
J. Math. Anal. Appl. 480 (2019) 123428
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Zeros of accretive operators and asymptotics of a second order 

difference inclusion in Banach spaces

Behzad Djafari Rouhani a, Parisa Jamshidnezhad b,∗, Shahram Saeidi b

a Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
b Department of Mathematics, University of Kurdistan, Sanandaj 416, Iran

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 February 2019
Available online 21 August 2019
Submitted by M.J. Schlosser

Keywords:
Second order difference inclusion
m-accretive operator
Asymptotic behavior
Subdifferential
Banach space

By developing new methods, we investigate the asymptotic behavior of solutions to 
a general second order difference inclusion of accretive type, and apply the results 
to approximate zeros of accretive operators in Banach spaces, and to optimization 
problems. Our results extend some previously known results in Hilbert and Banach 
spaces.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Second-order difference equations of the form

{
ui+1 − (1 + θi)ui + θiui−1 ∈ ciAui + fi, 1 � i ∈ N,

u0 = x, sup{‖ui‖ : i � 0} < ∞,
(1.1)

where A is a nonlinear m-accretive (possibly multivalued) operator in a real Banach space (X, ‖ · ‖), ci > 0
and θi > 0, correspond to the discrete version of the following second-order evolution equation:

{
p(t)u′′(t) + r(t)u′(t) ∈ Au(t) + f(t), a.e. on R+,

u(0) = u0, sup{‖u(t)‖ : t � 0} < ∞.
(1.2)
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The theory of second-order evolution equations of monotone (accretive) type has been investigated by many 
authors. We refer the reader in particular to the books by Barbu [9,10], Brézis [11] and Morosanu [28], as 
well as to Refs. [31–33,7,8,13,37,38,1–5,23].

Morosanu [27] investigated the difference inclusion (1.1), for the existence and asymptotic behavior of 
solutions, and obtained the convergence of {ui} to an element of A−1(0), whenever A is a maximal monotone 
operator in a Hilbert space, 0 ∈ R(A), θi ≡ 1 and fi ≡ 0 (the homogeneous case). In Hilbert spaces, 
nonlinear maximal monotone operators coincide with m-accretive operators. Investigations on the existence 
and asymptotic behavior of solutions to (1.1) were followed by many authors; see [32,31,33,25,20,14,6,34].

In the Banach space setting, to the best of our knowledge, few papers can be found in the literature 
dealing with the problem (1.1). Poffald and Reich [32] extended Morosanu’s result and proved the same 
result in Banach spaces having a strongly monotone duality mapping; the same results were extended to 
the nonhomogeneous case in [33,34], under the additional condition of A being coercive. The problem (1.1)
was studied by Apreutesei in [6] with fi ≡ 0, θi � 1, {θi} nonincreasing and the duality mapping of the 
Banach space X being strongly monotone. As is known [32], a Banach space has a strongly monotone duality 
mapping if and only if it is uniformly convex with a modulus of convexity of power type 2; this is the case, 
say, when X is a Hilbert space or one of the Lebesgue spaces Lp, 1 < p ≤ 2. It would be desirable to study 
the asymptotic behavior of solutions of (1.1) when X is a more general Banach space, as well as when θi is 
not necessarily nonincreasing and fi �= 0.

In this paper, we investigate the asymptotic behavior of solutions to (1.1). We improve some of the 
previous results in [6,33,32,34] by assuming much weaker conditions on {θi}, and without requiring the 
duality mapping of X to be strongly monotone. Then we apply our results to provide, in the context of 
Banach spaces, new approximation methods for zeros of A, as well as for finding a minimum point of a 
proper, convex and lower semicontinuous function ψ : X → (−∞, +∞] through a recently implemented tool 
in [35].

2. Preliminaries

Let X be a real Banach space with norm ‖ · ‖, and let X∗ be the dual space of X. We denote the pairing 
between X and X∗ by (·, ·). When {xn} is a sequence in X, we denote the strong convergence of {xn} to 
x ∈ X by xn → x and the weak convergence by xn ⇀ x. A Banach space X is said to be strictly convex if 
‖x + y‖ < 2, for all x, y ∈ X with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and x �= y. The modulus δ of convexity of X is defined 
by

δ(ε) = inf{1 − ‖x + y‖
2 : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε},

for every ε with 0 ≤ ε ≤ 2. A Banach space X is said to be uniformly convex if δ(ε) > 0, for every ε > 0. It 
is known that Lp and lp spaces, 1 < p < ∞, are uniformly convex. Uniformly convex Banach spaces include 
Hilbert spaces. The duality mapping J from X into 2X∗ is defined by J(x) = {x∗ ∈ X∗ : (x, x∗) = ‖x‖2 =
‖x∗‖2} for every x ∈ X. By the Hahn-Banach theorem, J(x) �= ∅ for each x ∈ X. Note that in a Hilbert 
space, the duality mapping is the identity operator. X is said to be smooth, if J is single-valued. In this 
case, the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

= (y, J(x))

exists, for each x, y ∈ S(X) := {x ∈ X : ‖x‖ = 1}. The space X is said to be uniformly smooth if the limit 
is attained uniformly for x, y ∈ S(X).

It is well known that a uniformly convex Banach space is strictly convex and reflexive; X is reflexive 
if and only if J is surjective, and X is strictly convex if and only if J is one-to-one. So, if X is reflexive, 
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strictly convex and smooth, then J is a single-valued bijection, and in this case, the inverse mapping J−1

coincides with the duality mapping J∗ from X∗ onto X∗∗ ∼= X. The duality mapping J has the following 
properties that will be used throughout the paper.

Lemma 2.1. (See [10]) Let X be a Banach space and let J : X → 2X∗ be the normalized duality mapping. 
Then:

(1) (x − y, jx − jy) ≥ (‖x‖ − ‖y‖)2, for all x, y ∈ X, jx ∈ J(x) and jy ∈ J(y), and consequently J is 
monotone;

(2) ‖x‖2 − ‖y‖2 ≥ 2(x − y, jy), for all x, y ∈ X and jy ∈ J(y);
(3) (x, jy) ≤ ‖x‖‖y‖ ≤ 1

2‖x‖
2 + 1

2‖y‖
2, for all x, y ∈ X and jy ∈ J(y).

It is known that a Banach space X is uniformly smooth if and only if X∗ is uniformly convex. Further, 
we know the following result, which characterizes uniformly convex Banach spaces.

Lemma 2.2. (See [39]) Let r > 0 and let X be a Banach space. Then X is uniformly convex if and only if 
there exists a continuous, strictly increasing, and convex function g : [0, ∞) → [0, ∞), g(0) = 0, such that 
(x − y, jx − jy) � g(‖x − y‖), for all x, y ∈ {z ∈ X : ‖z‖ ≤ r}, jx ∈ J(x) and jy ∈ J(y).

A subset A of X ×X with domain D(A) and range R(A) is called accretive, if for all yi ∈ Axi, i = 1, 2, 
there exists j(x1 − x2) ∈ J(x1 − x2) such that

(y1 − y2, j(x1 − x2)) ≥ 0.

The accretive operator A ⊆ X ×X is called m-accretive if R(I + A) = X, where I is the identity operator 
of X. It follows that R(I + λA) = X, ∀λ > 0.

For an accretive operator A, the resolvent and the Yosida approximation of A, are defined by

Jλx = (I + λA)−1
x, x ∈ R (I + λA) ;

Aλx = I − Jλ
λ

x, x ∈ R (I + λA) ,

respectively. We state below some of the main properties of Jλ and Aλ.

Lemma 2.3. (See [9,22]). Let A be m-accretive in X ×X. Then,

(1) ‖Jλx − Jλy‖ ≤ ‖x − y‖ for all x, y ∈ X;
(2) ‖Jλx − x‖ ≤ λ‖Aλx‖ ≤ λ inf{‖y‖ ; y ∈ Ax}, for all x ∈ D(A);
(3) Aλ is m−accretive on X and ‖Aλx −Aλy‖ ≤ (2/λ)‖x − y‖, for all λ > 0, x, y ∈ X;
(4) Aλx ∈ AJλx and x = Jλx + λAλx, for all x ∈ X.

The operator A ⊆ X ×X is said to be α−strongly accretive (α > 0) if for all yi ∈ Axi, i = 1, 2, there 
exists j(x1 − x2) ∈ J(x1 − x2) such that

(y1 − y2, j(x1 − x2)) ≥ α‖x1 − x2‖2.

Let C be a nonempty, closed and convex subset of a uniformly convex Banach space X. Then we know 
that, for any x ∈ X, there exists a unique element z ∈ C (called the nearest point projection of x onto C) 
such that ‖x −z‖ ≤ ‖x −y‖, for all y ∈ C. Denoting z = PC(x), PC is called the nearest point projection (or 
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metric projection) map of X onto C. If in addition, X is assumed to be smooth, then z ∈ C is the nearest 
point projection of x ∈ X onto C, if and only if

(y − z, J(x− z)) ≤ 0, ∀y ∈ C. (2.1)

We also know [17] that if X is uniformly convex, then PC is continuous.
Let X be uniformly convex and smooth, and A be m-accretive, and assume that 0 ∈ R(A), or equivalently 

A−10 �= ∅. Let P : X → A−10 be the nearest point projection map onto the (closed and convex) zero set 
of A. Then we shall say that A satisfies the convergence condition [29] if (xi, yi) ∈ A, ‖xi‖ ≤ K, ‖yi‖ ≤ K, 
and limi→∞(yi, J(xi − Pxi)) = 0 imply that lim infi→∞ ‖xi − Pxi‖ = 0. It is obvious that every strongly 
accretive operator A satisfies the convergence condition.

It is worth pointing out that in the case that X is a uniformly convex Banach space and A ⊆ X × X

is m-accretive, A−10 �= ∅ if and only if lim infλ→∞ ‖Jλx‖ < ∞ for some x ∈ X (see [21, Theorem 1]). 
Some studies have been made on the existence of zeros of accretive, or m-accretive, operators. The reader 
is referred to the papers [21,26,19,16,24].

A Banach space X is said to satisfy Opial’s condition if

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖,

for all y ∈ X with y �= x, where xn ⇀ x. It is well known that Hilbert spaces and lp(1 < p < ∞) satisfy 
Opial’s condition. One of the fundamental and celebrated results in the theory of nonexpansive mappings 
is Browder’s demiclosedness principle [12] which states that if X is a uniformly convex Banach space, C
is a nonempty closed and convex subset of X, and T : C → X is a nonexpansive mapping, then I − T is 
demiclosed at each x ∈ X; that is, for any sequence {xn} in C satisfying xn ⇀ x and (I − T )xn → y, we 
have (I − T )x = y. This principle also holds in a Banach space satisfying Opial’s condition.

The following lemmas will be used throughout the paper.

Lemma 2.4. ([20]) Let {ai} be a sequence of positive real numbers with Σ∞
i=1a

−1
i = ∞. If {bi} is a bounded 

sequence, then lim infi→∞ ai(bi+1 − bi) ≤ 0.

Lemma 2.5. ([36]) Suppose that {ai} and {εi} are two sequences of nonnegative real numbers such that 
ai+1 ≤ ai + εi, for all i ≥ 0, and 

∞∑
i=0

εi < ∞. Then, lim
i→∞

ai exists.

Lemma 2.6. ([14]) Let {ai} and {bi} be two sequences of real positive numbers. If {ai} is nonincreasing and 

convergent to zero and 
∞∑
i=1

aibi < ∞, then (
n∑

i=1
bi)an → 0, as n → ∞.

Lemma 2.7. ([30]) (Opial) Let X be a uniformly convex Banach space satisfying Opial’s condition, (xn)n≥1
a sequence in X, and F ⊆ X nonempty. Assume

(1) ‖xn − u‖ has a limit as n → ∞, for each u ∈ F ; and
(2) the weak limit of each weakly convergent subsequence of (xn)n≥1 belongs to F .

Then, (xn)n≥1 converges weakly to some x ∈ F .

3. The nonhomogeneous case

Let us consider the second order difference equation (1.1), as well as the auxiliary sequence (ai)i�1 given 
by
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a0 = 1 , ai = 1
θ1θ2...θi

, i ≥ 1. (3.1)

Observe that

aiθi = ai−1, i ≥ 1, (3.2)

and denote

hk = Σk
i=1

1
θkθk−1...θi

, ∀k ≥ 1. (3.3)

Remark. From now on we assume that the difference inclusion (1.1) has a solution for an initial value 
u0 = x in X. It is clear that in general (1.1) has no solution even if A = 0, θi ≡ 1 and (fi)i≥1 ∈ 	1(X); 
we refer to Poffald and Reich [32]. The existence of solution for (1.1), in the framework Banach spaces, has 
been studied in [18]. One result worth mentioning is [18, Theorem 4.4]: Let X be a uniformly smooth and 
uniformly convex Banach space. Let A ⊆ X ×X be m−accretive with A−10 �= ∅ and ci, θi > 0, ∀i ≥ 1, such 
that 

∑∞
i=1

1
hi

= ∞ holds. If (fi)i≥1 is a sequence in X satisfying Σ∞
i=1hi‖fi‖ < ∞, then (1.1) has a unique 

solution for every initial point x ∈ X.

In the following, we prove some new weak and strong convergence theorems for the solutions to (1.1), 
and provide new approximation results for the zeros of A in the context of Banach spaces. Our results 
extend previous corresponding results by Poffald and Reich [32], where θi ≡ 1 and X is assumed to have a 
strongly monotone duality mapping, as well as the results of Apreutesei [6], where ((θi) was assumed to be 
a nonincreasing sequence in [1, ∞), and X was assumed to have a strongly monotone duality mapping. We 
assume neither X to have a strongly monotone duality mapping, nor (θi) to be nonincreasing.

We present our results separately for 0 < θi < 1, ∀i, and for θi ≥ 1, ∀i.

3.1. The case 0 < θi < 1, ∀i

Suppose that θi ∈ (0, 1), ∀i ≥ 1, and in addition

∞∑
i=1

a−1
i =

∞∑
i=1

θ1θ2...θi = ∞. (3.4)

Our results for 0 < θi < 1 are new in the framework of Banach spaces.

Lemma 3.1. Let X be uniformly convex and let A ⊆ X ×X be accretive such that A−10 �= ∅. Suppose that 
∞∑
i=1

ai‖fi‖ < ∞. Then lim inf
i→∞

ai−1‖ui − ui−1‖ = 0.

Proof. Let p ∈ A−10. From the accretivity of A and (1.1), we have

(ui+1 − (1 + θi)ui + θiui−1 − fi, j(ui − p)) ≥ 0, ∀i ≥ 1. (3.5)

Thus

(ui+1 − ui, j(ui − p)) − θi(ui − ui−1, j(ui − p)) − (fi, j(ui − p)) ≥ 0, ∀i ≥ 1. (3.6)

Multiplying both sides by ai and using (3.2), we obtain

ai(ui+1 − ui, j(ui − p)) − ai−1(ui − ui−1, j(ui − p)) − ai(fi, j(ui − p)) ≥ 0, ∀i ≥ 1. (3.7)
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Since X is uniformly convex, by using Lemma 2.2, we have

(ai−1ui − ai−1ui−1, j(ai−1(ui − p)) − j(ai−1(ui−1 − p))) ≥ g(ai−1‖ui − ui−1‖),

for all i ≥ 1. Hence

ai−1(ui − ui−1, j(ui − p)) − ai−1(ui − ui−1, j(ui−1 − p)) ≥ a−1
i−1g(ai−1‖ui − ui−1‖), (3.8)

for all i ≥ 1. Using (3.7) in (3.8), we deduce

a−1
i−1g(ai−1‖ui − ui−1‖) ≤

ai(ui+1 − ui, j(ui − p)) − ai−1(ui − ui−1, j(ui−1 − p)) − ai(fi, j(ui − p)),
(3.9)

for all i ≥ 1. Summing up from i = k to m and using Lemma 2.1, we arrive at

Σm
i=ka

−1
i−1g(ai−1‖ui − ui−1‖)

≤ Σm
i=k(ai(ui+1 − ui, j(ui − p)) − ai−1(ui − ui−1, j(ui−1 − p)))

− Σm
i=kai(fi, j(ui − p))

= am(um+1 − um, j(um − p)) − ak−1(uk − uk−1, j(uk−1 − p))

− Σm
i=kai(fi, j(ui − p))

≤ am
2 (‖um+1 − p‖2 − ‖um − p‖2) − ak−1(uk − uk−1, j(uk−1 − p))

+ Σm
i=kai‖fi‖‖ui − p‖.

(3.10)

Taking liminf in (3.10) as m → ∞, using (3.4) and Lemma 2.4, we see that

Σ∞
i=ka

−1
i−1g(ai−1‖ui − ui−1‖) ≤ −ak−1(uk − uk−1, j(uk−1 − p)) + Σ∞

i=kai‖fi‖‖ui − p‖.

Since ui is bounded, there exist positive constants α, β such that

Σ∞
i=ka

−1
i−1g(ai−1‖ui − ui−1‖) ≤ α + β(Σ∞

i=kai‖fi‖). (3.11)

The assumption implies that Σ∞
i=ka

−1
i−1g(ai−1‖ui − ui−1‖) < ∞. Using again (3.4), we arrive at

lim inf
i→∞

g(ai−1‖ui − ui−1‖) = 0.

Since g is continuous and strictly increasing, and g(0) = 0, we conclude that

lim inf
i→∞

ai−1‖ui − ui−1‖ = 0. �
Lemma 3.2. With the same assumptions as in Lemma 3.1, (ui − ui−1) converges to zero, as i → ∞.

Proof. Let p ∈ A−10. Since X is uniformly convex, by using Lemma 2.2, we have

(ui − ui−1, j(ui − p) − j(ui−1 − p)) ≥ g(‖ui − ui−1‖), ∀i ≥ 1.

Hence

(ui − ui−1, j(ui − p)) − (ui − ui−1, j(ui−1 − p)) ≥ g(‖ui − ui−1‖), ∀i ≥ 1.
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Multiplying both sides by θi, we get

θi(ui − ui−1, j(ui − p)) − θi(ui − ui−1, j(ui−1 − p)) ≥ θig(‖ui − ui−1‖), (3.12)

for all i ≥ 1. Using (3.6) in (3.12), we can write

(ui+1 − ui, j(ui − p)) − (fi, j(ui − p)) − θi(ui − ui−1, j(ui−1 − p)) ≥ θig(‖ui − ui−1‖),

for all i ≥ 1. Multiplying both sides by ai and using (3.2), we obtain

ai(ui+1 − ui, j(ui − p)) − ai(fi, j(ui − p)) − ai−1(ui − ui−1, j(ui−1 − p)) ≥ ai−1g(‖ui − ui−1‖),

for all i ≥ 1. Summing up from i = k to m, and then letting m → ∞, in a similar way as in Lemma 3.1, we 
conclude that

Σ∞
i=kai−1g(‖ui − ui−1‖) ≤ −ak−1(uk − uk−1, j(uk−1 − p)) + Σ∞

i=kai‖fi‖‖ui − p‖.

Since 0 < θi < 1, by (3.1) the sequence {ai} is increasing. Therefore

ak−1Σ∞
i=kg(‖ui − ui−1‖) ≤ −ak−1(uk − uk−1, j(uk−1 − p)) + Σ∞

i=kai‖fi‖‖ui − p‖.

Dividing both sides by ak−1, we get

Σ∞
i=kg(‖ui − ui−1‖) ≤ −(uk − uk−1, j(uk−1 − p)) + Σ∞

i=k

ai
ak−1

‖fi‖‖ui − p‖.

Since ui is bounded, there exist positive constants α, β such that

Σ∞
i=kg(‖ui − ui−1‖) ≤ α + β(Σ∞

i=k

ai
ak−1

‖fi‖). (3.13)

Since 0 < θi < 1, ∀i ≥ 1, by (3.1), we have 
1

ak−1
≤ 1, ∀k ≥ 1. Therefore it follows from the assumption that

Σ∞
i=k

ai
ak−1

‖fi‖ ≤ Σ∞
i=kai‖fi‖ < ∞. (3.14)

Using (3.14) in (3.13), we get Σ∞
i=kg(‖ui−ui−1‖) < ∞, so limi→∞ g(‖ui−ui−1‖) = 0. Since g is continuous, 

strictly increasing and g(0) = 0, we conclude that

lim
i→∞

‖ui − ui−1‖ = 0

and we obtain the desired conclusion. �
Lemma 3.3. With the same assumptions as in Lemma 3.1, if moreover 

∞∑
i=1

hi‖fi‖ < ∞, then limi→∞ ‖ui−p‖

exists, for each p ∈ A−10.

Proof. From (3.5), we have

(ui+1 − (1 + θi)ui + θiui−1 − fi, j(ui − p)) ≥ 0, ∀i ≥ 1.
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Hence

(‖ui+1 − p‖ − ‖ui − p‖) − θi(‖ui − p‖ − ‖ui−1 − p‖) + ‖fi‖ ≥ 0,

for all i ≥ 1. Therefore

‖ui − p‖ − ‖ui−1 − p‖

≤ 1
θi

(‖ui+1 − p‖ − ‖ui − p‖) + ‖fi‖
θi

≤ 1
θi+1θi

(‖ui+2 − p‖ − ‖ui+1 − p‖) + ‖fi+1‖
θi+1θi

+ ‖fi‖
θi

...

≤ 1
θi+j · · · θi+1θi

(‖ui+j+1 − p‖ − ‖ui+j − p‖) +
i+j∑
k=i

‖fk‖
θkθk−1 · · · θi

≤ a−1
i−1ai+j(‖ui+j+1 − p‖ − ‖ui+j − p‖) +

i+j∑
k=i

‖fk‖
θkθk−1 · · · θi

,

for all i ≥ 1, j ≥ 0. Taking liminf as j → ∞, by our assumption (3.4) and Lemma 2.4, we get

‖ui − p‖ − ‖ui−1 − p‖ ≤
∞∑
k=i

‖fk‖
θkθk−1...θi

,

for all i ≥ 1. Set εi =
∞∑
k=i

‖fk‖
θkθk−1...θi

; then we have:

‖ui − p‖ ≤ ‖ui−1 − p‖ + εi, ∀i ≥ 1.

On the other hand

∞∑
i=1

εi =
∞∑
i=1

∞∑
k=i

‖fk‖
θkθk−1...θi

=
∞∑
i=1

hi‖fi‖ < ∞, (3.15)

since

∞∑
i=1

∞∑
k=i

‖fk‖
θkθk−1...θi

=

∞∑
k=1

‖fk‖
θkθk−1...θ1

+
∞∑
k=2

‖fk‖
θkθk−1...θ2

+
∞∑
k=3

‖fk‖
θkθk−1...θ3

+ ... +
∞∑

k=n

‖fk‖
θkθk−1...θn

+ ...

= ( 1
θ1

‖f1‖ + 1
θ2θ1

‖f2‖ + 1
θ3θ2θ1

‖f3‖ + 1
θ4θ3θ2θ1

‖f4‖

+ ... + 1
θnθn−1...θ1

‖fn‖ + ...)

+ ( 1
θ2

‖f2‖ + 1
θ3θ2

‖f3‖ + 1
θ4θ3θ2

‖f4‖ + ... + 1
θnθn−1...θ2

‖fn‖ + ...)

+ ( 1 ‖f3‖ + 1 ‖f4‖ + ... + 1 ‖fn‖ + ...)

θ3 θ4θ3 θnθn−1...θ3
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+ ... + ( 1
θn

‖fn‖ + 1
θn+1θn

‖fn+1‖ + ...)

= 1
θ1

‖f1‖ + ( 1
θ2

+ 1
θ2θ1

)‖f2‖ + ( 1
θ3

+ 1
θ3θ2

+ 1
θ3θ2θ1

)‖f3‖ + ...

+ ( 1
θn

+ ... + 1
θnθn−1...θ2

+ 1
θnθn−1...θ1

)‖fn‖ + ...

= h1‖f1‖ + h2‖f2‖ + h3‖f3‖ + ... + hn‖fn‖ + ...

=
∞∑
i=1

hi‖fi‖.

Now the conclusion follows from Lemma 2.5. �
We can now state our main results for the case 0 < θi < 1.

Theorem 3.4. Let X be a uniformly convex Banach space satisfying Opial’s condition, and let A ⊆ X×X be 

m−accretive such that A−10 �= ∅. Assume that lim infi→∞ ci > 0 and 
∞∑
i=1

hi‖fi‖ < ∞. Then ui ⇀ p ∈ A−10.

Proof. We use Lemma 2.7 for the nonempty set F = A−1(0). First we verify hypothesis (1). In fact, for 
any q ∈ A−1(0), it follows from Lemma 3.3 that limi→∞ ‖ui − q‖ exists. To check hypothesis (2), let p be 
a weak limit of a weakly convergent subsequence (uin)n≥1 of (ui)i≥1. We need to prove that p ∈ A−1(0). 
From equation (1.1), we have

vi := 1
ci

((ui+1 − ui) − θi(ui − ui−1) − fi) ∈ Aui, ∀i ≥ 1. (3.16)

Since 
∞∑
i=1

hi‖fi‖ < ∞, 0 < θi < 1 and hi > 1 (by (3.3)), we deduce that lim
i→∞

‖fi‖ = 0. On the other hand, 
since

hi = 1
θiθi−1...θ1

+ 1
θiθi−1...θ2

+ ... + 1
θi

≥ 1
θiθi−1...θ1

= ai,

we have

∞∑
i=1

ai‖fi‖ ≤
∞∑
i=1

hi‖fi‖ < ∞. (3.17)

Then, using Lemma 3.2, we get civi → 0, as i → ∞. Since lim infi→∞ ci > 0, we have limi→∞ ‖vi‖ = 0. Let 
Jλ = (I + λA)−1 be the resolvent of A. By Lemma 2.3, we have ‖Jλui − ui‖ ≤ λ‖vi‖. Now since uin ⇀ p, 
and X is uniformly convex, by using Browder’s demiclosedness principle, we conclude that p is a fixed point 
of Jλ, hence a zero of A. �
Theorem 3.5. With the same assumptions as in Theorem 3.4, if moreover X is smooth and A satisfies the 
convergence condition, then ui converges strongly to a zero of A.

Proof. Let P : X → A−10 be the nearest point projection map of X onto the zero set of A. From accretivity 
of A, (1.1), (2.1), (3.16) and Lemma 2.1, for all i ≥ 1, we have

0 ≤ci(vi, J(ui − Pui)) = (ui+1 − (1 + θi)ui + θiui−1 − fi, J(ui − Pui))
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=(ui+1 − Pui+1, J(ui − Pui)) − (1 + θi)(ui − Pui, J(ui − Pui))

+ θi(ui−1 − Pui−1, J(ui − Pui)) − (fi, J(ui − Pui))

+ (Pui+1 − (1 + θi)Pui + θiPui−1, J(ui − Pui))

≤1
2‖ui+1 − Pui+1‖2 + 1

2‖ui − Pui‖2 − (1 + θi)‖ui − Pui‖2

+ θi
2 ‖ui−1 − Pui−1‖2 + θi

2 ‖ui − Pui‖2 + ‖fi‖‖ui − Pui‖

=1
2(‖ui+1 − Pui+1‖2 − ‖ui − Pui‖2)

− θi
2 (‖ui − Pui‖2 − ‖ui−1 − Pui−1‖2) + M‖fi‖,

where M = supi≥1 ‖ui−Pui‖. Multiplying both sides of the above inequality by ai, using (3.2) and summing 
up from i = 1 to m, we obtain:

0 ≤
m∑
i=1

ciai(vi, J(ui − Pui)) ≤
am
2 (‖um+1 − Pum+1‖2 − ‖um − Pum‖2)

− a0

2 (‖u1 − Pu1‖2 − ‖u0 − Pu0‖2) + M

m∑
i=1

ai‖fi‖.

Taking liminf as m → ∞, by using (3.4), (3.17), our assumption and Lemma 2.4, we get

∞∑
i=1

ciai(vi, J(ui − Pui)) < ∞. (3.18)

Since ai > 1, we have

∞∑
i=1

ci(vi, J(ui − Pui)) < ∞.

On the other hand, since lim inf
i→∞

ci > 0, it follows that lim
i→∞

(vi, J(ui − Pui)) = 0. Hence by the convergence 

condition, we get

lim inf
i→∞

‖ui − Pui‖ = 0. (3.19)

By a similar proof as in Lemma 3.3, we can show that

‖ui+1 − Pui+1‖ ≤ ‖ui+1 − Pui‖ ≤ ‖ui − Pui‖ +
∞∑

k=i+1

‖fk‖
θkθk−1...θi

.

Thus by (3.15) and Lemma 2.5, lim
i→∞

‖ui − Pui‖ exists, and therefore by (3.19) we have

lim
i→∞

‖ui − Pui‖ = 0.

On the other hand
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‖ui+m − ui‖ ≤ ‖ui+m − Pui‖ + ‖ui − Pui‖

≤ 2‖ui − Pui‖ +
m∑

n=1

∞∑
k=i+n

‖fk‖
θkθk−1...θi+n

≤ 2‖ui − Pui‖ +
∞∑

k=i+1

hk‖fk‖ → 0,

as i → ∞, uniformly in m ≥ 0. So the convergence of ui follows. �
Here is another result in this direction.

Theorem 3.6. Let X be uniformly convex, and let A ⊆ X × X be strongly accretive such that A−10 �= ∅. 
Assume that lim infi→∞ ici > 0 and 

∑∞
i=1 hi‖fi‖ < ∞. Then ui → p ∈ A−10.

Proof. Let p be the unique element of A−1(0). By (1.1) and the strong accretivity of A, we have

(ui+1 − (1 + θi)ui + θiui−1 − fi, j(ui − p)) ≥ αci‖ui − p‖2, ∀i ≥ 1.

Hence

(‖ui+1 − p‖ − ‖ui − p‖) − θi(‖ui − p‖ − ‖ui−1 − p‖) + ‖fi‖ ≥ αci‖ui − p‖,

for all i ≥ 1. Multiplying both sides by ai and using (3.2), we obtain:

ai(‖ui+1 − p‖ − ‖ui − p‖) − ai−1(‖ui − p‖ − ‖ui−1 − p‖) + ai‖fi‖
≥ αaici‖ui − p‖.

Summing up from i = k to i = m, we get:

α
m∑
i=k

aici‖ui − p‖ ≤

m∑
i=k

(ai(‖ui+1 − p‖ − ‖ui − p‖) − ai−1(‖ui − p‖ − ‖ui−1 − p‖)) +
m∑
i=k

ai‖fi‖

= am(‖um+1 − p‖ − ‖um − p‖) − ak−1(‖uk − p‖ − ‖uk−1 − p‖) +
m∑
i=k

ai‖fi‖.

Taking liminf as m → ∞, by using (3.4), the assumption and Lemma 2.4, we obtain:

α

∞∑
i=k

aici‖ui − p‖ ≤ −ak−1(‖uk − p‖ − ‖uk−1 − p‖) +
∞∑
i=k

ai‖fi‖. (3.20)

Since 0 < θi < 1, by (3.1) the sequence {ai} is increasing. Therefore

αak−1

∞∑
ci‖ui − p‖ ≤ −ak−1(‖uk − p‖ − ‖uk−1 − p‖) +

∞∑
ai‖fi‖.
i=k i=k
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Dividing both sides by ak−1, we get

α
∞∑
i=k

ci‖ui − p‖ ≤ −(‖uk − p‖ − ‖uk−1 − p‖) +
∞∑
i=k

ai
ak−1

‖fi‖.

Summing up from k = 1 to n, we obtain:

α
n∑

k=1

∞∑
i=k

ci‖ui − p‖ ≤ ‖u0 − p‖ − ‖un − p‖ +
n∑

k=1

∞∑
i=k

ai
ak−1

‖fi‖

≤ ‖u0 − p‖ +
n∑

k=1

∞∑
i=k

ai
ak−1

‖fi‖,

and letting n → ∞, we get

α
∞∑
k=1

∞∑
i=k

ci‖ui − p‖ ≤ ‖u0 − p‖ +
∞∑
k=1

∞∑
i=k

ai
ak−1

‖fi‖. (3.21)

Using (3.1), (3.3), (3.15) and the assumption, we have

∞∑
k=1

∞∑
i=k

ai
ak−1

‖fi‖ =
∞∑
k=1

∞∑
i=k

1
θiθi−1...θk

‖fi‖ =
∞∑
i=1

hi‖fi‖ < ∞. (3.22)

Now (3.21) and (3.22), imply that

∞∑
i=1

ici‖ui − p‖ < ∞.

Since lim inf
i→∞

ici > 0, then lim
i→∞

‖ui − p‖ = 0. The proof is now complete. �
Remark 3.7. The above proof actually shows that if in Theorem 3.6, the assumption “lim infi→∞ ici > 0” 
is replaced by “lim infi→∞ ci > 0”, then i‖ui − p‖ converges to zero as i → ∞; i.e., ‖ui − p‖ = o(1/i).

3.2. The case θi ≥ 1, ∀i

The remainder of this section will be devoted to the case θi ≥ 1, for all i ≥ 1. We state several extensions 
of the results in [6] and [32] to the nonhomogeneous case. In our results, we neither require X to have a 
strongly monotone duality mapping, nor (θi) to be nonincreasing.

Lemma 3.8. Let X be uniformly convex, A ⊆ X × X be accretive such that A−10 �= ∅, and assume that 
Σ∞

i=1ai‖fi‖ < ∞. Then ai−1(ui − ui−1) converges to zero, as i → ∞.

Proof. Let p ∈ A−10. From (3.11), we have

Σ∞
i=ka

−1
i−1g(ai−1‖ui − ui−1‖) < ∞, (3.23)

since when θi ≥ 1, the condition (3.4) automatically holds. On the other hand, by θi ≥ 1 and (3.1), we have 
a−1
i−1 ≥ 1, ∀i ≥ 1. Combining this with (3.23) yields

Σ∞
i=kg(ai−1‖ui − ui−1‖) < ∞.
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Hence

lim
i→∞

g(ai−1‖ui − ui−1‖) = 0.

Since g is continuous, strictly increasing and g(0) = 0, we conclude that

lim
i→∞

ai−1‖ui − ui−1‖ = 0. �

Lemma 3.9. Let X be uniformly convex, A ⊆ X × X be accretive and 
∞∑
i=1

hi‖fi‖ < ∞. If p ∈ A−10, then 

lim
i→∞

‖ui − p‖ exists.

Proof. The proof is done along similar lines as that of Lemma 3.3, by noting that (3.4) is automatically 
satisfied when θn ≥ 1. Therefore we omit it here. �
Theorem 3.10. (cf. [6, Theorem 3.1] and [32, Theorem 4.3]) Let X be a uniformly convex Banach space 

satisfying Opial’s condition, and let A ⊆ X×X be m−accretive such that A−10 �= ∅. Assume 
∞∑
i=1

hi‖fi‖ < ∞

and lim inf
i→∞

aici > 0. Then ui ⇀ p ∈ A−10.

Proof. We use Lemma 2.7 for the nonempty set F = A−1(0). The first part of the proof is similar to that 
in Theorem 3.4. From (3.16) and (3.2), we have

vi = 1
aici

(ai(ui+1 − ui) − ai−1(ui − ui−1) − aifi) ∈ Aui, ∀i ≥ 1.

By (3.17) and the assumption, we have:

lim
i→∞

ai‖fi‖ = 0.

The rest of the proof is similar to that of Theorem 3.4, by using the assumption and Lemma 3.8. �
Theorem 3.11. (cf. [32, Theorem 4.4]) With the same assumptions as in Theorem 3.10, if moreover X is 
smooth and A satisfies the convergence condition, then ui converges strongly to a zero of A.

Proof. By a similar argument as in Theorem 3.5, we get (3.18), and subsequently we have lim
i→∞

(vi, J(ui −
Pui)) = 0. The rest of the proof is similar to that of Theorem 3.5, and we omit it here. �
Theorem 3.12. Let X be uniformly convex, A ⊆ X × X be strongly accretive such that A−10 �= ∅, and 
∞∑
i=1

hi‖fi‖ < ∞. If lim inf
i→∞

iaici > 0, then ui → p ∈ A−10.

Proof. Let p be the unique element of A−1(0). By (3.20),

α

∞∑
i=k

aici‖ui − p‖ ≤ −ak−1(‖uk − p‖ − ‖uk−1 − p‖) +
∞∑
i=k

ai‖fi‖

= ak−1‖uk−1 − p‖ − ak−1‖uk − p‖ +
∞∑
i=k

ai‖fi‖

≤ ak−1‖uk−1 − p‖ − ak‖uk − p‖ +
∞∑

ai‖fi‖,

(3.24)
i=k
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since in this case ai is nonincreasing. Summing up (3.24) from k = 1 to m and letting m → ∞, we get

α
∞∑
k=1

∞∑
i=k

aici‖ui − p‖ ≤ ‖u0 − p‖ +
∞∑
k=1

∞∑
i=k

ai‖fi‖. (3.25)

On the other hand, by the assumption,

∞∑
k=1

∞∑
i=k

ai‖fi‖ =
∞∑
k=1

kak‖fk‖ ≤
∞∑
k=1

hk‖fk‖ < ∞, (3.26)

since θi ≥ 1, ∀i ≥ 1, and by (3.3), we have

hk = 1
θkθk−1...θ1

+ 1
θkθk−1...θ2

+ ... + 1
θk

≥ 1
θkθk−1...θ1

+ 1
θkθk−1...θ1

+ ... + 1
θkθk−1...θ1

= kak.

Using (3.25) and (3.26), we deduce that

∞∑
i=1

iaici‖ui − p‖ < ∞. (3.27)

Since lim inf
i→∞

iaici > 0, we conclude that lim
i→∞

‖ui − p‖ = 0. �
Remark 3.13. From (3.27), it follows that if in Theorem 3.12, the assumption “lim infi→∞ iaici > 0” is 
replaced by “lim infi→∞ aici > 0”, then i‖ui − p‖ converges to zero, as i → ∞; i.e., ‖ui − p‖ = o(1/i).

4. The homogeneous case

In this section, we investigate the asymptotic behavior of solutions to homogeneous case of (1.1), i.e., the 
difference equation

{
ui+1 − (1 + θi)ui + θiui−1 ∈ ciAui, i � 1,
u0 = x, sup{‖ui‖ : i � 0} < ∞.

(4.1)

We provide estimates for the rate of convergence of the solution.
We will need the following lemmas.

Lemma 4.1. (see [18]) Let A ⊆ X × X be accretive and {ui} be a solution to (4.1) with ci, θi > 0, ∀i ≥ 1. 
Then ai−1‖ui − ui−1‖ is nonincreasing or eventually increasing.

Lemma 4.2. If (bi)i≥1 is a bounded sequence of positive numbers satisfying

bi ≤
1

1 + θi
bi+1 + θi

1 + θi
bi−1,

where θi is a positive sequence such that 
∞∑
i=1

θ1θ2 . . . θi = ∞, then bi is nonincreasing.
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Proof. Suppose for a contradiction, that there exists j ≥ 1 such that bj−1 < bj . Since

bj ≤
1

1 + θj
bj+1 + θj

1 + θj
bj−1,

it follows that

bj+1 ≥ bj + θj(bj − bj−1).

Now by induction, we may easily prove that for all i > j,

bi ≥ bj + θj(bj − bj−1) + θj+1θj(bj − bj−1) + · · · + θi−1θi−2 · · · θj(bj − bj−1),

or equivalently,

bi ≥ bj + (Σi−1
k=jθkθk−1 · · · θj)(bj − bj−1),

for all i > j. Thus, denoting α = bj − bj−1 > 0, and then taking the liminf when i → ∞, we obtain

lim inf
i→∞

bi ≥ bj + (Σ∞
k=jθkθk−1 · · · θj)α.

Since lim infi→∞ bi < ∞, the above inequality contradicts our assumption that 
∞∑
i=1

θ1θ2 . . . θi = ∞. �
It is worth mentioning that Lemma 4.2 improves upon [15, Lemma 3.1], where it is assumed that ∑∞
i=1

1
hi

= ∞. Indeed, since

hi = 1
θiθi−1...θ1

+ 1
θiθi−1...θ2

+ ... + 1
θi

≥ 1
θiθi−1...θ1

, (4.2)

it follows that

∞∑
i=1

θiθi−1....θ1 ≥
∞∑
i=1

1
hi

. (4.3)

Lemma 4.3. With the same assumptions as in Lemma 4.1, ‖ui−p‖ is nonincreasing or eventually increasing, 
for any p ∈ A−10. If moreover (3.4) holds, then ‖ui − p‖ is nonincreasing.

Proof. Let p ∈ A−10. From the accretivity of A and (4.1), we have

(ui+1 − (1 + θi)ui + θiui−1, j(ui − p)) ≥ 0, ∀i ≥ 1. (4.4)

Hence

(‖ui+1 − p‖ − ‖ui − p‖) − θi(‖ui − p‖ − ‖ui−1 − p‖) ≥ 0, (4.5)

for all i ≥ 1. If (‖ui − p‖)i≥1 is not nonincreasing, then there exists j ≥ 1 such that ‖uj−1 − p‖ < ‖uj − p‖. 
Now (4.5) with i = j implies that (‖ui−p‖)i≥j is increasing. We prove the second part of the lemma. Using 
(4.5), we have
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‖ui − p‖ ≤ 1
1 + θi

‖ui+1 − p‖ + θi
1 + θi

‖ui−1 − p‖,

for all i ≥ 1. Since (‖ui − p‖)i≥1 is bounded and (3.4) holds, it must be nonincreasing by Lemma 4.2. �
Lemma 4.4. With the same assumptions as in Lemma 4.1, if moreover X is uniformly convex, then 
ai−1‖ui − ui−1‖ is nonincreasing. Moreover, ai−1(ui − ui−1) converges to zero, as i → ∞.

Proof. We note that the assertion of Lemma 3.1 holds for general θi > 0. Thus, by Lemma 3.1, we have 
lim inf
i→∞

ai−1‖ui − ui−1‖ = 0. Then Lemma 4.1 implies that ai−1‖ui − ui−1‖ is nonincreasing or eventually 

increasing, and therefore ai−1(ui − ui−1) converges to zero as i → ∞. �
Theorem 4.5. Let X be uniformly convex, and A ⊆ X × X be strongly accretive such that A−10 �= ∅. If 
0 < θn < 1, (3.4) holds and 

∞∑
i=1

ici = ∞, then ui → p ∈ A−10, and ‖ui − p‖ = o((
i∑

n=1
ncn)−1).

Proof. By the same argument as in Theorem 3.6, we have:

∞∑
i=1

ici‖ui − p‖ < ∞. (4.6)

From (4.6) and the assumption 
∑∞

i=1 ici = ∞, we deduce that lim inf
i→∞

‖ui − p‖ = 0. On the other hand, by 

Lemma 4.3, ‖ui − p‖ is nonincreasing. Therefore ui → p, as i → ∞, as well as ‖ui − p‖ = o((
i∑

n=1
ncn)−1), 

by Lemma 2.6. �
The following theorem extends Theorem 3.3 of Apreutesei [6], as well as Proposition 4.5 of [32].

Theorem 4.6. Let X be uniformly convex, and A ⊆ X × X be strongly accretive such that A−10 �= ∅. If 
θn ≥ 1 and 

∞∑
i=1

iciai = ∞, then ui → p ∈ A−10, and ‖ui − p‖ = o((
i∑

n=1
ncnan)−1).

Proof. The proof is similar to that of Theorem 4.5, by using (3.27) instead of (4.6). �
The following remains an open question.
Open question. Does Theorem 3.4 (resp. Theorem 3.10) still hold if the assumption lim infi→∞ ci > 0

(resp. lim infi→∞ aici > 0) in that theorem is replaced by 
∞∑
i=1

ci = ∞ (resp. 
∞∑
i=1

aici = ∞)?

This open question is motivated by the fact that we provide an affirmative answer for it in the next 
section, when A is a generalized subdifferential.

5. Applications to optimization

Let X be a smooth Banach space and let ψ : X → (−∞, ∞] be a proper function. Following Saeidi and 
Kim [35], we define the (possibly empty) set

Sψ(x) := {z ∈ X : ψ(x) − ψ(y) ≤ 〈z, J(x− y)〉, for all y ∈ X}, x ∈ X. (5.1)

For X = H, a real Hilbert space, it follows that Sψ = ∂ψ, the subdifferential of ψ. The domain of Sψ is 
denoted and defined by D(Sψ) = {x ∈ X : Sψ(x) �= ∅}. It is easy to check that ψ attains its minimum at 
x if and only if 0 ∈ Sψ(x). Moreover, D(Sψ) ⊆ D(ψ). It is known that Sψ is single-valued if ψ is a convex 
differentiable function, and X is a strictly convex, smooth and reflexive Banach space (see [35]).
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Remark 5.1. In the remainder of this section, we assume that ψ : X → R is a proper, convex and lower 
semicontinuous function which attains its minimum at some point.

We shall now verify that Sψ is accretive. Let x1, x2 ∈ X and yi ∈ Sψ(xi), i = 1, 2. Then

ψ(x1) − ψ(x2) ≤ (y1, J(x1 − x2))

and

ψ(x2) − ψ(x1) ≤ (y2, J(x2 − x1)) = (−y2, J(x1 − x2)).

Adding the above inequalities, we get:

(y1 − y2, J(x1 − x2)) ≥ 0, ∀x1, x2 ∈ X.

A zero of Sψ is a minimum point of ψ as stated. We now prove some weak convergence results for solutions 
to (1.1) when A = Sψ. We also give the rate of asymptotic convergence of ψ(ui). It is worth mentioning that 
in the following two theorems, we neither assume Sψ to be m−accretive, nor Sψ to be strongly accretive.

For convenience, we denote Sψ(ui) = A(ui) by the element

ui+1 − (1 + θi)ui + θiui−1 − fi
ci

,

in X.

Theorem 5.2. Let X be a smooth and uniformly convex Banach space satisfying Opial’s condition. Assume 
that ui is a solution to (4.1) with A = Sψ. If 0 < θi < 1, 

∑∞
i=1 ici = ∞ and (3.4) holds, then ui ⇀ p ∈ S−1

ψ 0, 
which is a minimum point of ψ, and (

∑n
i=1 ici)(ψ(un) − ψ(p)) → 0, as n → ∞.

Proof. We use Lemma 2.7 for the nonempty set F = S−1
ψ (0). First we verify hypothesis (1) of Lemma 2.7; 

let p ∈ S−1
ψ (0). By Lemma 3.3, lim

i→∞
‖ui− p‖ exists. To check the second hypothesis of Lemma 2.7, by (5.1), 

(3.2) and Lemma 4.4 we have

ψ(ui) − ψ(ui−1) ≤ (Sψ(ui), J(ui − ui−1))

= 1
ci

(ui+1 − (1 + θi)ui + θiui−1, J(ui − ui−1))

= 1
ci

(ui+1 − ui, J(ui − ui−1)) −
θi
ci

(ui − ui−1, J(ui − ui−1))

≤ 1
ci
‖ui+1 − ui‖‖ui − ui−1‖ −

θi
ci
‖ui − ui−1‖2

= 1
ciai

(ai‖ui+1 − ui‖ − ai−1‖ui − ui−1‖)‖ui − ui−1‖ ≤ 0,

for all i ≥ 1. So ψ(ui) is nonincreasing. Using again (5.1), (3.2) and Lemma 2.1, one obtains

ciai(ψ(ui) − ψ(p)) ≤ ai(ui+1 − (1 + θi)ui + θiui−1, J(ui − p))

≤ ai
2 (‖ui+1 − p‖2 − ‖ui − p‖2) − ai−1

2 (‖ui − p‖2 − ‖ui−1 − p‖2).

Summing up from i = k to m, taking liminf as m → ∞, by the assumption and Lemma 2.4, we arrive at
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∞∑
i=k

ciai(ψ(ui) − ψ(p)) ≤ ak−1

2 (‖uk−1 − p‖2 − ‖uk − p‖2). (5.2)

Since ai is increasing, we get

ak−1

∞∑
i=k

ci(ψ(ui) − ψ(p)) ≤ ak−1

2 (‖uk−1 − p‖2 − ‖uk − p‖2).

So
∞∑
i=k

ci(ψ(ui) − ψ(p)) ≤ 1
2(‖uk−1 − p‖2 − ‖uk − p‖2).

Summing up again from k = 1 to m, then letting m → ∞, in the same way as in the proof of Theorem 3.6, 
we deduce that

∞∑
i=1

ici(ψ(ui) − ψ(p)) ≤ 1
2‖u0 − p‖2 < ∞. (5.3)

Since by assumption 
∑∞

i=1 ici = ∞, we deduce that lim inf
i→∞

(ψ(ui) −ψ(p)) = 0. Since ψ(ui) is nonincreasing, 
it follows that lim

i→∞
ψ(ui) = ψ(p). If uij ⇀ u, then ψ(u) ≤ lim inf

j→∞
ψ(uij ) = ψ(p). Since p is a minimum point 

of ψ, one obtains u ∈ S−1
ψ 0. The proof is now completed by using (5.3) and Lemma 2.6. �

Theorem 5.3. Let X be a smooth and uniformly convex Banach space satisfying Opial’s condition. Assume 
that ui is a solution to (4.1) with A = Sψ. If θi ≥ 1 and 

∑∞
i=1 iciai = ∞, then ui ⇀ p ∈ S−1

ψ 0, which is a 
minimum point of ψ, and (

∑n
i=1 iciai)(ψ(un) − ψ(p)) → 0, as n → ∞.

Proof. We follow the proof of Theorem 5.2 by using Lemma 3.9 instead of Lemma 3.3, to show that 
lim
i→∞

‖ui − p‖ exists for any p ∈ S−1
ψ 0. Summing up (5.2) from k = 1 to n, and letting n → ∞, in the same 

way as in the proof of Theorem 3.12, we find (since ai ≤ 1)

∞∑
i=1

iciai(ψ(ui) − ψ(p)) ≤ 1
2‖u0 − p‖2 < ∞. (5.4)

Now, the assumption implies that lim inf
i→∞

(ψ(ui) − ψ(p)) = 0. The rest of the proof is similar to that of 
Theorem 5.2. �

Finally, we mention the following result which was proved in [18].

Theorem 5.4. ([18]) Let X be a uniformly smooth and uniformly convex Banach space. Let A ⊆ X ×X be 
m−accretive with A−1(0) �= ∅. Assume that ci, θi > 0, ∀i ≥ 1, and 

∑∞
i=1

1
hi

= ∞. Let (ui)i≥1 be the solution 
to (4.1). If lim infi→∞ ciai > 0, then ui ⇀ p ∈ A−1(0).

From Theorem 5.4 and by using (5.3) and (5.4), we have the following result.

Corollary 5.5. Let X be a uniformly smooth and uniformly convex Banach space. Assume that Sψ is m−ac-
cretive with A−1(0) �= ∅, and ci, θi > 0, ∀i ≥ 1, and 

∑∞
i=1

1
hi

= ∞. Let (ui)i≥1 be the solution to (4.1)
with A = Sψ. If lim infi→∞ ciai > 0, then ui ⇀ p ∈ S−1

ψ (0), which is a minimum point of ψ. Moreover, if 
0 < θi < 1, then (

∑n
i=1 ici)(ψ(un) − ψ(p)) → 0, and if θi ≥ 1, then (

∑n
i=1 iciai)(ψ(un) − ψ(p)) → 0, as 

n → ∞.



B. Djafari Rouhani et al. / J. Math. Anal. Appl. 480 (2019) 123428 19
Acknowledgment

The authors would like to thank the referee for his/her helpful suggestions. This paper is part of the 
second author’s Ph.D. thesis under the direction of the third author.

References

[1] A.R. Aftabizadeh, N.H. Pavel, Boundary value problems for second order differential equations and a convex problem of 
Bolza, Differential Integral Equations 2 (1989) 495–509.

[2] A.R. Aftabizadeh, N.H. Pavel, Nonlinear boundary value problems for some ordinary and partial differential equations 
associated with monotone operators, J. Math. Anal. Appl. 156 (1991) 535–557.

[3] N.C. Apreutesei, A boundary value problem for second order differential equations in Hilbert spaces, Nonlinear Anal. 24 
(1995) 1235–1246.

[4] N.C. Apreutesei, Second-order differential equations on half-line associated with monotone operators, J. Math. Anal. Appl. 
223 (1998) 472–493.

[5] N.C. Apreutesei, Nonlinear Second Order Evolution Equations of Monotone Type and Applications, Pushpa Publishing 
House, Allahabad, India, 2007.

[6] N.C. Apreutesei, Existence and asymptotic behavior for some difference equations associated with accretive operators, in: 
Viorel Barbu, et al. (Eds.), Analysis and Optimization of Differential Systems, IFIP TC7/WG 7.2 International Working 
Conference, Constanta, Romania, 10–14 September 2002, Kluwer, Boston, MA, 2003, pp. 21–30.

[7] V. Barbu, A class of boundary problems for second order abstract differential equations, J. Fac. Sci. Univ. Tokyo, Sect. 1 
19 (1972) 295–319.

[8] V. Barbu, Sur un problème aux limites pour une classe d’équations différentielles nonlinéaires abstraites du deuxième 
ordre en t, C. R. Acad. Sci. Paris 274 (1972) 459–462.

[9] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leiden, 
1976.

[10] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Monogr. Math., Springer, 2010.
[11] H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland 

Mathematics Studies, vol. 5, North-Holland Publishing Co., Amsterdam-London, 1973.
[12] F.E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968) 

660–665.
[13] R.E. Bruck, Periodic forcing of solutions of a boundary value problem for a second order differential equation in Hilbert 

space, J. Math. Anal. Appl. 76 (1980) 159–173.
[14] B. Djafari Rouhani, H. Khatibzadeh, New results on the asymptotic behavior of solutions to a class of second order 

nonhomogeneous difference equations, Nonlinear Anal. 74 (2011) 5727–5734.
[15] B. Djafari Rouhani, H. Khatibzadeh, Existence and asymptotic behaviour of solutions to first- and second-order difference 

equations with periodic forcing, J. Difference Equ. Appl. 18 (2012) 1593–1606.
[16] J. Garcia-Falset, S. Reich, Zeroes of accretive operators and the asymptotic behavior of nonlinear semigroups, Houston J. 

Math. 32 (2006) 1197–1225.
[17] K. Geobel, S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 

1984.
[18] P. Jamshidnezhad, S. Saeidi, On nonhomogeneous second order difference inclusions of accretive type in Banach spaces, 

Numer. Funct. Anal. Optim. 39 (2018) 894–920.
[19] A.G. Kartsatos, Sets in the range of nonlinear accretive operators in Banach spaces, Studia Math. 114 (1995) 261–273.
[20] H. Khatibzadeh, Convergence of solutions to a second order difference inclusion, Nonlinear Anal. 75 (2012) 3503–3509.
[21] W.A. Kirk, R. Schoneberg, Zeros of m-accretive operators in Banach spaces, Israel J. Math. 35 (1980) 1–8.
[22] V. Lakshmikantham, S. Leela, Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, Oxford, 1981.
[23] H. Ma, X. Xue, Second order nonlinear multivalued boundary problems in Hilbert spaces, J. Math. Anal. Appl. 303 (2005) 

736–753.
[24] S. Matsushita, W. Takahashi, On the existence of zeros of monotone operators in reflexive Banach spaces, J. Math. Anal. 

Appl. 323 (2006) 1354–1364.
[25] E. Mitidieri, G. Morosanu, Asymptotic behavior of the solutions of second-order difference equations associated to mono-

tone operators, Numer. Funct. Anal. Optim. 8 (1985–1986) 419–434.
[26] C.H. Morales, Zeros for strongly accretive set-valued mappings, Comment. Math. Univ. Carolin. 27 (1986) 455–469.
[27] G. Morosanu, Second order difference equations of monotone type, Numer. Funct. Anal. Optim. 1 (1979) 441–450.
[28] G. Morosanu, Nonlinear Evolution Equations and Applications, Editura Academiei Romane (and D. Reidel Publishing 

Company), Bucharest, 1988.
[29] O. Nevanlinna, S. Reich, Strong convergence of contraction semigroups and of iterative methods for accretive operators in 

Banach spaces, Israel J. Math. 32 (1979) 44–58.
[30] J. Peypouquet, S. Sorin, Evolution equations for maximal monotone operators: asymptotic analysis in continuous and 

discrete time, J. Convex Anal. 17 (2010) 1113–1163.
[31] E. Poffald, S. Reich, A quasi-autonomous second-order differential inclusion, in: Non-Linear Analysis, North-Holland, 

Amsterdam, 1985, pp. 387–392.
[32] E. Poffald, S. Reich, An incomplete Cauchy problem, J. Math. Anal. Appl. 113 (1986) 514–543.

http://refhub.elsevier.com/S0022-247X(19)30696-1/bib706176656C3839s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib706176656C3839s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib706176656C3931s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib706176656C3931s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib6170723935s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib6170723935s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib6170723938s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib6170723938s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib6170723037s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib6170723037s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib61707233s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib61707233s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib61707233s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib6261726275373230s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib6261726275373230s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib62617262753732s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib62617262753732s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib62617262753736s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib62617262753736s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib626172627532303130s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib4272657A6973s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib4272657A6973s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib62726F3638s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib62726F3638s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib627275636B3830s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib627275636B3830s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib726F7568616E6932303131s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib726F7568616E6932303131s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib526F7568616E6932303132s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib526F7568616E6932303132s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib46616C736574s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib46616C736574s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib67656F3834s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib67656F3834s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib6D6171616C65796531s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib6D6171616C65796531s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib4B6172747361746F73s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib4B68617469627A61646568303132s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib4B69726B3830s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib6C65656C61s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib787532303035s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib787532303035s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib54616B61686173686932303036s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib54616B61686173686932303036s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib6D6F723835s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib6D6F723835s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib4D6F72616C65733836s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib6D6F723739s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib4D6F726F73616E753838s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib4D6F726F73616E753838s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib6E6576613739s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib6E6576613739s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib736F72696Es1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib736F72696Es1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib706F6666616C643835s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib706F6666616C643835s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib706F6666616C643836s1


20 B. Djafari Rouhani et al. / J. Math. Anal. Appl. 480 (2019) 123428
[33] E. Poffald, S. Reich, A difference inclusion, in: Nonlinear Semigroups, Partial Differential Equations and Attractors, in: 
Lecture Notes in Mathematics, vol. 1394, Springer, Berlin, 1989, pp. 122–130.

[34] S. Reich, I. Shafrir, An existence theorem for a difference inclusion in general Banach spaces, J. Math. Anal. Appl. 160 
(1991) 406–412.

[35] S. Saeidi, D.S. Kim, Combination of the hybrid steepest-descent method and the viscosity approximation, J. Optim. 
Theory Appl. 160 (2014) 911–930.

[36] H.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. 
Anal. Appl. 178 (1993) 301–308.

[37] L. Véron, Problèmes d’évolution du second ordre associés à des opérateurs monotones, C. R. Acad. Sci. Paris 278 (1974) 
1099–1101.

[38] L. Véron, Equations non-linéaires avec conditions aux limites du type Sturm-Liouville, Anal. Stiint. Univ. Iasi, Sect. 1 
Math. 24 (1978) 277–287.

[39] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991) 1127–1138.

http://refhub.elsevier.com/S0022-247X(19)30696-1/bib706F6666616C643839s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib706F6666616C643839s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib72656963683931s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib72656963683931s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib736165696469s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib736165696469s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib787531393933s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib787531393933s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib7665726F6E3734s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib7665726F6E3734s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib7665726F6E3738s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib7665726F6E3738s1
http://refhub.elsevier.com/S0022-247X(19)30696-1/bib787531393931s1

	Zeros of accretive operators and asymptotics of a second order difference inclusion in Banach spaces
	1 Introduction
	2 Preliminaries
	3 The nonhomogeneous case
	3.1 The case  0 < θi<1, ∀i 
	3.2 The case  θi>=1, ∀i 

	4 The homogeneous case
	5 Applications to optimization
	Acknowledgment
	References


