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1. Introduction

Let B := B(L?*(R)) be the C*-algebra of all bounded linear operators acting on the Lebesgue space
L3(R) and let K := K(L?*(R)) be the ideal of all compact operators in B. An operator B € B is called
Fredholm if its image is closed and the spaces ker B and ker B* are finite-dimensional, or equivalently, the
coset B™ := B+ K is invertible in the Calkin algebra B™ := B/ (see, e.g., [20]). Put A~ Bif A— B € K.

Consider the unital C*-algebras of convolution type operators

A :=alg {al,WO(b): a,be PSO°} C B, Z:=alg{al,Wo(b): a,be SO°} CA (1.1)

generated by the multiplication operators al and the convolution operators W°(b) := F~'bF, where a,b €
PSO® and a,b € SO°, respectively, and F is the Fourier transform: (Fop)(z) = [ €Yo (y)dy for x € R. Here
SO° is the C*-algebra of functions admitting slowly oscillating discontinuities at every point A € RU {oo}
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and PSO° is the C*-algebra of piecewise slowly oscillating functions (see their definitions in Section 2). Since
the C*-algebras 2 and Z have the same classes of discontinuous data for multiplication and convolution
operators, these algebras are invariant under the transform A — F~1AF.

Let G be the solvable group of all orientation-preserving affine mappings gx 5, : « — kx+h (k > 0, h € R)
on R with product g, n,Gks,he = Gkoki,kohi+he- Lhe shifts g € G possess the common fixed point oo for all
g € G and distinct fixed points h/(1 — k) for g 5, € G if k # 1. Consider the unitary shift operators

Uy: L*(R) = L*(R), Uyf:=|g|"*(fog), g€G. (1.2)

The aim of this paper is to elaborate a Fredholm symbol calculus for the C*-algebra of nonlocal convolution
type operators

B = alg(A, Ug) = alg{al, W°(b),U, : a,be PSO°, g€ G} C B (1.3)

generated by all operators A € 2 and by all unitary shift operators U, (g € G), or equivalently, to construct
a faithful representation of the quotient C*-algebra B™ := B/K in an appropriate Hilbert space, where
the C*-algebra 2 is given by (1.1) and K C Z C A (see [29, Lemma 6.1]). To this end we apply the local-
trajectory method and spectral measures (see [22], [24] and [5]), suitable spectral measure decompositions
and the Fredholm symbol calculus for the C*-algebra of convolution type operators with piecewise slowly
oscillating data elaborated in [27-29], with its improvement obtained in [25] in the setting of weighted
Lebesgue spaces with Muckenhoupt weights that involve the two idempotents theorem (see [11], [35]), as
well as results of [30] on convolution type operators with translations. Making use of the Fredholm symbol
calculus for the C*-algebra 93, we establish a Fredholm criterion for the operators B € 95 in terms of their
Fredholm symbols.

The study of the spectral properties of operators from algebras generated by multiplication operators by
functions and by convolution operators that reflect the Fourier duality of multiplication and differentiation,
and extended by shift operators is an interesting and complicated mathematical problem. The difficulty here
is that all three types of operators do not act separately on the Fourier and non-Fourier side. This makes
the algebras generated by these operators highly noncommutative and extremely hard to study. Therefore,
in view of complicated nature of the algebra, we decompose this algebra into several subalgebras studied by
different non-trivial methods. As a result, a complete description of a Fredholm symbol calculus in terms of
operators of multiplication by infinite matrix functions acting on suitable Hilbert spaces is obtained.

The C*-algebra € C B(L?(T)) of nonlocal singular integral operators generated by the Cauchy singular
integral operator St, by the operators of multiplications by piecewise quasicontinuous (PQC) functions
[36], and by the unitary shift operators U, (¢ € G), where G is a discrete amenable [21] group of shifts
acting freely on T, was studied in [13]. Recall that the group of shifts G acts freely on T if the points g(t)
(t € T, g € G) are pairwise distinct. The C*-algebra ¢ C B(L?*(T)) generated by all rotation operators
on T, by all multiplication operators by piecewise slowly oscillating functions on T and by the operators
eh,,\STe,;l)\I (h € R, X\ € T), where e x(t) = exp(h(t + \)/(t — X)) for t € T\ {\}, was studied in [4].
The C*-algebra ® C B(L*(T)) generated by the Cauchy singular integral operator St, by the operators of
multiplications by piecewise slowly oscillating functions on T, and by the unitary shift operators U, (g € G),
where G is a discrete amenable group of shifts acting topologically freely on T and having the same finite
set of fixed points, was studied in [5] (for more general actions of G see also [6-9]).

On the other hand, more complicated C*-algebras B = alg(2, Ug) of nonlocal convolution type operators
were studied only in the case of piecewise continuous data (see [22], [23]). Algebras of convolution type
operators 2l with piecewise continuous data were studied by R.V. Duduchava, R. Schneider, S. Roch and
B. Silbermann, A. Bottcher and I.M. Spitkovsky (see [11], [14], [16], [19], [35] and the references therein).
In the present paper, applying results of [27-29], [25] for the C*-algebra 2 of convolution type operators
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with PSO° data, we study the C*-algebra B of nonlocal convolution type operators with such data. Since
B™ is an example of C*-algebras associated with C*-dynamical systems and the action of the group G on
the maximal ideal space of the central subalgebra Z™ := Z /K of the quotient C*-algebra A" := /K is
not topologically free, for studying the invertibility in 87 we apply a version of the local-trajectory method
combined with using spectral measures (see [22], [24], [5]). For other versions of the local-trajectory method
and their applications see [1-3].

The paper is organized as follows. In Section 2 we define the C*-algebras SO® and PSO° and describe
their maximal ideal spaces, describe the Gelfand transform for the central subalgebra Z™ of 2™ and construct
a faithful representation of the quotient C*-algebra 2™ in a Hilbert space. In Section 3 we present main
results of the paper: a Fredholm symbol calculus for the C*-algebra B given by (1.3), a Fredholm criterion
for the operators B € 9B and the faithful representation of the C*-algebra B™ = B/K in a Hilbert space.

The local-trajectory method elaborated in [22], [24] to study the invertibility in the abstract C*-algebra
B = alg(A, Ug) generated by a unital C*-subalgebra 2 and a unitary representation U of an amenable group
G is stated in Section 4. In contrast to the local-trajectory methods developed in [1-3], the method used
here is related to the Allan-Douglas local principle (see, e.g., [18], [16]) and supply us with a convenient
machinery for studying C*-algebras of nonlocal type operators with discontinuous data in case 2 has a
non-trivial central subalgebra Z.

In Section 5 we introduce another central C*-algebra Z™ of A" that properly contains Z™ and leads to
simpler local representatives of the cosets A™ € ™. Since the action of the group G on the maximal ideal
space of Z™ is not topologically free, applying spectral measures, we construct here a spectral decompo-
sition of the C*-algebra B™ and give an abstract Fredholm criterion for the operators B € ‘B in terms
of invertibility of their images in the C*-algebras Bg oo, Boo r\ {0}, Boo0s Boo,0 and B o related to the
spectral decomposition mentioned above.

In Section 6 we study the invertibility of the operators in the C*-algebra Bg ., making use of two repre-
sentations ®; and ®, in Hilbert spaces, where ®; is defined by analogy with [9] and ®5 is based on applying
the local-trajectory method and the lifting theorem. Sections 7-9 are devoted to studying the invertibility
in the C*-algebras B r\ {0} and B, ( with applications of spectral measures, the local-trajectory method
and results from [30]. In Section 10 we show that the invertibility in the C*-algebras Bo. o and Beo,co
follows from that in the C*-algebras B g\ (0} and B «, respectively. Section 11 contains the proofs of the
main results of the paper on the basis of previous sections.

2. The C*-algebra 2 of convolution type operators

2.1. The C*-algebras SO° and PSO°

Let R := RU {00} and R := [~00, +oc]. For a bounded measurable function f : R — C and a set [ C R,
let osc (f,I) := esssup {|f(t) — f(s)| : t,s € I'}. Similarly to [4], we say that a function f € L>°(R) is called
slowly oscillating at a point X € R if for every (equivalently, for some) r € (0,1),

lim osc (f,A\+ ([~z,—rz]U[rz,z])) =0 if XA ER,
z—+0

lll)I-‘yl;lOO osc (f, [~z,—ra] U [rz,z]) =0 if X\ =oo0.
For every A € R, let SOy denote the C*-subalgebra of L>(R) defined by
SO\ :={f€ CR\{A\)NL®R): f slowly oscillates at AL

Let SO° be the minimal C*-subalgebra of L>(R) that contains all the C*-algebras SOy with A € R, let PC
denote the C*-algebra of all piecewise continuous functions, that is, functions in L>°(R) that have one-sided
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limits at each point ¢ € R, and let PSO° be the C*-subalgebra of L>°(R) generated by the C*-algebras PC
and SO°. All these algebras contain C' (R) Elements of the algebras SO® and PSO° are called, respectively,
slowly oscillating and piecewise slowly oscillating functions.

Identifying the points A € R with the evaluation functionals &5 on R given by dx(f) = f()) for f € C(R),
we infer that the maximal ideal space M (SO°®) of SO® is of the form M(SO°) = J,cz MA(SO®), where
M, (S0°) = {& € M(SO°): flow = bx} are fibers of M(SO°) over points A € R. Similarly, M (PSO°) =
User Ma(PSO°®). Applying [29, Corollary 2.2] and [10, Proposition 5], we infer that for every A € R,

M,\(SOQ) = M)\(SO,\) = MOQ(SOOO) = (CIOSSO&R) \ R, (2.1)

where closgo- R is the weak-star closure of R in SO}, the dual space of SO (cf. [12, Proposition 4.1]).
The maximal ideal space M(PC') of the algebra PC' can be identified with R x {0, 1}: for each a € PC,

a(X\,0) =a(A—0), a(A\,1)=a(A+0) if AeR; a(}0)=a(+x), a(A1)=a(—oc0) if A= o0.

The maximal ideal space M (PSO?) of the algebra PSO® has a similar form: M (PSO°) = M(S0°) x {0, 1}.
Identifying characters ¢ € My(PSO®) for A € R with pairs (&, 1) € My (SO°) x My(PC) by [27, Lemma 3.4],
where M, (PC') = {0, 1}, we get the following characterization of the fiber My (PSO?) (cf. [4, Theorem 4.6]).

Theorem 2.1 (/27], Theorem 3.5). If (€, 1) € M(SO®) x{0,1} and X € R, then (&, 1)|sos =&, (€, mWlow =
A (& w)lpe = (A p).

As usual, we write a(€) := &(a) for a € SO° and & € M(SO°). For ¢ € PSO°® and £ € M(SO°), we put

c(€7) :==c(&,0) and c(€T) == c(€, 1), (2.2)

where ¢(&, ) = (&, p)e for (§, u) € M(SO°) x {0,1}. The Gelfand topology on M (PSO?) can be described
as follows. A base of neighborhoods for (£, 1) € M(PSO?) consists of all open sets of the form

_ {(Ua,x x {0}) U (Ugy, x {0,1}) if p=0, 03

U —
T\ Wen x DN U U, x {0,1)) it p=1,

where Ug » = Ug N My (SO°) if € € My (SO°) for some A € R, U is an open neighborhood of ¢ in M (SO°),
and Ugw UgA consist of all ¢ € Us whose restrictions 7 = <|C(]R) belong, respectively, to the sets (A — e, \)
and (A, A +¢) with € > 0 if A € R, and to the sets (g, +o0) and (—o0, —¢) with € € R if A = oo.

2.2. Faithful representation of the quotient C*-algebra AT

Consider the C*-algebras 2 and Z given by (1.1). As L C Z C 2, it follows from [29, Theorem 4.4] that
Z™ = Z/K is a central C*-subalgebra of the quotient C*-algebra A™ = /K. Put

QR oo 1= | Mi(S0°) x Moo(SO°),  Qoom 1= Muo(SO°) x | My(SO°),
teR teR (2.4)

Qooo0 1= Moo (SO°) x Moo (SO°).

Theorem 2.2 (/29], Theorem 6.2). The maximal ideal space M(Z™) of the commutative C*-algebra Z™ is
homeomorphic to the set Q) := Qr oo UQoo RUS oo o equipped with topology induced by the product topology of
M(SO°) x M(S0°), and the Gelfand transform T : Z™ — C(Q), A™ — A(-,-) is defined on the generators
A™ = (aW°(b))™ (a,b € SO°) of the algebra Z™ by A(&,n) = a(€)b(n) for all (&,n) € Q.
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Following [28, Subsection 3.2] and [25, Section 3] and using (2.4), we consider the set

Q = (.o X B) U (Quoz X B) U (Qg 0 x {£00}), (25)

where, by Theorem 2.2, the sets Qg o and Qe r given by (2.4) are open in 2, while the set Qs o is closed
in . According to [28, Section 4.4], for each (¢,n,z) € , we define the mapping

Uepa: {al:a€ PSO°}U{W’(b):be PSO°} — C**,

V¢ ne(al) = diag {a(€7),a(¢7)}, (2.6)
o T ) — (@) O — b lel)
LenaWEO)= |0 4ty bl Yal@) () (1 — ple)) + bl () |

where a(¢%) and b(nt) are defined by (2.2), and
w(x) := (14 tanh(rz))/2, o(z) :=1/cosh(rx) forall zeR. (2.7)

Theorem 2.3 (/30], Theorem 3.2). The mappings Ve, . ((§,n,%) € (~2) given on the generators of the
C*-algebra A by formulas (2.6)~(2.7) extend to C*-algebra homomorphisms Ve ,, , + A — C**2. An operator
A € U is Fredholm on the space L*(R) if and only if

det We, (A) #0 for all (&,n,2) € Q. (2.8)
To any operator A € 2 we assign its Fredholm symbol, that is, the bounded matrix function
A Q5 C2 (Gn,2) o A6, @) = e 2 (A).
Let B(Q, C2%2) denote the C*-algebra of all bounded C2*2-valued functions on €.

Theorem 2.4 (/30], Theorem 3.3). The Fredholm symbol mapping ¥ : A — B(Q,C**2?), A — A(-,-,-), is
a C*-algebra homomorphism whose kernel ker ¥ coincides with the ideal K of all compact operators on the

space L2(R) and the image () is a C*-subalgebra of B(€), C2*2).

Corollary 2.5 ([30], Corollary 3.4). The mapping ¥g : A™ — @(5 ) edd A(&,n,x)I is a faithful representa-
tion of the quotient C*-algebra A™ in the Hilbert space @(5 ) e C

3. Faithful representation of the C*-algebra 23™: main results

Consider the C*-algebra B C B(L?*(R)) generated by the operators A € 2 and the unitary shift operators

U, (k> 0, h € R) given by (1.2), where gy, : © +— kz + h for x € R. Put

9k,h
kg:=k and hg:=h forall g= gypn. (3.1)
The group G consisting of the shifts gz 5 (k > 0, h € R) is the semidirect product G x G of its subgroups

G:={gro: k>0 and G:={g:heR} (3.2)

Hence gk, hy Gy he = Ghoki kaha+hy a0d gin(2) = g1plgeo(@)] forz € R
Given t,7 € R and g € G, we define the set Y; » and the function d, : R x R — {0,1} by

Yir={geG: glt)=71}, 040, 7)=11if g(t) =7, 04(t,7)=0 if g(t) # 7. (3.3)
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Fix ty € R. Then its G-orbit G(to) := {g(to) : g € G} coincides with R. For each 7 € R, we fix the shift
gr = 01,r—t, € Y4,,r- Hence gy, = e, the unit of G. Observe that, for every g € Y;  with ¢,7 € R, we have

G = 96997 = 971 090 gr € Yig t,- (3.4)
Let Ry := (0, +00) and R_ := (—00,0). Given ¢t € R, we consider the sets

Qoo 1= My(SO°) x Moo (SO®), Quoy = Moo(SO°) x My(SO),
AO Z:QtOOXR Atoo::QtooXR ﬁtOO::QtOOXR ﬁtooI:QtooX{:l:OO}, (35)
Aot—QootXR Aoot:fgootXR Qoot:*QootXR QootZ—QootX{:tOO}

Fix typ € R and t+ € R.. With the C*-algebra B we associate the Hilbert space
H = HR7OO71 @ HR7OO72 @ HooJR, @ Hoo70 @ HOO7R+7 (36)
where the non-separable Hilbert spaces

Hioo1 = P(A] ooy P(R,C?)), Hroop = (Qy.00, 12(G,C?)),

N (3.7)
Hooo 1= 1*(A% 0, C?), Hoory = 12(Qooty, 12(Ry,C?))

consist, respectively, of I?(R,C?))-valued functions defined on the set A7 . of I*(G,C?)-valued functions
defined on the set ﬁtom, of C?-valued functions defined on the set A2, ; and of I*(R,., C?))-valued functions
defined on the sets ﬁoo,t .+, and these functions have at most countable sets of non-zero values. In its turn,
for X € {R,G, R, }, [?(X,C?) is the non-separable Hilbert space consisting of all vectors f = (f;)rex with
at most countable sets of non-zero entries f, € C? and the norm || f|| = (32, || f-]|%2)/?

For the Hilbert space H given by (3.6), we construct the representation

< 00.

:B - B(H), B— d1(B)@D3(B)®P_(B)® Py(B)® P (B), (3.8)
which is the direct sum of the following five C*-algebra homomorphisms:

Dy :B — B(Hr,00,1), B+ Sym;(B)I, ®5:B = B(Hr,co2), B+ Sym,(B)I,

(3.9)
Dy :B — B(Hwo), B— Symy(B)I, O, B — B(Hoor,), B~ Sym,(B)I,
defined initially on the generators of the C*-algebra 5.
Here ®;(B) are operators of multiplication by infinite matrix Sym; (B) given on the set Ay ., where

the values of these matrix functions at the points (§,7,z) € Ay ., define bounded linear operators on the
Hilbert space [%(R,C?) and are given on the generators of the C*-algebra B8 by

[Sym, (al)](§,n, x) := diag {diag { (a0 g:)(¢), (a0 g)(€)}},cp >

Sy (V)€ 0) = ding { P07 i) o0 L0

[Symy (Uy)](&,n, ) := [diag {J4(t, 7)e™ ks, 59(75,7')6”1“’“9}]M€R, (3.10)

=3
|+
N—
=
=
~—
3
+
S
—~
3‘52
3
=
—
&
_
——
~~
m
5

where a,b € PSO°, g € G, the functions z — p(z) and z — o(z) here and below are given by (2.7), and k,
and d,4(t, 7) are given by (3.1) and (3.3), respectively.
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Further, ®3(B) are operators of multiplication by infinite matrix functions Sym,(B) given on the set
Q4 .00, Where the values of these matrix functions at the points (§,7,z) € Q4,0 define bounded linear
operators on the space [?(G, C?) and are given on the generators of the C*-algebra B as follows:

[Symy(al)](€, n,x) := diag { diag{(a 0 g)(¢7), (a0 9)(§7)}} eq
[Symy (WO(5))](€, 1, 2) = diag { diag{b(n)u(z) +b(n~)(1 — u(x)), bn™)(1 = p(x)) + b7 )u@)}}, e
[Sme( )](6 n,x ) = [5hg,812]h,s€Ga (311)
where a,b € PSO°, g € G and §j, 5 is the Kronecker symbol on G.

In its turn, ®o(B) are operators of multiplication by 2 x 2 matrix functions Sym,(B) : A, , — C**2
whose values at the points (£,7,r) € AZ, ; are defined on the generators of the C*-algebra B by

Symo(al)](.. 2) = ding{a(c ™). a(¢ )},

- [Pl b ) Br) — b ete)
Bymo(WEE)I(E m.2) bor) — b Va@) ()L — u(a)) + (o Yulx) |
[Symg(Ug)I(&,m, ) := e~ Py, (3.12)

where a,b € PSO®, g € G, kg is given by (3.1), and I, := diag{1, 1}.

Finally, ®4(B) are operators of multiplication by infinite matrix functions Sym, (B) given on the sets
ffvloo,t ., and the values of these matrix functions at the points (§,n,z) € (NZOM . define bounded linear
operators on the Hilbert space I2(R,,C?), which are given on the generators of the C*-algebra B by

[Sym:t(aj)](fanv ) _dlag{dlag{a §+ }}t€R+

(WO o) di be(n™ )u(l‘)+bt(n )(1 = p(x)) [b:(n*) = be(n™)]o(x)
s (W& ) = ding | e+ (m)”
[Sym, (U, Ik, DIE ) = [5gk,o(tvT)eiihti/TIQ]t’TeRJrv (3.13)

where a,b € PSO°, gp, € G, by :=bo g1 for t € Ry, and §, , is given by (3.3) for g = gx 0.
We will prove below the following main results of the paper.

Theorem 3.1. The map ® defined on the generators of the C*-algebra B by formulas (3.8)—(3.13) extends
to a C*-algebra homomorphism of B into the C*-algebra B(H), and

<||B™|| := i .
12(B)lsee) < BTl = inf |IB + Kllsz2))

Theorem 3.2. An operator B € B is Fredholm on the space L*(R) if and only if the operator ®(B) is
invertible on the Hilbert space H, that is, if the following four conditions hold:

(i) the operator [Sym;(B)](&,m,z)I is invertible on the space 12(R,C?) for every (&,m,z) € A? . and

10,00

—1
(57777338)2%?0,00 H ([Syml (B)](E’ n, .Z‘)I) HB(lz(R,Cz)) < 00;

(ii) the operator [Sym,(B)|(€,m,x)I is invertible on the space 1>(G,C2) for every (£,n,z) € ﬁto,oo and

swp | ([Syma(B)(&m0)D) | e r.cny < O
(&m,2) €, 00
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(iii) for every (§,m,x) € AZ, o the 2 x 2 matriz [Symy(B)](§,n,x) is invertible and

(g’n@i)nengcﬁ |det ([SymO(B)](fﬂ?,f)ﬂ > 0;

(iv) for every (&,n,x) € ﬁoo,ti the operators [Sym_ (B)](&,n, z)I are invertible on the space I2(R,, C?) and

sup | (Syma(BNED D) e, e < o
(517711)€Qoo¢i

A3 ﬁtg,oo and ﬁoo,ti are defined in (3.5).

where the sets A$ 00,07

to,007

Theorem 3.2 immediately implies the following corollary.

Corollary 3.3. The map ®™ := T @ &5 & ®T ¢ &f © O : B™ — B(H) defined for every B € B by
OT(B™) := &1(B), ®5(B7) := ®o(B), ®F(B™) := Do(B), and ®T(BT) := ®(B) is a faithful representation
of the C*-algebra B™ in the Hilbert space H given by (3.6)—(3.7).

4. The local-trajectory method

To study the nonlocal C*-algebra B of the form (1.3), we apply the local-trajectory method. Let us
recall its statements (see [22], [24]). In what follows we write C = D if the unital C*-algebras C and D are
*-isomorphic and therefore isometrically *-isomorphic (see, e.g., [32, Theorem 2.1.7]).

Let @ be a unital C*-algebra, 21 a C*-subalgebra of @ with unit I of @, and let Z be a central
C*-subalgebra of 2 with the same unit /. For a discrete group G with unit e, let U : g — U, be a homo-
morphism of the group G onto a group Ug = {U, : g € G} of unitary elements of Q, where Uy, 4, = Ug, Uy, .
We denote by B := alg(2, Ug) the minimal C*-subalgebra of @ containing 2 and Ug. Assume that

(A1) for all g € G the mappings oy : a v+ UyaU, are *-automorphisms of the C*-algebras 2A and Z.

According to (A1), B is the closure of the set B° consisting of all elements of the form b = 3" a,U, where
ag € 2 and g runs through finite subsets of G.

Since the unital C*-algebra Z is commutative, the Gelfand-Naimark theorem (see, e.g., [33, § 16]) implies
that 2 = C(M(Z)) where C(M(Z2)) is the C*-algebra of all continuous complex-valued functions on the
maximal ideal space M (Z) of Z. By (Al), each *-automorphism a4 : Z — Z induces a homeomorphism
By : M(Z) — M(Z) given by the rule z[84(m)] = [ag(2)](m) for all z € Z, m € M(Z) and g € G, where
z(-) € C(M(Z2)) is the Gelfand transform of z € Z. The set G(m) := {f4(m) : g € G} is called the G-orbit
of a point m € M(Z). In what follows we assume that

(A2) G is an amenable discrete group.

By [21], a discrete group G is called amenable if the C*-algebra {*°(G) of all bounded complex-valued
functions on G with sup-norm has an invariant mean, that is, a positive linear functional p of norm 1
satisfying the condition p(f) = p(sf) = p(fs) for all s € G and all f € [*°(G), where (sf)(9) = f(s71g)
and (fs)(g) = f(gs) for all g € G. Finite groups, commutative groups, subexponential groups and solvable
groups are examples of amenable groups (see, e.g., [1], [21], [24]).

Let J,, be the closed two-sided ideal of 2 generated by a maximal ideal m € M(Z) of the central
C*-algebra Z C . Then the Allan-Douglas local principle (see, e.g., [16, Theorem 1.35]) gives the following.
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Theorem 4.1. An element a € 2 is invertible in A if and only if for every m € M(Z) the coset a + J,, is
invertible in the quotient C*-algebra A/ J,.

Let Py be the set of all pure states (see, e.g., [17], [32]) of the C*-algebra 2l equipped with induced weak™
topology. By [15, Lemma 4.1], if u € Py, then ker pp O J,,, where m := Z Nker u € M(Z). We assume that

(A3) there is a set My C M(Z) such that for every finite set Go C G and every nonempty open set W C Py
there exists a state v € W such that Bg(m,,) # m, for all g € Go\ {e}, where the point m, = ZNker v
belongs to the G-orbit G(My) := {B4(m) : g € G, m € My} of the set M.

If the C*-algebra 2 is commutative itself, then Py consists of all characters of 2 (see, e.g., [32, Theo-
rem 5.1.6]), which simplifies (A3).

For every m € M(Z), let 7, : A/ Jp, — B(Hm) be an isometric (equivalently, faithful) representation of
the quotient algebra 2/.J,,, in a Hilbert space H,,, which exists by [32, Theorem 3.4.1]. Moreover, in view
of (A1), the spaces H,, can be chosen equal for all m in the same G-orbit. Consider the representation

7 A= B(Hm), A (Fn o om)(A), (4.1)

where g, : 2 — A/ J,, is the canonical *~homomorphism. Let €2 be the set of G-orbits of all points m € M,
with My C M(Z) taken from (A3), let H,, = H,, where m = m,, is an arbitrary fixed point of an orbit
w € Q, and let I*(G,H,,) be the Hilbert space of all functions f : G + H, such that f(g) # 0 for at
most countable set of points g € G and Y || f(g)/3,, < oc. For every w € Q, we consider the representation
T 1 B — B(I12(G,H,)) defined for all a € 2, all g, s € G and all f € I*(G,H,,) by

[ (a) f1(g) =, (g (a) f(g),  [mu(Us) f1(9) = £(gs). (4.2)

A slight modification of [24, Theorem 4.12], where the superfluous condition of the closedness of the set
My C M(Z) was imposed, gives the following nonlocal version of Theorem 4.1 (see [5, Theorem 3.1]).

Theorem 4.2. If assumptions (A1)—(A3) are satisfied, then an element b € B is invertible in B if and only
if for every orbit w € Q the operator m,(b) is invertible on the space 1?(G,H,) and, for infinite set Q,

sup,eq ||(ma(0)) 7H| < oo

Corollary 4.3. Under the conditions of Theorem 4.2, the mapping m : b — @, ., 7w (b) is a faithful repre-

sentation of the C*-algebra B in the Hilbert space @, ¢, 1*(G, Ho)-

5. A spectral measure decomposition of the C*-algebra 2B™
5.1. A central subalgebra ZT of A™
Along with the C*-algebra 21 C B(L?(R)), we consider its C*-subalgebra
S :=alg{al,Sr: a € PC} C B(L*(R)) (5.1)

generated by all al (a € PC) and by the Cauchy singular integral operator Sg given by

e—0 71 t—x
R\(z—€,z+¢€)

(Sef)(@) = lim - / SO 4y ser (5.2)

As is well known, the ideal K of all compact operators in B(L?(R)) is contained in the C*-algebra &.
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Let x4 be the characteristic functions of Ry, respectively. The operator V given for ¢ € L?(R) by

(Vo)) = X+(2) / e(y)x+(y) dy X-(2) / e(y)x-(v) dy, z€R (5.3)

™ Y+ z T Y+ z
R R

belongs to the C*-algebra & given by (5.1) because V = (x4 SrX 1 Sex4+ I +X_Srx_Sex_I —I)'/? (see also
[26, Sections 2.3-2.4] and [5, Lemma 5.3]). The operator V has two fixed singularities: at 0 and oo.
To each t € R we assign the operator V; € B(L?(R)) with only fixed singularity at ¢, which is given by

+(y + ~( —
(Vi) (2) = Xtﬂ-(i )/i(i)ict_(gz dy — Xtﬂg )/‘;(i);(t_(gz dy. tzcR. (5.4)

where x; and x; are, respectively, the characteristic functions of the intervals (¢ — 1,¢) and (¢,t + 1). The
operators V; for all t € R belong to the C*-algebra & because Vo = xd Vx{ I + xo Vo I € & along with

(5.3) and V; = Ug_l’ltVoUgM7 where the map A — Ug_l’ltAUgu is a *-automorphism of the C*-algebra &.

Let P consist of all polynomials > p_; aju® (ar € C, n=0,1,...). Then
Hp,; = P(xSex; T —x; Srx; [)Vi €& forall PP andall teR. (5.5)
As & C A and the map A — WO(A) := FLAF is a *-automorphism of the C*-algebra 2, the operators
V,:=W°V,) and Hp,:=W°Hp,) forall 7€R andall PeP (5.6)
belong to the C*-algebra 2 along with V; and Hp,. We now introduce the C*-algebra
Z :=alg {al,W(b),Hps, Hp, : a,be SO°, PP, t,r € R} C B(LA(R)) (5.7)
generated by the operators al, WO(b), Hp, ﬁpﬂ- with given data. By [29, Lemma 6.1], K C Z C ZcC
Lemma 5.1. The quotient C*-algebra Z7 = g/lC is a central subalgebra of the C*-algebra A™ = A/K.
Proof. Applying formula (4.10) in [5], (2.6), Theorem 2.4, the map A — F~1AF and (5.8), we obtain
aHp, ~ Hpyal, WO(b)Hp, ~ Hp,W°(b), aHp, ~ Hpal, WO(b)Hp, ~ Hp,W°(b)  (5.8)
for all a,b € PSO®, all P € P and all t € R. Moreover, Hp’tﬁp",- ~ (0 for all t,7 € R, and
aWO(b) ~ WO(b)aI for all (a,b),(b,a) € SO° x PSO° and all t € R (5.9)
by [29, Theorem 4.6]. Finally, it follows from (5.8)~(5.9) that Z7 is a central subalgebra of 2A™. O

Given t € R, along with (2.4), we define the sets

Qoo = Moo X R, Qoo = Qoo XK, Qoo = Qoo oo X {£00},

Ao =Moo xR, Apse = Qroo xR,  Ag o = Qp oo x {00},

A%p=Qopr xR, Axr =Qpr xR, Agp:=Qur x {00},
Apoo = oo X {00}, Asi =0 X {00}, A oo = Qoo 00 X {00},

(5.10)

where Q; o and Q. are given by (3.5). We also introduce the set ¢, given by
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mim ={(&,n)} x R if (&,1) € Qr,00 Uk, ff-tg)n =)} x{oo} iU (£1) € Qoo o0 (5.11)
Applying Theorems 2.3 and 2.4 to the C*-algebra ZcC 2, we immediately infer that AR C’(&), where
A=Ap o UAyrUAs o0 (5.12)

is a compact Hausdorff space equipped with topology whose neighborhood base of the points (§,7,z) € A
consists of open sets of the form

{(5777)} X (.73 —&T+ 6) if (fa%x) € A](lj&oo U AZO,R’
U Feo) \ (Uex x Uy x [—€,€]) it (£,m,2) € Aroo U Ao g,
Wiema) = (((,9)6U5><U5 )\ (e ! ) (5.13)
MNe.o if (£,1,2) € Ao oo,

(¢,0)eUe x U,

where ¢ > 0, ‘j’tg,g are given by (5.11), Us and U, are open neighborhoods of points &,n7 € M(SO?),
Ue,r = Us N My (SO?) for t = €[ € R, U, , = U, N M,(SO°) for T = Nlew) € R. This gives the following.

Lemma 5.2. The mazximal ideal space M(gﬁ) of the C*-algebra Z" s homeomorphic to the compact Haus-
dorff space (5.12) whose topology is given by (5.13).

By analogy with [5, Lemma 5.4], we obtain from (2.6) the following result.

Lemma 5.3. Let g be an orientation-preserving diffeomorphism of R onto itself, ty € R and v(z) =
—i/ cosh(mzx) for x € R. If g(tg) = to, then U,V;, € A and

Ve o (UgVi) = €09 0 y(@) L if (€,1,2) € Qugoor eyw (UgVig) = Oaxa if (€,1,2) € D\ Qg o0,
where Q0 and ﬁto,oo are defined, respectively, by (2.5) and (3.5), and Iy = diag{1,1}. Similarly,
Ueno (Vip) =v(@) Dl if (£,0,2) € Qoortyr Vema (Vi) = O2xz if (£,7,2) € Q\ Qoo (5.14)
5.2. Spectral measures and representations of the C*-algebra B™

Every orientation-preserving affine mapping gi.p : R — R (k > 0, h € R) extends to the homeomorphism
gr,n of M(SO°) onto itself by the rule: a(gr,(§)) = (a0 gk,n)(&) for all a € SO° and all £ € M(SO°). Since

Ug o (aDU, ' = (a0 gip)l, U W°OU, " =W°bogy-1,) forall a,be SO,

9k,h 9k,h 9k,h

we conclude that every shift gi , € G induces on A=M (Z7) given by (5.12) the homeomorphism

Yk,h * E — Eu (577%‘%') = (Ek,h(§)7 gk_l,O(n)v 1’), (515)

where €~]R if (§,1) € Or,o0 U Qoo r and z € {£o0} if (§,7) € Qoo 00
Let R(A) be the o-algebra of all Borel subsets of A and let

p: BT = B(Hy), B"— @(B") and P, :R(A)— B(H,) (5.16)

be, respectively, an isometric representation of the C*-algebra B™ in an abstract Hilbert space H, and the
spectral measure associated with representation ¢ and the commutative C*-algebra Z™ C 8™. Put
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Re(A) = {0 € R(A) : 1n(©) = O forall gppe Gl (5.17)
Applying (5.12) and setting AOO,R\{O} = (Qoo,r \ Q0,0) X R, we obtain the partition
E = AR,OO U Aoo,R\{O} U AZC,O U Aoo,O U Aoo,om (518)

where AOO’R\{O} and the sets AR,OO and A2, given by (5.10) and (3.5) are open in A, while the sets Ao
and A oo given by (5.10) are closed in A, and all these sets are in R (A). Consider the C*-subalgebras

%R,ooa %OO,R\{O}7 %20’07 %00,07 %oo,oo (519>
of ¢(B™) associated to decomposition (5.18). These algebras of the form
B(A) :=alg {P,(A)p(A™), P,(A)p(U)): A, g G}

are generated by the operators P, (A)p(A™) (A € ) and P,(A)p(U7) (g9 € G), where A is one of the sets
on the right of (5.18) and P,(A) # 0 for these A by [24, Subsection 5.1] and [30, Lemma 6.1]. This gives
the following abstract Fredholm criterion in terms of invertibility of operators in the C*-algebras (5.19).

Theorem 5.4. An operator B in the C*-algebra B given by (1.3) is Fredholm on the space L?(R) if and only
if the following five assertions are fulfilled:

(i) the operator Br o := PSQ(ARQO)QO(BW) is invertible on the Hilbert space Hy R oo = P@(AR7OO)HLP;

ii) the operator B r\ioy = P,o(Asr\yor)p(B™) is invertible on the Hilbert space Hy oo m\foy =
R\{0} ® R\{0} ©,00,R\{0}

Py(Aso m\{0})Hos

(iii) the operator BS, o := Py(AS, o)p(B™) is invertible on the Hilbert space M, o o := Pp(AS o) Hes
(iv) the operator Bug o := Py(Asc,0)@(BT) is invertible on the Hilbert space My 00,0 := Pp(Aoo,0)Hy;
(v) the operator Bog,oo := Pyp(Aoc,00)@(B™) is invertible on the Hilbert space My 00,00 := Pp(Aoo,00) Hep-

Along with the abstract Hilbert space H,, we consider the Hilbert space Hy := @(g 1y2) €D C?, where 0
is given by (2.5), and introduce the representation ¢ and the spectral measure Py by

¢ A= BHy), A" P Tena(AI Py R(A) — B(Hy), (5.20)

(&m)ER

where ¢ is an isometric representation of A™ in the Hilbert space Hq by Corollary 2.5, and the spectral
measure Py is associated with representation ¢ and the central algebra Z™. Below we need the subspaces

qu,]R,oo = P¢(AR7OO)'H¢, H¢,oo,]R = P¢(ADO,]R)’H¢ of 7'[¢, (5.21)

which are isometrically isomorphic to the Hilbert spaces @(5 1,2) €0 C? and @(5 2R C?, where the

sets QRW and QOO,R are given by (5.10).
6. The C*-algebra B o
6.1. The C*-algebra Ar oo
Along with the C*-algebra B oo = B(Ag o), we consider its C*-subalgebras

A oo 1= { Pp(Aroo)p(A™) : A €A}, Zgoo = {Pyp(Aroo)p(A™) : A€ Z}. (6.1)
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Lemma 5.1 implies that ZR o is a central subalgebra of 2g . By [22, Lemmas 5.1, 5.2 and Corollary 5.3],
§R700 = C(ER,OO)7 g]R,oo = ARpo U A<>o,<>oa (62)

where the compact Hausdorff space &Rm is equipped with topology induced by the Gelfand topology of A
(see (5.13)). Applying (5.5) and [31, (5.24)], we infer that

UgaUy ' = (aog)l, UgHpy~Hp 1)Uy, UgSrU, "' = Sk (6.3)
for all a € PSO°®, all g € G, all t € R and all P € P, where ao g € PSO°® (cf. [4, Lemma 4.2]). Further,

Ug JIVOO)U L =WObog1p) forall be PSO°, k€Ry, heR. (6.4)

9k, h Gk, h
Similarly to [5, Theorem 6.4], we conclude that
(bog)(n®) =b(nt) forall be PSO°, g€ G, ne My (SO°). (6.5)

Taking any function b € PSO®, we infer from [19, Lemma 7.1] that [W°(b—b_x— — bl x4 )]r.co = 0, where
functions bX € SO are such that b% (n) = b(nT) for every n € My, (SO®), and x+ are the characteristic
functions of R. Hence, it follows from (6.4) and (6.5) that

WD) Uy R0 = [WO(b)]R,cc forall be PSO® andall g € G. (6.6)

Since (5.14) implies that (IA{TPJ)ROo =0 for all P € P and all 7 € R, we infer from (6.3) and (6.6) that for
each g € G the mapping oy 1 Ar.co — (Ug)r,00ARr,00(Uy )Hgloo is a *-automorphism of the C*-algebra A o
and its central C*-subalgebra ZR 0. These *—automorphlbmb induce on the maximal ideal space AR oo Of
ZR o given by (6.2) the group of homeomorphisms 3, : AR o — A ooy (&mx) = (9(&),n,x) forall g € G,
where £ — g(&) is the homeomorphism on M (SO®) given by

a(g(€)) =(aog)(¢) forall a € SO° and all &€ M(SO°). (6.7)

Letting %G(&R,m) =Ra (&)O&Rm, we infer from [24] that P, (©)Br,cc = Br,coP,(0) for all Br o € Br, oo
and all © € R (AR o). For each g € G, the homeomorphism (€, 7n) — (g(§),n) sends the set ; o, onto the
set Qg (4),00- Then, similarly to [7, Lemma 4.2], we get the following.

Lemma 6.1. For every t € R and every g € G, P,(A7 o) (Ug)r,00 = (Ug)r,00 P (A7 1) o0)-
Along with the C*-algebra g o given by (6.1), we consider the C*-algebra
Ap oo 1= Py(AR,c)(AT) = {Ap 0o := Ps(Ap,cc)p(A™) 1 A€}

Theorem 6.2. For each t € R, the mapping Py(Af ) Ar,co P¢(A )AR oo 18 a C*-algebra isomorphism
of the C*-algebra Ay o = Py (A7 o )Ar 00 onto the C*-algebra Qltyoo = P¢(Af7oo)2l]g,oo.

Proof. By [5, Lemma 3.5], for the open Borel set A7, and each A € 2, we obtain

1Po(A7 o) AR ool Bt m) = sUP (27 AT) B3, 5.0)> (6.8)
ZeZ(A3 )
1P (Af o) AR oo B 2c) = sUP [[G(Z7AT) B34 5.0 (6.9)

ZeZ(A7 &)
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where E(Agw) consists of the operators Z € Z for which the Gelfand transform of Z™ is a real-valued

function in C'(A (~) with values in [0, 1] and support in At - Since ¢ and ¢ are isometric representations of
the C*-algebra 2™, we conclude that the right-hand sides of (6.8) and (6.9) are equal, and therefore

1P (7 ) Ar el B0y = P85 00) Ao 340 )
for all A € 2, which implies the assertion of the theorem. O
Theorem 6.3. For every t € R, the map
Sym oo Apoo = Aroo = BIH( U006, C?),  Po(A7 ) AR o = Py(A7 ) AR = T(A)], T (6.10)

is an isometric C*-algebra homomorphism. For every t € R and each A € A, the operator P¢(Af,w)AR,oo
is invertible on the Hilbert space Py(Af ) Hy r.oo if and only if det[Ve , . (A)] # 0 for all (§,n,x) € ﬁt,m.

Proof. The C*-algebra Qlt s I8 *-isomorphic to the C*-subalgebra By C B(I*(Aj ,,C?)) of multiplication
operators by bounded matrix functions Fa : A7 . — C**2, (£,n,2) — \Ifgﬁ,,,m(A) for all A € 2, which, in
its turn, is *-isomorphic to the C*-subalgebra Bg C B(I? (Qt 00, C?)) of multiplication operators by bounded
matrix functions Fi : Q00 — C2%2, (€,7,2) = We, ,(A) because the matrix functions  — W, ,(A) are
continuous on R for every (£,7) € Q.o in view of (2.6). Hence, IFalllsaz(as . .c2)) = ||FAI||B 2@ 0. C2))

for all A € 2. Thus, the map Py(A7 )AR s+ Ful = FaT is an isometric *_homomorphism of Qlt oo into

B(ZZ(Qt,OO,(CQ)). Involving Theorem 6.2, we see that the map (6.10) is an isometric C*-algebra homomor-
phism. It remains to apply (2.8) for all ({,1,2) € Q.0o. O

6.2. The homomorphism ®;

Fix to € R. The set of all G-orbits of points t € R consists of only two G-orbits: the one-point orbit
G(o0) = {oo} and the non-countable orbit w := G(tg). Let $ = 9y, be the closed two-sided ideal of the
C*-algebra Br o generated by the operator (Vi,)r 00, where the operator Vj, is given by (5.4).

Consider the dense subalgebra B° of B consisting of all operators of the form

ZTHTM Tiji+K (T € {al,W°(b),U, : a,be PSO°, g€ G}, n,j; €N, K € K),

where PSOY is the non-closed algebra consisting of all functions in PSO® with finite sets of discontinuities.
Analogously we define the non-closed subalgebra A° of 2 generated by al and WO(b), where a,b € PSO°.
Given B € B, the operator B o can be written in the form

Broo = Y (Agroo(Ug)roe (F CG isa finite set, Ay € A° forall g € F). (6.11)
geF

Let A3 = {Arco: A €A%} and BY = {Br,oo : B € B"}. For any set I' C R, we define the sets

Or 00 == U M;(SO°) x Moo(SO°), Ap o = xR, Ar s =0 xR, Ar = Q. x {oo}.
tel

Lemma 6.4. If B € B, T is a finite set of R and Vi := Y oier Vi €2, then

| BR,oo (VI)R 00182 0 = [[@1(B)Irvl||eag .,y and  Tp := diag {xr(t)I2}ser, (6.12)

where xr s the characteristic function of T', ®1(B) is given by (3.9)~(3.10), v(z) = —i/ cosh(wx) for z € R.
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Proof. Fix a finite set I' C R and consider the operator Br o € %]% ~ given by (6.11). Take the finite subset

f::{g_l(t):tef g€ Fyof R.AsUyVy ~ Vi yUy and AV ~ Vi A, for t € R, g€ G, Ay €2, we get
BVF ]Roo - Z Z ]Roo V;S R,00 = Z Z t) Roo )R,oo(Ug)]R,oo- (613)
gEF tel gEF tel

Making use of Theorem 6.3, we deduce for every A € 2 and every t € R that

1AV ool e = 1P (700 AV, 0P, (87 1) = 1AV, Tlgaca, o coyy: (6:14)

Applying Lemma 5.3 and (6. 14) we infer from the second equality in (6.13) similarly to [5, Subsection 8.1]

and [5, Lemma 10.5] that P, (AR\F ) (BW)Rco =0 and P,(Az  UA o) (BVr)r,co = 0. Hence, because

Po(A2 )+ Po(Ap o) + Po(Af o Ul o) = Po(Ap.oo) = Ipoo

in view of the partition &Rm = A%oo U AR\I:M U (Af,oo U Am7m), we conclude from Lemma 6.1 that

I(BVE)R.collBz, 00 = 1P (A% ) (BVD)R,00llB(2, .00) = 1P (A% ) (BVE)R,00 P (A o) 1824, 5,0
(6.15)

Let Gp be the subgroup of G generated by the finite set F' in (6.11) and let Op  be the finite set of
G p-orbits w of all points ¢ € I'. Then I',, := ' Nw is a finite subset of w € Op 1. Since

[(BVP)R,coll8s oo = max [[(BVr,)rocoll®s 0> [ P1(B) o]z o) = max |[@1(B)r vl ||y 1)
weOp,r weO0pg r

we only need to prove (6.12) for (V1)g oo replaced by any (Vi )gr,co- In what follows we assume without loss
of generality that I',T' C w and w = Gp(tg). As the group Gp is at most countable, so is the G g-orbit w.
We now define the Hilbert space H¢, := @,¢,, Pp(Af, o0)Hep k.00 and the isomorphism

Oy - PW(AO @Roo %@P tooo ch,oov ‘Pé,o(A::;,oo)f’_> ( (A?() oo)( Qt)R OOf)tew (616)

tew

where f € Hyr oo and g; = g1,4—¢, € Yi,,¢ for every ¢t € w. Taking the isometric C*-algebra homomorphism

Ty B(Po(AS )My r00) %B(@P 0 OO)H@,R,OO), T o,Too, (6.17)

tew

with o, given by (6.16), and applying for ¢,7 € w, g € G and s € I" the relations
(Ag,t)lR,oo = (UgtAgUg:I)JR,oo € Q[]R,om (ngUgUg;l)R,oo = (Uﬁt,T)R,om UgTVsUg;Tl = Vg:l(s)v

where g; - = g199:- " € Yig1, if g(t) = 7 (see (3.4)), we infer from (6.13) and (6.17) that

To(Po(A3 ) (BVR)r oo Pyl %,oo»:n(P@(A;QZZ(AQUMR,@P@( W)

geF sel’
= TS (Po(8%,00) 20 D (U AU iU e (U VU Do P (B, ) ) TS
geF sel’
=15 ( D 86t TPo(A], o) (AguUp, Videe ), T, (6.18)
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where HE := diag{x3(t)}rew! and IIL := diag{xr(t)}scw!. It follows from (6.17) that
1282 _)(BVR)e o Po( A8 ) g . ) = [T (Po(2% BV o P85 ) g, (6:19)

Hence, taking into account the finiteness of the sets I',I' C w in (6.19), we infer from (6.12), (6.19) (6.18)
and Lemma 5.3, by analogy with Theorem 6.3, that

P28 DBV PR )ty = |05 (2 0027, ) AU Vo), TS
geF ’ ¢
T I
a HH (Zé (t,7) tU-"”VtO)] ,ocI>t,TewH HB(P( AR 0o rl?(@,C2)))
H (Za (t, ™) [ ¥ (Agt Uy, . Vio)] | xo ml)t,TeRHFIHB(HMJ) — (|1 (B)Iro! 574, . 1)- (6.20)

Finally, combining (6.15), (6.19) and (6.20), we obtain the first equality in (6.12). O

Lemma 6.4 is the key to proving the continuity of the algebraic homomorphism ®,. Applying this lemma
and directly following the proof of [9, Theorem 8.3], we establish the following estimate.

Theorem 6.5. If B € B°, then
191 (B) | B(75,00,1) < 1 BRcollz 00 < [[BTl- (6.21)
Making use of Theorem 6.5 and (3.9)—(3.10), we obtain the following.

Theorem 6.6. The algebraic homomorphism ®1 given by (3.9)—(3.10) extends to a representation ®1 : B —
B(HRr,00,1), such that (6.21) holds for every B € B. Given an operator B € B, the operator ®1(B) is
invertible on the Hilbert space Hr o1 if and only if condition (i) of Theorem 3.2 holds.

By (3.9)—(3.10) and Theorems 6.5 and 6.6, the map
Pr o1 0 Broo = B(HR,00,1);  Bryoo = P1(B), (6.22)

is a homomorphism. Since the set {(BVF)R,OO : B €989, T runs through finite subsets of R} is dense in the
ideal $ = $¢, of the C*-algebra B o, we immediately obtain the following result from Lemma 6.4.

Theorem 6.7. The restriction of the homomorphism (6.22) to the closed two-sided ideal $ = $y, s an iso-
metric *-isomorphism of $) onto the closed two-sided ideal Pg oo 1($) of the C*-algebra ®1(B) C B(Hr,00,1)-

6.3. Invertibility in the C*-algebra Br /9 and the homomorphism P
Given t € R, let J; denote the closed two-sided ideal of the C*-algebra & generated by the operator V;
and the ideal K, and let J stand for the closed two-sided ideal of & generated by all the ideals 7; for t € R.
Given b € PSO®, fix functions b% € SO, such that bL (n) = b(nT) for all n € M, (SO°). We then get

(WO )R .00 = WO (boox— + b x+)]R00 = [WO(b) IR0 [Pr]Ro00 + WO (L) 00 [P o0 (6.23)

where x4 are the characteristic functions of Ry, Py := (I £ SR) /2, and Sg is glven by (5.2). Analogously,
for every t € R and every a € PSOP there exist functions a € SO; such that af(¢¥) = a(¢F) for every
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& € M (SO°®). Applying (6.23), we see that for all a,b € PSO® the local behavior of the commutators
[aWO(b) — WO(b)al]g 0o € Ar.00 at the point (t,00) € R x R for t € R coincides with the local behavior at
this point of the commutators [(a; x; + af x; )L, (WO (b2 )Py + WO(bL)P_)|r o € AR oo, where x; and
X; are, respectively, the characteristic functions of the intervals (¢t — 1,¢) and (¢,¢ + 1). Since

[(ay xi +af i), (WO (bs) Py + WO (b)) P_)]
~ af WObL)[Xi I, P-] + af WO(b) i I, Py] 4 ay WO (b)) [xi I, P=] + ay WO(b)[x; 1, Py]

and since the commutators [yF I, Sg] belong, respectively, to the ideal J; + J;4 similarly to [5, Lemma 5.3]
(also see [26, Sections 2.3-2.4]), we conclude that for all a,b € PSO°® the commutators [aW°(b) —
WO(b)al]g, o belong to the closed two-sided ideal Jg o of the C*-algebra g o, which is generated by
all operators (V;)r.oo (¢t € R). Thus, the quotient C*-algebra 2g /TR o0 is commutative.

Since the closed two-sided ideal $ = $);, of the C*-algebra Bp  is generated by the operator (V)R cos
we conclude that Jr oo C $ and, moreover, ) NRAr oo = Jr,oc- Consider the quotient C*-algebras

%]R,oo,ﬁ = %R,oo/fj and Q[]R,oo,ﬁ = (Q’lR,oo + f))/ﬁ = 2[]R,oo/g%R,cxw (624)
The C*-algebra g o « is commutative along with g o/ Jr o0 and is generated by the cosets
[aW O (0)]r 0.5 = [aW O (b2) Plr,oc + [aWO (b1) P-]r,0o + 5 (6.25)

for all a,b € PSO°, where the functions bZ € SO, possess the property bZ (n) = b(nT) for all n €
Mo (SO°®). In particular, for given ay, ag, by, by € PSO°, we obtain

[as WO (b1)]r 0.5 [a2 WO (b2) ], 0c,5 = [a1a2 WO (b1b2)]r,00,5- (6.26)
By (6.25)—-(6.26), the maximal ideal space of the C*-algebra g ~ ¢ is homeomorphic to the compact set
‘ﬁRm = (M(S0°) x {0,1}) X (M (SO®) x {0,1}) (6.27)

whose topology is induced by the product topology of M (PSO°)x M (PSO?), and the topology of M (PSO?)
is given by (2.3). The Gelfand transform Ar oo, = C(NMR,00)s AR 00,5 — AR,c0,5(- -, -, ) is defined on the
generators Ar .6 = [aW'(b)|r.c0. (a,b € PSO®) of the C*-algebra Ag ~ ¢ by

AR,OO-,Y) (5, 1, V) = (L(f, M)b(nv V) for all (ga s 1, V) € &R,oo» (628)

where a(€,0) = a(€7), a(&,1) = a(€*), b(,0) = b(n™), b(1,1) = b(n*).

Applying the local-trajectory method described in Section 4, we will obtain here an invertibility criterion
for the cosets Br,oo,5 € BR,oo,5, Where Br o ¢ 1= BR oo + 9 for Br oo € BR,co-

By (6.3) and (6.4), we conclude that for every g € G the map &y : Aroo,n = (UgAU, MR 00,9 is a
*-automorphism of the commutative C*-algebra Ar o 4. Indeed, for all a,b € PSO® we infer in view of
(6.3)-(6.5) that [UyaWO(b)U, k00,9 = [(@ 0 g)WO(b)]R,c0,n- Hence the C*-algebra B oo,5 is the closure of
the algebra %?R’Oo’ﬁ consisting of the cosets }° ¢ p(Ag)Rr,c0,5(Ug)r 00,5, where (Ag)r,cc € Q(?R’Oo and ¢ runs
through finite subsets /' C G. For each g € G, the *-automorphism &4 of the C*-algebra g o ¢ induces on
the maximal ideal space ‘5\"(]1{700 defined by (6.27) the homeomorphism

By (& pymyv) = (g(€), pym,v) for all (€, p,m,v) € N oo (6.29)

by the rule AR&OA’J [59(57 s 1, V)] = [&Q(AR,OO,YJ)] (fa s s V) for all (fa My 1, V) € Sj\IJR,OO and all g & G.
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Since the homeomorphism & — g(&) given by (6.7) sends the fibers M;(SO®) onto the fibers M (SO®)
for all t € R, it follows from the proof of [5, Theorem 6.4] that g(&) = £ for every & € Mo, (SO®). This in
view of (6.29) gives the following.

Lemma 6.8. ‘floom = (Mo (S0°) x {0,1}) X (M (SO°) x {0,1}) is the set of all common fixed points of
all homeomorphisms B4 (g € G) on the compact set Np oo

Since G acts topologically freely on R, we easily deduce from Lemma 6.8 and the Gelfand topology on
Mr oo that the group G acts topologically freely on 9  as well. Moreover, since the open set

Ne,oo 1= | (Mi(SO°) x {0,1} x Mo(SO°) x {0,1})

is dense in ’JA?R’OO, we see that for every nonempty open set W C ‘JA“(R’OO and every finite set Gy C G there

exists a point (o, £o, M0, o) € WNNg, oo such that 5, (o, Lo, M0, v0) # (§o, to, Mo, Vo) for all g € Go\{e}. Due
to this fact and the amenability of the solvable group G, we infer that all conditions of the local-trajectory
method (see [22], [24]) for the C*-algebra Br o are fulfilled.

Since G(tp) = R for ¢y € R, it follows from (6.7) and (6.29) that the set

MNiy.00 1= M, (SO°) x {0,1} x M (SO°) x {0,1} (6.30)
contains exactly one point in each G-orbit of every point in Mg . Consider the Hilbert space [?(G) consisting

of all complex-valued functions defined on G and having at most countable sets of non-zero values, and with
every point (&, 1, 1,v) € My,.00 We associate the representation

Hepmw : Broosn — B(I*(G)), Brooo,5 = Beumw = ey (Broo,s) (6.31)

given for Br oo 5 = deF(Ag)R,oo,fn(Ug)R,oo,ﬁv where F is a finite subset of G and (Ag)r,c0,9 € Ql%mﬁ, by

(Eg%n,yf) (h) = Z ([&h((Ag)R,DO,;))] (f,u,n,y))f(hg) forall f e l2(G) and all h € G. (6.32)
geF

Then Theorem 4.2 immediately implies the following invertibility criterion by analogy with [8, Theorem 2.7].

Theorem 6.9. A coset Br oo, € Br 0o, 15 invertible in the C*-algebra Br o 4 if and only if the operators
Be v are invertible on the space 12(G) for all (&, pu,n,v) € Nty 00 and

g —1
sSup H B, M,V H < 00.
(€ ) ENMg oo (Beyins) B(2(G))

Applying Theorem 6.9 to the coset Br co,5Bg o0 4 € BR,0o, and using spectral radii r(-), we get

1Bs o | = | Bo,oo.s B os || = [ (Be.oo,9 B o)) '
= E E* 1/2 _ g '
<€’M>nil>1£mto,oo rBesnns B )] <s,u,n,s;l>1£mto,oo 1Be v la

Thus, we obtained the following assertion for the C*-algebra Bg o ¢ given by (6.24).
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Corollary 6.10. The representation

D e %R,w,ﬁ%B( D ZQ(G)),

(&pm,v) €Mt 00 (&pm,v) €M, 00

where Il¢ ;o and My, o are given by (6.31)~(6.32) and (6.30), is an isometric C*-algebra homomorphism.

Along with C*-algebra homomorphisms Il¢ ,, , , defined for (&, u,n,v) € My, 00 by (6.31) and (6.32), we
consider the C*-algebra homomorphisms Il¢ ., , : Br.oo.5 — B(I?(G)) given by (6.31) and (6.32) for every
(& pm,v) € (Moo(SO®) x {0,1})2, where the expressions [an((Ag)r,c0,9)] (&, 1,1, v) in (6.32) are replaced
by [(Ag)r,c0,] (& 1, m,v). We then infer the following corollary from Theorem 6.9.

Corollary 6.11. If a coset Broo,s € Br,co,s @5 tnvertible in the C*-algebra Br o4, then the operators
Be iy = e ynv(Broo,s) are invertible on the space I2(G) for all (&, p,n,v) € (Moo (SO°) x {0,1})2.

The Hilbert space Hp o0.2 = [? (ﬁtom, 12(G, C?)) given by (3.7) is isometrically isomorphic to the space
Ga(é,u,n,u)e‘ﬁto.oc 12(@). Identifying these Hilbert spaces, we conclude that the algebraic *-homomorphism

PR o2 %]%700 — B(Hr,00,2), Br,oo — P2(B), (6.33)

defined initially on the generators of Bg o, where @ is given by (3.9) and (3.11), can be rewritten for
Br € %%700 and (§,m,£00) € Q4 o in the following equivalent form:

[Sym2<B)](£a 7, +OO>[ ~ diag{Hﬁ,l,n,l(BR,oc,f_))a Hﬁ,O,n,O(BR,oo,fj)}y

. (6.34)
[Symy(B)](§,n, —00)I ~ diag{l¢ 1,,0(Br,co,5)s Ile0,1(BRro0o,5)}-

Hence, we infer from (6.34) and Corollary 6.10 that

[Pr,00,2(Br,co)|B(Hz ) = sup  [[[Syma(B)](€n, )| 52(c,c2))
(&7777$)€Qt0,oo

= sup ITLe o (Br.oo.5) |B12(c)) = |1 BRco,6 85,005 < [1BR.co |85 o
(&1m V) €N, 00

for all Br oo € BR,o0- This immediately implies the following.

Theorem 6.12. The algebraic *-homomorphism (6.33) given on generators of the C*-algebra Br o by for-
mulas (3.11) extends by continuity to a representation Pr o2 : Br oo = B(HRr,c0,2) such that

PR, 00,2(Br,00) |B(#z, 00.2) = 1BR,00, 8195 00, < [[BR,00 85, (6.35)
for all Br oo € BRr oo, and hence ker Pg 02 = 9.

By (6.34) and (6.35), ®r,c0,2(Br.0c) = Br,co,n. Hence, because ®o(B) = Pg o 2(Br,0o) for all B € B,
we infer from Theorems 6.9 and 6.12 the following.

Theorem 6.13. Given an operator B € B, the operator ®o(B) is invertible on the Hilbert space Hy co2 if
and only if condition (ii) of Theorem 3.2 holds. The map ®o given by (3.7), (3.9) and (3.11) is a C*-algebra
homomorphism, and ker &3 = {B € B : B o € H}.
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6.4. Invertibility in the C*-algebra Br oo

Theorem 6.14. An operator Br oo € Br,oo s tnvertible in the C*-algebra Br o if and only if conditions
(i)-(ii) of Theorem 3.2 are fulfilled.

Proof. It follows from Theorem 6.12 and Theorem 6.7 that ker g 0.1 Nker Pg o0 2 = ker Pg 001 NH = {0}.
Hence, the map ®gr oc,1 ® Pr,oc,2 is a faithful representation of the C*-algebra B o in the Hilbert space
HRr,00,1 @ HRr,00,2. Consequently, an operator Br o € Br o is invertible in B o if and only if for i = 1,2
the operator ®;(B) = PR 0,i(Br,co) is invertible on the Hilbert spaces Hg oo, Which is equivalent to the
fulfillment of conditions (i)—(ii) of Theorem 3.2 by Theorems 6.6 and 6.13. O

7. The C*-algebra B, r
7.1. Another form of the C*-algebra B oo r
Along with 21 = alg(al, W°(b) : a,b € PSO®), we consider the C*-algebras

A= alg {al, WO(b),Uy, , : a,b€ PSO°, he R}, Asur := Pp(Asr)p(AT).

y Y g1,h

Let ej,(z) := €'"® for all € R and all h € R. Since Uy, , = W°(e_;) for all h € R, we conclude that the

C*-algebra UAs g is generated by the operators Ao g = P(As r)p(A™), where A € {al, WO(b), WO(e_p) :

a,b € PSO°,h € R}. Then B = alg {A,U,, ,: A€, ke Ry}, and B := Pp(Ano g)p(B™).
According to the equality U, , = W9 (e_y), we define the 2 x 2 matrices

Weno(Ug,)i=e M, forall heR and all (£,7,2) € Qoo g, (7.1)

where " = "7 for ) € M, (SO?). This allows us to extend the mappings Ve o for every (§,n,z) € QOO,R
to the C*-algebra 2 properly containing 2. Consider the space H¢ oo,k given by (5.21) and the mapping

"/}oo,]R : ﬁoo,R — @ \Ifg,n,z(ﬁl)l C B(H¢,M,R)7

(5771796)6500,&

wOO’R( Z(AhUglvh)oo’R) = @ Z \I’i,n,z(Ah)\llﬁm’:r(Ugl,h,)Ia

her (€1,2)EQoo p NEF

(7.2)

where F is a finite subset of R, Aj, € 2 for h € F, and the matrices V¢, .(An) and V¢, »(Uy, ,) for h € F
are defined by (2.6) and (7.1), respectively. Similarly to [30, Theorem 10.1], the mapping

PoBoe)o( D 45U, ) = Yoo (D2 (AnUs, )oem).

heF heF
where F' is a finite subset of R, extends to a C*-algebra isomorphism
Yook Aok = ook = Voo m(Aoor) C B(Hg 00 k). (7.3)
Since the C*-algebras i)/v[oo,[@ and é\lm,R consist of the operators

Asp = Po(Ascr)p(A™) for A€, Awpi=vor(Aur)= P  Tena(A)I for Ae,
(Ew”#w)e(loo,R
(7.4)

we deduce the following in view of the C*-algebra isomorphism (7.3).
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Theorem 7.1. For every A € 5[, the operator A r € 51007R is invertible on the space H, oo r if and only if
for all (§,n,x) € Qoo r the operators Ve, ,(A)I are invertible on the space C* and

Sub_ H(\Ijﬁm,z(A)I)_lHB((cz) < oo.
(gvnvu)Ero,R

For the C*-algebra B(QOO,R, C?*2) of bounded functions QOO,R — C?%2, Theorem 7.1 gives the following.

Corollary 7.2. The mapping ﬁm’R — B(QOOJR,(CQ“), PW(AOQR)@(A’T) = U(A)|g_ . is an isometric
C*-algebra homomorphism. ’

7.2. The spectral measure associated with the C*-algebra B r

Let goo,R = PW(AooyR)w(;Zi“), where the C*-algebra Z C B(L2(R)) is given by (5.7). Since the quotient
C*-algebra Z7 is a central subalgebra of A™ and
U,

g1,n

(al)Ugh = (aogin)l, Uy, ,WOO)Uy", = WOb), (a0g1n)(ET) = a(E™)

91,h 9d1,h g1,h

for all a,b € PSO°, all h € R and all £ € M, (SO°), we conclude that Z~OO,R is a central C*-subalgebra of
Ao k. The maximal ideal space M (2. r) of Zoo g is homeomorphic to the compact Hausdorff space

zoo,]R = Aoo,R U Aoo,oo (75)

equipped with topology induced by the Gelfand topology of A (see (5.13)).
For all a,b € PSO°, all h € R, all k € Ry and all P € P, we infer that

Ugeo(aD)U, = (a0 gro)l, Ugy JWOOU, ' =W (bogrro), Uy ,SeUy,' = S, o)
ng,owo(eh)U_z;@,lo = Wo(eh/k)a ng,OVOUg;c,lo = 1707 ng,oﬁP,OU;k,lo ja ﬁP,Oa
where bo gi-1 o € PSO® along with b (cf. [4, Lemma 4.2]). Hence, for k € Ry,
(ng,o)OO,RQV[OO,R((ng,o)OOR)il = ﬁoo,Ra (ng,o)OO,ng,R((ng,o)OOR)il = 200,]1&7 (7'7)
where (Ug, )ook = PW(AOQR)(,D(U;M). As a consequence of (7.7), for each k € R, the mapping
Ak : Aoor 7 (Uge,o) ook Aso R((Ugeo)oo) (7.8)

is a *-automorphism of the C'*-algebra ilm,R and its central C*-subalgebra gooR. The *-automorphisms ay,
(k € Ry) in view of (7.6) and the equalities z[fx(m)] = [ax(2)](m) (z € Zor, m € Axr, k € Ry), where
z(-) € C(Aoo r) is the Gelfand transform of the operator z € Z g, induce on A, g the homeomorphisms

o~ ~

ﬁk : AOO7R — 5oo,Ra (5777,33) = (€7gk*1,0(n)ax)? k € R-i-' (79)
The maps 7 — gi,0(n) are homeomorphisms of M (SO?) onto itself given by
b(gk,0(n)) = (bogko)(n) forall be SO° and all ne M(SO°) (7.10)

(as usual b(n) := n(b)). Since 0 and oo are the only fixed points on R for the shifts gro € G \ {e}, we
infer that gxo(n) = n for all n € My(SO®) U M (SO°) and all k € Ry \ {1} (sce, e.g., the proof of [5,
Theorem 6.4]). Hence, we obtain from (7.9) the following assertion similarly to [7, Lemma 4.2].
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Lemma 7.3. The set Aoo,o U A 00 consists of all fized points of the homeomorphisms B\k (ke R\ {1}).
Let %(&OO,R) be the o-algebra of all Borel subsets of the compact set KOO,R given by (7.5). Taking
Ne(Aoor) = {A € R(Ar) : Br(A) = A forall gy € G},

where the group G is given by (3.2), we conclude from [24] that P, o(A)Bso® = BoorP,(A) for each
A € R (AooR) and each Boor € Boor. For every t € R and every gk0 € G the homeomorphism
n— gk70(77) defined by (7.10) sends the fibers M;(SO°) onto the fibers My,  1)(SO°). Setting then

1

Qoo {0} = Qo0r \ Qo0 Qoo r\ {0} = Qoo r\ 0} X R, (7.11)

AOO,R\{O} = Qo r\{0} X R, A% r\foy = Qoo rr{0} X R,

we obtain the partition EOO,R = Aw7R\{O} UAZ g UAs0UAg o0, Where AW7R\{O} and Ag, ; are open sets
in %é(ﬁmyR), while Ay oo and Ay o are closed subsets of %é(ﬁm,R). We now introduce the C*-algebras

Zoom\(0) = PolAomy(0}) Zooks 220 = PolA% ) Zoo
Q[ooJR\{O} = P@(AOO,R\{O})Q[OO,R’ Q[O 0= =P, (Aoo O)Q[OO,Rv (712)
Boom\ (0} = Po(Dcor\{0})DBoo R, B o= Pp(AS 0)Boo k-

8. The C*-algebra B, r\ {0}

The maximal ideal space M( o ]R\{o}) of the central subalgebra ZOO R\{o0} of the C*-algebra Qloo R\{0} I8
homeomorphic to the compact set Aoo,R\{O} =AL R\J0} U Aso oo U Aoo 0. The restriction of the automor-
phism ay (k € Ry) given by (7.8) to the C*-algebras A, r\ 10} and Zoo,R\{o} are *-automorphisms of these
C*-algebras. Thus, assumption (A1) of Section 4 is fulfilled for the C*-algebras ﬁoo,R\{O} and ZvooR\{O}.
Since the commutative group G given by (3.2) is amenable, assumption (A2) of Section 4 is also fulfilled.

Let J¢ . denote the closed two-sided ideal of the C*-algebra Qloo JR\{0} generated by the maximal ideal
of the C*-algebra ZOO R\{0} associated with the point (§,7,7) € AW7R\{O} Applying Theorem 7.1 and
Corollary 7.2, we deduce the following three assertions.

(i) For each (&,7n,z) € A;’R\{O}, where AZOJR\{O} is given by (7.11), the mapping

Tema : Po(Boor\(0}) (Ao r) + Jema — Ve na(A)

is a *-isomorphism of the C*-algebra ’QVlOO,R\{O}/J&n’m onto the C*-subalgebra {‘I’g,n,x(A) A€ 5[} of C2x2,
(ii) For each (&,m,2) € A g, where Ay g is given by (5.10), the mapping

e Po(Boo iy f0))(Aoor) + Jene = diag { Ve, —oo(A), Ve 400(A)},
is a C*-algebra isomorphism of the quotient C*-algebra QNIOOJR\{O} /Je.n,z onto the C*-subalgebra
{diag { e, —oo(A), Ve pioo(A)} s A€ A} of CL

(iii) For each (£,n, ) € Ax 00, Where Ay o is given by (5.10), the mapping

Te e P@(AOOJR\{O})(Z(AhUgl‘h)ooJR) + Jema Z diag {‘Pé,n,foO(Ah)efha \1’57777+00(Ah)67h}’
heF heF
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where Ay, € 2 for all h € F, and F runs through finite subsets of R, extends to a C*-algebra isomorphism
of the quotient C*-algebra 5[007R\{0}/J§,n@ onto the C*-subalgebra %E,n,m(ﬁoo,R\{O}/Jﬁ,n,m) of 4 x 4 diagonal
matrices with entries in the C*-algebra AP of uniformly almost periodic functions on R. As is known, AP
is the C*-subalgebra of L>°(R) generated by all functions ey (A € R).

One can prove that for every pure state v € Py of the C*-algebra FQVlOO,R\{O}, which satisfy the

oo,R\{0}
condition m,, = ker v N Z,, g\ {0} € Aco,00 UA 0, and every open neighborhood W, C Py o) of v there
exists a state w € W, such that the point m,, = ker w N ZVOO)R\{O} belongs to Ry UR_. This means that
assumption (A3) of Section 4 is also fulfilled for the C*-algebra

Boo (0} = PolAomyfoy) alg {Aoo r: (Ugy o )oor : k € R4}

Indeed, if (§,71,00) € As,0, then the set of all pure states of the C*-algebra 2 at the point (&, 7, 00)
consists of four elements, which are given for A € 2 by the (k, k)-entries [U¢  +00(A)]g,x for k =1,2 of the
matrix We , 400 (A), where

[We o0 (@W O () U, )11 = al€)b(),  [Wen oo (@W O (0)Us, ,)]2,2 = a(€)b(nT)

for the generator aW®(b)Uy, , (a,b € PSO°, h € R) of the C*-algebra 2. Tt is obvious that for every & > 0
there exist points 7. € Ry close to 0 and points (§,7+,00) € M (SO°) x M., (SO°) x {oo} such that

|[We 00 @O (0)Ug, )11 = [Weme oo (@W O (), )| = [a(€F)b(n*) — a(€H)b(n)e "] <,
|[We 00 (@W O (B) Uy, ,)]22 = [We ey o (aW O () Uy, )]22| = [al€7)b(nT) — a(€7)b(n)e "] <,

where b(nf) means either b(nT), or b(n=). Moreover, we can choose 7+ in the set Ry \ 7, where 7 is the
at most countable set of all discontinuity points of b € SO°, and then replace b(nE) by b(7+), respectively.
Hence, by (8.1), for every A € 2, the pure state values (Ve 400 (A)]k,x can be approximated by the pure
state values [We¢ . +oo(A)]11 if & = 1, and by the pure state values [We . +oo(A)]22 if & = 2, where
Nt € M., (SO°) and the points 7+ € Ry are close to 0. On the other hand, gy o(7+) # 7+ for every
k € Ry \ {1}, which proves assumption (A3) for all points (£,7,00) € Ax 0.

We now suppose that (§,7,00) € Ax, 0. Then the set of all pure states of the C*-algebra 2 at the point
(&,m,00) is given on the generators aW®(b)U,, , (a,b € PSO°, h € R) of the C*-algebra 2A by

U ztoo 1 (@WOD)Uy, ) = a(€N)b(nE)e ™%, We s to0a(@WO(B)Uy, ) = a(€7)b(nT)e ™=,

where (£,1,2) € Qoo,00 X Moo(AP), Moo (AP) is the fiber over oo of the maximal ideal space M (AP)
of AP, and e'"* = z(ep,) for every h € R and every z € My (AP). As is well known (see, e.g., [34]),
Mo (AP) = M(AP) = Rp, where Rp is the Bohr compactification of the real line R, and the C*-algebras
SO~ and AP are asymptotically independent, that is, Mo (alg(SOs, AP)) = Mo(SOs) X M (AP).
Hence, by (2.1), M (alg(SO°, AP)) = My (SO®) x My (AP).

Modifying the proof of [34, Lemma 1], we obtain the following.

Lemma 8.1. If {b : k=1,...,N} C PSO® and {g : k =1,...,N} C AP, then for every pair (n,z) €
Mo (SO°) x Mo (AP) there exist sequences {7 }neny C R\ {0} such that 7.5 are points of continuity for
functions by, for allk=1,... N, lim, Tff = t+o0 and

lim (b (75)gu (7)) = bk (1) gi(2)- (8.2)

n—roo
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By Lemma 8.1, for arbitrary sets {ax, by : k=1,...,N} C PSO® and {gx, : k =1,...,N} C AP and
for every point n € M, (SO°®) and every point z € Mo, (AP) there exist sequences {75 },en C R\ {0} such
that lim,, o7& = +00 and, for all k = 1,..., N, 7.F are points of continuity for functions b;, and

Jim (ar(E5)br ()9 (7)) = ar ()b () gr (), lim (ar(€7)br () gn () = aw(€7)bi (1) gk (2).
Since gro(r¥) # 7 for all k € Ry \ {1}, we conclude that assumption (A3) for the C*-algebra 2 is also
fulfilled for the points (&,7,00) € Ass oo

Hence, to study the invertibility of operators B, g\ {0}, We can apply Theorem 4.2, with the set My =
Aoo,R\{O} - M(ZVOO,RX{O}) chosen in assumption (A3) (see Lemma 8.1 and arguments before that lemma).

Fix t1 € Ry, put Qoo 0 := Qoo 0 X {00}, take the sets Q. given by (3.5) and, for each point (&, n, x)
in the set ﬁoo,t+ U Qoo,t_ U ﬁoo,Oy we introduce the representation

e m,x - %OO,R\{O} — 8(12(R+7C2)) (83)

given on the generators of the C*-algebra B g\ (0} in view of (7.6) by

[7e . (0D oo iy {0}) f] (1) = [Peuma(a)If (D),
(7m0 (WO (D)o i\ (0y) f] (8) = [We e (WO (b 0 g1-1.0))I £ (1), (8.4)
[Wfﬂi’w((ng,h)OOR\{O})f] (t) = [‘1/'577]75”<U91,h,/(kt))]f(kt)7

where a,b € PSO°, gr., € G, f € ?(Ry,C?) and t € R,.
Applying now Theorem 4.2, we establish the following criterion.

Theorem 8.2. For each B € B, the operator B g\ oy is invertible on the space H, o r\ (0} if and only if
for all (§,n,7) € Qoo t, U Qoo t_ the operators me . (Boo r\f0}y) are invertible on the space I2(R,,C?) and

-1
~Sup _ H(ﬂ-fﬂ%w(Boo,R\{O})) HB(ZZ(R+,((22)) < 0.
(§:1,2)€Qoo,t, UQoo,t_

Proof. The set ﬁoo,t LU (NZOQL contains exactly one point in each G-orbit defined on the set (NZOO,]R\{O} by
the group {8 : k € R,.} of homeomorphisms given by (7.9)~(7.10). Thus, following (4.1)(4.2), we obtain
the family of representations (8.3) indexed by the points (£, n,z) € ﬁoo,br U ﬁoo,t, and given by (8.4). Since
assumptions (A1)—(A3) for the C*-algebra B g\ 10} are fulfilled, we infer the assertion of the theorem from
Theorem 4.2. O

For every B € 8 and every (§,n,z) € floo,ti, we put

[Symi<B)}(€a777x) =Tz (BOO,R\{O})? (85)

where the representations 7¢ , . are given by (8.3) and (8.4). One can see from (8.4) and (3.3) that formulas
(8.5) coincide with (3.13) on the generators of the C*-algebra B. Consequently, Theorem 8.2 combined with
(3.9) and (8.3)—(8.5) implies the following corollary by analogy with Corollary 6.10.

Corollary 8.3. For each B € B, the operator By r\{oy 45 invertible on the space H, o r\ {0} if and only if
condition (iv) of Theorem 3.2 holds. The maps @+ : B — B(Hoor,) given by (3.7), (3.9) and (3.13) are
C*-algebra homomorphisms, and ker @ Nker®_ = {B € B : B r\j0} = 0}.
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Applying representations m¢ ,, . for ({,71,x) € (AZOQO, we get the following.

Corollary 8.4. If an operator B g\ {0} 15 invertible on the space H, o r\{0}, then for every (§,m,z) € Qoo,o
the operator e 5 o(Boo \{0}) is invertible on the space I*(Ry, C?).

For (£,1) € Qc,0, the generators of the C*-algebras ¢y o0 (Boor\foy) C B(I*(Ry,C?)) are given,
respectively, by

[7e .00 ((aD) oo r\ f0}) £ () = diag{a(€7), a(€7)}f (1),
[T 00 (WO () oo,z (0}) £] () = diag{b(n™), b(n™)}f (1), 56)
(7,00 (WO(D)) oo, (0y) £] (1) = diag{b(n™), b(n ™)} F(1),
(76,200 (Ugin oo\ (0}) f] (8) = F(K),

where a,b € PSO°, gr.p, € G, f € I?(Ry,C?) and t € Ry. By (8.6), for every (§,1) € Qoo 0 the C*-algebras
Te o0 (Boo,k\ {0}) are commutative and *-isomorphic to the C*-algebras diag{ AP, AP}, the isomorphisms
are given on the operators B r\{0} = Y _recr(ArUg, )oo,r\ {0} With Ap € 2 and finite sets ' C Ry by

e 400 (Boo R\ {0}) Z Ve too(Ar) -k L2 (8.7)
keF

9. The C*-algebra B7_

Let us study the invertibility of the operators By,  := P,(A3, o) Boor in the C*-algebra B3, given by
(7.12). As ep(0) =1 for all h € R, we infer that

Ngo,o = Pso(Ago,o)ﬁoo,R = P‘P(AZO,O)QIOOJR = Q[go,o (9.1)

The maximal ideal space of the central C*-algebra égoo = Py(A%, 0)Zsor Of the C*-algebra A,
homeomorphic to the closure AOO o of the set AY (- Since the set AS , is open and the C*-algebras QLOO,R

and QAIOO’R are *-isomorphic (see (7.3)), we get the following result Slmllarly to Theorem 6.2.

Theorem 9.1. The mapping P,(A% )A R P¢(A° )ﬁoo R, where the operators A r € Q[Oo,R and
AOO]R are gwen by (7.4), is a C*- algebm isomorphism of the C*-algebra AS, 0= P¢(Ago70)§loo’R onto the

C*-algebra Qloo 0= Py(AZ, )QlooR.

Let W(A)|g_ , denote the matrix function (§,7,z) — V¢, .(A) defined on Q0.0 by (2.6), (7.1) and (7.2)

for A € 2~l, where (~200,0 is given by (3.5) for t = 0. Applying Theorem 9.1 and (2.8), we obtain the following
invertibility criterion for the operators in the C*-algebra 203, ; by analogy with Theorem 6.3.

Theorem 9.2. The mapping
SymSe gt A% g = A% g — B2 (Qo00,C?)),  Py(A% o) Asor = Py(A% o) Asor = T(A)

|§oo,OI

is an isometric C*-algebra homomorphism. For any A € 2, the operator A% 0 = Po(AZ, o) Ao r is invertible
on the Hilbert space Hg, o o = Pp(A% o)Hy if and only if det[We ,, o (A)] # 0 for all (§,n,z) € ﬁoo,O-
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Since Vg = WO (Vy) by (5.6), since Ug, 1 ,Vo € ™A for k € Ry by Lemma 5.3 and since e_,Vp >~ Vg for
h € R, we deduce that Uy, , F~'VoF = Fle_,Vo.F ~ F Vo F, whence, for all k € Ry and all h € R,

VoF = WO(U,

Ik—1,0

UgonVo = Uy Uy, , F ' VoF = Uy, (F Vo F = F1U, Vo) €A (9.2)

k=10

Taking into account (9.2), we infer the following assertion from Lemma 5.3 and (2.6).
Lemma 9.3. If k € R, h € R and v(z) = —i/ cosh(nz) for z € R, then ng’hf/o €A and
Ve na (ng,h%) =e ()l if (&) € ﬁooﬁv Ve na (ng,h%) =02x2 if ({,m,2) € Q \ ﬁoo,()-

Consider the Hilbert spaces H§ . o := Ps(A% 0)He = U(e yens , C* and introduce the C*-algebra

~

B o= alg {A% o, (Ugeo)o: AEA kERL} CB(HS o) (9.3)
generated by the operators

Ao= B VeI (A€), Upoeo:= P e™™L (keRy). (94
(&m®)EAL o (€m,2)EAZ o

The mapping k& +— (ngvo)go,o is a unitary representation of the group R, in the Hilbert space M 0000

((ng,o)go,o)* = (ng—lyo)go,o and, by (94)7
(Uge0)20.04%.0((Ugy0)200)" = A%y forall k€ Ry andall A€
Hence, the C*-algebra %go’o is the closure of the set of all finite sums Zk(ﬁk)go’o(ﬁgk,o)go’o, where Ay, € .

Theorem 9.4. The mapping

Z(Akng,o)go,O = @ E \Ijg,n,m(Ak)e_m lnk‘l-% (95)

kEF (Em.a) €A, o kEF

where Ay, € 2A for k € F and F runs through finite subsets of Ry, extends to a C*-algebra isomorphism of
the C*-algebra B, 4 onto the C*-algebra BY, o given by (9.3).

Proof. Let B P,(AS, 0)Boor for every B € 9B. Since the set A%,  is open, we infer similarly to [5,

00,0 —

Lemma 3.5] that, for every Boo g € Boo i,

1B ollse, o) = 1Pe(A% 0) Boo kIl B34,y o ) = sup | Zoo R Boo R |B(Hy o) (9:6)
Z oo REZo0 R(A o)

where the set ZVOO’R(AZO,O) consists of the operators Z, g € ZNOO’R for which the Gelfand transform is a
function in C(EOQR) with values in [0,1] and with support in A .

By analogy with [5, Lemma 6.1] and Lemma 9.3, it follows from (2.6) that for every operator H P,o given
by (5.5) and (5.6), where P € P is a polynomial,

‘I’g,n,x(ffp,o) = P(u(z))v(z)lz if (&n,2) € ﬁoo,o, ‘Ilg,n,m(ffp,o) = O2x2 if (§,m,2) € Q \ ﬁoo,o»

with u(z) = tanh(wz) and v(x) = —i/ cosh(mz). Hence, the set Z~OO,R(A§O’O) is the closure of the set of all
operators (ﬁp,o)oo,R with polynomials P € P such that {P(u(x))v(z) : z € R} C [0,1]. For every k > 0
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and every h € R, we infer from (9.2), (5.5) and (5.6) that quvhﬁp)o € 2. Then, for every operator Boo r
and every operator Zoo g € Zoo R(AZ, o), the operator Z., g B r belongs to the C*-algebra 21, o = A3,
defined by (9.1). Hence, applying Theorem 9.1, we infer that

1 Zoo RBoo RIIB(#,y. e x) = 1Po(A%.0) Zoo R Boo RIIB(H, o« z) = 1P6(A% 0)¥Yo0 R(Zoo RBoo R)IB(H 4,00 z)s (9:7)

where the operators Py (A3, §)Yoo (Zoo R Boor) are in the C*-algebra 5(8070. Let

go,O = Z(Akng,o)go,]R € %20,0» Bgo,o = Z(Akng,o)go,O € %ZO,O (9-8)
ker kel

for Boor = D e p(ArUg, o)oo,r, Where F is a finite subset of Ry and Ay € 2. Then we deduce that
Py(AZ 0) %002 (Zoo 8 Boo ) = thoo 2 (Zoo,m) B o, (9-9)
where the operator Ego’o is given by (9.8). It is easily seen that

B0

B, ) = sup %00,k (Zoo,8) Bao o[l B(#4.00.2)- (9.10)
Z0,0€200,R(AS o)

Combining (9.6), (9.7), (9.9) and (9.10), we infer for the operators (9.8) that

B0

IBHe, ) = 1BollBns, . 0)- (9.11)

Since the sets of such operators are dense in the C*-algebras B2 ; and %2070, respectively, we infer from
(9.11) that the mapping (9.5) uniquely extends to a C*-algebra isomorphism of B, ; onto B3, ;. O

Thus, for every (£,7,7) € A, o, we obtain the representation

Teme : B0 — B(C?) (9.12)

given on the generators of the C*-algebra B2, , by

[U&n,x((aj)go,o)]f = [W¢n(al)lf, [Gi,n,x((wo(b))go,o)] = [‘IJﬁ,n,x(Wo(b))]fy

) (9.13)
[UE»U,I((ng,h)go,O)]f = 67” lnkf (a,b € PSOO? gk,h € Ga f € (C2)

Applying Theorem 9.4 and (9.12)—(9.13), we immediately obtain the following invertibility criterion.

Theorem 9.5. For each B € B, the operator B3, , € B, is invertible on the space H, ., g if and only if
for all (€,n,z) € A, o the operators o¢ (B, o) are invertible on the space C* and

o )1
(é,n,i;lepAgowo H(JE*WJ(BOO,O)) HB(@) < 00.

(o)

For every B € B and every (§,7n,z) € AZ, 4, we put

[Symg(B)J(€,n, @) = 0¢ .9, (B o) (9.14)

where the representations o¢ , , are given by (9.12) and (9.13). One can see from (9.13) that formulas (9.14)
coincide with (3.12) on the generators of the C*-algebra 9B. Consequently, Theorem 9.5 combined with (3.9)
and (9.12)—(9.14) implies the following corollary by analogy with Corollary 6.10.
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Corollary 9.6. For each B € B, the operator B3, o € B2, is invertible on the space Hp, . g if and only
if condition (iil) of Theorem 3.2 holds. The map g : B — B(Heo,0) given by (3.7), (3.9) and (3.12) is a
C*-algebra homomorphism, and ker &g = {B € B : B3, = 0}.

10. The C'*-algebras B0 and B o

Let us study the invertibility in the C*-algebras B, ¢ and B o0, Where

Booo = Pp(Bc0)9(B7), Use0 = Po(Bc0)9(A7),  Zoo0 = Pp(Dsc0)p(27),
Boo,co = PW(AOO,OO)SO(%W)» Ao 00 = PW(AOO,OO)QP(QUF)» Z;’700700 = P@(AOO,OO)SD(ZNW)»

Ao = Qoo,0x {00} and Asg 0o = Qoo,00 X {00}. The C*-algebras 20070 and 200700 are central subalgebras of

the C*-algebras As,0 and A, o0, respectively. By [24, Subsection 5.1], M (Zoc0) = Aso,0 and M(Zu,00) =
A 00 Moreover, Zo o and Zo, o are also central subalgebras of B ¢ and B o, respectively.

Since Py(As,0)o0,k = Pp(Aco,0)Uoo,r similarly to (9.1) and since Ao € Rz (Aso,r) consists of fixed
points for all B, (k € Ry) by Lemma 7.3, we infer that the C*-algebra B o is commutative. Let J¢ , be
the closed two-sided ideal of the C*-algebra B o generated by the maximal ideal (§,7,00) € A g of ZNOQO.
By the Allan-Douglas local principle related to goo,O (see Theorem 4.1), we obtain the following.

Lemma 10.1. An operator Booo € Boo,o is invertible on the space My, 0,0 if and only if for every (&,n) €
Qoo,0 the coset Bog o + Tz s invertible in the quotient algebra Boo o/ Te -

With every (£,71) € Qs0.0, every finite set ' C Ry and every operator

Book =Y (A)oor(Ugy o)oom, With (Ap)ocr € Ao g, (10.1)
keF

we associate four functional operators with constant coefficients, which are given by

Temtooi = Y [Yentoo(Ar)iilUg., € BIL*(R)) (i =1,2). (10.2)
keF

Lemma 10.2. If the operator By r\{0} = Pp(Aoor\{0})Boo,k, where By is given by (10.1), is invertible
on the space Hy, oo m\{0}, then for every (§,1) € Qo0 and every i = 1,2 the functional operators T¢ ;) +oo.i
given by (10.2) are invertible on the Hilbert space L*(R).

Proof. By Corollary 8.4, the invertibility of the operator B, r\ {0} on the Hilbert space H,, o r\ {0} implies
the invertibility on the space [*(Ry, C?) of all the operators m¢ ) »(Boo,r\{0}) for (£,1,7) € Qs 0. Put

Dy := diag { diag{1,0}}, . , D :=diag{diag{0,1}}, 5 -
It is easily seen from (8.4), (2.6) and (10.2) that, for every (£,1) € Qoo,0,

7é . +00 (Boo 2\ (03) = D17, 1,400 ([T m, 400,100\ {0} ) D1 4 Dot 400 ([Tt m,+00,2] 00 &\ (03 ) D21,
7¢ 1, — 00 (Boo &\ (03) = D17, —00 ([T n,—00,1)00. 80 {0}) D11 + Dome o0 ([Tt ,~00,2)00 B\ {0}) D21 -

Hence, the invertibility of the operators 7¢ ;o0 (Boo,r\{0}) implies the invertibility of the operators

Di7e o0 ([T n 00,100\ [03) D1 T, Dame g to0 ([Te ,400,2)00 1\ (0}) D21
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on the spaces D1l?(R,,C?) and Dyl?(R,,C?), respectively. Since the C*-algebras of these operators are
commutative and *-isomorphic to the C*-algebra AP in view of (8.7), since the C*-algebras A¢ ; +00,i
(¢ = 1,2) generated by the operators (10.2) also are commutative and *-isomorphic to the C*-algebra
AP, and since the images in AP of such operators coincide in view of (8.6), we conclude that for every
(&,m) € Qoo,0 and every i = 1,2 the invertibility of the operators Dmg,n,ioo([Tg,n,ioo,i]oo,R\{o}>DiI on the
space D;I*(Ry,C?) is equivalent to the invertibility of the operators T¢ ,; 100 ; on the space L%(R). O

Applying spectral radii r(-), we infer from Lemma 10.2 that, for every invertible operator B g\ {0},

T n, o0l Biz2ry) = 7 (Tem,tooiTem tooi) < T(Boomy(0yBaom o) = 1Boorvioy B, a0 (10-3)

for all (§,1) € Qo and all i = 1,2. Hence the maps By gr\fo} > Tty +c0,i €xtend by continuity to
C*-algebra homomorphisms ve ;) + i : Boo g\ 0} — Ag,y,£00,i- Lemma 10.2 implies the following.

Corollary 10.3. If an operator By r\0} € Boo,r\{0} 5 invertible on the space H, o r\{0}, then for every
(§,m) € Qoo,0 and every i = 1,2 the functional operators Te ) +ooi = Ve n,+,i(Bsor\{0}) are invertible on the
Hilbert space L*(R).

Theorem 10.4. If B € B and the operator B, g\ {0} 45 invertible on the space H, o r\{o0}, then the operator
By o is invertible on the space Hy 00,0-

Proof. One can see that, for every operator B € B and every (£,7) € Q0 0,

Booo + JTem =[X-W (X4 )Te m 4001 + X-W (X )Ten, 001
F X+ WO Te 002 + X WO (X) T, —o0,2] oo o + T (10.4)

where x+ are the characteristic functions of Ry. By Corollary 10.3, the invertibility of the operator B r\ {0}
on the Hilbert space H,, o g\ {0} implies the invertibility on the space L?(R) of the operators T n,+00,i, Which
in turn implies the invertibility of the cosets [T¢  +00.i]oo,0 + Je,n for all i = 1,2 and all (§,7n) € Qoo 0.

Taking a sequence of open sets A, C &”R such that (), A, = A, one can easily prove that for
all k € Ry the operators [x+/]e,0, [W%(X4)]oo,0 and [Ug, ,Joc,0 pairwise commute and the operators
IX=WO(x£)]0,0 and [x+WO(x4)]s0,0 are pairwise orthogonal projections on the space H 0. Hence, for
every (§,m) € Qoo,0, the inverse to the coset (10.4) has the form

XWX ) (T, 00,1) ™A X= WO X ) (T, —001) "
+ X+WO(X7)(T§,n,+oo,2)_l + X+W0(X+)(T£mﬁoo,2)_1]0070 + Jen-

Finally, applying Lemma 10.1, we obtain the invertibility of the operator B o on the space Hy o0 0. O

Since the set A 00 € %G(ﬁ) consists of fixed points of all homeomorphisms 4 (k € Ry, h € R)
given by (5.15), we infer that the C*-algebra ZNOO,OO = PW(AOO,OO)cp(g’T) is invariant under the transform
Zoo,00 (ng,h)oo,ooZoo,oo(ng,h)gol,oo Hence é'oo,oo is a central subalgebra of the C*-algebra B . Let
j&m be the closed two-sided ideal of the C*-algebra B, ~ generated by the maximal ideal (§,7,00) € A oo
of Z}O,o@. By the Allan-Douglas local principle related to the central algebra 200700, we obtain the following.

Lemma 10.5. An operator By o is invertible on the space My 0o.00 if and only if for every (€,m) € Qoo,00
the coset Boo oo + Je.y is invertible in the quotient algebra B o0/ T -
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For every operator B = deF A U, € B, where A; € 2 and F is a finite subset of G, and every point
(&,m) € Qo0 00, we define four functional operators with constant coefficients, which are given by

Temtooi = ) [Wenoo(Ag)lialUy € BILAR)) (i =1,2). (10.5)
geF

Lemma 10.6. If the coset Broo,ss = D_,cp(AgUg)R 00,59, where Ag € A and F is a finite subset of G, is
invertible in the quotient C*-algebra B 0,5, then for every (£,1m) € Qoo 0o and every i = 1,2 the functional
operators T n +o0,i given by (10.5) are invertible on the Hilbert space L*(R).

Proof. By Corollary 6.11, the invertibility of the coset Br oo, € Br,o0, implies the invertibility of the
operators E&,u,n,v = Il¢ ;.m0 (Br,oo,s) on the space I2(G) for all (&, p,n,v) € (Mx(SO°) x {0,1})2. The
latter holds if and only if the operators B ;.nv = >_ ¢ p[(Ag)r,00,5] (€, 1, n, v)Uy are invertible on the space
L3(R) for all (¢, u,n,v) € (Ms(SO®) x {0,1})2. It is easily seen from (6.28) and (2.6) that

Beima = Z[‘Iji,n,+oo(Ag)]l,1Ugv Be im0 = Z[‘Iji,n,—oo(Ag)]l,lUgv

geF geF
Beomo = _[Pentoo(Ag)l22Ug,  Beomi = > _[Pem—oo(Ag)l22Ug
ger geF

for every (£,m) € Qoo,00, Which implies the invertibility of operators (10.5) on the space L*(R). O

We now infer from Lemma 10.6 similarly to (10.3) that ||7¢ 400,

B(L2(R)) < ||BR,OO,55||‘BR,OO,B for every
invertible coset Br oo.5, all (£,1) € Q.00 and all i = 1,2. Hence the maps B oo — Br,oo,¢ = Te.n, 400,
extend by continuity to C*-algebra homomorphisms e+ : Broo — Agptoo,i; where the C*-algebras
A¢ . +oo,i (i =1,2) are generated by the operators (10.5). Consequently, Lemma 10.6 implies the following.

Corollary 10.7. If an operator Br o is invertible on the space Hyr oo, then for every (€,1m) € Qo0 and
each i = 1,2 the functional operators T¢ n +ooi = Ve +,i(Br,oo) are invertible on the Hilbert space L*(R).

Theorem 10.8. If B € B and the operator B o is invertible on the space Hy R oo, then the operator B oo
is invertible on the space Hy oo, 00-

Proof. For every operator B € B and every (£,7) € Qo 00, the coset Bog oo + j&m has the form

Boo,oo + u7£,17 :[X—WO(X—),TSJL-&-OO,I + X—WO(X+)7E7U7—W,1
+ X+ WO ) Tem 4002 + X+ WO (X=) Tem,—o0,2) oor00 T Jem (10.6)

where x4+ are the characteristic functions of Ry. By Corollary 10.7, the invertibility of the operator Br o
on the Hilbert space H, R oo implies the invertibility on the space L?(R) of the operators T¢, 400, for
all (§,1) € Q.00 and all ¢ = 1,2. On the other hand, the latter implies the invertibility of the cosets
Po(D o) ([WO(Te 400, oor) + Teuy for i = 1,2 and all (€,7) € Qoo oo-

Taking a sequence of open sets A, C &Rm such that ), A, = A, 0, One can easily infer from [19,
Lemma 7.1] that the operators [yi/]oo,co and [W9(x4)]oo,co pairwise commute and commute with each
operator [Uy, ,]oo,00 for k> 0 and h € R, and the operators [x—W°(x4)]oo,00 and [x4+W°(x+)]oc,00 are
pairwise orthogonal projections on the space Hy o000 Hence, similarly to Theorem 10.4, the coset

X=X (T poo,) ™+ X=W (6 )(Term, —o0,1) ™!

F WO () (Tetoo2) "+ Xa WO (Temoo2) Y o o+ Tem

00,00
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is the inverse to the coset (10.6) for every (£,m) € Qoo 00. Finally, applying Lemma 10.5, we obtain the
invertibility of the operator Bu o on the space Py(Aoo o) My ook O

11. Proofs of the main theorems for the C*-algebra 23

Applying results of previous sections, we can now complete the proofs of the main results of the paper
presented in Section 3.

First, we conclude from Theorems 10.4 and 10.8 that assertions (iv) and (v) of Theorem 5.4 follow,
respectively, from assertions (ii) and (i) of this theorem, and therefore are superfluous. Theorem 3.1 directly
follows from Theorems 6.6, 6.13 and Corollaries 8.3 and 9.6. Applying Theorem 5.4, we immediately infer
Theorem 3.2 from Theorem 6.14 and Corollaries 8.3 and 9.6. Finally, we get Corollary 3.3 from Theorem 3.2.
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