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1. Introduction
Second-order difference equations of the form

Uit1 — (1 + Hl)ul + 0;u;_1 € c;Au; + fis 1<ieN, (1 1)

wo =z, sup{|lu;|| :i >0} < oo, ’
where A is a nonlinear m-accretive (possibly multivalued) operator in a real Banach space (X, || -|), ¢; > 0
and ; > 0, correspond to the discrete version of the following second-order evolution equation:

p(H)u” () + r(t)u'(t) € Au(t) + f(t), a.e. onRT,

w(0) = ug, sup{|lu(t)] :t >0} < occ. (1.2)
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The theory of second-order evolution equations of monotone (accretive) type has been investigated by many
authors. We refer the reader in particular to the books by Barbu [9,10], Brézis [11] and Morosanu [28], as
well as to Refs. [31-33,7,8,13,37,38,1-5,23].

Morosanu [27] investigated the difference inclusion (1.1), for the existence and asymptotic behavior of
solutions, and obtained the convergence of {u;} to an element of A=1(0), whenever A is a maximal monotone
operator in a Hilbert space, 0 € R(A), 6; = 1 and f; = 0 (the homogeneous case). In Hilbert spaces,
nonlinear maximal monotone operators coincide with m-accretive operators. Investigations on the existence
and asymptotic behavior of solutions to (1.1) were followed by many authors; see [32,31,33,25,20,14,6,34].

In the Banach space setting, to the best of our knowledge, few papers can be found in the literature
dealing with the problem (1.1). Poffald and Reich [32] extended Morosanu’s result and proved the same
result in Banach spaces having a strongly monotone duality mapping; the same results were extended to
the nonhomogeneous case in [33,34], under the additional condition of A being coercive. The problem (1.1)
was studied by Apreutesei in [6] with f; = 0, ; > 1, {6;} nonincreasing and the duality mapping of the
Banach space X being strongly monotone. As is known [32], a Banach space has a strongly monotone duality
mapping if and only if it is uniformly convex with a modulus of convexity of power type 2; this is the case,
say, when X is a Hilbert space or one of the Lebesgue spaces LP, 1 < p < 2. It would be desirable to study
the asymptotic behavior of solutions of (1.1) when X is a more general Banach space, as well as when 6; is
not necessarily nonincreasing and f; # 0.

In this paper, we investigate the asymptotic behavior of solutions to (1.1). We improve some of the
previous results in [6,33,32,34] by assuming much weaker conditions on {6;}, and without requiring the
duality mapping of X to be strongly monotone. Then we apply our results to provide, in the context of
Banach spaces, new approximation methods for zeros of A, as well as for finding a minimum point of a
proper, convex and lower semicontinuous function ¢ : X — (—o00, +00] through a recently implemented tool
in [35].

2. Preliminaries

Let X be a real Banach space with norm || - ||, and let X™* be the dual space of X. We denote the pairing
between X and X* by (-,-). When {z,} is a sequence in X, we denote the strong convergence of {x,} to
x € X by z,, — x and the weak convergence by z,, — x. A Banach space X is said to be strictly convex if
|l + y|| <2, for all ,y € X with ||z|| < 1,|ly|| <1 and = # y. The modulus ¢ of convexity of X is defined
by

. =+
o(e) = inf{l = == Jlzl < L, Iyl < 1, |z —yl| = e},

for every e with 0 < e < 2. A Banach space X is said to be uniformly convex if §(e) > 0, for every e > 0. It
is known that L, and [, spaces, 1 < p < oo, are uniformly convex. Uniformly convex Banach spaces include
Hilbert spaces. The duality mapping J from X into 2% is defined by J(z) = {z* € X* : (z,2*) = ||z|? =
lz*||?} for every z € X. By the Hahn-Banach theorem, J(z) # ) for each z € X. Note that in a Hilbert
space, the duality mapping is the identity operator. X is said to be smooth, if J is single-valued. In this
case, the limit

e+ tyll =l
lim ————— = (y,J
lim " (y,J(2))
exists, for each z,y € S(X) := {x € X : ||z|| = 1}. The space X is said to be uniformly smooth if the limit
is attained uniformly for z,y € S(X).
It is well known that a uniformly convex Banach space is strictly convex and reflexive; X is reflexive
if and only if J is surjective, and X is strictly convex if and only if J is one-to-one. So, if X is reflexive,
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strictly convex and smooth, then J is a single-valued bijection, and in this case, the inverse mapping J !
coincides with the duality mapping J, from X* onto X** = X. The duality mapping J has the following
properties that will be used throughout the paper.

Lemma 2.1. (See [10]) Let X be a Banach space and let J : X — 2X" be the normalized duality mapping.
Then:

(1) (@ —y,jz — Gy) = (2]l = lyl)?, for all z,y € X,j. € J(x) and j, € J(y), and consequently J is
monotone;
2) =l = llyll* = 2(z =y, jy), for all z,y € X and j, € J(y);

. 1 1 .
(3) (z,jy) < llzlllyll < Sllll* + S llyll?, for all 2,y € X and j, € J(y)-

It is known that a Banach space X is uniformly smooth if and only if X* is uniformly convex. Further,
we know the following result, which characterizes uniformly convex Banach spaces.

Lemma 2.2. (See [39]) Let r > 0 and let X be a Banach space. Then X is uniformly convex if and only if
there exists a continuous, strictly increasing, and convex function g : [0,00) — [0,00), g(0) = 0, such that
(@ =y, Je — dy) Z g(lz = yl)), for all z,y € {z € X : ||z < r},ja € J(2) and jy € J(y).

A subset A of X x X with domain D(A) and range R(A) is called accretive, if for all y; € Ax;, i = 1,2,
there exists j(z1 — x2) € J(z1 — x2) such that

(y1 — y2,4(z1 — x2)) > 0.

The accretive operator A C X x X is called m-accretive if R(I + A) = X, where I is the identity operator
of X. It follows that R(I + AA) = X,VA > 0.
For an accretive operator A, the resolvent and the Yosida approximation of A, are defined by

Jaz = (I+A) "'z, z e R(I+\A);
I—Jy

AA‘T:TIE, .TGR(I‘F)\A),

respectively. We state below some of the main properties of Jy and Aj.

Lemma 2.3. (See [9,22]). Let A be m-accretive in X x X. Then,

(1) Iz = Iyl < llz —yl| for all z,y € X;

(2) ||Jaz — || < A|Axz|| < Ainf{|lyl| ; vy € Az}, for all x € D(A);

(3) Ay is m—accretive on X and ||Axx — Ayl < (2/N)||x —yl|, for all X >0, z,y € X;
(4) Axz € Adyx and x = Jyz + Mz, for allx € X.

The operator A C X x X is said to be a—strongly accretive (a > 0) if for all y; € Ax;, i = 1,2, there
exists j(z1 — x2) € J(x1 — x2) such that

(y1 — y2,4(x1 — 22)) > aflzr — 552”2-

Let C be a nonempty, closed and convex subset of a uniformly convex Banach space X. Then we know
that, for any « € X, there exists a unique element z € C' (called the nearest point projection of z onto C)
such that ||z —z|| < ||z —y], for all y € C. Denoting z = Po(z), Pc is called the nearest point projection (or
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metric projection) map of X onto C. If in addition, X is assumed to be smooth, then z € C is the nearest
point projection of z € X onto C| if and only if

(y—=z,J(x—2)) <0, YyeC. (2.1)

We also know [17] that if X is uniformly convex, then P¢ is continuous.

Let X be uniformly convex and smooth, and A be m-accretive, and assume that 0 € R(A), or equivalently
A710 # . Let P : X — A7'0 be the nearest point projection map onto the (closed and convex) zero set
of A. Then we shall say that A satisfies the convergence condition [29] if (x;,v;) € A, ||z;]| < K, ||lyil] < K,
and lim;_, o0 (y;, J(x; — Px;)) = 0 imply that liminf;_, o ||x; — Pz;|| = 0. It is obvious that every strongly
accretive operator A satisfies the convergence condition.

It is worth pointing out that in the case that X is a uniformly convex Banach space and A C X x X
is m-accretive, A710 # 0 if and only if liminfy_, ||/az| < oo for some z € X (see [21, Theorem 1]).
Some studies have been made on the existence of zeros of accretive, or m-accretive, operators. The reader
is referred to the papers [21,26,19,16,24].

A Banach space X is said to satisfy Opial’s condition if

lim sup [, — || < limsup [, — y],
n— o0 n— oo

for all y € X with y # x, where z,, = z. It is well known that Hilbert spaces and I,(1 < p < c0) satisfy
Opial’s condition. One of the fundamental and celebrated results in the theory of nonexpansive mappings
is Browder’s demiclosedness principle [12] which states that if X is a uniformly convex Banach space, C
is a nonempty closed and convex subset of X, and T : C' — X is a nonexpansive mapping, then [ — T is
demiclosed at each z € X; that is, for any sequence {z,} in C satisfying z, = z and (I — Tz, — y, we
have (I — T')z = y. This principle also holds in a Banach space satisfying Opial’s condition.

The following lemmas will be used throughout the paper.

Lemma 2.4. ([20]) Let {a;} be a sequence of positive real numbers with 32 a; " = co. If {b;} is a bounded
sequence, then liminf; o a;(bi11 —b;) < 0.

Lemma 2.5. ([36]) Suppose that {a;} and {e;} are two sequences of nonnegative real numbers such that
o0

aiv1 < a; + €, for alli >0, and 3 €; < co. Then, lim a; exists.
i=0 71— 00

Lemma 2.6. ([14]) Let {a;} and {b;} be two sequences of real positive numbers. If {a;} is nonincreasing and

convergent to zero and Y, a;b; < oo, then (> b;)a, — 0, as n — oo.
i=1 i=1

Lemma 2.7. ([30]) (Opial) Let X be a uniformly convex Banach space satisfying Opial’s condition, (x)n>1
a sequence in X, and F C X nonempty. Assume

(1) ||zn — ul| has a limit as n — oo, for each u € F'; and
(2) the weak limit of each weakly convergent subsequence of (xn)n>1 belongs to F.

Then, (xn)n>1 converges weakly to some x € F.
3. The nonhomogeneous case

Let us consider the second order difference equation (1.1), as well as the auxiliary sequence (a;);>1 given
by
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1 ! > 1 (3.1)
ap = , Qg =-———  12>1. .
0 0,05..0;
Observe that
azﬂi = Q;—1, ) Z 1, (32)
and denote
1
hp=%F ——  VE>1. 3.3
k=g g0 = (3.3)

Remark. From now on we assume that the difference inclusion (1.1) has a solution for an initial value
up = z in X. It is clear that in general (1.1) has no solution even if A =0, §; = 1 and (f;);>1 € ¢1(X);
we refer to Poffald and Reich [32]. The existence of solution for (1.1), in the framework Banach spaces, has
been studied in [18]. One result worth mentioning is [18, Theorem 4.4]: Let X be a uniformly smooth and
uniformly convex Banach space. Let A C X x X be m—accretive with A='0 # () and ¢;,6; > 0,Vi > 1, such
that Y oo, hi = oo holds. If (f;);>1 is a sequence in X satisfying X5°, h;|| fil] < oo, then (1.1) has a unique
solution for every initial point = € X.

In the following, we prove some new weak and strong convergence theorems for the solutions to (1.1),
and provide new approximation results for the zeros of A in the context of Banach spaces. Our results
extend previous corresponding results by Poffald and Reich [32], where 6; = 1 and X is assumed to have a
strongly monotone duality mapping, as well as the results of Apreutesei [6], where ((6;) was assumed to be
a nonincreasing sequence in [1,00), and X was assumed to have a strongly monotone duality mapping. We
assume neither X to have a strongly monotone duality mapping, nor (6;) to be nonincreasing.

We present our results separately for 0 < ; < 1, Vi, and for 6; > 1, Vi.

3.1. The case 0 < 0; < 1, Vi

Suppose that 6; € (0,1),V¥i > 1, and in addition

ia;l = i919292 = Q. (34)
i=1 i=1

Our results for 0 < 6; < 1 are new in the framework of Banach spaces.

Lemma 3.1. Let X be uniformly convex and let A C X x X be accretive such that A~'0 # 0. Suppose that

&)
> aillfill < 0o. Then liminf a;_1|ju; — u;—1|| = 0.
: 11— 00

i=1

Proof. Let p € A=10. From the accretivity of A and (1.1), we have
(wit1 — (1 +03)u; + Oui—y — fi, j(u; —p)) >0,  Vi>1. (3.5)
Thus
(wit1 — ui, j(ui —p)) — 0i(wi — wi—1,j(wi —p)) — (fi,j(wi —p)) >0, Vi>1 (3.6)
Multiplying both sides by a; and using (3.2), we obtain

ai(wivr — ui, j(ui — p)) — ai—1(u; — w1, j(wi — p)) — a;(fi, j(u; —p)) 20, Vi>1. (3.7)
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Since X is uniformly convex, by using Lemma 2.2, we have
(ai—1u; — aj—1ui—1,j(ai—1(u; — p)) — jlai—1(ui—1 — p))) = glai-1llu; — uwi1l)),
for all 4 > 1. Hence
ai—1(ui — ui—1, j(u; = p)) — i1 (u; — ui—y, j(ui—1 — p)) > a; ' glai—1l|lui — ui—1l]), (3.8)
for all ¢ > 1. Using (3.7) in (3.8), we deduce

a; 2 g(aio|lui —uima])) < (3.9)
a;(uip1 — s, j(ui — p)) — ai—1(ug — wi—1, j(ui—1 — p)) — a;(fi, j(ui — p)),

for all 7 > 1. Summing up from ¢ = k to m and using Lemma 2.1, we arrive at

S g(aioallui — wia )

< B (ai(uivr — i, j(ui — p)) — ai—1(u; — ui—1, j(wi—1 — p)))

— Xai(fi, j(ui — p))

= am (Um+1 = Um, J(Um — p)) — ag—1(ug — ug—1,j(ur—1 — p)) (3.10)

— X ai(fi, j(ui — p))

a .
< < (i = l* = llum = pl*) = a1 (up — w1, j(up—1 —p))
+ B aill fillllwi — pl|-
Taking liminf in (3.10) as m — oo, using (3.4) and Lemma 2.4, we see that
22y g(ailui — wia|]) < —ap—1(up — up—1, 5 (un—1 — p)) + T pail fillllui — pll-
Since u; is bounded, there exist positive constants «, 8 such that
SErai 19 llui — uina|) < a4+ BEZaill fil)). (3.11)
The assumption implies that 3, a; !, g(a;—1||u; — u;—1]]) < oc. Using again (3.4), we arrive at
lim inf g(a;—1|ju; — ui—1||) = 0.
71— 00
Since g is continuous and strictly increasing, and g(0) = 0, we conclude that
liminfai_lHui — ui—l” =0. O
1—> 00
Lemma 3.2. With the same assumptions as in Lemma 3.1, (u; — u;—1) converges to zero, as i — oo.
Proof. Let p € A=10. Since X is uniformly convex, by using Lemma 2.2, we have
(wi —ui—1,j(ui —p) — j(ui—1 — p)) =2 g(lwi —ui-al]), Vi=>1.

Hence

(i = i1, j(ui = p)) = (wi = wiz1, j(ui-1 —p)) 2 g([lwi —wial)), Vi1
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Multiplying both sides by 6;, we get
Oi(wi — wi—1,j(us —p)) = Os(ui — ui—1, j(ui—1 — p)) > Oig([lui — ui—1l]), (3.12)
for all ¢ > 1. Using (3.6) in (3.12), we can write
(wit1 — wi, j(ui —p)) = (fi, J(wi = p)) — 0i(wi — wi—1,5(wi—1 —p)) = 0ig(|[ui — ui-1l]),
for all 4 > 1. Multiplying both sides by a; and using (3.2), we obtain
a;(wit1 — ui, j(u; — p)) — ai(fi, j(ui — p)) — ai—1(ui — w1, j(wi—1 — p)) > ai—19(|lui — ui-1l]),

for all 4 > 1. Summing up from ¢ = k to m, and then letting m — oo, in a similar way as in Lemma 3.1, we
conclude that

E?ikaiflg(‘lui - Uile) < —akq(uk - kalaj<ukfl - p)) + zi:kainiHHui - P||-

Since 0 < 0; < 1, by (3.1) the sequence {a;} is increasing. Therefore

ap- 155259 (|ui —uia|) < —ap—1(up — up—1, j(ur—1 — p)) + BZpaql fill[lus — p|.

Dividing both sides by a;_1, we get

a
— | fillllwi = plI-
ak—1

Y2 rg(lu; — wimall) < —(up — ug—1, jug—1 — p)) + 532y,
Since u; is bounded, there exist positive constants «, 8 such that

RiZg(lus —wiall) < et BEZ N fil)- (3.13)

Since 0 < 0; < 1,Vi > 1, by (3.1), we have < 1,Vk > 1. Therefore it follows from the assumption that

ak—1
a;
Zk 1fill < ZZpasll fill < oc. (3.14)
Ak—1

Using (3.14) in (3.13), we get 2, g(|lu; —ui—1]]) < 00, so lim;_ o0 g(|lui —u;—1]]) = 0. Since g is continuous,
strictly increasing and ¢g(0) = 0, we conclude that

lim ||u; —ui—1]] =0
11— 00
and we obtain the desired conclusion. O

(o)
Lemma 3.3. With the same assumptions as in Lemma 3.1, if moreover Y h;|| fi|l < oo, then lim;_,« ||u; —pl|
i=1

exists, for each p € A~10.

Proof. From (3.5), we have

(wig1r — (L +05)us + Qi1 — fi,j(ug —p)) >0,  Vi>1.
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Hence

(lwir = pll = llwi = pll) = Os([lwi = pll = luiza = pl) + [ fill = 0,

for all 4 > 1. Therefore

|wi = pl| = llui—1 — pl|
1 Il fill
< —(luigr — pll = llus — pll) + =5
91‘ 91

1 [ fixall Al
< o — — s —
— 9i+16i(||uz+2 p” Hul"rl p”) + 9i+19i + 92

(e —pll — luiss — pl) Ji&
= Oy O T e O g
i+
_ S
o luissin = ol = fusss =) + 3 55 2

for all ¢ > 1,j > 0. Taking liminf as j7 — 0o, by our assumption (3.4) and Lemma 2.4, we get

Tk
Jus =l i~ p||<29k9” s

for all i > 1. Set ¢; = i M; then we have:
k=i 9k9k,1...9i
ui = pll < luiey —pll + e, Vi>1.
On the other hand
S5y SN
doE=d > a0 Z Ifill < oo, (3.15)
i=1 = = OkOk—1
since
S5 Il
=1k :zekek L
Il £l Il £l Il frll Il fl
Zeke 0, Zeka 65 Zeka 05 +Zek9 6,
= (Il + gl + sl + g U
1
1 1 1 1
+ (—||f2|| + WHf?)H 0200, | fall + - + mﬂfnﬂ +..)
( ||f3|| * 00 |\f4|| +...F ”.fn“ +..)

0 Hn,
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1
+ ( ”fn” to o ||fn+1H +.)

1
9—1||f1||+(9 )Hf2||+( +9—9+990 M3l +
1 1 1
+ <E et 0,0, 1...05 + 9n9n_1...01)”f"” te

= hallAll + hall fall + Rsl[ fsll + o + Ball frll + ..
=D hillfil-
=1

Now the conclusion follows from Lemma 2.5. O
We can now state our main results for the case 0 < 6; < 1.

Theorem 3.4. Let X be a uniformly convex Banach space satisfying Opial’s condition, and let A C X x X be
m—aceretive such that A=10 # 0. Assume that iminf; . ¢; > 0 and 5. h;||fil]| < oo. Then u; — p € A~10.
i=1

Proof. We use Lemma 2.7 for the nonempty set F' = A~1(0). First we verify hypothesis (1). In fact, for
any g € A=1(0), it follows from Lemma 3.3 that lim; . ||u; — q|| exists. To check hypothesis (2), let p be
a weak limit of a weakly convergent subsequence (u;, )n>1 of (u;)i>1. We need to prove that p € A=1(0).
From equation (1.1), we have

1
Vi = _((ui+1 — ’U,,L) — 91(u1 — ’U,ifl) — fz) € Aui, Vi > 1. (316)

%

o0
Since Y hil| fil| < 00, 0 < 6; <1 and h; > 1 (by (3.3)), we deduce that lim || f;|| = 0. On the other hand,
i=1 i—00

since
h 1 n 1 I 1 S 1
;= e =—>— =q,,
0;0;,_1...01 0,0,_1...09 0; 0,0;,_1...01

we have

D aillfill <> hillfill < o (3.17)

i=1 i=1
Then, using Lemma 3.2, we get ¢;v; — 0, as ¢ — oo. Since liminf;_, . ¢; > 0, we have lim; o ||v;]] = 0. Let

Jy = (I + AA)™" be the resolvent of A. By Lemma 2.3, we have ||Jyu; — u;]| < Al|vs||. Now since u;, — p,
and X is uniformly convex, by using Browder’s demiclosedness principle, we conclude that p is a fixed point
of Jy, hence a zero of A. 0O

Theorem 3.5. With the same assumptions as in Theorem 3.4, if moreover X is smooth and A satisfies the
convergence condition, then u; converges strongly to a zero of A.

Proof. Let P: X — A0 be the nearest point projection map of X onto the zero set of A. From accretivity
of A, (1.1), (2.1), (3.16) and Lemma 2.1, for all i > 1, we have

0 <c¢;i(vi, J(uwi — Puy)) = (g1 — (14 05)u; + Oui—1 — fi, J(us — Puy))
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:(ui+1 — P’U,H_l, J(Ul — Pul)) — (1 + 9,)(u, — Pu;, J(uz — Puz))
+0i(uwi—1 — Pui—1, J(u; — Pu;)) — (fi, J(ui — Puy;))
+ (Pui+1 — (1 =+ HZ)P’U,z + GiPui,l, J(ul — Pul))

1 1
§§||Ui+1 — Pui|]” + gHUi = Pui||> = (1+6;)||lu; — Pug||®
0; , 0, ,
+5||Ui71—Puz>1|| +§Huz‘—PUiH + (I fillllwi — Puil|

1
:§(Hui+1 — Puiy|]” = |lus — Pugl?)

0

- ;(Ilui — Puj|® = [lui—1 — Pui—1||*) + M| fil,
where M = sup; > |lu;— Pu;||. Multiplying both sides of the above inequality by a;, using (3.2) and summing
up from i = 1 to m, we obtain:

0 Y exoslun I~ Pu) < “ (it = Pt I = lttm = P )
ag i
=~ 2 (s = P> = Jluo — Puoll®) + M Y sl il

=1

Taking liminf as m — oo, by using (3.4), (3.17), our assumption and Lemma 2.4, we get

Zciai(vi, J(u; — Pu;)) < oo. (3.18)

Since a; > 1, we have

o0
Zci(w, J(u; — Pu;)) < oo.
i=1

On the other hand, since liminf ¢; > 0, it follows that lim (v;, J(u; — Pu;)) = 0. Hence by the convergence

71— 00 71— 00
condition, we get

lim inf [|u; — Pug|| = 0. (3.19)
71— 00

By a similar proof as in Lemma 3.3, we can show that

i
HU1+1 Pu1+1H < ||Ul+1 Pul|| < ||uZ — Puz” + Z 9k9” H 9

k=i+1

Thus by (3.15) and Lemma 2.5, lim |ju; — Pu;]|| exists, and therefore by (3.19) we have
71— 00
lim ||u; — Pu|| = 0.
71— 00

On the other hand



B. Djafari Rouhani et al. / J. Math. Anal. Appl. 480 (2019) 123428 11

[tim — il < [[tipm — Pugl| + [[us — Pus|

/
< 2l|u; — Pu1||+z Z 9k0k||1kH

n=1k=i+n Z+n

o0

< 2lu; — Pus| + Y hellfell = 0,
k=i+1

as 1 — oo, uniformly in m > 0. So the convergence of u; follows. O
Here is another result in this direction.

Theorem 3.6. Let X be uniformly convex, and let A C X x X be strongly accretive such that A=10 # (.
Assume that liminf;_, . ic; > 0 and 221 hillfill < oo. Then u; — p € A~10.

Proof. Let p be the unique element of A=1(0). By (1.1) and the strong accretivity of A, we have
(wir1 — (L +60;)u; + Oiuiy — fi,j(us — p)) > acillu; —pl*,  Vi>1.
Hence
(lwitr = pll = llus = pll) = Oi(llus = pll = [lui—a = pll) + [ fill = acsllui — pll,

for all ¢ > 1. Multiplying both sides by a; and using (3.2), we obtain:

a;i([|uiv1 — pll = l|lui = pll) — ai—1(Jui — pl| — lui—1 — pll) + a:| fill

> aa;cillu; — pll.

Summing up from i = k to ¢« = m, we get:

m
a aicillu; — pl <
i=k

m m
> (@illluirr = pll = lus = pll) = air (Jus = pl| = Juir = plD) + Y aill fil
i=k i=k

m
= ap([[umsr = pll = um = pl) = ar-1(lu —pll = lfuk—1 = pl) + D aill fill
i=k

Taking liminf as m — oo, by using (3.4), the assumption and Lemma 2.4, we obtain:
a Y aicillui — pll < —ap—1(lux — pll = k-1 —pl) + Y aill - (3.20)
i=k i=k
Since 0 < 0; < 1, by (3.1) the sequence {a;} is increasing. Therefore

oo oo
aar_1 Y cillu; = pl| < —ax—1(Jur = pll = ur—1 = pl) + D aillfill.

i=k i=k
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Dividing both sides by ax_1, we get

o0
@) eillui —pl < —(lJux = pll = llur—1 — pll) +Z -
i=k

Summing up from k& = 1 to n, we obtain:

aZZczlluz pll < lluo = pll = lJun — pII+ZZ 2 £

k=11i=k klzki

< Jluo —pll + ZZ A

klzki

and letting n — oo, we get

oSS el < oo+ 303 il (3.21)

k=1 i=k k=1i=k

Using (3.1), (3.3), (3.15) and the assumption, we have

> il = ZZM ||fz||—Zh||fz|<oo (3.22)
k=1 i=k

k=11i=k
Now (3.21) and (3.22), imply that

(o)
ZZCzHUz —p| < o0.
i=1

Since lim inf i¢; > 0, then hm |lu; — p|| = 0. The proof is now complete. O
i—00

Remark 3.7. The above proof actually shows that if in Theorem 3.6, the assumption “liminf; .., ic; > 07
is replaced by “liminf,, ¢; > 07, then i|ju; — p|| converges to zero as i — oo; i.e., ||u; — p|| = o(1/7).

8.2. The case 0; > 1, Vi

The remainder of this section will be devoted to the case 6; > 1, for all ¢ > 1. We state several extensions
of the results in [6] and [32] to the nonhomogeneous case. In our results, we neither require X to have a
strongly monotone duality mapping, nor (;) to be nonincreasing.

Lemma 3.8. Let X be uniformly conver, A C X x X be accretive such that A~'0 # 0, and assume that
Y24l fill < oo. Then aj—1(u; — u;—1) converges to zero, as i — .

Proof. Let p € A=10. From (3.11), we have
S2ka; 19(ai-1flui = uima]]) < oo, (3.23)

since when 6; > 1, the condition (3.4) automatically holds. On the other hand, by 6; > 1 and (3.1), we have
a; ', > 1,¥i > 1. Combining this with (3.23) yields

Yi2pg(ai-allu; — ui—1]]) < oo,
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Hence
lim g(a;—1[lu; —ui-1]) = 0.
71— 00
Since g is continuous, strictly increasing and g(0) = 0, we conclude that

IIIl (11'_1”11,1' 7Ui_1|| =0. O
—00

7

Lemma 3.9. Let X be uniformly conver, A C X x X be accretive and Y. hi|| fi| < oo. If p € A0, then
i=1

lim ||u; — pl| exists.
1— 00

Proof. The proof is done along similar lines as that of Lemma 3.3, by noting that (3.4) is automatically
satisfied when 6,, > 1. Therefore we omit it here. 0O

Theorem 3.10. (cf. [6, Theorem 3.1] and [32, Theorem 4.3]) Let X be a uniformly conver Banach space
&)
satisfying Opial’s condition, and let A C X x X be m—accretive such that A=*0 # (. Assume > h;||fi|| < oo

i=1

and lim inf a;c; > 0. Then u; — p € A~10.

1—> 00

Proof. We use Lemma 2.7 for the nonempty set I = A~1(0). The first part of the proof is similar to that
in Theorem 3.4. From (3.16) and (3.2), we have

1
vy = ——(@i(wipr — us) — ai—1(u; — wi—1) — a; f;) € Auy, Vi > 1.

aiCq

By (3.17) and the assumption, we have:
11— 00
The rest of the proof is similar to that of Theorem 3.4, by using the assumption and Lemma 3.8. O

Theorem 3.11. (cf. [32, Theorem 4.4]) With the same assumptions as in Theorem 3.10, if moreover X is
smooth and A satisfies the convergence condition, then u; converges strongly to a zero of A.

Proof. By a similar argument as in Theorem 3.5, we get (3.18), and subsequently we have lim (v;, J(u; —
1— 00

Pu;)) = 0. The rest of the proof is similar to that of Theorem 3.5, and we omit it here. O

Theorem 3.12. Let X be uniformly conver, A C X x X be strongly accretive such that A=10 # 0, and
(oo}

S hillfill < oo. If liminfia;c; > 0, then u; — p € A710.

: i—00

i=1

Proof. Let p be the unique element of A=1(0). By (3.20),

o0 o0
ay aicillu; —pll < —an—1 (Juk — pll = ux—1 = pl) + D aill fi
i=k i=k
oo
= apal|up—1 = pll = ar—1luk —pl| + D aillfi] (3.24)
i=k

oo
< ap—1fluk—1 — pll — arl|ux — pll + Zai”fi”a
i=k
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since in this case a; is nonincreasing. Summing up (3.24) from k& = 1 to m and letting m — oo, we get

oo (oo}
aicillui = pll < [luo —pll + > Y aill fill- (3.25)

k=11i=k

oo o0
a),
k=1 i=k

On the other hand, by the assumption,

>

00
k=1i=k

aill fill =Y kagl fill < hallfell < oo, (3.26)
k=1

k=1

since 0; > 1,Vi > 1, and by (3.3), we have

R — tot o
M 0u0r1..01  0p0r_1...00 T Op
SIS S S — k
——— = KA.
= OpOp_1..01  Opbr_1..0 Orbi_1..01 r
Using (3.25) and (3.26), we deduce that
(oo}
Ziaicl’Hui —p| < o0. (3.27)
=1

Since lim inf ia;c; > 0, we conclude that lim |ju; —p|| =0. O
11— 00 11— 00

Remark 3.13. From (3.27), it follows that if in Theorem 3.12, the assumption “liminf; . ia;c; > 07 is
replaced by “liminf;_, . a;c; > 07, then i|ju; — p|| converges to zero, as i — oo; i.e., ||u; — p|| = o(1/7).

4. The homogeneous case

In this section, we investigate the asymptotic behavior of solutions to homogeneous case of (1.1), i.e., the
difference equation

{ Uip1 — (1 4+ 0;)u; + Oui—q € c;Auy, i1, (4.1)

uo =z, sup{|ju;|| :i >0} < 0.

We provide estimates for the rate of convergence of the solution.
We will need the following lemmas.

Lemma 4.1. (see [18]) Let A C X x X be accretive and {u;} be a solution to (4.1) with ¢;,0; > 0,Yi > 1.
Then a;—1||u; — u;i—1|| is nonincreasing or eventually increasing.

Lemma 4.2. If (b;);>1 is a bounded sequence of positive numbers satisfying

| 0,
bi < — b+~ b,
Sixe i

oo
where 0; is a positive sequence such that > 0105 ...60; = co, then b; is nonincreasing.
i=1
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Proof. Suppose for a contradiction, that there exists j > 1 such that b;_; < b;. Since

SR SO
S140; 7T T 10

bj bjflv

it follows that
bjy1 2 bj+0;(bj —bj1).
Now by induction, we may easily prove that for all i > j,
bi > bj +0;(bj —bj—1) + 0;4105(bj —bj_1) + -+ 0;10;2---0;(b; — bj_1),
or equivalently,
bi > by + (S 0k0k—1---0;)(b; — bj 1),
for all ¢ > j. Thus, denoting o = b; — b;_; > 0, and then taking the liminf when ¢ — oo, we obtain

lim inf bl Z bj + (E?:j@k@k_l s Qj)Oé.

71— 00

(oo}
Since liminf;_, o, b; < 00, the above inequality contradicts our assumption that > 6162 ...6; = co. O
i=1

It is worth mentioning that Lemma 4.2 improves upon [15, Lemma 3.1], where it is assumed that

1
Z;’il h_z = 00. Indeed, since

1 1

hy =
0.0, 100 000y

1
Y0 T 000,

it follows that

Zeiei_l....el > Z hl (4.3)
i=1 i=1 "

Lemma 4.3. With the same assumptions as in Lemma 4.1, ||u; —p|| is nonincreasing or eventually increasing,
for any p € A710. If moreover (3.4) holds, then ||u; — p|| is nonincreasing.

Proof. Let p € A710. From the accretivity of A and (4.1), we have
(i1 — (L + 0)u; + Oui—1,5(u; —p)) >0, Vi>1. (4.4)
Hence
(lwivr = pll = llui = pll) = Oi(llwi — pll = fJuir = pl) = 0, (4.5)
for all ¢ > 1. If (|lu; — pl|)i>1 is not nonincreasing, then there exists j > 1 such that ||uj_1 —p|| < |lu; — p||.

Now (4.5) with ¢ = j implies that (||u; — p||);>; is increasing. We prove the second part of the lemma. Using
(4.5), we have
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i

1+06;

lui —pll < luivs = pll + [ui1 = pll,

1
1+6;
for all 4 > 1. Since (J|u; — p||)i>1 is bounded and (3.4) holds, it must be nonincreasing by Lemma 4.2. O

Lemma 4.4. With the same assumptions as in Lemma 4.1, if moreover X is uniformly convex, then
a;—1||u; — ui—1]| is nonincreasing. Moreover, a;—1(u; — u;—1) converges to zero, as i — 0o.

Proof. We note that the assertion of Lemma 3.1 holds for general 8; > 0. Thus, by Lemma 3.1, we have
liminf a;—1||u; — u;—1]| = 0. Then Lemma 4.1 implies that a;—1||u; — u;—1|| is nonincreasing or eventually
11— 00

increasing, and therefore a;_1(u; — u;—1) converges to zero as i — co. 0O

Theorem 4.5. Let X be uniformly convexr, and A C X x X be strongly accretive _such that A=10 # 0. If
0 <6, <1, (3.4) holds and Y ic; = 0o, then u; — p € A710, and ||u; — p|| = o(( Y ncy)™h).

i=1 n=1

Proof. By the same argument as in Theorem 3.6, we have:

ZZCzHUz —p|l < o0. (4.6)
i=1

From (4.6) and the assumption .-, ic; = 0o, we deduce that liminf ||u; — p|| = 0. On the other hand, by
71— 00
i
Lemma 4.3, ||u; — p|| is nonincreasing. Therefore u; — p, as i — oo, as well as |lu; — p|| = o(( D ne,)™1),

n=1

by Lemma 2.6. O
The following theorem extends Theorem 3.3 of Apreutesei [6], as well as Proposition 4.5 of [32].

Theorem 4.6. Let X be uniformly conver, and A C X x X be strongly accretive such that A=10 # 0. If

o0 3
0, > 1 and Y ic;a; = oo, then u; — p € A710, and |lu; — p|| = o(( Y nenan)™1).
i=1 n=1

Proof. The proof is similar to that of Theorem 4.5, by using (3.27) instead of (4.6). O

The following remains an open question.
Open question. Does Theorem 3.4 (resp. Theorem 3.10) still hold if the assumption liminf; ,. ¢; > 0
o0 o0
(resp. liminf;_, . a;c; > 0) in that theorem is replaced by > ¢; = oo (resp. Y a;¢; = 00)?
i=1 i=1
This open question is motivated by the fact that we provide an affirmative answer for it in the next
section, when A is a generalized subdifferential.

5. Applications to optimization

Let X be a smooth Banach space and let 1) : X — (—00, c0] be a proper function. Following Saeidi and
Kim [35], we define the (possibly empty) set

Sy(x) ={zeX: Yx)—¢(y) <(z,J(x—vy)), forally e X}, z € X. (5.1)

For X = H, a real Hilbert space, it follows that Sy = 0v, the subdifferential of ¢. The domain of Sy, is
denoted and defined by D(Sy) = {z € X : Sy(x) # 0}. It is easy to check that ¢ attains its minimum at
x if and only if 0 € Sy (x). Moreover, D(Sy) € D(%). It is known that Sy is single-valued if v is a convex
differentiable function, and X is a strictly convex, smooth and reflexive Banach space (see [35]).
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Remark 5.1. In the remainder of this section, we assume that ¢ : X — R is a proper, convex and lower
semicontinuous function which attains its minimum at some point.

We shall now verify that Sy, is accretive. Let 1,22 € X and y; € Sy(z;), ¢ = 1,2. Then
Y(x1) = P(a2) < (y1, J (21 — 22))
and
P(x2) = P(z1) < (32, J (22 — 71)) = (=2, J (21 — 22)).
Adding the above inequalities, we get:
(y1 — y2, J(x1 — x2)) > 0, V1,20 € X.

A zero of Sy is a minimum point of 1) as stated. We now prove some weak convergence results for solutions
to (1.1) when A = Sy,. We also give the rate of asymptotic convergence of 1(u;). It is worth mentioning that
in the following two theorems, we neither assume S, to be m—accretive, nor Sy to be strongly accretive.

For convenience, we denote Sy (u;) = A(u;) by the element

wir1 — (14 0;)u; +0u 1 — fi
C; ’

in X.

Theorem 5.2. Let X be a smooth and uniformly convexr Banach space satisfying Opial’s condition. Assume
that u; is a solution to (4.1) with A = Sy. If0 < 0; <1, 2, ic; = 0o and (3.4) holds, then u; — p € 5;10,
which is a minimum point of ¥, and (Y., ic;)(¢(un) — (p)) = 0, as n — oo.

Proof. We use Lemma 2.7 for the nonempty set F' = S, 1(0). First we verify hypothesis (1) of Lemma 2.7;
let p € 51;1(0). By Lemma 3.3, lim |lu; — p|| exists. To check the second hypothesis of Lemma 2.7, by (5.1),
1—> 00

(3.2) and Lemma 4.4 we have

Y(u;) — P(ui—1) < (Sy(ui), J(ui — ui-1))

1
= Z(ui-&-l — (1 4+ 0i)u; + Osui—1, J(uy — ui—1))

(2

1 i
= ;(Ui-&-l — Uy, J(Ui - ui—l)) - ;(Uz — Uj—1, J(Ui - Ui—l))

IN

1 0;
w1 = willllui = wia || = s —uia]
7 (&

1
= —(ail[uitr — will = ai—1flui — wial])|lui — wial] <0,
1Y

for all ¢ > 1. So ¢(u;) is nonincreasing. Using again (5.1), (3.2) and Lemma 2.1, one obtains
ciai(P(ui) —Y(p)) < ai(uipr — (14 0;)u; + Osui—1, J(u; — p))

a;
2

ai—1

2

< 5 (lwier = plI* = llus = plI*) = == (llui = plI* = fJuimr = p]*).

Summing up from i = k to m, taking liminf as m — oo, by the assumption and Lemma 2.4, we arrive at
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> cias(ub(us) =) < Zot (lur = pl* = llus — p|?). (5:2)
i=k

Since a; is increasing, we get

a1 Y i) = () < “5 (lur = pl* ~ lux — pl*).

So

(lur—1 = pII* = [lur, = pI*).

> ailip(u) —v(p)) <

i=k

DN | =

Summing up again from k = 1 to m, then letting m — oo, in the same way as in the proof of Theorem 3.6,
we deduce that

S iei(w(u) — () < 3w P < . (5.3)

Since by assumption Y ;- ic; = oo, we deduce that lim inf(¢)(u;) — ¢ (p)) = 0. Since 9 (u;) is nonincreasing,
1—00
it follows that lim 9 (u;) = ¥(p). If u;; — u, then ¥(u) < liminf ¢ (u;,) = (p). Since p is a minimum point
i—00 j—o0

of 1, one obtains u € S;l(). The proof is now completed by using (5.3) and Lemma 2.6. O

Theorem 5.3. Let X be a smooth and uniformly convex Banach space satisfying Opial’s condition. Assume
that u; is a solution to (4.1) with A = Sy. If 6, > 1 and Zf; ic;a; = 00, then u; — p € 51;10, which is a
minimum point of 1, and (37, ic;a;)(¢(u,) — ¥(p)) = 0, as n — oc.

Proof. We follow the proof of Theorem 5.2 by using Lemma 3.9 instead of Lemma 3.3, to show that
lim |lu; — pl| exists for any p € SJIO. Summing up (5.2) from k = 1 to n, and letting n — oo, in the same
1—00

way as in the proof of Theorem 3.12, we find (since a; < 1)

S ician( () — ¥() < 5lluo — pl < oo. (54

Now, the assumption implies that liminf(¢(u;) — ¢¥(p)) = 0. The rest of the proof is similar to that of

— 00
Theorem 5.2. O
Finally, we mention the following result which was proved in [18].

Theorem 5.4. ([18]) Let X be a uniformly smooth and uniformly convex Banach space. Let A C X x X be
m—aceretive with A=1(0) # (). Assume that ¢;,0; > 0, Vi > 1, and 221 h% = 00. Let (u;)i>1 be the solution
o (4.1). If liminf; ., c;a; > 0, then u; — p € A71(0).

From Theorem 5.4 and by using (5.3) and (5.4), we have the following result.

Corollary 5.5. Let X be a uniformly smooth and uniformly convex Banach space. Assume that Sy is m—ac-
cretive with A=*(0) # 0, and ¢;,0; > 0, Vi > 1, and Y o, h% = 00. Let (u;);>1 be the solution to (4.1)
with A = Sy. If liminf; o c;a; > 0, then u; — p € qul(O), which is a minimum point of . Moreover, if
0 <6, <1, then (31 ici)(W(un) —(p)) = 0, and if 6; > 1, then (3>, icia;)(Y(u,) — ¥(p)) — 0, as
n — oo.
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