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We investigate properties of the m-th error of approximation by polynomials 
with constant coefficients Dm(x) and with modulus-constant coefficients D∗

m(x)
introduced by Berná and Blasco ([2]) to study greedy bases in Banach spaces. We 
characterize when lim infm Dm(x) and lim infm D∗

m(x) are equivalent to ‖x‖ in terms 
of the democracy and superdemocracy functions, and provide sufficient conditions 
ensuring that limm D∗

m(x) = limm Dm(x) = ‖x‖, extending previous very particular 
results.
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1. Introduction

Let (X, ‖ · ‖) be a real Banach space and let B = (en)∞n=1 be a semi-normalized (Schauder) basis of X
with biorthogonal functionals (e∗n)∞n=1, that is:

(i) There exist a, b > 0 such that a ≤ ‖en‖, ‖e∗n‖ ≤ b for every n ∈ N,
(ii) e∗k(en) = δkn for every k, n ∈ N,
(iii) The sequence of projections Pm : X −→ X given by

Pm(x) =
m∑

n=1
e∗n(x) en , x ∈ X
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satisfy limm ‖Pm(x) − x‖ = 0 for every x ∈ X. In this case, the basis constant of B is

Kb := sup
m∈N

‖Pm‖ < ∞ .

We say that B is monotone whether Kb = 1.

Along the paper we will refer to every such B simply as a basis. Of course, as m increases Pm(x) offers a 
good approximation of x by linear combinations of m-elements of the basis, but it is natural to ask whether 
a suitable rearrangement can provide better convergence rates. A natural proposal is the Thresholding 
Greedy Algorithm (TGA) introduced by S.V. Konyagin and V.N. Temlyakov ([8]): given x ∈ X we first 
consider the rearranging function ρ : N −→ N satisfying that if j < k then either |e∗ρ(j)(x)| > |e∗ρ(k)(x)| or 
|e∗ρ(j)(x)| = |e∗ρ(k)(x)| and ρ(j) < ρ(k). The m-th greedy sum of x is then

Gm(x) =
m∑
j=1

e∗ρ(j)(x) eρ(j) =
∑

k∈Λm(x)

e∗k(x)ek ,

where Λm(x) = {ρ(j) : 1 ≤ j ≤ m} is the greedy set of x with cardinality m. Related to this, S.V. Konyagin 
and V.N. Temlyakov defined in [8] the concepts of greedy and quasi-greedy bases.

Definition 1.1. We say that B is quasi-greedy if there exists a positive constant Cq such that

‖x− Gm(x)‖ ≤ Cq‖x‖, ∀x ∈ X, ∀m ∈ N.

P. Wojtaszczyk proved in [11] that quasi-greediness is equivalent to the convergence of the algorithm, 
that is, B is quasi-greedy if and only if

lim
m→+∞

‖x− Gm(x)‖ = 0, ∀x ∈ X.

Definition 1.2. We say that B is greedy if there exists a positive constant C such that

‖x− Gm(x)‖ ≤ Cσm(x), ∀x ∈ X, ∀m ∈ N, (1)

where

σm(x,B)X = σm(x) := inf
{∥∥∥∥∥x−

∑
n∈A

anen

∥∥∥∥∥ : an ∈ R, A ⊂ N, |A| = m

}
.

S.V. Konyagin and V.N. Temlyakov [8] showed that, although every greedy basis is quasi-greedy, the 
converse does not hold (see also [1, Section 10.2]). They also characterize greedy bases as those which are 
unconditional and democratic. To define the last notion we have to introduce some notation. For each finite 
subset A ⊂ N and every scalar sequence ε = (εn) with |εn| = 1 for each n ∈ N (we will write |ε| = 1, for 
simplicity) let us denote

1A :=
∑
n∈A

en and 1εA :=
∑
n∈A

εn en .

As usual, |A| stands for the cardinal of A. We then define the democracy functions as

hl(m) = inf
|A|=m

‖1A‖ , hr(m) = sup ‖1A‖ (m ∈ N) ,

|A|=m
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and the superdemocracy functions as

h∗
l (m) = inf

|A|=m,|ε|=1
‖1εA‖ , h∗

r(m) = sup
|A|=m,|ε|=1

‖1εA‖ (m ∈ N) .

Definition 1.3. We say that B is democratic (resp. superdemocratic) if there exists C > 0 such that hr(m) ≤
C hl(m) (resp. h∗

r(m) ≤ C h∗
l (m)) for every m ∈ N.

More recently, another characterization of greedy bases has been provided by Ó. Blasco and the first 
author by means of the best m-th error in the approximation using polynomials of constant (resp. modulus-
constant) coefficients:

Dm(x,B)X = Dm(x) := inf{‖x− α1A‖ : α ∈ R, A ⊂ N, |A| = m}

D∗
m(x,B)X = D∗

m(x) := inf{‖x− α1εA‖ : α ∈ R, A ⊂ N, |A| = m, |ε| = 1}

Theorem 1.4. [2, Corollary 1.8] Let B be a basis of a Banach space X. The following assertions are equiv-
alent:

(i) B is greedy,
(ii) There is C > 0 such that ‖x − Gm(x)‖ ≤ C Dm(x) for every x ∈ X and m ∈ N.
(iii) There is C > 0 such that ‖x − Gm(x)‖ ≤ C D∗

m(x) for every x ∈ X and m ∈ N.

The striking feature of this theorem compared to (1) is that, while limm σm(x) = 0 for every x ∈ X, 
the terms D∗

m(x) and Dm(x) do not necessarily converge to zero if x 	= 0. Indeed, we have the following 
examples:

� [2, Theorem 3.2], [3, Theorem 1.4] If X = H is a (separable) Hilbert space and B is an orthonormal 
basis, then

lim
m→∞

Dm(x) = lim
m→∞

D∗
m(x) = ‖x‖ , for every x ∈ H. (2)

� [2, Proposition 3.4] If X = �p (1 < p < ∞) and B is the canonical basis, then

lim
m→+∞

Dm(1B) = lim
m→+∞

D∗
m(1B) = ‖1B‖ , for every finite B ⊂ N . (3)

In the present paper, we aim to delve into this aspect. Let us briefly explain the structure of the paper. In 
Section 2 we show that D∗

m(x) and Dm(x) do not converge to zero as m → +∞ for any x 	= 0. In Section 3
we prove the main result of the paper (Theorem 3.2), namely a characterization of those bases B for which 
there is a positive constant c > 0 such that

c‖x‖ ≤ lim inf
m→+∞

D∗
m(x) ≤ lim sup

m→+∞
D∗

m(x) ≤ ‖x‖ for every x ∈ X ,

in terms of the democracy and superdemocracy functions. We also provide a quite general condition ensuring 
that

lim D∗
m(x) = ‖x‖ for every x ∈ X .
m→+∞
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In Section 4 we deal with the notion of almost-greedy bases. We study how this property can be also 
characterized in terms of polynomials of constant or modulus-constant coefficients, extending a recent result 
of S.J. Dilworth and D. Khurana in [6].

Let us point out [1] as our basic reference for notation and fundamental results on greedy basis.

2. The limit of errors D∗
m(x) and Dm(x) is nonzero

Since D∗
m(x) ≤ Dm(x) ≤ ‖x‖ for every m ∈ N and every x ∈ X, it is only necessary to study lower 

bounds of D∗
m(x).

Proposition 2.1. Let B = (en)∞n=1 be a basis of a Banach space X. Then, for every x ∈ X

1
4Kb

sup
n∈N

|e∗n(x)| ≤ lim inf
m→∞

D∗
m(x) .

Proof. Let x ∈ X. Note that for every finite set A ⊂ N, α ∈ R and |ε| = 1 it holds that

‖x− α1εA‖ ≥ sup
n∈N

|e∗n(x− α1ηA)|
‖e∗n‖

≥ supn∈N |e∗n(x− α1εA)|
2Kb

≥
supn∈N

∣∣|e∗n(x)| − |α|
∣∣

2Kb
.

Let us also fix δ > 0 and n0 ∈ N with the property that

|e∗n(x)| ≤ δ for every n ≥ n0 .

If A satisfies |A| > n0, then we can take j ∈ A with j > n0 and deduce that

‖x− α1εA‖ ≥
|e∗j (x) − |α||

2Kb
≥ ||α| − δ|

2Kb
.

In particular, combining both lower estimations we get that for |A| > n0

‖x− α1εA‖ ≥
||α| − δ| + supn∈N

∣∣|e∗n(x)| − |α|
∣∣

4Kb
≥ sup

n∈N

|e∗n(x)| − δ

4Kb
.

Therefore, for m > n0

D∗
m(x) ≥ sup

n∈N

|e∗n(x)| − δ

4Kb
. �

3. Main result: equivalence with the norm

The issue of when lim infm D∗
m(x) (resp. lim infm Dm(x)) is equivalent to ‖x‖ is going to be determined by 

the behaviour of the superdemocracy functions (resp. democracy functions) defined in Section 1. Along the 
present section we are going to focus on proving the results for the superdemocracy case, namely for h∗

l (m), 
h∗
r(m) and the error D∗

m(x). The arguments for hl(m), hr and the error Dm(x) are completely analogous. 
First of all, we recall some well-known estimates of the superdemocray functions valid for every basis in 
every space:

h∗
l (k) ≤ Kb h

∗
l (m) , h∗

r(k) ≤ Kb h
∗
r(m) for every k ≤ m. (4)

These relations together with the trivial inequality h∗
l (m) ≤ h∗

r(m) (m ∈ N) yield that there are three 
possible cases:
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� h∗
l (m) and h∗

r(m) are bounded.
� h∗

l (m) is bounded and h∗
r(m) → +∞ as m → +∞.

� h∗
l (m), h∗

r(m) → +∞ as m → +∞.

Definition 3.1. The functions h∗
l (m) and h∗

r(m) (resp. hl(m) and hr(m)) are said to be comparable if they 
are both bounded or divergent to infinity.

The main result of the section is the following theorem.

Theorem 3.2. Let B be a basis of a Banach space X. The following assertions are equivalent:

(i) There is a positive constant c > 0 such that

c ‖x‖ ≤ lim inf
m→+∞

D∗
m(x) ≤ lim sup

m→+∞
D∗

m(x) ≤ ‖x‖ for every x ∈ X.

(ii) h∗
l (m) and h∗

r(m) are comparable.

Moreover, if B is monotone and h∗
l (m) → +∞ as m → +∞, then

lim
m→+∞

D∗
m(x) = ‖x‖ . (5)

(The theorem also holds if we replace D∗
m(x), h∗

l (m), h∗
r(m) by Dm(x), hl(m), hr(m) respectively.)

Before going into the proof let us show a few observations and examples:

� From Theorem 3.2 we can recover (2) and (3). Indeed, if H is a (separable) Hilbert space and B is an 
orthonormal basis of H then hl(m) = h∗

l (m) = m1/2. On the other hand, if X = �p with 1 ≤ p < ∞ and 
B is the canonical basis, then hl(m) = h∗

l (m) = m1/p.
� For X = Lp[0, 1] with 1 ≤ p < ∞ we have that the Haar basis B is monotone (see [7, Theorem 5.18]) and 

satisfies h∗
l (m) = hl(m) ≈ m1/p (see [1, p. 279]). Hence, it satisfies that limm D∗

m(x) = limm Dm(x) =
‖x‖ for every x ∈ X.

� If B is superdemocratic (resp. democratic), then it is clear that Theorem 3.2.(ii) (resp. the “democratic” 
version of Theorem 3.2.(ii) with hr(m) and hl(m)) holds. However, the converse is not true. For instance, 
if 1 < p < q < ∞, the canonical basis of �p ⊕1 �q satisfies that hl(m) = h∗

l (m) ≈ m1/q and hr(m) =
h∗
r(m) ≈ m1/p (see [1, Example 10.4.4]).

� Example of basis not satisfying Theorem 3.2.(ii): Let us consider X = �1 and let B = (xn)∞n=1 be the 
difference basis, which in terms of the canonical basis (en)∞n=1 is given by

x1 = e1 , xn = en − en−1 , n = 2, 3, ...

By [4, Lemma 8.1], it holds that h∗
l (m) = hl(m) = 1 and h∗

r(m) = hr(m) = 2m.
� Example of basis satisfying limm Dm(x) = ‖x‖ for every x ∈ X, but lim infm D∗

m(x) is not even equivalent 
to ‖x‖: Let X = c be the space of convergent sequences and let B = (sn)∞n=1 be the summing basis, 
defined as

sn := (0, . . . , 0︸ ︷︷ ︸, 1, 1, . . .) , n ∈ N .
n−1



P.M. Berná, A. Pérez / J. Math. Anal. Appl. 478 (2019) 466–475 471
By [4, Lemma 8.1] we know that h∗
l (m) ≈ 1 and h∗

r(m) ≈ m, so Theorem 3.2.(ii) does not hold. On the 
other hand, B is monotone and hl(m) ≈ hr(m) ≈ m by the same reference. Thus, limm Dm(x) = ‖x‖
for every x ∈ X.

� Condition Theorem 3.2.(ii) is not preserved for dual bases: If (en)∞n=1 is the canonical basis of �1, let us 
consider the sequence xn = en − (e2n+1 + e2n+2)/2, n ∈ N and the space

X := span{xn : n ∈ N}�1 .

This is known as the Lindenstrauss space [9] and the sequence B = (xn)∞n=1 is actually a monotone 
basis for X (see [10, p. 457]). In [4, Section 8.2] it is shown that h∗

l (m) ≈ m and that the dual space X∗

with the corresponding dual basis B∗ satisfies h∗
l (m) ≈ 1 and h∗

r(m) ≈ ln(m).

3.1. Proof of the main result

Proposition 3.3. Let B be a basis of a Banach space X. Then,

sup
A⊂N
finite,|η|=1

lim inf
m→+∞

D∗
m(1ηA) ≤ (1 + Kb) lim inf

m→+∞
h∗
l (m) ≤ ∞ , (6)

sup
A⊂N
finite

lim inf
m→+∞

Dm(1A) ≤ (1 + Kb) lim inf
m→+∞

hl(m) ≤ ∞ . (7)

Proof. We explain the argument for (6), as the proof of (7) is completely analogous with the obvious 
replacements. Let us fix a finite set A ⊂ N and η ∈ {±1}A, and let us take λ ∈ R satisfying

λ < lim inf
m→+∞

D∗
m(1ηA). (8)

From this condition, we can then find m0, n0 ∈ N with the following properties:

� λ ≤ ‖1ηA − α1εB‖ for every α ∈ R, every B ⊂ N with |B| ≥ m0 and every ε ∈ {±1}B ,
� A ⊂ {1, . . . , n0}.

Let C ⊂ N be a finite set with |C| ≥ m0 + n0. Then,

1εC − Pn0(1εC) = 1εC′

where C ′ := C \ {1, . . . , n0}. Notice that |C ′| ≥ m0, so in particular

λ ≤ ‖1ηA − 1(ηA)∪(εC′)‖ = ‖1εC′‖ ≤ ‖ Id−Pn0‖ ‖1εC‖ ≤ (1 + Kb) ‖1εC‖.

Thus, we have the relation

λ ≤ (1 + Kb) lim inf
m→+∞

h∗
l (m).

Taking supremums on λ satisfying (8) we conclude that

lim inf
m→+∞

D∗
m(1ηA) ≤ (1 + Kb) lim inf

m→+∞
h∗
l (m). �
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Theorem 3.4. Let B be a basis of a Banach space X. Assume that there is a constant C > 0 satisfying

sup
n∈N

h∗
r(n) ≤ C sup

n∈N
h∗
l (n) ≤ ∞ .

Then, for every x ∈ X

1
C + Kb(1 + C) ‖x‖ ≤ lim inf

m
D∗

m(x) ≤ lim sup
m

D∗
m(x) ≤ ‖x‖ . (9)

Proof. Let us fix x ∈ X. We just have to show that the left hand-side of (9) holds. For, let 0 < δ < 1 and 
m0, n0 ∈ N such that

‖Pn(x) − x‖ ≤ δ ‖x‖ for every n ≥ n0 ,

h∗
r(n0) ≤ C (1 − δ)h∗

l (m0) .

Given α ∈ R, A ⊂ N with |A| ≥ m0 + n0 and ε ∈ {±1}A, we are going to establish two lower bounds for 
‖x − α1εA‖.

� Since |A ∩ (n0, +∞)| ≥ m0 we can find n ≥ n0 such that |A ∩ (n, +∞)| = m0. Thus, applying the 
operator Id−Pn to x − α1εA we have that

‖x− α1εA‖ ≥ 1
Kb + 1‖(Id−Pn)(x) − α1ε(A∩(n,+∞))‖ ≥ 1

Kb + 1
(
|α|h∗

l (m0) − δ ‖x‖
)
. (10)

� As |A| ≥ n0 we can find n ≥ n0 with |A ∩ [1, n]| = n0, so that applying Pn to x − α1εA

‖x− α1εA‖ ≥ 1
Kb

(
‖Pn(x) − α1ε(A∩[1,n])‖

)
≥ 1

Kb

(
‖x‖(1 − δ) − |α|h∗

r(n0)
)

(11)

≥ 1 − δ

Kb

(
‖x‖ − C |α|h∗

l (m0)
)

(12)

Note that the lower estimations (10) and (12) are respectively increasing and decreasing linear functions 
f(t) and g(t) on t = |α|. Moreover, these functions have a unique point of intersection t0 > 0 which can be 
easily checked to satisfy

t0 = ‖x‖
h∗
l (m0)

· (1 − δ) (1 + Kb) + δ Kb

C(1 − δ)(1 + Kb) + Kb
. (13)

Thus

‖x− α1εA‖ ≥ max {f(|α|), g(|α|)} ≥ f(t0) = g(t0) = ‖x‖
1 + Kb

[
(1 − δ) (1 + Kb) + δ Kb

C(1 − δ)(1 + Kb) + Kb
− δ

]
.

Taking the infimum of ‖x − α1εA‖ on α ∈ R and A satisfying the conditions above, we deduce that

lim inf
k→+∞

D∗
k (x) ≥ inf

k≥m0+n0
D∗

k (x) ≥ ‖x‖
1 + Kb

[
(1 − δ) (1 + Kb) + δ Kb

C(1 − δ)(1 + Kb) + Kb
− δ

]
.

Finally, making δ → 0+ we get the desired conclusion. �
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Proof of Theorem 3.2. To check (i) ⇒ (ii), note that using Proposition 3.3 and the constant c of our 
hypothesis, we deduce that

sup
m∈N

h∗
r(m) = sup

A⊂N
finite,|η|=1

‖1ηA‖ ≤ 1
c

sup
A⊂N
finite,|η|=1

lim inf
m→+∞

D∗
m(1ηA) ≤ (1 + Kb)

c
lim inf
m→+∞

h∗
l (m) ≤ ∞.

It is clear from this inequality that h∗
l (m) and h∗

r(m) are then comparable. To see the converse (ii) ⇒ (i), 
note first that if h∗

l (m) and h∗
r(m) are comparable, then there exists C > 0 such that

sup
m∈N

h∗
r(m) ≤ sup

m∈N
C h∗

l (m) . (14)

We can then apply Theorem 3.4 to conclude the result. Finally, the last statement of the theorem follows 
also from Theorem 3.4 since B being monotone means that Kb = 1, and condition limm h∗

l (m) = +∞
means that (14) holds for every C > 0. �
4. Almost-greediness and polynomials with constant coefficients

Definition 4.1. Let B = (en)∞n=1 be a basis of a Banach space X. We say that B is almost-greedy if there 
exists a constant C > 0 such that

‖x− Gm(x)‖ ≤ C σ̃m(x)

where

σ̃m(x,B)X = σ̃m(x) := inf{‖x−
∑
n∈A

e∗n(x) en‖ : A ⊂ N, |A| = m}.

This notion was introduced by S.J. Dilworth, N.J. Kalton, D. Kutzarova and V.N. Temlyakov in [5], 
together with two characterizations. A first characterization states that a basis is almost-greedy if and only 
if it is quasi-greedy and democratic. The second one is given in the next theorem.

Theorem 4.2 ([5, Theorem 3.3]). Let B be a basis of a Banach space X. Then, B is almost-greedy if and 
only if for some (resp. every) λ > 1, there exists a positive constant Cλ such that

‖x− G[λm](x)‖ ≤ Cλσm(x) , for every x ∈ X and m ∈ N.

Indeed, we can take Cλ ≈ 1
λ−1 .

As in the case of greedy basis, we can replace the error σm(x) by the m-th error of approximation by 
polynomials with constant (resp. modulus-constant) coefficients.

Theorem 4.3. Let B be a basis of a Banach space X and let λ > 1. The following assertions are equivalent:

(i) B is almost-greedy.
(ii) There is Cλ > 0 such that ‖x − G[λm](x)‖ ≤ Cλ Dm(x) for every x ∈ X and m ∈ N.
(iii) There is Cλ > 0 such that ‖x − G[λm](x)‖ ≤ Cλ D∗

m(x) for every x ∈ X and m ∈ N.

Proof. Implications (i) ⇒ (iii) ⇒ (ii) are clear using Theorem 4.2 and the inequalities σm(x) ≤ D∗
m(x) ≤

Dm(x). To show that (ii) ⇒ (i) we follow ideas from the proof of Theorem 4.2: from the hypothesis we argue 
that B is democratic and quasi-greedy.
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To see that it is democratic, let n ∈ N and let A, B ⊂ N with |A| = n and |B| = [λn]. Let us also fix a set 
E ⊃ A ∪B with |E| = n + [λn], a positive number δ > 0, and consider the element x := (1 + δ)1E\A + 1A. 
Hence, since |E \A| = [λn], |E \B| = n and E \A is the greedy set of order [λn] of x, we obtain that

‖1A‖ = ‖x− G[λn](x)‖ ≤ Cλ‖x− 1E\B‖ = ‖1B‖ + δ‖1E\A‖.

As δ > 0 is arbitrary, taking supremum over A and infimum over B we deduce that for every n ∈ N

hr(n) ≤ Cλ hl([λn]) . (15)

Given m ∈ N with m ≥ λ let us pick n := [m/λ], which clearly satisfies n < m < λ(n + 1) ≤ 2λn. Then, 
using that (hr(m)/m) is non-increasing (see [1, Lemma 10.4.(b)]), relation (15) and the obvious relation 
hl(j) ≤ Kbhl(k) valid for j ≤ k, we conclude that

hr(m) ≤ m

n
hr(n) ≤ Cλ

m

n
hl([λn]) ≤ CλKb

m

n
hl(m) ≤ 2λCλ Kb hl(m).

Let show now that the basis B is quasi-greedy. First take m ∈ N and r ∈ N ∪ {0} such that [λr] ≤ m <
[λ(r + 1)]. Then,

‖x− Gm(x)‖ ≤ ‖x− G[λr](x)‖ + ‖G[λr](x) − Gm(x)‖ .

Note that G[λr](x) − Gm(x) contains at most m − [λr] < λ summands of the form e∗n(x) en, so that

‖G[λr](x) − Gm(x)‖ ≤
(
λ sup

n∈N
‖en‖ sup

n∈N
‖e∗n‖

)
‖x‖ .

On the other hand, using the hypothesis

‖x− G[λr](x)‖ ≤ Cλ Dr(x) ≤ Cλ ‖x‖ .

Thus, the basis is quasi-greedy. �
Recently, S.J. Dilworth and D. Khurana provided the following characterization of almost-greedy bases 

in the same spirit of Theorem 1.4. In order to present it we have to introduce some notation. If A, B ⊂ N

are finite sets, we will write A < B whether maxA < minB. For every x ∈ X and m ∈ N define

Hm(x) := inf{‖x− α1A‖ : α ∈ R , |A| = m and either A < Λm(x) or A > Λm(x)}

where recall that Λm(x) is the m-th greedy set associated to x introduced in Section 1.

Theorem 4.4. [6] Let B be a basis of a Banach space X. Then, B is almost-greedy if and only if there exists 
C > 0 such that

‖x− Gm(x)‖ ≤ C inf
1≤n≤m

Hn(x) for every x ∈ X and m ∈ N.

Inspiring on the previous theorem, we can prove the following result which is again strinking, since 
Dm(x) ≤ Hm(x) and so lim inf Hm(x) ≈ ‖x‖ if hl(m) and hr(m) are comparable by Theorem 3.2.

Corollary 4.5. Let B be a basis of a Banach space X. Then, B is almost-greedy if and only if there exists 
C > 0 such that

‖x− Gm(x)‖ ≤ C Hm(x) for every x ∈ X and m ∈ N. (16)
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Proof. If B is quasi-greedy then (16) holds by Theorem 4.4. To see the converse we use the aforementioned 
characterization of almost-greedy bases as those being quasi-greedy and democratic. The fact that B is 
quasi-greedy follows from the hypothesis and the trivial inequality Hm(x) ≤ ‖x‖. Let us show that B is 
democratic. Let A, B ⊂ N be finite subsets of cardinality m, and take E ⊂ N satisfying |E| = m, A < E

and B < E. Fixed δ > 0 consider the elements x = 1A + (1 + δ)1E and y = 1E + (1 + δ)1B . Then, applying 
(16)

‖1A‖ = ‖x− (1 + δ)1E‖ = ‖x− Gm(x)‖ ≤ C Hm(x) ≤ C ‖x− 1A‖ = C (1 + δ) ‖1E‖ .

Analogously,

‖1E‖ = ‖y − (1 + δ)1B‖ = ‖y − Gm(y)‖ ≤ C Hm(y) ≤ C‖y − 1E‖ = C (1 + δ) ‖1B‖ .

Since δ > 0 was arbitraty, we conclude that hr(m) ≤ C2 hl(m) for every m ∈ N, and so the basis is 
democratic. �
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