η, x) ∈ Ω̃, we define the mapping

Ψξ,η,x :
{
aI : a ∈ PSO�} ∪

{
W 0(b) : b ∈ PSO�} → C

2×2,

Ψξ,η,x(aI) = diag
{
a(ξ+), a(ξ−)

}
, (2.6)

Ψξ,η,x(W 0(b)) =
[
b(η+)μ(x) + b(η−)(1 − μ(x)) [b(η+) − b(η−)]
(x)

[b(η+) − b(η−)]
(x) b(η+)(1 − μ(x)) + b(η−)μ(x)

]
,

where a(ξ±) and b(η±) are defined by (2.2), and

μ(x) := (1 + tanh(πx))/2, 
(x) := 1/ cosh(πx) for all x ∈ R. (2.7)

Theorem 2.3 ([30], Theorem 3.2). The mappings Ψξ,η,x

(
(ξ, η, x) ∈ Ω̃

)
given on the generators of the 

C∗-algebra A by formulas (2.6)–(2.7) extend to C∗-algebra homomorphisms Ψξ,η,x : A → C
2×2. An operator 

A ∈ A is Fredholm on the space L2(R) if and only if

detΨξ,η,x(A) 
= 0 for all (ξ, η, x) ∈ Ω̃. (2.8)

To any operator A ∈ A we assign its Fredholm symbol, that is, the bounded matrix function

A : Ω̃ → C
2×2, (ξ, η, x) 	→ A(ξ, η, x) := Ψξ,η,x(A).

Let B(Ω̃, C2×2) denote the C∗-algebra of all bounded C2×2-valued functions on Ω̃.

Theorem 2.4 ([30], Theorem 3.3). The Fredholm symbol mapping Ψ : A → B(Ω̃, C2×2), A 	→ A(·, ·, ·), is 
a C∗-algebra homomorphism whose kernel kerΨ coincides with the ideal K of all compact operators on the 
space L2(R) and the image Ψ(A) is a C∗-subalgebra of B(Ω̃, C2×2).

Corollary 2.5 ([30], Corollary 3.4). The mapping Ψ0 : Aπ 	→
⊕

(ξ,η,x)∈Ω̃ A(ξ, η, x)I is a faithful representa-
tion of the quotient C∗-algebra Aπ in the Hilbert space 

⊕
(ξ,η,x)∈Ω̃ C

2.

3. Faithful representation of the C∗-algebra Bπ: main results

Consider the C∗-algebra B ⊂ B(L2(R)) generated by the operators A ∈ A and the unitary shift operators 
Ugk,h

(k > 0, h ∈ R) given by (1.2), where gk,h : x 	→ kx + h for x ∈ R. Put

kg := k and hg := h for all g = gk,h. (3.1)

The group G consisting of the shifts gk,h (k > 0, h ∈ R) is the semidirect product G̃� Ĝ of its subgroups

G̃ := {gk,0 : k > 0} and Ĝ := {g1,h : h ∈ R}. (3.2)

Hence gk1,h1gk2,h2 = gk2k1,k2h1+h2 and gk,h(x) = g1,h[gk,0(x)] for x ∈ R.
Given t, τ ∈ Ṙ and g ∈ G, we define the set Yt,τ and the function δg : Ṙ× Ṙ → {0, 1} by

Yt,τ := {g ∈ G : g(t) = τ}, δg(t, τ) = 1 if g(t) = τ, δg(t, τ) = 0 if g(t) 
= τ. (3.3)
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Fix t0 ∈ R. Then its G-orbit G(t0) := {g(t0) : g ∈ G} coincides with R. For each τ ∈ R, we fix the shift 
gτ := g1,τ−t0 ∈ Yt0,τ . Hence gt0 = e, the unit of G. Observe that, for every g ∈ Yt,τ with t, τ ∈ R, we have

g̃t,τ := gtgg
−1
τ = g−1

τ ◦ g ◦ gt ∈ Yt0,t0 . (3.4)

Let R+ := (0, +∞) and R− := (−∞, 0). Given t ∈ R, we consider the sets

Ωt,∞ := Mt(SO�) ×M∞(SO�), Ω∞,t := M∞(SO�) ×Mt(SO�),

Δ◦
t,∞ := Ωt,∞ × R, Δ̇t,∞ := Ωt,∞ × Ṙ, Ω̃t,∞ := Ωt,∞ × R, Ω̂t,∞ := Ωt,∞ × {±∞},

Δ◦
∞,t := Ω∞,t × R, Δ̇∞,t := Ω∞,t × Ṙ, Ω̃∞,t := Ω∞,t × R, Ω̂∞,t := Ω∞,t × {±∞}.

(3.5)

Fix t0 ∈ R and t± ∈ R±. With the C∗-algebra B we associate the Hilbert space

H := HR,∞,1 ⊕HR,∞,2 ⊕H∞,R− ⊕H∞,0 ⊕H∞,R+ , (3.6)

where the non-separable Hilbert spaces

HR,∞,1 := l2(Δ◦
t0,∞, l2(R,C2)), HR,∞,2 := l2(Ω̂t0,∞, l2(G,C2)),

H∞,0 := l2(Δ◦
∞,0, C

2), H∞,R± := l2(Ω̃∞,t± , l2(R+,C
2))

(3.7)

consist, respectively, of l2(R, C2))-valued functions defined on the set Δ◦
t0,∞, of l2(G, C2)-valued functions 

defined on the set Ω̂t0,∞, of C2-valued functions defined on the set Δ◦
∞,0 and of l2(R+, C2))-valued functions 

defined on the sets Ω̃∞,t± , and these functions have at most countable sets of non-zero values. In its turn, 
for X ∈ {R, G, R+}, l2(X, C2) is the non-separable Hilbert space consisting of all vectors f = (fτ )τ∈X with 
at most countable sets of non-zero entries fτ ∈ C

2 and the norm ‖f‖ = (
∑

τ ‖fτ‖2
C2)1/2 < ∞.

For the Hilbert space H given by (3.6), we construct the representation

Φ : B → B(H), B 	→ Φ1(B) ⊕ Φ2(B) ⊕ Φ−(B) ⊕ Φ0(B) ⊕ Φ+(B), (3.8)

which is the direct sum of the following five C∗-algebra homomorphisms:

Φ1 : B → B(HR,∞,1), B 	→ Sym1(B)I, Φ2 : B → B(HR,∞,2), B 	→ Sym2(B)I,

Φ0 : B → B(H∞,0), B 	→ Sym0(B)I, Φ± : B → B(H∞,R±), B 	→ Sym±(B)I,
(3.9)

defined initially on the generators of the C∗-algebra B.
Here Φ1(B) are operators of multiplication by infinite matrix Sym1(B) given on the set Δ◦

t0,∞, where 
the values of these matrix functions at the points (ξ, η, x) ∈ Δ◦

t0,∞ define bounded linear operators on the 
Hilbert space l2(R, C2) and are given on the generators of the C∗-algebra B by

[Sym1(aI)](ξ, η, x) := diag
{
diag

{
(a ◦ gt)(ξ+), (a ◦ gt)(ξ−)

}}
t∈R

,

[Sym1(W 0(b))](ξ, η, x) := diag
{[

b(η+)μ(x) + b(η−)(1 − μ(x)) (b(η+) − b(η−))
(x)
(b(η+) − b(η−))
(x) b(η+)(1 − μ(x)) + b(η−)μ(x)

]}
t∈R

,

[Sym1(Ug)](ξ, η, x) :=
[
diag

{
δg(t, τ)eix ln kg , δg(t, τ)eix ln kg

}]
t,τ∈R

, (3.10)

where a, b ∈ PSO�, g ∈ G, the functions x 	→ μ(x) and x 	→ 
(x) here and below are given by (2.7), and kg
and δg(t, τ) are given by (3.1) and (3.3), respectively.
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Further, Φ2(B) are operators of multiplication by infinite matrix functions Sym2(B) given on the set 
Ω̂t0,∞, where the values of these matrix functions at the points (ξ, η, x) ∈ Ω̂t0,∞ define bounded linear 
operators on the space l2(G, C2) and are given on the generators of the C∗-algebra B as follows:

[Sym2(aI)](ξ, η, x) := diag
{

diag{(a ◦ g)(ξ+), (a ◦ g)(ξ−)}
}
g∈G

,

[Sym2(W 0(b))](ξ, η, x) := diag
{

diag{b(η+)μ(x) + b(η−)(1 − μ(x)), b(η+)(1 − μ(x)) + b(η−)μ(x)}
}
g∈G

,

[Sym2(Ug)](ξ, η, x) := [δhg,sI2]h,s∈G, (3.11)

where a, b ∈ PSO�, g ∈ G and δh,s is the Kronecker symbol on G.
In its turn, Φ0(B) are operators of multiplication by 2 × 2 matrix functions Sym0(B) : Δ◦

∞,0 → C
2×2

whose values at the points (ξ, η, x) ∈ Δ◦
∞,0 are defined on the generators of the C∗-algebra B by

[Sym0(aI)](ξ, η, x) := diag{a(ξ+), a(ξ−)},

[Sym0(W 0(b))](ξ, η, x) :=
[
b(η+)μ(x) + b(η−)(1 − μ(x)) [b(η+) − b(η−)]
(x)

[b(η+) − b(η−)]
(x) b(η+)(1 − μ(x)) + b(η−)μ(x)

]
,

[Sym0(Ug)](ξ, η, x) := e−ix ln kgI2, (3.12)

where a, b ∈ PSO�, g ∈ G, kg is given by (3.1), and I2 := diag{1, 1}.
Finally, Φ±(B) are operators of multiplication by infinite matrix functions Sym±(B) given on the sets 

Ω̃∞,t± , and the values of these matrix functions at the points (ξ, η, x) ∈ Ω̃∞,t± define bounded linear 
operators on the Hilbert space l2(R+, C2), which are given on the generators of the C∗-algebra B by

[Sym±(aI)](ξ, η, x) := diag
{
diag{a(ξ+), a(ξ−)}

}
t∈R+

,

[Sym±(W 0(b)](ξ, η, x) := diag
{[

bt(η+)μ(x) + bt(η−)(1 − μ(x)) [bt(η+) − bt(η−)]
(x)
[bt(η+) − bt(η−)]
(x) bt(η+)(1 − μ(x)) + bt(η−)μ(x)

]}
t∈R+

,

[Sym±(Ugk,h
)](ξ, η, x) :=

[
δgk,0(t, τ)e−iht±/τI2

]
t,τ∈R+

, (3.13)

where a, b ∈ PSO�, gk,h ∈ G, bt := b ◦ gt−1,0 for t ∈ R+, and δgk,0 is given by (3.3) for g = gk,0.
We will prove below the following main results of the paper.

Theorem 3.1. The map Φ defined on the generators of the C∗-algebra B by formulas (3.8)–(3.13) extends 
to a C∗-algebra homomorphism of B into the C∗-algebra B(H), and

‖Φ(B)‖B(H) ≤ ‖Bπ‖ := inf
K∈K

‖B + K‖B(L2(R)).

Theorem 3.2. An operator B ∈ B is Fredholm on the space L2(R) if and only if the operator Φ(B) is 
invertible on the Hilbert space H, that is, if the following four conditions hold:

(i) the operator [Sym1(B)](ξ, η, x)I is invertible on the space l2(R, C2) for every (ξ, η, x) ∈ Δ◦
t0,∞ and

sup
(ξ,η,x)∈Δ◦

t0,∞

∥∥([Sym1(B)](ξ, η, x)I
)−1∥∥

B(l2(R,C2)) < ∞;

(ii) the operator [Sym2(B)](ξ, η, x)I is invertible on the space l2(G, C2) for every (ξ, η, x) ∈ Ω̂t0,∞ and

sup
(ξ,η,x)∈Ω̂t0,∞

∥∥([Sym2(B)](ξ, η, x)I
)−1∥∥

B(l2(G,C2)) < ∞;
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(iii) for every (ξ, η, x) ∈ Δ◦
∞,0 the 2 × 2 matrix [Sym0(B)](ξ, η, x) is invertible and

inf
(ξ,η,x)∈Δ◦

∞,0

∣∣ det
(
[Sym0(B)](ξ, η, x)

)∣∣ > 0;

(iv) for every (ξ, η, x) ∈ Ω̃∞,t± the operators [Sym±(B)](ξ, η, x)I are invertible on the space l2(R+, C2) and

sup
(ξ,η,x)∈Ω̃∞,t±

∥∥([Sym±(B)](ξ, η, x)I
)−1∥∥

B(l2(R+,C2)) < ∞;

where the sets Δ◦
t0,∞, Δ◦

∞,0, Ω̂t0,∞ and Ω̃∞,t± are defined in (3.5).

Theorem 3.2 immediately implies the following corollary.

Corollary 3.3. The map Φπ := Φπ
1 ⊕ Φπ

2 ⊕ Φπ
− ⊕ Φπ

0 ⊕ Φπ
+ : Bπ → B(H) defined for every B ∈ B by 

Φπ
1 (Bπ) := Φ1(B), Φπ

2 (Bπ) := Φ2(B), Φπ
0 (Bπ) := Φ0(B), and Φπ

±(Bπ) := Φ±(B) is a faithful representation 
of the C∗-algebra Bπ in the Hilbert space H given by (3.6)–(3.7).

4. The local-trajectory method

To study the nonlocal C∗-algebra B of the form (1.3), we apply the local-trajectory method. Let us 
recall its statements (see [22], [24]). In what follows we write C ∼= D if the unital C∗-algebras C and D are 
∗-isomorphic and therefore isometrically ∗-isomorphic (see, e.g., [32, Theorem 2.1.7]).

Let Q be a unital C∗-algebra, A a C∗-subalgebra of Q with unit I of Q, and let Z be a central 
C∗-subalgebra of A with the same unit I. For a discrete group G with unit e, let U : g 	→ Ug be a homo-
morphism of the group G onto a group UG = {Ug : g ∈ G} of unitary elements of Q, where Ug1g2 = Ug1Ug2 . 
We denote by B := alg(A, UG) the minimal C∗-subalgebra of Q containing A and UG. Assume that

(A1) for all g ∈ G the mappings αg : a 	→ UgaU
∗
g are ∗-automorphisms of the C∗-algebras A and Z.

According to (A1), B is the closure of the set B0 consisting of all elements of the form b =
∑

agUg where 
ag ∈ A and g runs through finite subsets of G.

Since the unital C∗-algebra Z is commutative, the Gelfand-Naimark theorem (see, e.g., [33, § 16]) implies 
that Z ∼= C(M(Z)) where C(M(Z)) is the C∗-algebra of all continuous complex-valued functions on the 
maximal ideal space M(Z) of Z. By (A1), each ∗-automorphism αg : Z → Z induces a homeomorphism 
βg : M(Z) → M(Z) given by the rule z[βg(m)] = [αg(z)](m) for all z ∈ Z, m ∈ M(Z) and g ∈ G, where 
z(·) ∈ C(M(Z)) is the Gelfand transform of z ∈ Z. The set G(m) := {βg(m) : g ∈ G} is called the G-orbit
of a point m ∈ M(Z). In what follows we assume that

(A2) G is an amenable discrete group.

By [21], a discrete group G is called amenable if the C∗-algebra l∞(G) of all bounded complex-valued 
functions on G with sup-norm has an invariant mean, that is, a positive linear functional ρ of norm 1
satisfying the condition ρ(f) = ρ(sf) = ρ(fs) for all s ∈ G and all f ∈ l∞(G), where (sf)(g) = f(s−1g)
and (fs)(g) = f(gs) for all g ∈ G. Finite groups, commutative groups, subexponential groups and solvable 
groups are examples of amenable groups (see, e.g., [1], [21], [24]).

Let Jm be the closed two-sided ideal of A generated by a maximal ideal m ∈ M(Z) of the central 
C∗-algebra Z ⊂ A. Then the Allan-Douglas local principle (see, e.g., [16, Theorem 1.35]) gives the following.
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Theorem 4.1. An element a ∈ A is invertible in A if and only if for every m ∈ M(Z) the coset a + Jm is 
invertible in the quotient C∗-algebra A/Jm.

Let PA be the set of all pure states (see, e.g., [17], [32]) of the C∗-algebra A equipped with induced weak∗

topology. By [15, Lemma 4.1], if μ ∈ PA, then kerμ ⊃ Jm, where m := Z ∩ kerμ ∈ M(Z). We assume that

(A3) there is a set M0 ⊂ M(Z) such that for every finite set G0 ⊂ G and every nonempty open set W ⊂ PA

there exists a state ν ∈ W such that βg(mν) 
= mν for all g ∈ G0 \{e}, where the point mν = Z∩ker ν

belongs to the G-orbit G(M0) := {βg(m) : g ∈ G, m ∈ M0} of the set M0.

If the C∗-algebra A is commutative itself, then PA consists of all characters of A (see, e.g., [32, Theo-
rem 5.1.6]), which simplifies (A3).

For every m ∈ M(Z), let π̃m : A/Jm → B(Hm) be an isometric (equivalently, faithful) representation of 
the quotient algebra A/Jm in a Hilbert space Hm, which exists by [32, Theorem 3.4.1]. Moreover, in view 
of (A1), the spaces Hm can be chosen equal for all m in the same G-orbit. Consider the representation

π′
m : A → B(Hm), A 	→ (π̃m ◦ 
m)(A), (4.1)

where 
m : A → A/Jm is the canonical ∗-homomorphism. Let Ω be the set of G-orbits of all points m ∈ M0
with M0 ⊂ M(Z) taken from (A3), let Hω = Hm where m = mω is an arbitrary fixed point of an orbit 
ω ∈ Ω, and let l2(G, Hω) be the Hilbert space of all functions f : G 	→ Hω such that f(g) 
= 0 for at 
most countable set of points g ∈ G and 

∑
‖f(g)‖2

Hω
< ∞. For every ω ∈ Ω, we consider the representation 

πω : B → B(l2(G, Hω)) defined for all a ∈ A, all g, s ∈ G and all f ∈ l2(G, Hω) by

[πω(a)f ](g) = π′
mω

(αg(a))f(g), [πω(Us)f ](g) = f(gs). (4.2)

A slight modification of [24, Theorem 4.12], where the superfluous condition of the closedness of the set 
M0 ⊂ M(Z) was imposed, gives the following nonlocal version of Theorem 4.1 (see [5, Theorem 3.1]).

Theorem 4.2. If assumptions (A1)–(A3) are satisfied, then an element b ∈ B is invertible in B if and only 
if for every orbit ω ∈ Ω the operator πω(b) is invertible on the space l2(G, Hω) and, for infinite set Ω, 
supω∈Ω ‖(πω(b))−1‖ < ∞.

Corollary 4.3. Under the conditions of Theorem 4.2, the mapping π : b 	→
⊕

ω∈Ω πω(b) is a faithful repre-
sentation of the C∗-algebra B in the Hilbert space 

⊕
ω∈Ω l2(G, Hω).

5. A spectral measure decomposition of the C∗-algebra Bπ

5.1. A central subalgebra Z̃π of Aπ

Along with the C∗-algebra A ⊂ B(L2(R)), we consider its C∗-subalgebra

S := alg
{
aI, SR : a ∈ PC

}
⊂ B(L2(R)) (5.1)

generated by all aI (a ∈ PC) and by the Cauchy singular integral operator SR given by

(SRf)(x) = lim
ε→0

1
πi

∫
R\(x−ε,x+ε)

f(t)
t− x

dt, x ∈ R. (5.2)

As is well known, the ideal K of all compact operators in B(L2(R)) is contained in the C∗-algebra S.
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Let χ± be the characteristic functions of R±, respectively. The operator V given for ϕ ∈ L2(R) by

(V ϕ)(z) = χ+(z)
πi

∫
R

ϕ(y)χ+(y)
y + z

dy − χ−(z)
πi

∫
R

ϕ(y)χ−(y)
y + z

dy, z ∈ R, (5.3)

belongs to the C∗-algebra S given by (5.1) because V = (χ+SRχ+SRχ+I +χ−SRχ−SRχ−I−I)1/2 (see also 
[26, Sections 2.3–2.4] and [5, Lemma 5.3]). The operator V has two fixed singularities: at 0 and ∞.

To each t ∈ R we assign the operator Vt ∈ B(L2(R)) with only fixed singularity at t, which is given by

(Vtϕ)(z) := χ+
t (z)
πi

∫
R

ϕ(y)χ+
t (y)

y + z − 2t dy − χ−
t (z)
πi

∫
R

ϕ(y)χ−
t (y)

y + z − 2t dy, t, z ∈ R, (5.4)

where χ−
t and χ+

t are, respectively, the characteristic functions of the intervals (t − 1, t) and (t, t + 1). The 
operators Vt for all t ∈ R belong to the C∗-algebra S because V0 = χ+

0 V χ+
0 I + χ−

0 V χ−
0 I ∈ S along with 

(5.3) and Vt = U−1
g1,t

V0Ug1,t , where the map A 	→ U−1
g1,t

AUg1,t is a ∗-automorphism of the C∗-algebra S.
Let P consist of all polynomials 

∑n
k=0 aku

k (ak ∈ C, n = 0, 1, . . .). Then

HP,t := P (χ+
t SRχ

+
t I − χ−

t SRχ
−
t I)Vt ∈ S for all P ∈ P and all t ∈ R. (5.5)

As S ⊂ A and the map A 	→ W 0(A) := F−1AF is a ∗-automorphism of the C∗-algebra A, the operators

Ṽτ := W 0(Vτ ) and H̃P,τ := W 0(HP,τ ) for all τ ∈ R and all P ∈ P (5.6)

belong to the C∗-algebra A along with Vτ and HP,τ . We now introduce the C∗-algebra

Z̃ := alg
{
aI,W 0(b), HP,t, H̃P,τ : a, b ∈ SO�, P ∈ P, t, τ ∈ R

}
⊂ B(L2(R)) (5.7)

generated by the operators aI, W 0(b), HP,t, H̃P,τ with given data. By [29, Lemma 6.1], K ⊂ Z ⊂ Z̃ ⊂ A.

Lemma 5.1. The quotient C∗-algebra Z̃π := Z̃/K is a central subalgebra of the C∗-algebra Aπ = A/K.

Proof. Applying formula (4.10) in [5], (2.6), Theorem 2.4, the map A 	→ F−1AF and (5.8), we obtain

aHP,t � HP,taI, W 0(b)HP,t � HP,tW
0(b), aH̃P,t � H̃P,taI, W 0(b)H̃P,t � H̃P,tW

0(b) (5.8)

for all a, b ∈ PSO�, all P ∈ P and all t ∈ R. Moreover, HP,tH̃P,τ � 0 for all t, τ ∈ R, and

aW 0(b) � W 0(b)aI for all (a, b), (b, a) ∈ SO� × PSO� and all t ∈ R (5.9)

by [29, Theorem 4.6]. Finally, it follows from (5.8)–(5.9) that Z̃π is a central subalgebra of Aπ. �
Given t ∈ R, along with (2.4), we define the sets

Ω̃R,∞ := ΩR,∞ × R, Ω̃∞,R := Ω∞,R × R, Ω̂∞,∞ = Ω∞,∞ × {±∞},
Δ◦

R,∞ := ΩR,∞ × R, Δ̇R,∞ := ΩR,∞ × Ṙ, ΔR,∞ := ΩR,∞ × {∞},
Δ◦

∞,R := Ω∞,R × R, Δ̇∞,R := Ω∞,R × Ṙ, Δ∞,R := Ω∞,R × {∞},
Δt,∞ := Ωt,∞ × {∞}, Δ∞,t := Ω∞,t × {∞}, Δ∞,∞ := Ω∞,∞ × {∞},

(5.10)

where Ωt,∞ and Ω∞,t are given by (3.5). We also introduce the set Ṅξ,η given by
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Ṅξ,η := {(ξ, η)} × Ṙ if (ξ, η) ∈ ΩR,∞ ∪ Ω∞,R, Ṅξ,η := {(ξ, η)} × {∞} if (ξ, η) ∈ Ω∞,∞. (5.11)

Applying Theorems 2.3 and 2.4 to the C∗-algebra Z̃ ⊂ A, we immediately infer that Z̃π ∼= C(Δ̃), where

Δ̃ := Δ̇R,∞ ∪ Δ̇∞,R ∪ Δ∞,∞ (5.12)

is a compact Hausdorff space equipped with topology whose neighborhood base of the points (ξ, η, x) ∈ Δ̃
consists of open sets of the form

W(ξ,η,x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{(ξ, η)} × (x− ε, x + ε) if (ξ, η, x) ∈ Δ◦

R,∞ ∪ Δ◦
∞,R,( ⋃

(ζ,θ)∈Uξ×Uη

Ṅζ,θ

)
\
(
Uξ,t × Uη,τ × [−ε, ε]

)
if (ξ, η, x) ∈ ΔR,∞ ∪ Δ∞,R,⋃

(ζ,θ)∈Uξ×Uη

Ṅζ,θ if (ξ, η, x) ∈ Δ∞,∞,

(5.13)

where ε > 0, Ṅζ,θ are given by (5.11), Uξ and Uη are open neighborhoods of points ξ, η ∈ M(SO�), 
Uξ,t = Uξ ∩Mt(SO�) for t = ξ|C(Ṙ) ∈ Ṙ, Uη,τ = Uη ∩Mτ (SO�) for τ = η|C(Ṙ) ∈ Ṙ. This gives the following.

Lemma 5.2. The maximal ideal space M(Z̃π) of the C∗-algebra Z̃π is homeomorphic to the compact Haus-
dorff space (5.12) whose topology is given by (5.13).

By analogy with [5, Lemma 5.4], we obtain from (2.6) the following result.

Lemma 5.3. Let g be an orientation-preserving diffeomorphism of Ṙ onto itself, t0 ∈ R and v(x) =
−i/ cosh(πx) for x ∈ R. If g(t0) = t0, then UgVt0 ∈ A and

Ψξ,η,x (UgVt0) = eix ln g′(t0)v(x)I2 if (ξ, η, x) ∈ Ω̃t0,∞, Ψξ,η,x (UgVt0) = 02×2 if (ξ, η, x) ∈ Ω̃ \ Ω̃t0,∞,

where Ω̃ and Ω̃t0,∞ are defined, respectively, by (2.5) and (3.5), and I2 = diag{1, 1}. Similarly,

Ψξ,η,x (Ṽt0) = v(x)I2 if (ξ, η, x) ∈ Ω̃∞,t0 , Ψξ,η,x (Ṽt0) = 02×2 if (ξ, η, x) ∈ Ω̃ \ Ω̃∞,t0 . (5.14)

5.2. Spectral measures and representations of the C∗-algebra Bπ

Every orientation-preserving affine mapping gk,h : R → R (k > 0, h ∈ R) extends to the homeomorphism 
g̃k,h of M(SO�) onto itself by the rule: a(g̃k,h(ξ)) = (a ◦ gk,h)(ξ) for all a ∈ SO� and all ξ ∈ M(SO�). Since

Ugk,h
(aI)U−1

gk,h
= (a ◦ gk,h)I, Ugk,h

W 0(b)U−1
gk,h

= W 0(b ◦ gk−1,0) for all a, b ∈ SO�,

we conclude that every shift gk,h ∈ G induces on Δ̃ = M(Z̃π) given by (5.12) the homeomorphism

γk,h : Δ̃ → Δ̃, (ξ, η, x) 	→
(
g̃k,h(ξ), g̃k−1,0(η), x

)
, (5.15)

where x ∈ Ṙ if (ξ, η) ∈ ΩR,∞ ∪ Ω∞,R and x ∈ {±∞} if (ξ, η) ∈ Ω∞,∞.
Let R(Δ̃) be the σ-algebra of all Borel subsets of Δ̃ and let

ϕ : Bπ → B(Hϕ), Bπ 	→ ϕ(Bπ) and Pϕ : R(Δ̃) → B(Hϕ) (5.16)

be, respectively, an isometric representation of the C∗-algebra Bπ in an abstract Hilbert space Hϕ and the 
spectral measure associated with representation ϕ and the commutative C∗-algebra Z̃π ⊂ Bπ. Put
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RG(Δ̃) :=
{
Θ ∈ R(Δ̃) : γk,h(Θ) = Θ for all gk,h ∈ G

}
. (5.17)

Applying (5.12) and setting Δ̇∞,R\{0} := (Ω∞,R \ Ω∞,0) × Ṙ, we obtain the partition

Δ̃ := Δ̇R,∞ ∪ Δ̇∞,R\{0} ∪ Δ◦
∞,0 ∪ Δ∞,0 ∪ Δ∞,∞, (5.18)

where Δ̇∞,R\{0} and the sets Δ̇R,∞ and Δ◦
∞,0 given by (5.10) and (3.5) are open in Δ̃, while the sets Δ∞,0

and Δ∞,∞ given by (5.10) are closed in Δ̃, and all these sets are in RG(Δ̃). Consider the C∗-subalgebras

BR,∞, B∞,R\{0}, B◦
∞,0, B∞,0, B∞,∞ (5.19)

of ϕ(Bπ) associated to decomposition (5.18). These algebras of the form

B(Δ) := alg
{
Pϕ(Δ)ϕ(Aπ), Pϕ(Δ)ϕ(Uπ

g ) : A ∈ A, g ∈ G
}

are generated by the operators Pϕ(Δ)ϕ(Aπ) (A ∈ A) and Pϕ(Δ)ϕ(Uπ
g ) (g ∈ G), where Δ is one of the sets 

on the right of (5.18) and Pϕ(Δ) 
= 0 for these Δ by [24, Subsection 5.1] and [30, Lemma 6.1]. This gives 
the following abstract Fredholm criterion in terms of invertibility of operators in the C∗-algebras (5.19).

Theorem 5.4. An operator B in the C∗-algebra B given by (1.3) is Fredholm on the space L2(R) if and only 
if the following five assertions are fulfilled:

(i) the operator BR,∞ := Pϕ(Δ̇R,∞)ϕ(Bπ) is invertible on the Hilbert space Hϕ,R,∞ := Pϕ(Δ̇R,∞)Hϕ;
(ii) the operator B∞,R\{0} := Pϕ(Δ̇∞,R\{0})ϕ(Bπ) is invertible on the Hilbert space Hϕ,∞,R\{0} :=

Pϕ(Δ̇∞,R\{0})Hϕ;
(iii) the operator B◦

∞,0 := Pϕ(Δ◦
∞,0)ϕ(Bπ) is invertible on the Hilbert space H◦

ϕ,∞,0 := Pϕ(Δ◦
∞,0)Hϕ;

(iv) the operator B∞,0 := Pϕ(Δ∞,0)ϕ(Bπ) is invertible on the Hilbert space Hϕ,∞,0 := Pϕ(Δ∞,0)Hϕ;
(v) the operator B∞,∞ := Pϕ(Δ∞,∞)ϕ(Bπ) is invertible on the Hilbert space Hϕ,∞,∞ := Pϕ(Δ∞,∞)Hϕ.

Along with the abstract Hilbert space Hϕ, we consider the Hilbert space Hφ :=
⊕

(ξ,η,x)∈Ω̃ C
2, where Ω̃

is given by (2.5), and introduce the representation φ and the spectral measure Pφ by

φ : Aπ → B(Hφ), Aπ 	→
⊕

(ξ,η,x)∈Ω̃

Ψξ,η,x(A)I, Pφ : R(Δ̃) → B(Hφ), (5.20)

where φ is an isometric representation of Aπ in the Hilbert space Hφ by Corollary 2.5, and the spectral 
measure Pφ is associated with representation φ and the central algebra Z̃π. Below we need the subspaces

Hφ,R,∞ := Pφ(Δ̇R,∞)Hφ, Hφ,∞,R := Pφ(Δ̇∞,R)Hφ of Hφ, (5.21)

which are isometrically isomorphic to the Hilbert spaces 
⊕

(ξ,η,x)∈Ω̃R,∞
C

2 and 
⊕

(ξ,η,x)∈Ω̃∞,R
C

2, where the 

sets Ω̃R,∞ and Ω̃∞,R are given by (5.10).

6. The C∗-algebra BR,∞

6.1. The C∗-algebra AR,∞

Along with the C∗-algebra BR,∞ = B(Δ̇R,∞), we consider its C∗-subalgebras

AR,∞ :=
{
Pϕ(Δ̇R,∞)ϕ(Aπ) : A ∈ A

}
, Z̃R,∞ :=

{
Pϕ(Δ̇R,∞)ϕ(Aπ) : A ∈ Z̃

}
. (6.1)
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Lemma 5.1 implies that Z̃R,∞ is a central subalgebra of AR,∞. By [22, Lemmas 5.1, 5.2 and Corollary 5.3],

Z̃R,∞ ∼= C(Δ̃R,∞), Δ̃R,∞ := Δ̇R,∞ ∪ Δ∞,∞, (6.2)

where the compact Hausdorff space Δ̃R,∞ is equipped with topology induced by the Gelfand topology of Δ̃
(see (5.13)). Applying (5.5) and [31, (5.24)], we infer that

UgaU
−1
g = (a ◦ g)I, UgHP,t � HP,g−1(t)Ug, UgSRU

−1
g = SR (6.3)

for all a ∈ PSO�, all g ∈ G, all t ∈ R and all P ∈ P, where a ◦ g ∈ PSO� (cf. [4, Lemma 4.2]). Further,

Ugk,h
W 0(b)U−1

gk,h
= W 0(b ◦ gk−1,0) for all b ∈ PSO�, k ∈ R+, h ∈ R. (6.4)

Similarly to [5, Theorem 6.4], we conclude that

(b ◦ g)(η±) = b(η±) for all b ∈ PSO�, g ∈ G, η ∈ M∞(SO�). (6.5)

Taking any function b ∈ PSO�, we infer from [19, Lemma 7.1] that [W 0(b − b−∞χ−− b+∞χ+)]R,∞ = 0, where 
functions b±∞ ∈ SO∞ are such that b±∞(η) = b(η∓) for every η ∈ M∞(SO�), and χ± are the characteristic 
functions of R±. Hence, it follows from (6.4) and (6.5) that

[UgW
0(b)U−1

g ]R,∞ = [W 0(b)]R,∞ for all b ∈ PSO� and all g ∈ G. (6.6)

Since (5.14) implies that (H̃P,τ )R,∞ = 0 for all P ∈ P and all τ ∈ R, we infer from (6.3) and (6.6) that for 
each g ∈ G the mapping αg : AR,∞ 	→ (Ug)R,∞AR,∞(Ug)−1

R,∞ is a ∗-automorphism of the C∗-algebra AR,∞

and its central C∗-subalgebra Z̃R,∞. These ∗-automorphisms induce on the maximal ideal space Δ̃R,∞ of 
Z̃R,∞ given by (6.2) the group of homeomorphisms βg : Δ̃R,∞ → Δ̃R,∞, (ξ, η, x) 	→ (g̃(ξ), η, x) for all g ∈ G, 
where ξ 	→ g̃(ξ) is the homeomorphism on M(SO�) given by

a(g̃(ξ)) = (a ◦ g)(ξ) for all a ∈ SO� and all ξ ∈ M(SO�). (6.7)

Letting RG(Δ̃R,∞) := RG(Δ̃) ∩Δ̃R,∞, we infer from [24] that Pϕ(Θ)BR,∞ = BR,∞Pϕ(Θ) for all BR,∞ ∈ BR,∞
and all Θ ∈ RG(Δ̃R,∞). For each g ∈ G, the homeomorphism (ξ, η) 	→ (g̃(ξ), η) sends the set Ωt,∞ onto the 
set Ωg(t),∞. Then, similarly to [7, Lemma 4.2], we get the following.

Lemma 6.1. For every t ∈ R and every g ∈ G, Pϕ(Δ◦
t,∞)(Ug)R,∞ = (Ug)R,∞Pϕ(Δ◦

g(t),∞).

Along with the C∗-algebra AR,∞ given by (6.1), we consider the C∗-algebra

ÂR,∞ := Pφ(Δ̇R,∞)φ(Aπ) =
{
ÂR,∞ := Pφ(Δ̇R,∞)φ(Aπ) : A ∈ A

}
.

Theorem 6.2. For each t ∈ R, the mapping Pϕ(Δ◦
t,∞)AR,∞ 	→ Pφ(Δ◦

t,∞)ÂR,∞ is a C∗-algebra isomorphism 

of the C∗-algebra At,∞ := Pϕ(Δ◦
t,∞)AR,∞ onto the C∗-algebra Ât,∞ := Pφ(Δ◦

t,∞)ÂR,∞.

Proof. By [5, Lemma 3.5], for the open Borel set Δ◦
t,∞ and each A ∈ A, we obtain

‖Pϕ(Δ◦
t,∞)AR,∞‖B(Hϕ,R,∞) = sup

Z∈Z̃(Δ◦
t,∞)

‖ϕ(ZπAπ)‖B(Hϕ,R,∞), (6.8)

‖Pφ(Δ◦
t,∞)ÂR,∞‖B(Hφ,R,∞) = sup

Z∈Z̃(Δ◦
t,∞)

‖φ(ZπAπ)‖B(Hφ,R,∞), (6.9)
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where Z̃(Δ◦
t,∞) consists of the operators Z ∈ Z̃ for which the Gelfand transform of Zπ is a real-valued 

function in C(Δ̃) with values in [0, 1] and support in Δ̇t,∞. Since ϕ and φ are isometric representations of 
the C∗-algebra Aπ, we conclude that the right-hand sides of (6.8) and (6.9) are equal, and therefore

‖Pϕ(Δ◦
t,∞)AR,∞‖B(Hϕ,R,∞) = ‖Pφ(Δ◦

t,∞)ÂR,∞‖B(Hφ,R,∞)

for all A ∈ A, which implies the assertion of the theorem. �
Theorem 6.3. For every t ∈ R, the map

Sym◦
t,∞ : At,∞ → Ât,∞ → B(l2(Ω̃t,∞,C2)), Pϕ(Δ◦

t,∞)AR,∞ 	→ Pφ(Δ◦
t,∞)ÂR,∞ 	→ Ψ(A)|Ω̃t,∞

I (6.10)

is an isometric C∗-algebra homomorphism. For every t ∈ R and each A ∈ A, the operator Pϕ(Δ◦
t,∞)AR,∞

is invertible on the Hilbert space Pϕ(Δ◦
t,∞)Hϕ,R,∞ if and only if det[Ψξ,η,x(A)] 
= 0 for all (ξ, η, x) ∈ Ω̃t,∞.

Proof. The C∗-algebra Ât,∞ is ∗-isomorphic to the C∗-subalgebra B1 ⊂ B(l2(Δ◦
t,∞, C2)) of multiplication 

operators by bounded matrix functions FA : Δ◦
t,∞ → C

2×2, (ξ, η, x) 	→ Ψξ,η,x(A) for all A ∈ A, which, in 

its turn, is ∗-isomorphic to the C∗-subalgebra B2 ⊂ B(l2(Ω̃t,∞, C2)) of multiplication operators by bounded 
matrix functions F̃A : Ω̃t,∞ → C

2×2, (ξ, η, x) 	→ Ψξ,η,x(A) because the matrix functions x 	→ Ψξ,η,x(A) are 
continuous on R for every (ξ, η) ∈ Ωt,∞ in view of (2.6). Hence, ‖FAI‖B(l2(Δ◦

t,∞,C2)) = ‖F̃AI‖B(l2(Ω̃t,∞,C2))

for all A ∈ A. Thus, the map Pφ(Δ◦
t,∞)ÂR,∞ 	→ FAI 	→ F̃AI is an isometric ∗-homomorphism of Ât,∞ into 

B(l2(Ω̃t,∞, C2)). Involving Theorem 6.2, we see that the map (6.10) is an isometric C∗-algebra homomor-
phism. It remains to apply (2.8) for all (ξ, η, x) ∈ Ω̃t,∞. �
6.2. The homomorphism Φ1

Fix t0 ∈ R. The set of all G-orbits of points t ∈ Ṙ consists of only two G-orbits: the one-point orbit 
G(∞) = {∞} and the non-countable orbit ω := G(t0). Let H = Ht0 be the closed two-sided ideal of the 
C∗-algebra BR,∞ generated by the operator (Vt0)R,∞, where the operator Vt0 is given by (5.4).

Consider the dense subalgebra B0 of B consisting of all operators of the form

n∑
i=1

Ti,1 Ti,2 . . . Ti,ji + K (Ti,k ∈
{
aI,W 0(b), Ug : a, b ∈ PSO0, g ∈ G

}
, n, ji ∈ N, K ∈ K),

where PSO0 is the non-closed algebra consisting of all functions in PSO� with finite sets of discontinuities. 
Analogously we define the non-closed subalgebra A0 of A generated by aI and W 0(b), where a, b ∈ PSO0.

Given B ∈ B0, the operator BR,∞ can be written in the form

BR,∞ =
∑
g∈F

(Ag)R,∞(Ug)R,∞ (F ⊂ G is a finite set, Ag ∈ A0 for all g ∈ F ). (6.11)

Let A0
R,∞ := {AR,∞ : A ∈ A0} and B0

R,∞ := {BR,∞ : B ∈ B0}. For any set Γ ⊂ R, we define the sets

ΩΓ,∞ :=
⋃
t∈Γ

Mt(SO�) ×M∞(SO�), Δ◦
Γ,∞ := ΩΓ,∞ × R, Δ̇Γ,∞ := ΩΓ,∞ × Ṙ, ΔΓ,∞ := ΩΓ,∞ × {∞}.

Lemma 6.4. If B ∈ B0, Γ is a finite set of R and VΓ :=
∑

t∈Γ Vt ∈ A, then

‖BR,∞(VΓ)R,∞‖BR,∞ = ‖Φ1(B)ΠΓvI‖B(HR,∞,1) and ΠΓ := diag {χΓ(t)I2}t∈R, (6.12)

where χΓ is the characteristic function of Γ, Φ1(B) is given by (3.9)–(3.10), v(x) = −i/ cosh(πx) for x ∈ R.
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Proof. Fix a finite set Γ ⊂ R and consider the operator BR,∞ ∈ B0
R,∞ given by (6.11). Take the finite subset 

Γ̃ := {g−1(t) : t ∈ Γ, g ∈ F} of R. As UgVt � Vg−1(t)Ug and AgVt � VtAg for t ∈ Ṙ, g ∈ G, Ag ∈ A, we get

(BVΓ)R,∞ =
∑
g∈F

∑
t∈Γ

(Ag)R,∞(Ug)R,∞(Vt)R,∞ =
∑
g∈F

∑
t∈Γ

(Vg−1(t))R,∞(Ag)R,∞(Ug)R,∞. (6.13)

Making use of Theorem 6.3, we deduce for every A ∈ A and every t ∈ R that

‖(AVt)R,∞‖BR,∞ = ‖Pϕ(Δ◦
t,∞)(AVt)R,∞‖B(Pϕ(Δ◦

t,∞)Hϕ,R,∞) = ‖[Ψ(AVt)]|Ω̃t,∞
I‖B(l2(Ω̃t,∞,C2)). (6.14)

Applying Lemma 5.3 and (6.14), we infer from the second equality in (6.13) similarly to [5, Subsection 8.1]
and [5, Lemma 10.5] that Pϕ(Δ̇

R\Γ̃,∞) (BVΓ)R,∞ = 0 and Pϕ(ΔΓ̃,∞∪Δ∞,∞) (BVΓ)R,∞ = 0. Hence, because

Pϕ(Δ◦
Γ̃,∞) + Pϕ(Δ̇

R\Γ̃,∞) + Pϕ(ΔΓ̃,∞ ∪ Δ∞,∞) = Pϕ(Δ̃R,∞) = IR,∞

in view of the partition Δ̃R,∞ = Δ◦
Γ̃,∞ ∪ Δ̇

R\Γ̃,∞ ∪
(
ΔΓ̃,∞ ∪ Δ∞,∞

)
, we conclude from Lemma 6.1 that

‖(BVΓ)R,∞‖BR,∞ = ‖Pϕ(Δ◦
Γ̃,∞)(BVΓ)R,∞‖B(Hϕ,R,∞) = ‖Pϕ(Δ◦

Γ̃,∞)(BVΓ)R,∞Pϕ(Δ◦
Γ,∞)‖B(Hϕ,R,∞).

(6.15)

Let GB be the subgroup of G generated by the finite set F in (6.11) and let OB,Γ be the finite set of 
GB-orbits ω of all points t ∈ Γ. Then Γω := Γ ∩ ω is a finite subset of ω ∈ OB,Γ. Since

‖(BVΓ)R,∞‖BR,∞ = max
ω∈OB,Γ

‖(BVΓω
)R,∞‖BR,∞ , ‖Φ1(B)ΠΓvI‖B(HR,∞,1) = max

ω∈OB,Γ
‖Φ1(B)ΠΓω

vI‖B(HR,∞,1),

we only need to prove (6.12) for (VΓ)R,∞ replaced by any (VΓω
)R,∞. In what follows we assume without loss 

of generality that Γ, ̃Γ ⊂ ω and ω = GB(t0). As the group GB is at most countable, so is the GB-orbit ω.
We now define the Hilbert space Ht0 :=

⊕
t∈ω Pϕ(Δ◦

t0,∞)Hϕ,R,∞ and the isomorphism

σω : Pϕ(Δ◦
ω,∞)Hϕ,R,∞ →

⊕
t∈ω

Pϕ(Δ◦
t0,∞)Hϕ,R,∞, Pϕ(Δ◦

ω,∞)f 	→
(
Pϕ(Δ◦

t0,∞)(Ugt)R,∞f
)
t∈ω

, (6.16)

where f ∈ Hϕ,R,∞ and gt = g1,t−t0 ∈ Yt0,t for every t ∈ ω. Taking the isometric C∗-algebra homomorphism

Υω : B(Pϕ(Δ◦
ω,∞)Hϕ,R,∞) → B

(⊕
t∈ω

Pϕ(Δ◦
t0,∞)Hϕ,R,∞

)
, T 	→ σωTσ

−1
ω , (6.17)

with σω given by (6.16), and applying for t, τ ∈ ω, g ∈ G and s ∈ Γ the relations

(Ag,t)R,∞ := (UgtAgU
−1
gt )R,∞ ∈ AR,∞, (UgtUgU

−1
gτ )R,∞ = (Ug̃t,τ )R,∞, UgτVsU

−1
gτ � Vg−1

τ (s),

where g̃t,τ = gtgg
−1
τ ∈ Yt0,t0 if g(t) = τ (see (3.4)), we infer from (6.13) and (6.17) that

Υω

(
Pϕ(Δ◦

Γ̃,∞)(BVΓ)R,∞Pϕ(Δ◦
Γ,∞)

)
= Υω

(
Pϕ(Δ◦

Γ̃,∞)
∑
g∈F

∑
s∈Γ

(AgUgVs)R,∞Pϕ(Δ◦
Γ,∞)

)
= ΠΓ̃

ω

(
Pϕ(Δ◦

t0,∞)
∑
g∈F

∑
s∈Γ

(UgtAgU
−1
gt )R,∞(Ug̃t,τ )R,∞(UgτVsU

−1
gτ )R,∞Pϕ(Δ◦

t0,∞)
)
t,τ∈ω

ΠΓ
ω

= ΠΓ̃
ω

(∑
g∈F

δg(t, τ)Pϕ(Δ◦
t0,∞)(Ag,tUg̃t,τVt0)R,∞

)
t,τ∈ω

ΠΓ
ω, (6.18)
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where ΠΓ̃
ω := diag{χΓ̃(t)}t∈ωI and ΠΓ

ω := diag{χΓ(t)}t∈ωI. It follows from (6.17) that∥∥Pϕ(Δ◦
Γ̃,∞)(BVΓ)R,∞Pϕ(Δ◦

Γ,∞)
∥∥
B(Hϕ,R,∞) =

∥∥Υω

(
Pϕ(Δ◦

Γ̃,∞)(BVΓ)R,∞Pϕ(Δ◦
Γ,∞)

)∥∥
B(Ht0 ). (6.19)

Hence, taking into account the finiteness of the sets Γ, ̃Γ ⊂ ω in (6.19), we infer from (6.12), (6.19) (6.18)
and Lemma 5.3, by analogy with Theorem 6.3, that∥∥Pϕ(Δ◦

Γ̃,∞)(BVΓ)R,∞Pϕ(Δ◦
Γ,∞)

∥∥
B(Hϕ,R,∞) =

∥∥∥ΠΓ̃
ω

(∑
g∈F

δg(t, τ)Pϕ(Δ◦
t0,∞)(Ag,tUg̃t,τVt0)R,∞

)
t,τ∈ω

ΠΓ
ω

∥∥∥
B(Ht0 )

=
∥∥∥ΠΓ̃

ω

(∑
g∈F

δg(t, τ)
[
Ψ(Ag,tUg̃t,τVt0)

]∣∣
Δ◦

t0,∞
I
)
t,τ∈ω

ΠΓ
ω

∥∥∥
B(l2(Δ◦

t0,∞,l2(ω,C2)))

=
∥∥∥ΠΓ̃

(∑
g∈F

δg(t, τ)
[
Ψ
(
Ag,tUg̃t,τVt0

)]∣∣
Δ◦

t0,∞
I
)
t,τ∈R

ΠΓI
∥∥∥
B(HR,∞,1)

= ‖Φ1(B)ΠΓvI‖B(HR,∞,1). (6.20)

Finally, combining (6.15), (6.19) and (6.20), we obtain the first equality in (6.12). �
Lemma 6.4 is the key to proving the continuity of the algebraic homomorphism Φ1. Applying this lemma 

and directly following the proof of [9, Theorem 8.3], we establish the following estimate.

Theorem 6.5. If B ∈ B0, then

‖Φ1(B)‖B(HR,∞,1) ≤ ‖BR,∞‖BR,∞ ≤ ‖Bπ‖. (6.21)

Making use of Theorem 6.5 and (3.9)–(3.10), we obtain the following.

Theorem 6.6. The algebraic homomorphism Φ1 given by (3.9)–(3.10) extends to a representation Φ1 : B →
B(HR,∞,1), such that (6.21) holds for every B ∈ B. Given an operator B ∈ B, the operator Φ1(B) is 
invertible on the Hilbert space HR,∞,1 if and only if condition (i) of Theorem 3.2 holds.

By (3.9)–(3.10) and Theorems 6.5 and 6.6, the map

ΦR,∞,1 : BR,∞ → B(HR,∞,1), BR,∞ 	→ Φ1(B), (6.22)

is a homomorphism. Since the set 
{
(BVΓ)R,∞ : B ∈ B0, Γ runs through finite subsets of R

}
is dense in the 

ideal H = Ht0 of the C∗-algebra BR,∞, we immediately obtain the following result from Lemma 6.4.

Theorem 6.7. The restriction of the homomorphism (6.22) to the closed two-sided ideal H = Ht0 is an iso-
metric ∗-isomorphism of H onto the closed two-sided ideal ΦR,∞,1(H) of the C∗-algebra Φ1(B) ⊂ B(HR,∞,1).

6.3. Invertibility in the C∗-algebra BR,∞/H and the homomorphism Φ2

Given t ∈ R, let Jt denote the closed two-sided ideal of the C∗-algebra S generated by the operator Vt

and the ideal K, and let J stand for the closed two-sided ideal of S generated by all the ideals Jt for t ∈ Ṙ.
Given b ∈ PSO�, fix functions b±∞ ∈ SO∞ such that b±∞(η) = b(η∓) for all η ∈ M∞(SO�). We then get

[W 0(b)]R,∞ = [W 0(b−∞χ− + b+∞χ+)]R,∞ = [W 0(b−∞)]R,∞[P+]R,∞ + [W 0(b+∞)]R,∞[P−]R,∞, (6.23)

where χ± are the characteristic functions of R±, P± := (I ± SR)/2, and SR is given by (5.2). Analogously, 
for every t ∈ R and every a ∈ PSO0 there exist functions a±t ∈ SOt such that a±t (ξ±) = a(ξ±) for every 
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ξ ∈ Mt(SO�). Applying (6.23), we see that for all a, b ∈ PSO� the local behavior of the commutators 
[aW 0(b) −W 0(b)aI]R,∞ ∈ AR,∞ at the point (t, ∞) ∈ Ṙ× Ṙ for t ∈ R coincides with the local behavior at 
this point of the commutators [(a−t χ−

t + a+
t χ

+
t )I, (W 0(b−∞)P+ + W 0(b+∞)P−)]R,∞ ∈ AR,∞, where χ−

t and 
χ+
t are, respectively, the characteristic functions of the intervals (t − 1, t) and (t, t + 1). Since

[(a−t χ−
t + a+

t χ
+
t )I, (W 0(b−∞)P+ + W 0(b+∞)P−)]

� a+
t W

0(b+∞)[χ+
t I, P−] + a+

t W
0(b−∞)[χ+

t I, P+] + a−t W
0(b+∞)[χ−

t I, P−] + a−t W
0(b−∞)[χ−

t I, P+]

and since the commutators [χ±
t I, SR] belong, respectively, to the ideal Jt +Jt±1 similarly to [5, Lemma 5.3]

(also see [26, Sections 2.3–2.4]), we conclude that for all a, b ∈ PSO� the commutators [aW 0(b) −
W 0(b)aI]R,∞ belong to the closed two-sided ideal JR,∞ of the C∗-algebra AR,∞, which is generated by 
all operators (Vt)R,∞ (t ∈ R). Thus, the quotient C∗-algebra AR,∞/JR,∞ is commutative.

Since the closed two-sided ideal H = Ht0 of the C∗-algebra BR,∞ is generated by the operator (Vt0)R,∞, 
we conclude that JR,∞ ⊂ H and, moreover, H ∩ AR,∞ = JR,∞. Consider the quotient C∗-algebras

BR,∞,H := BR,∞/H and AR,∞,H := (AR,∞ + H)/H ∼= AR,∞/JR,∞. (6.24)

The C∗-algebra AR,∞,H is commutative along with AR,∞/JR,∞ and is generated by the cosets

[aW 0(b)]R,∞,H = [aW 0(b−∞)P+]R,∞ + [aW 0(b+∞)P−]R,∞ + H (6.25)

for all a, b ∈ PSO�, where the functions b±∞ ∈ SO∞ possess the property b±∞(η) = b(η∓) for all η ∈
M∞(SO�). In particular, for given a1, a2, b1, b2 ∈ PSO�, we obtain

[a1W
0(b1)]R,∞,H[a2W

0(b2)]R,∞,H = [a1a2W
0(b1b2)]R,∞,H. (6.26)

By (6.25)–(6.26), the maximal ideal space of the C∗-algebra AR,∞,H is homeomorphic to the compact set

N̂R,∞ := (M(SO�) × {0, 1}) × (M∞(SO�) × {0, 1}) (6.27)

whose topology is induced by the product topology of M(PSO�) ×M(PSO�), and the topology of M(PSO�)
is given by (2.3). The Gelfand transform AR,∞,H → C(N̂R,∞), AR,∞,H 	→ AR,∞,H(·, ·, ·, ·) is defined on the 
generators AR,∞,H = [aW 0(b)]R,∞,H (a, b ∈ PSO�) of the C∗-algebra AR,∞,H by

AR,∞,H(ξ, μ, η, ν) = a(ξ, μ)b(η, ν) for all (ξ, μ, η, ν) ∈ N̂R,∞, (6.28)

where a(ξ, 0) = a(ξ−), a(ξ, 1) = a(ξ+), b(η, 0) = b(η−), b(η, 1) = b(η+).
Applying the local-trajectory method described in Section 4, we will obtain here an invertibility criterion 

for the cosets BR,∞,H ∈ BR,∞,H, where BR,∞,H := BR,∞ + H for BR,∞ ∈ BR,∞.
By (6.3) and (6.4), we conclude that for every g ∈ G the map α̃g : AR,∞,H 	→ (UgAU−1

g )R,∞,H is a 
∗-automorphism of the commutative C∗-algebra AR,∞,H. Indeed, for all a, b ∈ PSO� we infer in view of 
(6.3)–(6.5) that [UgaW

0(b)U−1
g ]R,∞,H = [(a ◦ g)W 0(b)]R,∞,H. Hence the C∗-algebra BR,∞,H is the closure of 

the algebra B0
R,∞,H consisting of the cosets 

∑
g∈F (Ag)R,∞,H(Ug)R,∞,H, where (Ag)R,∞ ∈ A0

R,∞ and g runs 
through finite subsets F ⊂ G. For each g ∈ G, the ∗-automorphism α̃g of the C∗-algebra AR,∞,H induces on 
the maximal ideal space N̂R,∞ defined by (6.27) the homeomorphism

β̃g : (ξ, μ, η, ν) 	→ (g(ξ), μ, η, ν) for all (ξ, μ, η, ν) ∈ N̂R,∞ (6.29)

by the rule AR,∞,H

[
β̃g(ξ, μ, η, ν)

]
=

[
α̃g(AR,∞,H)

]
(ξ, μ, η, ν) for all (ξ, μ, η, ν) ∈ N̂R,∞ and all g ∈ G.
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Since the homeomorphism ξ 	→ g(ξ) given by (6.7) sends the fibers Mt(SO�) onto the fibers Mg(t)(SO�)
for all t ∈ Ṙ, it follows from the proof of [5, Theorem 6.4] that g(ξ) = ξ for every ξ ∈ M∞(SO�). This in 
view of (6.29) gives the following.

Lemma 6.8. N̂∞,∞ := (M∞(SO�) × {0, 1}) × (M∞(SO�) × {0, 1}) is the set of all common fixed points of 
all homeomorphisms β̃g (g ∈ G) on the compact set N̂R,∞.

Since G acts topologically freely on Ṙ, we easily deduce from Lemma 6.8 and the Gelfand topology on 
N̂R,∞ that the group G acts topologically freely on N̂R,∞ as well. Moreover, since the open set

NR,∞ :=
⋃
t∈R

(
Mt(SO�) × {0, 1} ×M∞(SO�) × {0, 1}

)
is dense in N̂R,∞, we see that for every nonempty open set W ⊂ N̂R,∞ and every finite set G0 ⊂ G there 
exists a point (ξ0, μ0, η0, ν0) ∈ W ∩NR,∞ such that β̃g(ξ0, μ0, η0, ν0) 
= (ξ0, μ0, η0, ν0) for all g ∈ G0\{e}. Due 
to this fact and the amenability of the solvable group G, we infer that all conditions of the local-trajectory 
method (see [22], [24]) for the C∗-algebra BR,∞,H are fulfilled.

Since G(t0) = R for t0 ∈ R, it follows from (6.7) and (6.29) that the set

Nt0,∞ := Mt0(SO�) × {0, 1} ×M∞(SO�) × {0, 1} (6.30)

contains exactly one point in each G-orbit of every point in NR,∞. Consider the Hilbert space l2(G) consisting 
of all complex-valued functions defined on G and having at most countable sets of non-zero values, and with 
every point (ξ, μ, η, ν) ∈ Nt0,∞ we associate the representation

Πξ,μ,η,ν : BR,∞,H → B(l2(G)), BR,∞,H 	→ B̃ξ,μ,η,ν := Πξ,μ,η,ν(BR,∞,H) (6.31)

given for BR,∞,H =
∑

g∈F (Ag)R,∞,H(Ug)R,∞,H, where F is a finite subset of G and (Ag)R,∞,H ∈ A0
R,∞,H, by

(
B̃ξ,μ,η,νf

)
(h) =

∑
g∈F

([
α̃h((Ag)R,∞,H)

]
(ξ, μ, η, ν)

)
f(hg) for all f ∈ l2(G) and all h ∈ G. (6.32)

Then Theorem 4.2 immediately implies the following invertibility criterion by analogy with [8, Theorem 2.7].

Theorem 6.9. A coset BR,∞,H ∈ BR,∞,H is invertible in the C∗-algebra BR,∞,H if and only if the operators 
B̃ξ,μ,η,ν are invertible on the space l2(G) for all (ξ, μ, η, ν) ∈ Nt0,∞ and

sup
(ξ,μ,η,ν)∈Nt0,∞

∥∥∥(B̃ξ,μ,η,ν

)−1
∥∥∥
B(l2(G))

< ∞.

Applying Theorem 6.9 to the coset BR,∞,HB
∗
R,∞,H ∈ BR,∞,H and using spectral radii r(·), we get

∥∥BR,∞,H

∥∥ =
∥∥BR,∞,HB

∗
R,∞,H

∥∥1/2 =
[
r
(
BR,∞,HB

∗
R,∞,H

)]1/2
= sup

(ξ,μ,η,ν)∈Nt0,∞

[
r
(
B̃ξ,μ,η,νB̃

∗
ξ,μ,η,ν

)]1/2 = sup
(ξ,μ,η,ν)∈Nt0,∞

∥∥B̃ξ,μ,η,ν

∥∥
B(l2(G)).

Thus, we obtained the following assertion for the C∗-algebra BR,∞,H given by (6.24).
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Corollary 6.10. The representation⊕
(ξ,μ,η,ν)∈Nt0,∞

Πξ,μ,η,ν : BR,∞,H → B
( ⊕

(ξ,μ,η,ν)∈Nt0,∞

l2(G)
)
,

where Πξ,μ,η,ν and Nt0,∞ are given by (6.31)–(6.32) and (6.30), is an isometric C∗-algebra homomorphism.

Along with C∗-algebra homomorphisms Πξ,μ,η,ν defined for (ξ, μ, η, ν) ∈ Nt0,∞ by (6.31) and (6.32), we 
consider the C∗-algebra homomorphisms Πξ,μ,η,ν : BR,∞,H → B(l2(G)) given by (6.31) and (6.32) for every 
(ξ, μ, η, ν) ∈ (M∞(SO�) × {0, 1})2, where the expressions 

[
α̃h((Ag)R,∞,H)

]
(ξ, μ, η, ν) in (6.32) are replaced 

by 
[
(Ag)R,∞,H

]
(ξ, μ, η, ν). We then infer the following corollary from Theorem 6.9.

Corollary 6.11. If a coset BR,∞,H ∈ BR,∞,H is invertible in the C∗-algebra BR,∞,H, then the operators 
B̃ξ,μ,η,ν = Πξ,μ,η,ν(BR,∞,H) are invertible on the space l2(G) for all (ξ, μ, η, ν) ∈ (M∞(SO�) × {0, 1})2.

The Hilbert space HR,∞,2 := l2(Ω̂t0,∞, l2(G, C2)) given by (3.7) is isometrically isomorphic to the space ⊕
(ξ,μ,η,ν)∈Nt0,∞

l2(G). Identifying these Hilbert spaces, we conclude that the algebraic ∗-homomorphism

ΦR,∞,2 : B0
R,∞ → B(HR,∞,2), BR,∞ 	→ Φ2(B), (6.33)

defined initially on the generators of BR,∞, where Φ2 is given by (3.9) and (3.11), can be rewritten for 
BR,∞ ∈ B0

R,∞ and (ξ, η, ±∞) ∈ Ω̂t0,∞ in the following equivalent form:

[Sym2(B)](ξ, η,+∞)I ∼ diag{Πξ,1,η,1(BR,∞,H), Πξ,0,η,0(BR,∞,H)},
[Sym2(B)](ξ, η,−∞)I ∼ diag{Πξ,1,η,0(BR,∞,H), Πξ,0,η,1(BR,∞,H)}.

(6.34)

Hence, we infer from (6.34) and Corollary 6.10 that

‖ΦR,∞,2(BR,∞)‖B(HR,∞,2) = sup
(ξ,η,x)∈Ω̂t0,∞

‖[Sym2(B)](ξ, η, x)I‖B(l2(G,C2))

= sup
(ξ,μ,η,ν)∈Nt0,∞

‖Πξ,μ,η,ν(BR,∞,H)‖B(l2(G)) = ‖BR,∞,H‖BR,∞,H
≤ ‖BR,∞‖BR,∞

for all BR,∞ ∈ BR,∞. This immediately implies the following.

Theorem 6.12. The algebraic ∗-homomorphism (6.33) given on generators of the C∗-algebra BR,∞ by for-
mulas (3.11) extends by continuity to a representation ΦR,∞,2 : BR,∞ → B(HR,∞,2) such that

‖ΦR,∞,2(BR,∞)‖B(HR,∞,2) = ‖BR,∞,H‖BR,∞,H
≤ ‖BR,∞‖BR,∞ (6.35)

for all BR,∞ ∈ BR,∞, and hence ker ΦR,∞,2 = H.

By (6.34) and (6.35), ΦR,∞,2(BR,∞) ∼= BR,∞,H. Hence, because Φ2(B) = ΦR,∞,2(BR,∞) for all B ∈ B, 
we infer from Theorems 6.9 and 6.12 the following.

Theorem 6.13. Given an operator B ∈ B, the operator Φ2(B) is invertible on the Hilbert space HR,∞,2 if 
and only if condition (ii) of Theorem 3.2 holds. The map Φ2 given by (3.7), (3.9) and (3.11) is a C∗-algebra 
homomorphism, and ker Φ2 = {B ∈ B : BR,∞ ∈ H}.
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6.4. Invertibility in the C∗-algebra BR,∞

Theorem 6.14. An operator BR,∞ ∈ BR,∞ is invertible in the C∗-algebra BR,∞ if and only if conditions
(i)–(ii) of Theorem 3.2 are fulfilled.

Proof. It follows from Theorem 6.12 and Theorem 6.7 that kerΦR,∞,1 ∩ ker ΦR,∞,2 = kerΦR,∞,1 ∩H = {0}. 
Hence, the map ΦR,∞,1 ⊕ ΦR,∞,2 is a faithful representation of the C∗-algebra BR,∞ in the Hilbert space 
HR,∞,1 ⊕HR,∞,2. Consequently, an operator BR,∞ ∈ BR,∞ is invertible in BR,∞ if and only if for i = 1, 2
the operator Φi(B) = ΦR,∞,i(BR,∞) is invertible on the Hilbert spaces HR,∞,i, which is equivalent to the 
fulfillment of conditions (i)–(ii) of Theorem 3.2 by Theorems 6.6 and 6.13. �
7. The C∗-algebra B∞,R

7.1. Another form of the C∗-algebra B∞,R

Along with A = alg(aI, W 0(b) : a, b ∈ PSO�), we consider the C∗-algebras

Ã := alg
{
aI,W 0(b), Ug1,h : a, b ∈ PSO�, h ∈ R

}
, Ã∞,R := Pϕ(Δ̇∞,R)ϕ(Ãπ).

Let eh(x) := eihx for all x ∈ R and all h ∈ R. Since Ug1,h = W 0(e−h) for all h ∈ R, we conclude that the 
C∗-algebra Ã∞,R is generated by the operators A∞,R := Pϕ(Δ̇∞,R)ϕ(Aπ), where A ∈ {aI, W 0(b), W 0(e−h) :
a, b ∈ PSO�, h ∈ R}. Then B = alg

{
A, Ugk,0 : A ∈ Ã, k ∈ R+

}
, and B∞,R := Pϕ(Δ̇∞,R)ϕ(Bπ).

According to the equality Ug1,h = W 0(e−h), we define the 2 × 2 matrices

Ψξ,η,x(Ug1,h) := e−ihηI2 for all h ∈ R and all (ξ, η, x) ∈ Ω̃∞,R, (7.1)

where eihη = eihτ for η ∈ Mτ (SO�). This allows us to extend the mappings Ψξ,η,x for every (ξ, η, x) ∈ Ω̃∞,R

to the C∗-algebra Ã properly containing A. Consider the space Hφ,∞,R given by (5.21) and the mapping

ψ∞,R : Ã∞,R →
⊕

(ξ,η,x)∈Ω̃∞,R

Ψξ,η,x(Ã)I ⊂ B(Hφ,∞,R),

ψ∞,R

( ∑
h∈F

(AhUg1,h)∞,R

)
:=

⊕
(ξ,η,x)∈Ω̃∞,R

∑
h∈F

Ψξ,η,x(Ah)Ψξ,η,x(Ug1,h)I,
(7.2)

where F is a finite subset of R, Ah ∈ A for h ∈ F , and the matrices Ψξ,η,x(Ah) and Ψξ,η,x(Ug1,h) for h ∈ F

are defined by (2.6) and (7.1), respectively. Similarly to [30, Theorem 10.1], the mapping

Pϕ(Δ̇∞,R)ϕ
( ∑

h∈F

Aπ
hU

π
g1,h

)
	→ ψ∞,R

( ∑
h∈F

(AhUg1,h)∞,R

)
,

where F is a finite subset of R, extends to a C∗-algebra isomorphism

ψ∞,R : Ã∞,R → Â∞,R := ψ∞,R(Ã∞,R) ⊂ B(Hφ,∞,R). (7.3)

Since the C∗-algebras Ã∞,R and Â∞,R consist of the operators

A∞,R = Pϕ(Δ̇∞,R)ϕ(Aπ) for A ∈ Ã, Â∞,R := ψ∞,R(A∞,R) =
⊕

(ξ,η,x)∈Ω̃∞,R

Ψξ,η,x(A)I for A ∈ Ã,

(7.4)

we deduce the following in view of the C∗-algebra isomorphism (7.3).
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Theorem 7.1. For every A ∈ Ã, the operator A∞,R ∈ Ã∞,R is invertible on the space Hϕ,∞,R if and only if 
for all (ξ, η, x) ∈ Ω̃∞,R the operators Ψξ,η,x(A)I are invertible on the space C2 and

sup
(ξ,η,μ)∈Ω̃∞,R

∥∥(Ψξ,η,x(A)I)−1∥∥
B(C2) < ∞.

For the C∗-algebra B(Ω̃∞,R, C2×2) of bounded functions Ω̃∞,R → C
2×2, Theorem 7.1 gives the following.

Corollary 7.2. The mapping Ã∞,R → B(Ω̃∞,R, C2×2), Pϕ(Δ̇∞,R)ϕ(Aπ) 	→ Ψ(A)|Ω̃∞,R
is an isometric 

C∗-algebra homomorphism.

7.2. The spectral measure associated with the C∗-algebra B∞,R

Let Z̃∞,R := Pϕ(Δ̇∞,R)ϕ(Z̃π), where the C∗-algebra Z̃ ⊂ B(L2(R)) is given by (5.7). Since the quotient 
C∗-algebra Z̃π is a central subalgebra of Aπ and

Ug1,h(aI)U−1
g1,h

= (a ◦ g1,h)I, Ug1,hW
0(b)U−1

g1,h
= W 0(b), (a ◦ g1,h)(ξ±) = a(ξ±)

for all a, b ∈ PSO�, all h ∈ R and all ξ ∈ M∞(SO�), we conclude that Z̃∞,R is a central C∗-subalgebra of 
Ã∞,R. The maximal ideal space M(Z̃∞,R) of Z̃∞,R is homeomorphic to the compact Hausdorff space

Δ̃∞,R := Δ̇∞,R ∪ Δ∞,∞ (7.5)

equipped with topology induced by the Gelfand topology of Δ̃ (see (5.13)).
For all a, b ∈ PSO�, all h ∈ R, all k ∈ R+ and all P ∈ P, we infer that

Ugk,0(aI)U−1
gk,0

= (a ◦ gk,0)I, Ugk,0W
0(b)U−1

gk,0
= W 0(b ◦ gk−1,0), Ugk,0SRU

−1
gk,0

= SR,

Ugk,0W
0(eh)U−1

gk,0
= W 0(eh/k), Ugk,0 Ṽ0U

−1
gk,0

� Ṽ0, Ugk,0H̃P,0U
−1
gk,0

� H̃P,0,
(7.6)

where b ◦ gk−1,0 ∈ PSO� along with b (cf. [4, Lemma 4.2]). Hence, for k ∈ R+,

(Ugk,0)∞,RÃ∞,R((Ugk,0)∞,R)−1 = Ã∞,R, (Ugk,0)∞,RZ̃∞,R((Ugk,0)∞,R)−1 = Z̃∞,R, (7.7)

where (Ugk,0)∞,R = Pϕ(Δ̇∞,R)ϕ(Uπ
gk,0

). As a consequence of (7.7), for each k ∈ R+, the mapping

α̂k : A∞,R 	→ (Ugk,0)∞,RA∞,R((Ugk,0)∞,R)−1 (7.8)

is a ∗-automorphism of the C∗-algebra Ã∞,R and its central C∗-subalgebra Z̃∞,R. The ∗-automorphisms α̂k

(k ∈ R+) in view of (7.6) and the equalities z[β̂k(m)] = [α̂k(z)](m) (z ∈ Z̃∞,R, m ∈ Δ̃∞,R, k ∈ R+), where 
z(·) ∈ C(Δ̃∞,R) is the Gelfand transform of the operator z ∈ Z̃∞,R, induce on Δ̃∞,R the homeomorphisms

β̂k : Δ̃∞,R → Δ̃∞,R, (ξ, η, x) 	→ (ξ, gk−1,0(η), x), k ∈ R+. (7.9)

The maps η 	→ gk,0(η) are homeomorphisms of M(SO�) onto itself given by

b(gk,0(η)) = (b ◦ gk,0)(η) for all b ∈ SO� and all η ∈ M(SO�) (7.10)

(as usual b(η) := η(b)). Since 0 and ∞ are the only fixed points on Ṙ for the shifts gk,0 ∈ G̃ \ {e}, we 
infer that gk,0(η) = η for all η ∈ M0(SO�) ∪ M∞(SO�) and all k ∈ R+ \ {1} (see, e.g., the proof of [5, 
Theorem 6.4]). Hence, we obtain from (7.9) the following assertion similarly to [7, Lemma 4.2].
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Lemma 7.3. The set Δ̇∞,0 ∪ Δ∞,∞ consists of all fixed points of the homeomorphisms β̂k (k ∈ R+ \ {1}).

Let R(Δ̃∞,R) be the σ-algebra of all Borel subsets of the compact set Δ̃∞,R given by (7.5). Taking

RG̃(Δ̃∞,R) :=
{
Δ ∈ R(Δ̃∞,R) : β̂k(Δ) = Δ for all gk,0 ∈ G̃

}
,

where the group G̃ is given by (3.2), we conclude from [24] that Pϕ(Δ)B∞,R = B∞,RPϕ(Δ) for each 
Δ ∈ RG̃(Δ̃∞,R) and each B∞,R ∈ B∞,R. For every t ∈ Ṙ and every gk,0 ∈ G̃, the homeomorphism 
η 	→ gk,0(η) defined by (7.10) sends the fibers Mt(SO�) onto the fibers Mgk−1,0(t)(SO

�). Setting then

Ω∞,R\{0} := Ω∞,R \ Ω∞,0, Ω̃∞,R\{0} := Ω∞,R\{0} × R,

Δ̇∞,R\{0} := Ω∞,R\{0} × Ṙ, Δ◦
∞,R\{0} := Ω∞,R\{0} × R,

(7.11)

we obtain the partition Δ̃∞,R = Δ̇∞,R\{0} ∪Δ◦
∞,0 ∪Δ∞,0 ∪Δ∞,∞, where Δ̇∞,R\{0} and Δ◦

∞,0 are open sets 
in RG̃(Δ̃∞,R), while Δ∞,∞ and Δ∞,0 are closed subsets of RG̃(Δ̃∞,R). We now introduce the C∗-algebras

Z̃∞,R\{0} := Pϕ(Δ̇∞,R\{0})Z̃∞,R, Z̃◦
∞,0 := Pϕ(Δ◦

∞,0)Z̃∞,R,

Ã∞,R\{0} := Pϕ(Δ̇∞,R\{0})Ã∞,R, Ã◦
∞,0 := Pϕ(Δ◦

∞,0)Ã∞,R,

B∞,R\{0} := Pϕ(Δ̇∞,R\{0})B∞,R, B◦
∞,0 := Pϕ(Δ◦

∞,0)B∞,R.

(7.12)

8. The C∗-algebra B∞,R\{0}

The maximal ideal space M(Z̃∞,R\{0}) of the central subalgebra Z̃∞,R\{0} of the C∗-algebra Ã∞,R\{0} is 
homeomorphic to the compact set Δ̃∞,R\{0} := Δ̇∞,R\{0} ∪ Δ∞,∞ ∪ Δ∞,0. The restriction of the automor-
phism α̂k (k ∈ R+) given by (7.8) to the C∗-algebras Ã∞,R\{0} and Z̃∞,R\{0} are ∗-automorphisms of these 
C∗-algebras. Thus, assumption (A1) of Section 4 is fulfilled for the C∗-algebras Ã∞,R\{0} and Z̃∞,R\{0}. 
Since the commutative group G̃ given by (3.2) is amenable, assumption (A2) of Section 4 is also fulfilled.

Let Jξ,η,x denote the closed two-sided ideal of the C∗-algebra Ã∞,R\{0} generated by the maximal ideal 
of the C∗-algebra Z̃∞,R\{0} associated with the point (ξ, η, x) ∈ Δ̇∞,R\{0}. Applying Theorem 7.1 and 
Corollary 7.2, we deduce the following three assertions.

(i) For each (ξ, η, x) ∈ Δ◦
∞,R\{0}, where Δ◦

∞,R\{0} is given by (7.11), the mapping

π̃ξ,η,x : Pϕ(Δ̇∞,R\{0})(A∞,R) + Jξ,η,x 	→ Ψξ,η,x(A)

is a ∗-isomorphism of the C∗-algebra Ã∞,R\{0}/Jξ,η,x onto the C∗-subalgebra 
{
Ψξ,η,x(A) : A ∈ Ã

}
of C2×2.

(ii) For each (ξ, η, x) ∈ Δ∞,R, where Δ∞,R is given by (5.10), the mapping

π̃ξ,η,x : Pϕ(Δ̇∞,R\{0})(A∞,R) + Jξ,η,x 	→ diag
{
Ψξ,η,−∞(A), Ψξ,η,+∞(A)

}
,

is a C∗-algebra isomorphism of the quotient C∗-algebra Ã∞,R\{0}/Jξ,η,x onto the C∗-subalgebra

{
diag

{
Ψξ,η,−∞(A), Ψξ,η,+∞(A)

}
: A ∈ Ã

}
of C

4×4.

(iii) For each (ξ, η, x) ∈ Δ∞,∞, where Δ∞,∞ is given by (5.10), the mapping

π̃ξ,η,x : Pϕ(Δ̇∞,R\{0})
( ∑

(AhUg1,h)∞,R

)
+ Jξ,η,x 	→

∑
diag

{
Ψξ,η,−∞(Ah)e−h, Ψξ,η,+∞(Ah)e−h

}
,

h∈F h∈F
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where Ah ∈ A for all h ∈ F , and F runs through finite subsets of R, extends to a C∗-algebra isomorphism 
of the quotient C∗-algebra Ã∞,R\{0}/Jξ,η,x onto the C∗-subalgebra π̃ξ,η,x(Ã∞,R\{0}/Jξ,η,x) of 4 ×4 diagonal 
matrices with entries in the C∗-algebra AP of uniformly almost periodic functions on R. As is known, AP

is the C∗-subalgebra of L∞(R) generated by all functions eλ (λ ∈ R).
One can prove that for every pure state ν ∈ P

Ã∞,R\{0}
of the C∗-algebra Ã∞,R\{0}, which satisfy the 

condition mν = ker ν ∩ Z̃∞,R\{0} ∈ Δ∞,∞ ∪Δ∞,0, and every open neighborhood Wν ⊂ P
Ã∞,R\{0}

of ν there 

exists a state w ∈ Wν such that the point mw = ker w ∩ Z̃∞,R\{0} belongs to R+ ∪ R−. This means that 
assumption (A3) of Section 4 is also fulfilled for the C∗-algebra

B∞,R\{0} = Pϕ(Δ̇∞,R\{0}) alg
{
Ã∞,R, (Ugk,0)∞,R : k ∈ R+

}
.

Indeed, if (ξ, η, ∞) ∈ Δ∞,0, then the set of all pure states of the C∗-algebra Ã at the point (ξ, η, ∞)
consists of four elements, which are given for A ∈ Ã by the (k, k)-entries [Ψξ,η,±∞(A)]k,k for k = 1, 2 of the 
matrix Ψξ,η,±∞(A), where

[Ψξ,η,±∞(aW 0(b)Ug1,h)]1,1 = a(ξ+)b(η±), [Ψξ,η,±∞(aW 0(b)Ug1,h)]2,2 = a(ξ−)b(η∓)

for the generator aW 0(b)Ug1,h (a, b ∈ PSO�, h ∈ R) of the C∗-algebra Ã. It is obvious that for every ε > 0
there exist points τ± ∈ R± close to 0 and points (ξ, η±, ∞) ∈ M∞(SO�) ×Mτ±(SO�) × {∞} such that

∣∣[Ψξ,η,±∞(aW 0(b)Ug1,h)]1,1 − [Ψξ,η±,±∞(aW 0(b)Ug1,h)]1,1
∣∣ =

∣∣a(ξ+)b(η±) − a(ξ+)b(η±±)e−ihτ±
∣∣ < ε,∣∣[Ψξ,η,±∞(aW 0(b)Ug1,h)]2,2 − [Ψξ,η∓,±∞(aW 0(b)Ug1,h)]2,2

∣∣ =
∣∣a(ξ−)b(η∓) − a(ξ−)b(η∓∓)e−ihτ∓

∣∣ < ε,
(8.1)

where b(η±±) means either b(η+
+), or b(η−−). Moreover, we can choose τ± in the set R± \ T , where T is the 

at most countable set of all discontinuity points of b ∈ SO�, and then replace b(η±±) by b(τ±), respectively. 
Hence, by (8.1), for every A ∈ Ã, the pure state values [Ψξ,η,±∞(A)]k,k can be approximated by the pure 
state values [Ψξ,η±,±∞(A)]1,1 if k = 1, and by the pure state values [Ψξ,η∓,±∞(A)]2,2 if k = 2, where 
η± ∈ Mτ±(SO�) and the points τ± ∈ R± are close to 0. On the other hand, gk,0(τ±) 
= τ± for every 
k ∈ R+ \ {1}, which proves assumption (A3) for all points (ξ, η, ∞) ∈ Δ∞,0.

We now suppose that (ξ, η, ∞) ∈ Δ∞,∞. Then the set of all pure states of the C∗-algebra Ã at the point 
(ξ, η, ∞) is given on the generators aW 0(b)Ug1,h (a, b ∈ PSO�, h ∈ R) of the C∗-algebra Ã by

Ψ̃ξ,η,z,±∞,1(aW 0(b)Ug1,h) = a(ξ+)b(η±)e−ihz, Ψ̃ξ,η,z,±∞,2(aW 0(b)Ug1,h) = a(ξ−)b(η∓)e−ihz,

where (ξ, η, z) ∈ Ω∞,∞ × M∞(AP ), M∞(AP ) is the fiber over ∞ of the maximal ideal space M(AP )
of AP , and eihz = z(eh) for every h ∈ R and every z ∈ M∞(AP ). As is well known (see, e.g., [34]), 
M∞(AP ) = M(AP ) = RB , where RB is the Bohr compactification of the real line R, and the C∗-algebras 
SO∞ and AP are asymptotically independent, that is, M∞(alg(SO∞, AP )) = M∞(SO∞) × M∞(AP ). 
Hence, by (2.1), M∞(alg(SO�, AP )) = M∞(SO�) ×M∞(AP ).

Modifying the proof of [34, Lemma 1], we obtain the following.

Lemma 8.1. If {bk : k = 1, . . . , N} ⊂ PSO� and {gk : k = 1, . . . , N} ⊂ AP , then for every pair (η, z) ∈
M∞(SO�) × M∞(AP ) there exist sequences {τ±n }n∈N ⊂ R \ {0} such that τ±n are points of continuity for 
functions bk for all k = 1, . . . , N , limn→∞ τ±n = ±∞ and

lim
n→∞

(bk(τ±n )gk(τ±n )) = bk(η±)gk(z). (8.2)
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By Lemma 8.1, for arbitrary sets {ak, bk : k = 1, . . . , N} ⊂ PSO� and {gk : k = 1, . . . , N} ⊂ AP and 
for every point η ∈ M∞(SO�) and every point z ∈ M∞(AP ) there exist sequences {τ±n }n∈N ⊂ R \ {0} such 
that limn→∞ τ±n = ±∞ and, for all k = 1, . . . , N , τ±n are points of continuity for functions bk and

lim
n→∞

(ak(ξ+)bk(τ±n )gk(τ±n )) = ak(ξ+)bk(η±)gk(z), lim
n→∞

(ak(ξ−)bk(τ±n )gk(τ±n )) = ak(ξ−)bk(η±)gk(z).

Since gk,0(τ±n ) 
= τ±n for all k ∈ R+ \ {1}, we conclude that assumption (A3) for the C∗-algebra Ã is also 
fulfilled for the points (ξ, η, ∞) ∈ Δ∞,∞.

Hence, to study the invertibility of operators B∞,R\{0}, we can apply Theorem 4.2, with the set M0 =
Δ̇∞,R\{0} ⊂ M(Z̃∞,R\{0}) chosen in assumption (A3) (see Lemma 8.1 and arguments before that lemma).

Fix t± ∈ R±, put Ω̂∞,0 := Ω∞,0 × {±∞}, take the sets Ω̃∞,t± given by (3.5) and, for each point (ξ, η, x)
in the set Ω̃∞,t+ ∪ Ω̃∞,t− ∪ Ω̂∞,0, we introduce the representation

πξ,η,x : B∞,R\{0} → B(l2(R+,C
2)) (8.3)

given on the generators of the C∗-algebra B∞,R\{0} in view of (7.6) by

[
πξ,η,x

(
(aI)∞,R\{0}

)
f
]
(t) = [Ψξ,η,x(aI)]f(t),[

πξ,η,x

(
(W 0(b))∞,R\{0}

)
f
]
(t) = [Ψξ,η,x(W 0(b ◦ gt−1,0))]f(t),[

πξ,η,x

(
(Ugk,h

)∞,R\{0}
)
f
]
(t) = [Ψξ,η,x(Ug1,h/(kt))]f(kt),

(8.4)

where a, b ∈ PSO�, gk,h ∈ G, f ∈ l2(R+, C2) and t ∈ R+.
Applying now Theorem 4.2, we establish the following criterion.

Theorem 8.2. For each B ∈ B, the operator B∞,R\{0} is invertible on the space Hϕ,∞,R\{0} if and only if 
for all (ξ, η, x) ∈ Ω̃∞,t+ ∪ Ω̃∞,t− the operators πξ,η,x(B∞,R\{0}) are invertible on the space l2(R+, C2) and

sup
(ξ,η,x)∈Ω̃∞,t+∪Ω̃∞,t−

∥∥(πξ,η,x(B∞,R\{0}))−1∥∥
B(l2(R+,C2)) < ∞.

Proof. The set Ω̃∞,t+ ∪ Ω̃∞,t− contains exactly one point in each G-orbit defined on the set Ω̃∞,R\{0} by 
the group {β̂k : k ∈ R+} of homeomorphisms given by (7.9)–(7.10). Thus, following (4.1)–(4.2), we obtain 
the family of representations (8.3) indexed by the points (ξ, η, x) ∈ Ω̃∞,t+ ∪ Ω̃∞,t− and given by (8.4). Since 
assumptions (A1)–(A3) for the C∗-algebra B∞,R\{0} are fulfilled, we infer the assertion of the theorem from 
Theorem 4.2. �

For every B ∈ B and every (ξ, η, x) ∈ Ω̃∞,t± , we put

[Sym±(B)](ξ, η, x) := πξ,η,x

(
B∞,R\{0}

)
, (8.5)

where the representations πξ,η,x are given by (8.3) and (8.4). One can see from (8.4) and (3.3) that formulas 
(8.5) coincide with (3.13) on the generators of the C∗-algebra B. Consequently, Theorem 8.2 combined with 
(3.9) and (8.3)–(8.5) implies the following corollary by analogy with Corollary 6.10.

Corollary 8.3. For each B ∈ B, the operator B∞,R\{0} is invertible on the space Hϕ,∞,R\{0} if and only if 
condition (iv) of Theorem 3.2 holds. The maps Φ± : B → B(H∞,R±) given by (3.7), (3.9) and (3.13) are 
C∗-algebra homomorphisms, and kerΦ+ ∩ ker Φ− = {B ∈ B : B∞,R\{0} = 0}.
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Applying representations πξ,η,x for (ξ, η, x) ∈ Ω̂∞,0, we get the following.

Corollary 8.4. If an operator B∞,R\{0} is invertible on the space Hϕ,∞,R\{0}, then for every (ξ, η, x) ∈ Ω̂∞,0

the operator πξ,η,x(B∞,R\{0}) is invertible on the space l2(R+, C2).

For (ξ, η) ∈ Ω∞,0, the generators of the C∗-algebras πξ,η,±∞(B∞,R\{0}) ⊂ B(l2(R+, C2)) are given, 
respectively, by

[
πξ,η,±∞

(
(aI)∞,R\{0}

)
f
]
(t) = diag{a(ξ+), a(ξ−)}f(t),[

πξ,η,+∞
(
(W 0(b))∞,R\{0}

)
f
]
(t) = diag{b(η+), b(η−)}f(t),[

πξ,η,−∞
(
(W 0(b))∞,R\{0}

)
f
]
(t) = diag{b(η−), b(η+)}f(t),[

πξ,η,±∞
(
(Ugk,h

)∞,R\{0}
)
f
]
(t) = f(kt),

(8.6)

where a, b ∈ PSO�, gk,h ∈ G, f ∈ l2(R+, C2) and t ∈ R+. By (8.6), for every (ξ, η) ∈ Ω∞,0 the C∗-algebras 
πξ,η,±∞(B∞,R\{0}) are commutative and ∗-isomorphic to the C∗-algebras diag{AP, AP}, the isomorphisms 
are given on the operators B∞,R\{0} =

∑
k∈F (AkUgk,0)∞,R\{0} with Ak ∈ Ã and finite sets F ⊂ R+ by

πξ,η,±∞
(
B∞,R\{0}

)
	→

∑
k∈F

Ψξ,η,±∞(Ak) e− ln k I2. (8.7)

9. The C∗-algebra B◦
∞,0

Let us study the invertibility of the operators B◦
∞,0 := Pϕ(Δ◦

∞,0)B∞,R in the C∗-algebra B◦
∞,0 given by 

(7.12). As eh(0) = 1 for all h ∈ R, we infer that

Ã◦
∞,0 = Pϕ(Δ◦

∞,0)Ã∞,R = Pϕ(Δ◦
∞,0)A∞,R =: A◦

∞,0. (9.1)

The maximal ideal space of the central C∗-algebra Z̃◦
∞,0 = Pϕ(Δ◦

∞,0)Z̃∞,R of the C∗-algebra Ã◦
∞,0 is 

homeomorphic to the closure Δ̇∞,0 of the set Δ◦
∞,0. Since the set Δ◦

∞,0 is open and the C∗-algebras Ã∞,R

and Â∞,R are ∗-isomorphic (see (7.3)), we get the following result similarly to Theorem 6.2.

Theorem 9.1. The mapping Pϕ(Δ◦
∞,0)A∞,R 	→ Pφ(Δ◦

∞,0)Â∞,R, where the operators A∞,R ∈ Ã∞,R and 

Â∞,R are given by (7.4), is a C∗-algebra isomorphism of the C∗-algebra Ã◦
∞,0 = Pϕ(Δ◦

∞,0)Ã∞,R onto the 

C∗-algebra Â◦
∞,0 := Pφ(Δ◦

∞,0)Â∞,R.

Let Ψ(A)|Ω̃∞,0
denote the matrix function (ξ, η, x) 	→ Ψξ,η,x(A) defined on Ω̃∞,0 by (2.6), (7.1) and (7.2)

for A ∈ Ã, where Ω̃∞,0 is given by (3.5) for t = 0. Applying Theorem 9.1 and (2.8), we obtain the following 
invertibility criterion for the operators in the C∗-algebra Ã◦

∞,0 by analogy with Theorem 6.3.

Theorem 9.2. The mapping

Sym◦
∞,0 : Ã◦

∞,0 → Â◦
∞,0 → B(l2(Ω̃∞,0,C

2)), Pϕ(Δ◦
∞,0)A∞,R 	→ Pφ(Δ◦

∞,0)Â∞,R 	→ Ψ(A)|Ω̃∞,0
I

is an isometric C∗-algebra homomorphism. For any A ∈ Ã, the operator A◦
∞,0 = Pϕ(Δ◦

∞,0)A∞,R is invertible 

on the Hilbert space H◦
ϕ,∞,0 = Pϕ(Δ◦

∞,0)Hϕ if and only if det[Ψξ,η,x(A)] 
= 0 for all (ξ, η, x) ∈ Ω̃∞,0.



Y.I. Karlovich, I. Loreto-Hernández / J. Math. Anal. Appl. 475 (2019) 1130–1161 1155
Since Ṽ0 = W 0(V0) by (5.6), since Ugk−1,0
V0 ∈ A for k ∈ R+ by Lemma 5.3 and since e−hV0 � V0 for 

h ∈ R, we deduce that Ug1,hF−1V0F = F−1e−hV0F � F−1V0F , whence, for all k ∈ R+ and all h ∈ R,

Ugk,h
Ṽ0 = Ugk,0Ug1,hF−1V0F � Ugk,0F−1V0F = F−1Ugk−1,0

V0F = W 0(Ugk−1,0
V0) ∈ A. (9.2)

Taking into account (9.2), we infer the following assertion from Lemma 5.3 and (2.6).

Lemma 9.3. If k ∈ R+, h ∈ R and v(x) = −i/ cosh(πx) for x ∈ R, then Ugk,h
Ṽ0 ∈ A and

Ψξ,η,x (Ugk,h
Ṽ0) = e−ix ln kv(x)I2 if (ξ, η, x) ∈ Ω̃∞,0, Ψξ,η,x (Ugk,h

Ṽ0) = 02×2 if (ξ, η, x) ∈ Ω̃ \ Ω̃∞,0.

Consider the Hilbert spaces H◦
φ,∞,0 := Pφ(Δ◦

∞,0)Hφ =
⋃

(ξ,η,x)∈Δ◦
∞,0

C
2 and introduce the C∗-algebra

B̂◦
∞,0 := alg

{
Â◦

∞,0, (Ûgk,0)◦∞,0 : A ∈ Ã, k ∈ R+
}
⊂ B(H◦

φ,∞,0) (9.3)

generated by the operators

Â◦
∞,0 :=

⊕
(ξ,η,x)∈Δ◦

∞,0

Ψξ,η,x(A)I (A ∈ Ã), (Ûgk,0)◦∞,0 :=
⊕

(ξ,η,x)∈Δ◦
∞,0

e−ix ln kI2 (k ∈ R+). (9.4)

The mapping k 	→ (Ûgk,0)◦∞,0 is a unitary representation of the group R+ in the Hilbert space H◦
φ,∞,0, 

((Ûgk,0)◦∞,0)∗ = (Ûgk−1,0
)◦∞,0 and, by (9.4),

(Ûgk,0)◦∞,0Â
◦
∞,0((Ûgk,0)◦∞,0)∗ = Â◦

∞,0 for all k ∈ R+ and all A ∈ Ã.

Hence, the C∗-algebra B̂◦
∞,0 is the closure of the set of all finite sums 

∑
k(Âk)◦∞,0(Ûgk,0)◦∞,0, where Ak ∈ Ã.

Theorem 9.4. The mapping∑
k∈F

(AkUgk,0)◦∞,0 	→
⊕

(ξ,η,x)∈Δ◦
∞,0

∑
k∈F

Ψξ,η,x(Ak)e−ix ln kI2, (9.5)

where Ak ∈ Ã for k ∈ F and F runs through finite subsets of R+, extends to a C∗-algebra isomorphism of 
the C∗-algebra B◦

∞,0 onto the C∗-algebra B̂◦
∞,0 given by (9.3).

Proof. Let B◦
∞,0 = Pϕ(Δ◦

∞,0)B∞,R for every B ∈ B. Since the set Δ◦
∞,0 is open, we infer similarly to [5, 

Lemma 3.5] that, for every B∞,R ∈ B∞,R,

‖B◦
∞,0‖B(H◦

ϕ,∞,R) = ‖Pϕ(Δ◦
∞,0)B∞,R‖B(Hϕ,∞,R) = sup

Z∞,R∈Z̃∞,R(Δ◦
∞,0)

‖Z∞,RB∞,R‖B(Hϕ,∞,R), (9.6)

where the set Z̃∞,R(Δ◦
∞,0) consists of the operators Z∞,R ∈ Z̃∞,R for which the Gelfand transform is a 

function in C(Δ̃∞,R) with values in [0, 1] and with support in Δ̇∞,0.
By analogy with [5, Lemma 6.1] and Lemma 9.3, it follows from (2.6) that for every operator H̃P,0 given 

by (5.5) and (5.6), where P ∈ P is a polynomial,

Ψξ,η,x(H̃P,0) = P (u(x))v(x)I2 if (ξ, η, x) ∈ Ω̃∞,0, Ψξ,η,x(H̃P,0) = 02×2 if (ξ, η, x) ∈ Ω̃ \ Ω̃∞,0,

with u(x) = tanh(πx) and v(x) = −i/ cosh(πx). Hence, the set Z̃∞,R(Δ◦
∞,0) is the closure of the set of all 

operators (H̃P,0)∞,R with polynomials P ∈ P such that {P (u(x))v(x) : x ∈ R} ⊂ [0, 1]. For every k > 0
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and every h ∈ R, we infer from (9.2), (5.5) and (5.6) that Ugk,h
H̃P,0 ∈ A. Then, for every operator B∞,R

and every operator Z∞,R ∈ Z̃∞,R(Δ◦
∞,0), the operator Z∞,RB∞,R belongs to the C∗-algebra A◦

∞,0 = Ã◦
∞,0

defined by (9.1). Hence, applying Theorem 9.1, we infer that

‖Z∞,RB∞,R‖B(Hϕ,∞,R) = ‖Pϕ(Δ◦
∞,0)Z∞,RB∞,R‖B(Hϕ,∞,R) = ‖Pφ(Δ◦

∞,0)ψ∞,R(Z∞,RB∞,R)‖B(Hφ,∞,R), (9.7)

where the operators Pφ(Δ◦
∞,0)ψ∞,R(Z∞,RB∞,R) are in the C∗-algebra Â◦

∞,0. Let

B◦
∞,0 =

∑
k∈F

(AkUgk,0)◦∞,R ∈ B◦
∞,0, B̂◦

∞,0 :=
∑
k∈F

(ÂkÛgk,0)◦∞,0 ∈ B̂◦
∞,0 (9.8)

for B∞,R =
∑

k∈F (AkUgk,0)∞,R, where F is a finite subset of R+ and Ak ∈ Ã. Then we deduce that

Pφ(Δ◦
∞,0)ψ∞,R(Z∞,RB∞,R) = ψ∞,R(Z∞,R)B̂◦

∞,0, (9.9)

where the operator B̂◦
∞,0 is given by (9.8). It is easily seen that

‖B̂◦
∞,0‖B(H◦

φ,∞,R) = sup
Z∞,0∈Z̃∞,R(Δ◦

∞,0)
‖ψ∞,R(Z∞,R)B̂◦

∞,0‖B(Hφ,∞,R). (9.10)

Combining (9.6), (9.7), (9.9) and (9.10), we infer for the operators (9.8) that

‖B◦
∞,0‖B(H◦

ϕ,∞,R) = ‖B̂◦
∞,0‖B(H◦

φ,∞,R). (9.11)

Since the sets of such operators are dense in the C∗-algebras B◦
∞,0 and B̂◦

∞,0, respectively, we infer from 

(9.11) that the mapping (9.5) uniquely extends to a C∗-algebra isomorphism of B◦
∞,0 onto B̂◦

∞,0. �
Thus, for every (ξ, η, x) ∈ Δ◦

∞,0, we obtain the representation

σξ,η,x : B◦
∞,0 → B(C2) (9.12)

given on the generators of the C∗-algebra B◦
∞,0 by

[σξ,η,x((aI)◦∞,0)]f = [Ψξ,η,x(aI)]f, [σξ,η,x((W 0(b))◦∞,0)] = [Ψξ,η,x(W 0(b))]f,

[σξ,η,x((Ugk,h
)◦∞,0)]f = e−ix ln kf (a, b ∈ PSO�, gk,h ∈ G, f ∈ C

2).
(9.13)

Applying Theorem 9.4 and (9.12)–(9.13), we immediately obtain the following invertibility criterion.

Theorem 9.5. For each B ∈ B, the operator B◦
∞,0 ∈ B◦

∞,0 is invertible on the space H◦
ϕ,∞,R if and only if 

for all (ξ, η, x) ∈ Δ◦
∞,0 the operators σξ,η,x(B◦

∞,0) are invertible on the space C2 and

sup
(ξ,η,x)∈Δ◦

∞,0

∥∥(σξ,η,x(B◦
∞,0))−1∥∥

B(C2) < ∞.

For every B ∈ B and every (ξ, η, x) ∈ Δ◦
∞,0, we put

[Sym0(B)](ξ, η, x) := σξ,η,x

(
B◦

∞,0
)
, (9.14)

where the representations σξ,η,x are given by (9.12) and (9.13). One can see from (9.13) that formulas (9.14)
coincide with (3.12) on the generators of the C∗-algebra B. Consequently, Theorem 9.5 combined with (3.9)
and (9.12)–(9.14) implies the following corollary by analogy with Corollary 6.10.
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Corollary 9.6. For each B ∈ B, the operator B◦
∞,0 ∈ B◦

∞,0 is invertible on the space H◦
ϕ,∞,R if and only 

if condition (iii) of Theorem 3.2 holds. The map Φ0 : B → B(H∞,0) given by (3.7), (3.9) and (3.12) is a 
C∗-algebra homomorphism, and kerΦ0 = {B ∈ B : B◦

∞,0 = 0}.

10. The C∗-algebras B∞,0 and B∞,∞

Let us study the invertibility in the C∗-algebras B∞,0 and B∞,∞, where

B∞,0 = Pϕ(Δ∞,0)ϕ(Bπ), A∞,0 := Pϕ(Δ∞,0)ϕ(Aπ), Z̃∞,0 := Pϕ(Δ∞,0)ϕ(Z̃π),

B∞,∞ = Pϕ(Δ∞,∞)ϕ(Bπ), A∞,∞ := Pϕ(Δ∞,∞)ϕ(Aπ), Z̃∞,∞ := Pϕ(Δ∞,∞)ϕ(Z̃π),

Δ∞,0 = Ω∞,0×{∞} and Δ∞,∞ = Ω∞,∞×{∞}. The C∗-algebras Z̃∞,0 and Z̃∞,∞ are central subalgebras of 
the C∗-algebras A∞,0 and A∞,∞, respectively. By [24, Subsection 5.1], M(Z̃∞,0) = Δ∞,0 and M(Z̃∞,∞) =
Δ∞,∞. Moreover, Z̃∞,0 and Z̃∞,∞ are also central subalgebras of B∞,0 and B∞,∞, respectively.

Since Pϕ(Δ∞,0)A∞,R = Pϕ(Δ∞,0)Ã∞,R similarly to (9.1) and since Δ∞,0 ∈ RG̃(Δ̃∞,R) consists of fixed 
points for all β̂k (k ∈ R+) by Lemma 7.3, we infer that the C∗-algebra B∞,0 is commutative. Let Jξ,η be 
the closed two-sided ideal of the C∗-algebra B∞,0 generated by the maximal ideal (ξ, η, ∞) ∈ Δ∞,0 of Z̃∞,0. 
By the Allan-Douglas local principle related to Z̃∞,0 (see Theorem 4.1), we obtain the following.

Lemma 10.1. An operator B∞,0 ∈ B∞,0 is invertible on the space Hϕ,∞,0 if and only if for every (ξ, η) ∈
Ω∞,0 the coset B∞,0 + Jξ,η is invertible in the quotient algebra B∞,0/Jξ,η.

With every (ξ, η) ∈ Ω∞,0, every finite set F ⊂ R+ and every operator

B∞,R =
∑
k∈F

(Ak)∞,R(Ugk,0)∞,R, with (Ak)∞,R ∈ Ã∞,R, (10.1)

we associate four functional operators with constant coefficients, which are given by

Tξ,η,±∞,i :=
∑
k∈F

[Ψξ,η,±∞(Ak)]i,iUgk,0 ∈ B(L2(R)) (i = 1, 2). (10.2)

Lemma 10.2. If the operator B∞,R\{0} = Pϕ(Δ̇∞,R\{0})B∞,R, where B∞,R is given by (10.1), is invertible 
on the space Hϕ,∞,R\{0}, then for every (ξ, η) ∈ Ω∞,0 and every i = 1, 2 the functional operators Tξ,η,±∞,i

given by (10.2) are invertible on the Hilbert space L2(R).

Proof. By Corollary 8.4, the invertibility of the operator B∞,R\{0} on the Hilbert space Hϕ,∞,R\{0} implies 
the invertibility on the space l2(R+, C2) of all the operators πξ,η,x(B∞,R\{0}) for (ξ, η, x) ∈ Ω̂∞,0. Put

D1 := diag
{

diag{1, 0}
}
t∈R+

, D2 := diag
{

diag{0, 1}
}
t∈R+

.

It is easily seen from (8.4), (2.6) and (10.2) that, for every (ξ, η) ∈ Ω∞,0,

πξ,η,+∞(B∞,R\{0}) = D1πξ,η,+∞
(
[Tξ,η,+∞,1]∞,R\{0}

)
D1I + D2πξ,η,+∞

(
[Tξ,η,+∞,2]∞,R\{0}

)
D2I,

πξ,η,−∞(B∞,R\{0}) = D1πξ,η,−∞
(
[Tξ,η,−∞,1]∞,R\{0}

)
D1I + D2πξ,η,−∞

(
[Tξ,η,−∞,2]∞,R\{0}

)
D2I.

Hence, the invertibility of the operators πξ,η,±∞(B∞,R\{0}) implies the invertibility of the operators

D1πξ,η,±∞
(
[Tξ,η,±∞,1]∞,R\{0}

)
D1I, D2πξ,η,±∞

(
[Tξ,η,±∞,2]∞,R\{0}

)
D2I
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on the spaces D1l
2(R+, C2) and D2l

2(R+, C2), respectively. Since the C∗-algebras of these operators are 
commutative and ∗-isomorphic to the C∗-algebra AP in view of (8.7), since the C∗-algebras Aξ,η,±∞,i

(i = 1, 2) generated by the operators (10.2) also are commutative and ∗-isomorphic to the C∗-algebra 
AP , and since the images in AP of such operators coincide in view of (8.6), we conclude that for every 
(ξ, η) ∈ Ω∞,0 and every i = 1, 2 the invertibility of the operators Diπξ,η,±∞

(
[Tξ,η,±∞,i]∞,R\{0}

)
DiI on the 

space Dil
2(R+, C2) is equivalent to the invertibility of the operators Tξ,η,±∞,i on the space L2(R). �

Applying spectral radii r(·), we infer from Lemma 10.2 that, for every invertible operator B∞,R\{0},

‖Tξ,η,±∞,i‖2
B(L2(R)) = r

(
Tξ,η,±∞,iT

∗
ξ,η,±∞,i

)
≤ r(B∞,R\{0}B

∗
∞,R\{0}) = ‖B∞,R\{0}‖2

B(Hϕ,∞,R\{0}) (10.3)

for all (ξ, η) ∈ Ω∞,0 and all i = 1, 2. Hence the maps B∞,R\{0} 	→ Tξ,η,±∞,i extend by continuity to 
C∗-algebra homomorphisms νξ,η,±,i : B∞,R\{0} → Aξ,η,±∞,i. Lemma 10.2 implies the following.

Corollary 10.3. If an operator B∞,R\{0} ∈ B∞,R\{0} is invertible on the space Hϕ,∞,R\{0}, then for every 
(ξ, η) ∈ Ω∞,0 and every i = 1, 2 the functional operators Tξ,η,±∞,i = νξ,η,±,i(B∞,R\{0}) are invertible on the 
Hilbert space L2(R).

Theorem 10.4. If B ∈ B and the operator B∞,R\{0} is invertible on the space Hϕ,∞,R\{0}, then the operator 
B∞,0 is invertible on the space Hϕ,∞,0.

Proof. One can see that, for every operator B ∈ B and every (ξ, η) ∈ Ω∞,0,

B∞,0 + Jξ,η =
[
χ−W

0(χ+)Tξ,η,+∞,1 + χ−W
0(χ−)Tξ,η,−∞,1

+ χ+W
0(χ−)Tξ,η,+∞,2 + χ+W

0(χ+)Tξ,η,−∞,2
]
∞,0 + Jξ,η, (10.4)

where χ± are the characteristic functions of R±. By Corollary 10.3, the invertibility of the operator B∞,R\{0}
on the Hilbert space Hϕ,∞,R\{0} implies the invertibility on the space L2(R) of the operators Tξ,η,±∞,i, which 
in turn implies the invertibility of the cosets [Tξ,η,±∞,i]∞,0 + Jξ,η for all i = 1, 2 and all (ξ, η) ∈ Ω∞,0.

Taking a sequence of open sets Δn ⊂ Δ̃∞,R such that 
⋂

n Δn = Δ∞,0, one can easily prove that for 
all k ∈ R+ the operators [χ±I]∞,0, [W 0(χ±)]∞,0 and [Ugk,0 ]∞,0 pairwise commute and the operators 
[χ−W

0(χ±)]∞,0 and [χ+W
0(χ±)]∞,0 are pairwise orthogonal projections on the space Hϕ,∞,0. Hence, for 

every (ξ, η) ∈ Ω∞,0, the inverse to the coset (10.4) has the form

[
χ−W

0(χ+)(Tξ,η,+∞,1)−1 + χ−W
0(χ−)(Tξ,η,−∞,1)−1

+ χ+W
0(χ−)(Tξ,η,+∞,2)−1 + χ+W

0(χ+)(Tξ,η,−∞,2)−1]
∞,0 + Jξ,η.

Finally, applying Lemma 10.1, we obtain the invertibility of the operator B∞,0 on the space Hϕ,∞,0. �
Since the set Δ∞,∞ ∈ RG(Δ̃) consists of fixed points of all homeomorphisms γk,h (k ∈ R+, h ∈ R) 

given by (5.15), we infer that the C∗-algebra Z̃∞,∞ := Pϕ(Δ∞,∞)ϕ(Z̃π) is invariant under the transform 
Z∞,∞ 	→ (Ugk,h

)∞,∞Z∞,∞(Ugk,h
)−1
∞,∞. Hence Z̃∞,∞ is a central subalgebra of the C∗-algebra B∞,∞. Let 

J̃ξ,η be the closed two-sided ideal of the C∗-algebra B∞,∞ generated by the maximal ideal (ξ, η, ∞) ∈ Δ∞,∞
of Z̃∞,∞. By the Allan-Douglas local principle related to the central algebra Z̃∞,∞, we obtain the following.

Lemma 10.5. An operator B∞,∞ is invertible on the space Hϕ,∞,∞ if and only if for every (ξ, η) ∈ Ω∞,∞
the coset B∞,∞ + J̃ξ,η is invertible in the quotient algebra B∞,∞/J̃ξ,η.
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For every operator B =
∑

g∈F AgUg ∈ B, where Ag ∈ A and F is a finite subset of G, and every point 
(ξ, η) ∈ Ω∞,∞, we define four functional operators with constant coefficients, which are given by

Tξ,η,±∞,i :=
∑
g∈F

[Ψξ,η,±∞(Ag)]i,iUg ∈ B(L2(R)) (i = 1, 2). (10.5)

Lemma 10.6. If the coset BR,∞,H =
∑

g∈F (AgUg)R,∞,H, where Ag ∈ A and F is a finite subset of G, is 
invertible in the quotient C∗-algebra BR,∞,H, then for every (ξ, η) ∈ Ω∞,∞ and every i = 1, 2 the functional 
operators Tξ,η,±∞,i given by (10.5) are invertible on the Hilbert space L2(R).

Proof. By Corollary 6.11, the invertibility of the coset BR,∞,H ∈ BR,∞,H implies the invertibility of the 
operators B̃ξ,μ,η,ν = Πξ,μ,η,ν(BR,∞,H) on the space l2(G) for all (ξ, μ, η, ν) ∈ (M∞(SO�) × {0, 1})2. The 
latter holds if and only if the operators Bξ,μ,η,ν =

∑
g∈F [(Ag)R,∞,H](ξ, μ, η, ν)Ug are invertible on the space 

L2(R) for all (ξ, μ, η, ν) ∈ (M∞(SO�) × {0, 1})2. It is easily seen from (6.28) and (2.6) that

Bξ,1,η,1 =
∑
g∈F

[Ψξ,η,+∞(Ag)]1,1Ug, Bξ,1,η,0 =
∑
g∈F

[Ψξ,η,−∞(Ag)]1,1Ug,

Bξ,0,η,0 =
∑
g∈F

[Ψξ,η,+∞(Ag)]2,2Ug, Bξ,0,η,1 =
∑
g∈F

[Ψξ,η,−∞(Ag)]2,2Ug

for every (ξ, η) ∈ Ω∞,∞, which implies the invertibility of operators (10.5) on the space L2(R). �
We now infer from Lemma 10.6 similarly to (10.3) that ‖Tξ,η,±∞,i‖B(L2(R)) ≤ ‖BR,∞,H‖BR,∞,H

for every 
invertible coset BR,∞,H, all (ξ, η) ∈ Ω∞,∞ and all i = 1, 2. Hence the maps BR,∞ 	→ BR,∞,H 	→ Tξ,η,±∞,i

extend by continuity to C∗-algebra homomorphisms ν̃ξ,η,±,i : BR,∞ → Ãξ,η,±∞,i, where the C∗-algebras 
Ãξ,η,±∞,i (i = 1, 2) are generated by the operators (10.5). Consequently, Lemma 10.6 implies the following.

Corollary 10.7. If an operator BR,∞ is invertible on the space Hϕ,R,∞, then for every (ξ, η) ∈ Ω∞,∞ and 
each i = 1, 2 the functional operators Tξ,η,±∞,i = ν̃ξ,η,±,i(BR,∞) are invertible on the Hilbert space L2(R).

Theorem 10.8. If B ∈ B and the operator BR,∞ is invertible on the space Hϕ,R,∞, then the operator B∞,∞
is invertible on the space Hϕ,∞,∞.

Proof. For every operator B ∈ B and every (ξ, η) ∈ Ω∞,∞, the coset B∞,∞ + J̃ξ,η has the form

B∞,∞ + J̃ξ,η =
[
χ−W

0(χ−)Tξ,η,+∞,1 + χ−W
0(χ+)Tξ,η,−∞,1

+ χ+W
0(χ+)Tξ,η,+∞,2 + χ+W

0(χ−)Tξ,η,−∞,2
]
∞,∞ + J̃ξ,η, (10.6)

where χ± are the characteristic functions of R±. By Corollary 10.7, the invertibility of the operator BR,∞
on the Hilbert space Hϕ,R,∞ implies the invertibility on the space L2(R) of the operators Tξ,η,±∞,i for 
all (ξ, η) ∈ Ω∞,∞ and all i = 1, 2. On the other hand, the latter implies the invertibility of the cosets 
Pϕ(Δ∞,∞)

(
[W 0(Tξ,η,±∞,i)]∞,R

)
+ J̃ξ,η for i = 1, 2 and all (ξ, η) ∈ Ω∞,∞.

Taking a sequence of open sets Δn ⊂ Δ̃R,∞ such that 
⋂

n Δn = Δ∞,∞, one can easily infer from [19, 
Lemma 7.1] that the operators [χ±I]∞,∞ and [W 0(χ±)]∞,∞ pairwise commute and commute with each 
operator [Ugk,h

]∞,∞ for k > 0 and h ∈ R, and the operators [χ−W
0(χ±)]∞,∞ and [χ+W

0(χ±)]∞,∞ are 
pairwise orthogonal projections on the space Hϕ,∞,∞. Hence, similarly to Theorem 10.4, the coset[

χ−W
0(χ−)(Tξ,η,+∞,1)−1 + χ−W

0(χ+)(Tξ,η,−∞,1)−1

+ χ+W
0(χ+)(Tξ,η,+∞,2)−1 + χ+W

0(χ−)(Tξ,η,−∞,2)−1]
∞,∞ + J̃ξ,η
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is the inverse to the coset (10.6) for every (ξ, η) ∈ Ω∞,∞. Finally, applying Lemma 10.5, we obtain the 
invertibility of the operator B∞,∞ on the space Pϕ(Δ∞,∞)Hϕ,∞,R. �
11. Proofs of the main theorems for the C∗-algebra B

Applying results of previous sections, we can now complete the proofs of the main results of the paper 
presented in Section 3.

First, we conclude from Theorems 10.4 and 10.8 that assertions (iv) and (v) of Theorem 5.4 follow, 
respectively, from assertions (ii) and (i) of this theorem, and therefore are superfluous. Theorem 3.1 directly 
follows from Theorems 6.6, 6.13 and Corollaries 8.3 and 9.6. Applying Theorem 5.4, we immediately infer 
Theorem 3.2 from Theorem 6.14 and Corollaries 8.3 and 9.6. Finally, we get Corollary 3.3 from Theorem 3.2.
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