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model, we use discrete-time Markov chain with correlated steps. The waiting times 
are selected from the domain of attraction of a stable law.
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1. Introduction

Stochastic modeling of many phenomena such as trading on financial markets or pollution in ecology often 
includes modeling of rest periods between events. This means that there is a need for stochastic models with 
random waiting times between state changes. Models that recently received attention as suitable include 
fractional diffusions governed by Kolmogorov forward and backward partial differential equations with the 
fractional derivative in time-variable and their Skorokhod J1 topology approximations using continuous-time 
random walks (CTRWs). For example, the fractional derivative in time is used to reflect delays between 
trades on financial markets and to derive the Black-Scholes formula in this framework (see [35,24,39]). 
Fractional derivative in time is also used for modeling of sticking and trapping of a pollutant particle in a 
porous medium or in the river flow (see [36,6]). Additional applications of CTRWs and related fractional 
diffusions in engineering and finance could be found in [11,24,32,33,35,39].
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Independence of waiting times and particle jumps yields the model known as decoupled CTRW [29,28,10]. 
Furthermore, for independent and identically distributed (iid) particle jumps Y1, . . . , Yn, the rescaled random 
walk S(n) = Y1 + . . . + Yn converges to either the Brownian motion or a stable Lévy process (see [31, 
Chapter 4], [38]) in the Skorokhod space D([0, 1]) (the space of right-continuous functions on [0, 1] with 
left limits) in the J1 topology introduced by Skorokhod in 1956 [37]. If the waiting times between particle 
jumps are modeled by iid random variables G1, . . . , Gn from the domain of attraction of a positively skewed 
stable law with stability index 0 < β < 1, the CTRW process S(N(t)), where T (n) = G1 + . . . + Gn, 
N(t) = max{n ≥ 0: T (n) ≤ t}, gives the location of a particle at time t ≥ 0. Then by applying the continuous 
mapping theorem (see [31, Theorem 4.19]), it follows that S(N(�ct�)) converges to the process A(E(t)) as 
c → ∞. The outer process A is either the Brownian motion or a stable Lévy process, and the inner process 
E(t) is the inverse of a standard β-stable subordinator (D(t), t ≥ 0). This convergence holds in both M1
and J1 Skorokhod topologies (see [30,40]). The differences among Skorokhod topologies are discussed in [4].

If the particle jumps are correlated, a similar procedure yields the correlated CTRW (see, for example, 
[27]). In particular, correlated CTRW appears by replacing the outer random walk that represents particle 
jumps in decoupled case by a suitably chosen discrete-time Markov chain. This Markov chain then yields the 
fractional diffusion in the weak limit. Therefore, we refer to such correlated CTRW as a fractional diffusion 
approximation in Skorokhod J1 topology.

A very recent development of the topic of space-time fractional processes is due to Toniazzi [41], who 
considered classical stochastic solutions for the fractional evolution equation on a bounded domain. An 
alternative approach to studying the limiting behavior of CTRWs has been developed in [15,16] for the 
spatially non-homogeneous case, in which the jump distribution depends on position of a particle. In order 
to obtain the limiting process, Kolokoltsov develops the theory of subordination of Markov processes by the 
hitting-time processes [16].

Leonenko and colleagues [20] and [21] have constructed the correlated CTRWs converging to non-heavy-
tailed fractional Pearson diffusions (fPDs): Ornstein-Uhlenbeck (OU), Cox-Ingersoll-Ross (CIR) and Jacobi. 
They used the well known discrete-time Markov chains arising from the Laplace-Bernoulli urn scheme (see 
e.g. [14]) for the OU case, Wright-Fischer genetic model (see e.g. [14]) for the CIR and Jacobi cases. For the 
Jacobi case, they have also used a construction based on the Ehrenfest-Brillouin process, often interpreted 
in economic terms (see [9]). For motivation and more historical facts on these discrete-time Markov chains 
we refer to [25] and [12].

In this paper we extend the approach of constructing a suitable discrete-time Markov chains in order to 
obtain fPDs with heavy-tailed invariant distributions in the limit. The paper is organized as follows. Section 2
includes the theoretical background on transition operators of discrete-time Markov chains (Subsection 2.1). 
Subsection 2.2 presents the mechanism for construction of diffusion approximation via Markov chains, with 
fractional diffusion approximations considered in Subsection 2.3. The methods presented in Section 2 are 
then applied in Section 3 for the construction of heavy-tailed fPDs and their approximations in Skorokhod 
J1 topology. In particular, Pearson diffusions and fPDs are described in Subsections 3.1 and 3.2, respectively. 
Subsection 3.3 contains the specific constructions of all three heavy-tailed Pearson diffusions: the Student 
diffusion is constructed in 3.3.1; the reciprocal gamma and Fisher-Snedecor diffusions are constructed in 
3.3.2. Finally, Section 3.4 contains construction of all three heavy-tailed fPDs and their Skorokhod J1
topology approximations, i.e., the corresponding correlated CTRWs.

2. General framework for fractional diffusion approximation

In this section we explain the general ideas for the construction of a Markov chain that leads to desired 
diffusion process as the weak limit in the Skorokhod space endowed with J1 topology. In Subsection 2.1 we 
explain the necessary technicalities, and in Subsection 2.2 we give a concrete algorithm for construction of 
a generally parametrized diffusion via Markov chain in our setting.
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2.1. Transition operators of the discrete-time Markov chains

Let μ be an arbitrary probability kernel on a measurable space (S, S). The associated transition operator 
T is defined as

Tf(x) = (Tf)(x) =
∫

μ(x, dy)f(y), x ∈ S, (2.1)

where f : S → R is assumed to be measurable and either bounded or nonnegative. For details we refer to 
[13, Chapter 19].

Denote by D(S) the space of right continuous functions with left limits defined on R+ with values in S. 
Throughout this paper, we consider the J1 topology in this space. Consider the Banach space of bounded 
continuous functions on space S with the supremum norm denoted by ‖ · ‖∞.

For a closed operator A with domain D, a core for A is a linear subspace D ⊂ D such that the restriction 
A|D has closure A. In that case, A is clearly uniquely determined by its restriction A|D. Suitable core is 
important in order to technically establish connection between desired Markov chains and their limiting 
diffusions. We work with C3

c (S) as a core of the diffusion infinitesimal generator, but in general not all 
diffusions have it as its core. Theorems 1.6 and 2.1 from [8, Section 8] give sufficient conditions for C∞

c (S)
(and therefore C3

c (S) as well) to be a core of the diffusion infinitesimal generator.
The main technical tool used for obtaining the non-fractional diffusion approximation via suitably chosen 

Markov chain with known transition operator is Theorem 19.28 from [13]. We state this Theorem below.

Theorem 2.1. Let (Y (n), n ∈ N) be a sequence of discrete-time Markov chains on S with transition operators 
(Un, n ∈ N). Consider a Feller process X on S with semigroup Tt and generator A. Fix a core D for the 
generator A, and assume that (hn, n ∈ N) is the sequence of positive reals tending to zero as n → ∞. Let

An = h−1
n (Un − I), Tn,t = U�t/hn�

n , Xn
t = Y n(�t/hn�).

Then the following statements are equivalent:

a) If f ∈ D, there exist fn ∈ Dom(An) with fn → f and Anfn → Af as n → ∞
b) Tn,t → Tt strongly for each t > 0
c) Tn,tfn → Ttf for each f ∈ C0, uniformly for bounded t > 0
d) if X(n)(0) ⇒ X(0) in S, then Xn ⇒ X in the Skorokhod space D(S) with J1 topology.

The proof could be found in [13, Theorem 19.28, page 387].

Remark 2.2. In section 3 we apply technique established in the following sections for heavy-tailed Pearson 
diffusions. Moreover, C3

c (S) can be referred to as a core of these diffusions, where S = R in the Student 
diffusion case and S = [0, +∞〉 in the Fisher-Snedecor and reciprocal gamma cases. In particular all three 
heavy-tailed Pearson diffusions satisfy conditions of Theorem 2.1. from [8, Section 8].

2.2. General approach to diffusion approximation via Markov chains

Let (N (n)(r), r ∈ N) be the starting Markov chain with state space Sn ⊆ N0 and transition probabilities 
pij , i, j ∈ Sn. Let X = (X(t), t ≥ 0) be the desired diffusion process with state space S. The process X is 
the solution of the stochastic differential equation (SDE)

dX(t) = μ(x) dt +
√
σ2(x) dW (t), t ≥ 0, x ∈ S,
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where (W (t), t ≥ 0) is the standard Brownian motion. The infinitesimal generator of the process X is

Af(x) = μ(x)f ′(x) + 1
2σ

2(x)f ′′(x), f ∈ C3
c (S). (2.2)

First, starting points N (n)(0) = i ∈ Sn need to be connected with X(0) = x ∈ S, i.e., the state space of 
the starting Markov chain needs to be connected to the state space of the desired diffusion process. Define 
a strictly monotonic function gn : S → R, such that

i = �gn(x)�

for n large enough and

lim
n→∞

∥∥g−1
n (i + 1) − g−1

n (i)
∥∥
∞ = 0.

According to the state space S of the desired diffusion process X, a new Markov chain (M (n)(r), r ∈ N) is 
constructed via the transformation

M (n)(r) = g−1
n

(
N (n)(r)

)
, (2.3)

so that (M (n)(r), n ∈ N) has state space g−1
n (Sn) and transition operator

Tnf
(
g−1
n (i)

)
=

n∑
j=0

pijf
(
g−1
n (i)

)
. (2.4)

We now define operator

An := h−1
n (Tn − I), fn ∈ Dom(An), fn(x) := f

(
g−1
n (i)

)
, f ∈ C3

c (S), (2.5)

where (hn, n ∈ N) is sequence of positive reals tending to zero as n → ∞.
Finally, define continuous-time stochastic process (X(n)(t), t ≥ 0) via time change in the Markov chain

X(n)(t) := M (n) (�h−1
n t�
)
. (2.6)

The next theorem gives sufficient conditions on when the diffusion process (X(t), t ≥ 0) can be obtained as 
the limiting process of the time-changed stochastic process (X(n)(t), t ≥ 0).

Theorem 2.3. For each n ∈ N, let (M (n)(r), r ∈ N0) be the Markov chain defined by (2.3) with the transition 
operator (2.4). For each n ∈ N, let Xn = (X(n)(t), t ≥ 0) be its corresponding time-changed process, with 
the time-change (2.6). Let operators (An, n ∈ N) be defined by (2.5). If

μn(x) : = h−1
n

n∑
j=0

pij
(
g−1
n (j) − g−1

n (i)
)
, σ2

n(x) := h−1
n

n∑
j=0

pij
(
g−1
n (j) − g−1

n (i)
)2

,

Rn(x) : = h−1
n

n∑
j=0

pij

(
g−1
n (j) − g−1

n (i)
)3

3! f ′′′(ζ), |ζ − g−1
n (i)| < |g−1

n (j) − g−1
n (i)| (2.7)

have uniform limits

lim ‖μn − μ‖∞ = lim
∥∥σ2

n − σ2∥∥ = lim ‖Rn‖∞ = 0, (2.8)

n→∞ n→∞ ∞ n→∞
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where μ and σ2 are infinitesimal parameters given in (2.2), then

Xn ⇒ X, as n → ∞

in the Skorokhod space D(S) with J1 topology, where X = (X(t), t ≥ 0) is diffusion with the infinitesimal 
generator A given by (2.2).

Proof. First, we prove statement a) of Theorem 2.1, i.e., we show that infinitesimal generator (2.2) can be 
approximated by operator An defined in (2.5). According to the definition of function �·�

�gn(x)� ≤ gn(x) < �gn(x)� + 1,

therefore

i ≤ gn(x) < i + 1. (2.9)

Let gn be a monotone increasing function (monotone decreasing case is analogous). Monotonicity with (2.9)
give

g−1
n (i) ≤ g−1

n (gn(x)) < g−1
n (i + 1)

so that

|g−1
n (i) − x| <

∣∣g−1
n (i + 1) − g−1

n (i)
∣∣ .

The last inequality implies

lim
n→∞

∥∥g−1
n (i) − x

∥∥
∞ ≤ lim

n→∞

∥∥g−1
n (i + 1) − g−1

n (i)
∥∥
∞ = 0. (2.10)

Therefore for f ∈ C3
c (S)

lim
n→∞

‖fn − f‖∞ = lim
n→∞

sup
x∈S

|fn(x) − f(x)| = lim
n→∞

sup
x∈S

∣∣f(g−1
n (i)) − f(x)

∣∣ = 0.

Since

Anf(g−1
n (i)) = h−1

n

⎡
⎣ n∑
j=0

pijf
(
g−1
n (j)

)
− f
(
g−1
n (i)

)⎤⎦

= h−1
n

n∑
j=0

pij
[
f
(
g−1
n (j)

)
− f
(
g−1
n (i)

)]
,

Taylor formula for function f around g−1
n (i) with mean-value form of the remainder yields

Anf(g−1
n (i)) =h−1

n

n∑
j=0

pij
(
g−1
n (j) − g−1

n (i)
)
f ′ (g−1

n (i)
)

+ h−1
n

n∑
j=0

pij

(
g−1
n (j) − g−1

n (i)
)2

2! f ′′ (g−1
n (i)

)

+ h−1
n

n∑
j=0

pij

(
g−1
n (j) − g−1

n (i)
)3

3! f ′′′ (ζ) , (2.11)

where ζ is a real number such that |ζ − g−1
n (i)| < |g−1

n (j) − g−1
n (i)|.
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Therefore (2.11) reduces to

Anf(g−1
n (i)) = μn(x)f ′ (g−1

n (i)
)

+ σ2
n(x)
2 f ′′ (g−1

n (i)
)

+ Rn(x).

The triangle inequality gives

‖Anfn −Af‖∞ = sup
x∈S

|Anfn(x) −Af(x)| = sup
x∈S

|Anfn(x) −Af(x)|

≤ sup
x∈S

∣∣μn(x)f ′ (g−1
n (i)

)
− μ(x)f ′(x)

∣∣+ sup
x∈S

∣∣∣∣σ2
n(x)
2 f ′′ (g−1

n (i)
)
− σ2(x)

2 f ′′(x)
∣∣∣∣

+ sup
x∈S

|Rn(x)| . (2.12)

For f ∈ C3
c (S), (2.10) implies

lim
n→∞

‖f ′
n − f ′‖∞ = lim

n→∞
‖f ′′

n − f ′′‖∞ = 0 (2.13)

and uniform limits (2.8) and (2.13) together with (2.12) yield

lim
n→∞

‖Anfn −Af‖∞ = 0.

This completes the proof of statement a) of the Theorem 2.1. Since

X(n)(0) ⇒ X(0) ⇐⇒ lim
n→∞

∥∥g−1
n (i) − x

∥∥
∞ = 0,

the equivalence of statements a) and d) in Theorem 2.1 yields

Xn ⇒ X in D(S). �
Remark 2.4. In all cases considered in this paper, gn : S → R are affine functions of the form

gn(x) = anx + bn,

where (an, n ∈ N) and (bn, n ∈ N) are sequences of real numbers such that

lim
n→∞

∥∥g−1
n (i + 1) − g−1

n (i)
∥∥
∞ = lim

n→∞
1
an

= 0,

and

i = �gn(x)�

for n large enough.
Moreover, μn, σ2

n and Rn reduce to

μn(x) = h−1
n

an

n∑
j=0

pij (j − i) , σ2
n(x) = h−1

n

a2
n

n∑
j=0

pij (j − i)2 ,

Rn(x) = h−1
n

a3
n

n∑
pij

(j − i)3

3! f ′′′(ζ),
∣∣ζ − g−1

n (i)
∣∣ < ∣∣∣∣j − i

an

∣∣∣∣ . (2.14)

j=0
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Remark 2.5. In this paper we consider starting Markov chains with transition probabilities of the form

pi,i+1 > 0, pi,i−1 > 0, pi,i = 1 − pi,i+1 − pi,i−1, and 0 otherwise.

For such Markov chains, (2.14) further reduces to

μn(x) = h−1
n

an
(pi,i+1 − pi,i−1) , σ2

n(x) = h−1
n

a2
n

(pi,i+1 + pi,i−1) ,

Rn(x) = h−1
n

6a3
n

(pi,i+1 − pi,i−1) f ′′′(ζ),
∣∣ζ − g−1

n (i)
∣∣ < ∣∣∣∣j − i

an

∣∣∣∣ . (2.15)

This procedure simplifies manipulations in the state space and time change in order to obtain the desired 
diffusion.

2.3. Fractional diffusion approximation

Let T (r) = G1 + . . . + Gr, r ∈ N0, T (0) = 0 be a random walk with iid waiting times Gr ≥ 0 between 
particle jumps. Assume that these waiting times are independent of the Markov chain (H(n)(r), r ∈ N0). 
Further, assume that G1 is in the domain of attraction of the β-stable distribution with index 0 < β < 1, 
and that the waiting time of the Markov chain until its r-th move is described by T (r). Let

N(t) = max{r ≥ 0: T (r) ≤ t} (2.16)

be the number of jumps up to time t ≥ 0. Then the continuous time stochastic process H(n)(N(t)) gives 
the state of the Markov chain at time t ≥ 0 and is a correlated CTRW process. The next Theorem provides 
fractional diffusion approximation via correlated CTRWs.

Theorem 2.6. Let 
(
A(n)(t), t ≥ 0

)
be the weak limit of (A(t), t ≥ 0), where all processes are càdlàg and

An ⇒ A in D(S)

with J1 topology, where S is the state space for the process A.
Let (N(t), t ≥ 0) be the renewal process defined in (2.16), and (E(t), t ≥ 0) be the inverse of the standard 

β-stable subordinator (D(t), t ≥ 0) with 0 < β < 1. Then

A(n)
(
n−1N

(
n1/βt

))
⇒ A(E(t)), n → ∞

in the Skorokhod space D(S) with J1 topology.

Proof. The result directly follows from the proof of Theorem 8.1 in [20]. �
Remark 2.7. It is clear that once a non-fractional diffusion approximation is obtained, its fractional counter-
part approximation follows immediately from Theorem 2.6. Therefore, in order to obtain specific fractional 
diffusion approximation, one needs to establish specific Markov chain, which will lead to the non-fractional 
diffusion in the sense of Theorem 2.3. In the next section we apply this approach to Pearson family of 
diffusions.

3. Application to heavy-tailed fractional Pearson diffusions

We start by defining Pearson diffusions and summarizing their properties.
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3.1. Pearson diffusions

Pearson diffusion (X(t), t ≥ 0) is defined as the unique strong solution of the following SDE

dX(t) = −θ(X(t) − μ)dt +
√

2θ(b2X(t)2 + b1X(t) + b0)dW (t), t ≥ 0,

where μ ∈ R is the mean of the stationary distribution, θ > 0 is the scaling of time determining the speed 
of reversion to the stationary mean μ, and b0, and b1 and b2 are such that the square root in the diffusion 
coefficient is well defined when X(t) is in its state space (l, L). Beside this SDE, Pearson diffusions can be 
defined by the partial differential equations (PDEs) for the transition density p(x, t; y, s) = d

dxP(X1(t) ≤
x|X1(s) = y), describing the time evolution of diffusion, that is, Kolmogorov forward (Fokker-Planck) and 
backward PDEs. Since we consider time-homogeneous diffusions for which p(x, t; y, s) = p(x, t − s; y, 0)
for t > s, we can write p(x, t; y) = d

dxP(X1(t) ≤ x|X1(0) = y). Kolmogorov forward or Fokker-Planck 
equation

∂p(x, t; y)
∂t

= − ∂

∂x
(μ(x)p(x, t; y)) + 1

2
∂2

∂x2

(
σ2(x)p(x, t; y)

)
describes the “forward evolution” of the diffusion, the current state y being a constant. Kolmogorov back-
ward equation

∂p(x, t; y)
∂t

= μ(y)∂p(x, t; y)
∂y

+ σ2(y)
2

∂2p(x, t; y)
∂y2 ,

describes the “backward evolution” of the diffusion, the future state x being a constant. The second-order 
differential operator in this equation is the infinitesimal generator of the diffusion

Ag(y) =
(
μ(y) ∂

∂y
+ σ2(y)

2
∂2

∂y2

)
g(y). (3.1)

It is a closed, generally unbounded, negative semidefinite, self-adjoint operator densely defined on the space 
L2 ((l, L),m) of square integrable functions with respect to the diffusion invariant density m(x):

{f ∈ L2 ((l, L),m) ∩ C2 ((l, L)) : Af ∈ L2 ((l, L),m) and f satisfies boundary conditions at l and L}.
(3.2)

For more details on Kolmogorov forward and backward PDEs we refer to [26].
Pearson diffusions are categorized into six subfamilies (see [18]), based on the properties of the stationary 

distribution. Namely, in 1931 Kolmogorov noticed that the differential equation for the invariant density 
m(x), x ∈ R of the classical Markovian diffusion with a linear drift a(x) = a1x + a0 = −θ(x − μ) and 
the quadratic squared diffusion coefficient σ2(x) = 2θb(x) is the famous Pearson differential equation (see 
[34])

m′(x)/m(x) = [a(x) − b′(x)]/[b(x)] = [(a1 − 2b2)x + (a0 − b1)]/[b2x2 + b1x + b0].

According to the degree of the polynomial σ2(x) and further according to the sign of the leading coefficient 
b2 and the sign of the discriminant Δ = b21 − 4b0b2 in the quadratic case of σ2(x), Pearson diffusions are 
classified into six subfamilies:

• constant b(x) - the Ornstein-Uhlenbeck (OU) process, characterized by normal stationary distribution,
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• linear b(x) - the Cox-Ingersol-Ross (CIR) process, characterized by gamma stationary distribution,
• quadratic b(x) with b2 < 0 - the Jacobi (JC) diffusion, characterized by beta stationary distribution,
• quadratic b(x) with b2 > 0 and Δ(b) > 0 - the Fisher-Snedecor (FS) diffusion, characterized by the 

Fisher-Snedecor stationary distribution,
• quadratic b(x) with b2 > 0 and Δ(b) = 0 - the reciprocal gamma (RG) diffusion, characterized by 

reciprocal gamma stationary distribution,
• quadratic b(x) with b2 > 0 and Δ(b) < 0 - the Student (ST) diffusion, characterized by the Student 

stationary distribution.

The first three types have non-heavy-tailed stationary distributions. These diffusions are very well studied 
and widely applied, e.g., in financial practice. The properties of these diffusions can be found in the classical 
book [14], while more recent developments relying on spectral representation of their transition densities are 
covered in [18], [17], [19], [20] and [21]. Heavy-tailed Pearson diffusions have not yet found their wide appli-
cations, in part due to complex properties of the spectrum of their infinitesimal generators (3.1). Namely, the 
transition densities of heavy-tailed PDs are not known in explicit form without knowing the structure of the 
spectrum of the infinitesimal generator. For these diffusions the spectrum consists of two disjoint parts: the 
finite discrete part consisting of finitely many simple eigenvalues in 〈0, Λ〉 and the absolutely continuous part 
which is exactly the interval 〈Λ, ∞〉. This structure generates the spectral representation in form of a finite 
sum, including eigenvalues and classical orthogonal polynomials (Bessel, Romanovski and Fisher-Snedecor) 
as eigenfunctions, and the integral part over the absolutely continuous part of the spectrum, including con-
fluent and generalized hypergeometric functions related to that part of the spectrum. For detailed spectral 
analysis of these diffusions and the application of the spectral representation of the transition density to 
statistical analysis of these diffusions we refer to the series of papers [22], [23], [3], [1] and [2].

3.2. Fractional Pearson diffusions

For a Pearson diffusion (X(t), t ≥ 0), the corresponding fPD (Xβ(t), t ≥ 0) is defined via a non-Markovian 
time-change E(t) independent of X1(t):

Xβ(t) := X (E(t)) , t ≥ 0.

Here E(t) = inf{x > 0 : Dx > t} is the inverse of the standard β-stable Lévy subordinator (D(t), t ≥ 0) of 
order 0 < β < 1, with the Laplace transform E [e−sD(t)] = exp{−tsβ}, s ≥ 0. Since E(t) rests for periods of 
time with non-exponential distribution, the process (Xβ(t), t ≥ 0) is non-Markovian. Although Xβ(t) is not 
Markovian, we will refer to the function pβ(x, t; y) as the transition density of fPD Xβ(t). This transition 
density satisfies

P(Xβ(t) ∈ B|Xβ(0) = y) =
∫
B

pβ(x, t; y)dx,

for any Borel subset B ⊂ (l, L).
Analogously to the non-fractional case, time-evolution of fPDs can be (partially) described by time-

fractional forward and backward Kolmogorov equations, with the time-fractional derivative (regularized 
non-local operator) defined in the Caputo sense (see [31]):

∂βu

∂tβ
=

⎧⎨
⎩

∂u
∂t (t, x) , if β = 1

1 ∂
∫ t (t− τ)−β

u (τ, x) dτ − u(0,x)
β , if β ∈ (0, 1).
Γ(1−β) ∂t 0 t
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In [18] the spectral representations for the transition densities of non-heavy-tailed fPDs (OU, CIR, Jacobi) 
were obtained. Namely, it has been shown that the series

pβ(x, t; y) = m(x)
∞∑

n=0
Eβ
(
−λnt

β
)
Qn(y)Qn(x) (3.3)

converges for fixed t > 0, x, y ∈ (l, L), where Eβ(−z) =
∞∑
j=0

(−z)j/Γ(1 + βj), z ≥ 0 is the Mittag-Leffler 

function, and (Qn, n ≥ 0) are classical orthogonal polynomials that are eigenfunctions of the infinitesimal 
generator of the corresponding non-fractional Pearson diffusion. In the generalized sense, series (3.3) satisfies 
pβ(x, 0; y) = δ(x − y), where δ(·) is the Dirac delta function.

Spectral representations of transition densities for fractional reciprocal gamma and Fisher-Snedecor diffu-
sions were obtained in [19] using the asymptotic properties of confluent and Gauss hypergeometric functions 
(see [7] and [5]) related to the continuous part of the spectrum of the infinitesimal generator of the corre-
sponding non-fractional Pearson diffusion. Here we point out that the case of the spectral representation 
of Student diffusion, having absolutely continuous part of the spectrum of multiplicity two, is still not 
completely resolved. For partial results on spectral analysis of Student diffusion we refer to [23].

Spectral representations of the transition densities of fPDs can be used to obtain the explicit strong 
solutions of the corresponding fractional Cauchy problems for both backward and forward equations. For 
relevant results we refer to [18] for non-heavy-tailed fPDs and to [19] for the reciprocal gamma and Fisher-
Snedecor fractional diffusions.

3.3. Student, Fisher-Snedecor and reciprocal gamma diffusion approximations

In this section, we construct discrete-time Markov chains whose scaling limits are heavy-tailed Pearson 
diffusions.

3.3.1. Student diffusion approximation
The Student diffusion X = (X(t), t ≥ 0) is defined as the solution of the SDE

dX(t) =−θ (X(t)−μ) dt+

√√√√ 2θδ2

ν− 1

(
1 +
(
X(t)−μ

δ

)2
)
dW (t), t≥ 0, θ > 0, μ∈R, ν > 1, δ > 0,

with the infinitesimal generator

Af(x) = −θ (x− μ) f ′(x) + 1
2

2θδ2

ν − 1

(
1 +
(
x− μ

δ

)2
)
f ′′(x), f ∈ C3

c (R). (3.4)

The corresponding invariant distribution is symmetric scaled student distribution with probability density 
function

st(x) =
Γ(ν+1

2 )
δ
√
πΓ(ν2 )

(
1 +
(
x− μ

δ

)2
)− ν+1

2

, x ∈ R, (3.5)

where δ > 0 is scale parameter, μ ∈ R is location parameter, and ν > 1 is degrees of freedom of the invariant 
distribution. When ν > 2, the mean and variance are finite.
Let (Z(n)(r), r ∈ N) be the Markov chain with state space {0, 1, 2, . . . , n} and transition probabilities
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p0,1 = 1, pn,n−1 = 1,

pi,i+1 = 1
2c

(
1 − 2i

n

)2

+ 1
n

(
1 − i

n

)2

, pi,i−1 = 1
2c

(
1 − 2i

n

)2

+ 1
n

(
i

n

)2

, pi,i = 1 − pi,i+1 − pi,i−1

(3.6)

and 0 otherwise, where i ∈ {1, 2, . . . , n −1}, 0 < d < 1, c > 1 and n is large enough to ensure pi,i+1+pi,i−1 <

1.
This Markov chain is clearly irreducible since each state can be reached with positive probability. Finiteness 
of the state space {0, 1, 2, . . . , n} with the irreducibility implies that the Markov chain is also recurrent, 
which in turn implies that the chain has the unique (up to a constant) invariant measure. Furthermore, 
finiteness of the state space implies this Markov chain has the unique stationary distribution π:

π(n) = π(0) =

⎛
⎜⎜⎝2 + 2cn3

n(n− 2)2 + 2c

⎛
⎜⎜⎝1 +

n−1∑
x=2

x−1∏
k=1

[
n(n− 2k)2 + 2c(n− k)2

]
x∏

k=2
[n(n− 2k)2 + 2ck2]

⎞
⎟⎟⎠
⎞
⎟⎟⎠

−1

,

π(x) = 2cn3

n(n− 2)2 + 2c ·

x−1∏
k=1

[
n(n− 2k)2 + 2c(n− k)2

]
x∏

k=2
[n(n− 2k)2 + 2ck2]

· π(0), x ∈ {1, 2, 3, . . . , n− 1}.

This Markov chain is also periodic, since states 0 and n have periods of 2.
For n ∈ N, define the function gn : R → R,

gn(x) = 1
2
(
n + (ax + b)

√
n
)
, a > 0, b ∈ R.

We assume that the initial states of the Markov chain (Z(n)(r), r ∈ N0) and the Student diffusion X =
(X(t), t ≥ 0) are given by Z(n)(0) = i and X(0) = x respectively, where

i(x) = i = �gn(x)� =
⌊

1
2
(
n + (ax + b)

√
n
)⌋

, x ∈ R.

We also assume that n is always large enough so that i(x) is in the state space of Markov chain (Z(n)(r), r ∈
N0). Furthermore, we assume that the initial Markov chain (Z(n)(r), r ∈ N0) never starts from states 0 or 
n. Notice that the initial state is a function of x, but we will use notation i for simplicity.

For n ∈ N, define the new Markov chain

H(n)(r) = g−1
n (Z(n)(r)) = 1

a
√
n

(
2Z(n)(r) − n− b

√
n
)
, (3.7)

with the state space 
{

1
a
√
n

(−n− b
√
n) , 1

a
√
n

(2 − n− b
√
n) , · · · 1

a
√
n

(n− b
√
n)
}

. The transition operator 
Tn of the Markov chain (H(n)(r), n ∈ N) is given by

Tnf

(
2i− n− b

√
n

a
√
n

)
=

n∑
j=0

pijf

(
2j − n− b

√
n

a
√
n

)

= pi,i−1 f

(
2(i− 1) − n− b

√
n

a
√
n

)
+ pi,i f

(
2i− n− b

√
n

a
√
n

)
+

+ pi,i+1 f

(
2(i + 1) − n− b

√
n

a
√
n

)
. (3.8)
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Now for n ∈ N, define operator

An := θ

2n
2(Tn − I), fn ∈ Dom(An), fn(x) := f

(
g−1
n (i)

)
= f

(
2i− n− b

√
n

a
√
n

)
, (3.9)

where θ > 0 and f ∈ C3
c (R). Apply the scaling of time in (H(n)(r), r ∈ N0) to obtain the corresponding 

continuous-time process (X(n)(t), t ≥ 0):

X(n)(t) := H(n)
(⌊

θ

2n
2t

⌋)
. (3.10)

The next theorem states that the Student diffusion could be obtained as the limiting process of the time-
changed processes (X(n)(t), t ≥ 0).

Theorem 3.1. For n ∈ N, let (H(n)(r), r ∈ N0) be the Markov chain defined by (3.7) with the transition 
operator (3.8). Let Xn = (X(n)(t), t ≥ 0) be its corresponding time-changed process, with the time-change 
(3.10). Let the operators (An, n ∈ N) be defined by (3.9). Then as n → ∞

Xn ⇒ X in D(R),

where X = (X(t), t ≥ 0) is the Student diffusion with the infinitesimal generator A given by (3.4), and

μ = − b

a
, ν = c + 1, δ = 1

a

√
c

2 .

Proof. First, notice that function gn satisfies conditions given in Section 2, i.e., function gn is strictly 
monotonic and

lim
n→∞

∥∥g−1
n (i + 1) − g−1

n (i)
∥∥
∞ = lim

n→∞

∣∣∣∣ 2
a
√
n

∣∣∣∣ = 0.

Taking into account Remark 2.5, state space transformation (3.7) with the time scale h−1
n = θn2/2 yield

μn(x) = θ

a
n
√
n (pi,i+1 − pi,i−1) , σ2

n(x) = 2θ
a2n (pi,i+1 + pi,i−1) ,

Rn(x) = 2θ
3a3

√
n (pi,i+1 − pi,i−1) f ′′′(ζ),

∣∣∣∣ζ − 2i− n− b
√
n

a
√
n

∣∣∣∣ <
∣∣∣∣ 2
a
√
n

(j − i)
∣∣∣∣ .

Next, the transition probabilities (3.6) further simplify

μn(x) = θ

a
n
√
n

(
1
2c

(
1 − 2i

n

)2

+ 1
n

(
1 − i

n

)2

− 1
2c

(
1 − 2i

n

)2

− 1
n

(
i

n

)2
)

= θ
√
n

a

(
1 − 2i

n

)
= θ

(
n− 2i
a
√
n

)
, (3.11)

σ2
n(x) = 2θ

a2n

(
1
2c

(
1 − 2i

n

)2

+ 1
n

(
1 − i

n

)2

+ 1
2c

(
1 − 2i

n

)2

+ 1
n

(
i

n

)2
)

= 2θ
(

1
c

(
n− 2i
a
√
n

)2

+ 1
a2

(
1 − i

n

)2

+ 1
a2

(
i

n

)2
)
, (3.12)
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|Rn(x)| ≤
∣∣∣∣∣ 2θ
3a3

√
n

(
1
2c

(
1 − 2i

n

)2

+ 1
n

(
1 − i

n

)2

− 1
2c

(
1 − 2i

n

)2

− 1
n

(
i

n

)2
)∣∣∣∣∣K

=

∣∣∣∣∣ 2θ
3a3

(
1√
n

(
1 − i

n

)2

− 1√
n

(
i

n

)2
)∣∣∣∣∣K

=
∣∣∣∣ 2θ
3a3

(
n− 2i
n
√
n

)∣∣∣∣K, (3.13)

where K is a constant such that |f ′′′(ζ)| ≤ K. Since i = �gn(x)�, it follows

lim
n→∞

sup
x∈R

∣∣∣∣n− 2i
a
√
n

+
(
x + b

a

)∣∣∣∣ = 0, lim
n→∞

sup
x∈R

∣∣∣∣ in − 1
2

∣∣∣∣ = 0. (3.14)

Now, using (3.11), (3.12), (3.13) together with (3.14) and the fact that f ∈ C3
c (R), we have

lim
n→∞

‖μn − μ‖∞ = 0, lim
n→∞

∥∥σ2
n − σ2∥∥

∞ = 0, lim
n→∞

‖Rn‖∞ = 0, (3.15)

where

μ(x) = −θ

(
x + b

a

)
, σ2(x) = 2θ

(
1
c

(
x + b

a

)2

+ 1
2a2

)
.

By re-parametrizing

μ = − b

a
, ν = c + 1, δ = 1

a

√
c

2 (3.16)

we obtain

μ(x) = −θ (x− μ) , σ2(x) = 2θδ2

ν − 1

(
1 +
(
x− μ

δ

)2
)
. (3.17)

Comparing (3.17) with (3.4) we see that the limits coincide with the infinitesimal parameters of the Student 
diffusion. Since (3.15) holds, as a direct consequence of Theorem 2.3 we obtain Xn ⇒ X as n → ∞ in D(R), 
where X is the generally parametrized Student diffusion. �
Remark 3.2. Note that re-parametrization (3.16) ensures parameters of the Student diffusion satisfy

θ > 0, μ ∈ R, ν > 2, δ > 0,

since a > 0, b ∈ R, c > 1. In general, parameter ν can be any real number larger than 1, but ν > 2 we 
obtained ensures that the invariant Student distribution has finite second moment.

Remark 3.3. It is well known that for high degrees of freedom ν, the Student distribution (3.5) can be 
approximated by the normal distribution. If we let c → ∞ in the transition probabilities (3.6), they resemble 
the structure of transition probabilities of the famous Bernoulli-Laplace urn-scheme model (see [20, Section 
6]), which leads to the OU diffusion. On the other hand, by taking into account (3.16), the infinitesimal 
parameters (3.17) of the Student diffusion reduce to the infinitesimal parameters of the OU process as 
c → ∞, and ν → ∞, δ → ∞. Therefore it is not surprising that when c → ∞, the scaled Markov chain 
which leads to the Student diffusion resembles the structure of the scaled Markov chain which leads to the 
OU process.
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3.3.2. Fisher-Snedecor and reciprocal gamma diffusion approximations
First, we define starting Markov chain which will lead to the Fisher-Snedecor and reciprocal gamma 

diffusions with appropriately chosen parameters. Let (G(n)(r), r ∈ N) be the Markov chain with the state 
space {0, 1, 2, . . . , n} and transition probabilities

p0,1 = 1, pn,n−1 = 1,

pi,i+1 =
(
i

n

)2
a∗

nd
+ b∗

n2 + c∗i

n2 , pi,i−1 = a∗i + d∗

n2
i

nd
+ c∗i

n2 , pi,i = 1 − pi,i+1 − pi,i−1, 0 otherwise,

(3.18)

where i ∈ {1, 2, . . . , n − 1}, 0 < d < 1, a∗ ≥ 0, b∗ ≥ 0, c∗ ≥ 0, d∗ ≥ 0.
This Markov chain is clearly irreducible since each state can be reached with positive probability. Finite-

ness of the state space {0, 1, 2, . . . , n} and the irreducibility imply that the Markov chain is also recurrent, 
which in turn implies that the chain has the unique (up to a constant) invariant measure. Furthermore, 
finiteness of the state space implies this Markov chain has the unique stationary distribution π:

π(0) =

⎛
⎜⎜⎝1 + nd+2

a∗ + b∗ + c∗nd

⎛
⎜⎜⎝1 + (n− 1)2a∗ + nd(b∗ + c∗(n− 1))

nd+2

x−1∏
k=1

[
a∗k2 + c∗ndk + b∗nd

]
x∏

k=2
[a∗k2 + (c∗nd + d∗)k]

+
n−1∑
x=2

x−1∏
k=1

[
a∗k2 + c∗ndk + b∗nd

]
x∏

k=2
[a∗k2 + (c∗nd + d∗)k]

⎞
⎟⎟⎠
⎞
⎟⎟⎠

−1

,

π(x) = nd+2

a∗ + b∗ + c∗nd
·

x−1∏
k=1

[
a∗k2 + c∗ndk + b∗nd

]
x∏

k=2
[a∗k2 + (c∗nd + d∗)k]

· π(0), x ∈ {1, 2, 3, . . . , n− 1}

π(n) = π(n− 1) ·
[(

n− 1
n

)2
a∗

nd
+ b∗

n2 + c∗(n− 1)
n2

]
.

This Markov chain is also periodic, since states 0 and n have periods of 2.

Fisher-Snedecor diffusion
The Fisher-Snedecor diffusion Y = (Y (t), t ≥ 0) is defined as the solution of the SDE

dY (t) = −θ

(
Y (t) − β

β − 2

)
dt +

√
4θ

γ(β − 2)Y (t)(γY (t) + β) dW (t), t ≥ 0, θ > 0, β > 2, γ > 0,

with the infinitesimal generator

Af(y) = −θ

(
y − β

β − 2

)
f ′(y) + 1

2
4θ

γ(β − 2)y(γy + β)f ′′(y), f ∈ C3
c ([0, +∞〉). (3.19)

Let (G(n)(r), r ∈ N) be the Markov chain with the state space {0, 1, 2, . . . , n} and transition probabilities 
(3.18) with parameters

a∗ = a, b∗ = a + b, c∗ = c, d∗ = b, a > 0, b > 0, c > 0,
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i.e.,

p0,1 = 1, pn,n−1 = 1,

pi,i+1 =
(
i

n

)2
a

nd
+ a + b

n2 + ci

n2 , pi,i−1 = ai + b

n2
i

nd
+ ci

n2 , pi,i = 1 − pi,i+1 − pi,i−1, 0 otherwise,

(3.20)

where i ∈ {1, 2, . . . , n − 1} and n is large enough, ensuring pi,i+1 + pi,i−1 < 1. Define the function gn :
[0, +∞〉 → R,

gn(y) = ndy.

We assume that the initial states of the Markov chain (G(n)(r), r ∈ N0) and Fisher-Snedecor diffusion 
Y = (Y (t), t ≥ 0) are given by G(n)(0) = i and Y (0) = y respectively, where

i(y) = i = �gn(y)� =
⌊
ndy
⌋
, y ∈ [0, +∞〉 .

We also assume that n is always large enough so that i(y) is in the state space of Markov chain (G(n)(r), r ∈
N0). Furthermore, we assume that the initial Markov chain (G(n)(r), r ∈ N0) never starts from states 0 or 
n. Notice that the initial state is a function of y, but we will use notation i for simplicity. For n ∈ N, we 
define the new Markov chain (H(n)(r), r ∈ N) with the state space {0, 1/nd, . . . , 1/nd−1}

H(n)(r) = g−1
n (G(n)(r)) = G(n)(r)

nd
. (3.21)

The transition operator Tn of the Markov chain (H(n)(r), n ∈ N) is given by

Tnf

(
i

nd

)
=

n∑
j=0

pijf

(
j

nd

)
= pi,i−1 f

(
i− 1
nd

)
+ pi,i f

(
i

nd

)
+ pi,i+1 f

(
i + 1
nd

)
. (3.22)

For n ∈ N, define operator

An := n2+d(Tn − I), fn ∈ Dom(An), fn(y) := f
(
g−1
n (i)

)
= f

(
i

nd

)
, (3.23)

where f ∈ C3
c ([0, +∞〉) and by the following scaling of time in (H(n)(r), r ∈ N0), for n ∈ N we obtain the 

corresponding continuous-time process (Y (n)(t), t ≥ 0):

Y (n)(t) := H(n) (�n2+dt�
)
. (3.24)

The next theorem states that the Fisher-Snedecor diffusion could be obtained as the limiting process of the 
time-changed processes (Y (n)(t), t ≥ 0).

Theorem 3.4. For n ∈ N, let (H(n)(r), r ∈ N0) be the Markov chain defined by (3.21) with the transition 
operator (3.22). Let Y n = (Y (n)(t), t ≥ 0), for each n ∈ N, be its corresponding time-changed process, with 
the time-change (3.24). Let the operators (An, n ∈ N) be defined by (3.23). Then

Y n ⇒ Y in D([0, +∞〉)
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as n → ∞, where Y = (Y (t), t ≥ 0) is the Fisher-Snedecor diffusion with the infinitesimal generator A
given by (3.19), and

θ = b, β = 2
(
b

a
+ 1
)
, γ = 2 (a + b)

c
.

Proof. First, notice that function gn satisfies conditions given in Section 2, i.e., function gn is strictly 
monotone and

lim
n→∞

∥∥g−1
n (i + 1) − g−1

n (i)
∥∥
∞ = lim

n→∞

∣∣∣∣ 1
nd

∣∣∣∣ = 0.

Taking into account Remark 2.5, state space transformation (3.7) together with the time scale h−1
n = n2+d

yield

μn(x) = n2 (pi,i+1 − pi,i−1) , σ2
n(x) = n2−d (pi,i+1 + pi,i−1) ,

Rn(x) = 1
6n

2(1−d) (pi,i+1 − pi,i−1) f ′′′(ζ),
∣∣∣∣ζ − i

nd

∣∣∣∣ <
∣∣∣∣j − i

nd

∣∣∣∣ .
Next, transition probabilities (3.6) further simplify

μn(y) = n2

((
i

n

)2
a

nd
+ a + b

n2 + ci

n2 − ai + b

n2
i

nd
− ci

n2

)

= a + b− b
i

nd
, (3.25)

σ2
n(y) = n2−d

((
i

n

)2
a

nd
+ a + b

n2 + ci

n2 + ai + b

n2
i

nd
+ ci

n2

)

= 2a
(

i

nd

)2

+ 2c i

nd
+ a + b

nd
+ b

i

n2d , (3.26)

|Rn(y)| ≤
∣∣∣∣n2−2d

6

((
i

n

)2
a

nd
+ a + b

n2 + ci

n2 − ai + b

n2
i

nd
− ci

n2

)∣∣∣∣K
=
∣∣∣∣16
(
a + b

n2d − b
i

n3d

) ∣∣∣∣K, (3.27)

where K is a constant such that |f ′′′(ζ)| ≤ K. Since i = �gn(y)�, it follows

lim
n→∞

sup
y∈[0,+∞〉

∣∣∣∣ ind
− y

∣∣∣∣ = 0. (3.28)

Now, using (3.25), (3.26), (3.27) together with (3.28) and the fact that f ∈ C3
c ([0, +∞〉) we have

lim
n→∞

‖μn − μ‖∞ = 0, lim
n→∞

∥∥σ2
n − σ2∥∥

∞ = 0, lim
n→∞

‖Rn‖∞ = 0, (3.29)

where

μ(y) = a + b− by, σ2(y) = 2ay2 + 2cy.
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By re-parametrizing

θ = b, β = 2
(
b

a
+ 1
)
, γ = 2 (a + b)

c
(3.30)

it follows

μ(y) = −θ

(
y − β

β − 2

)
, σ2(y) = 4θ

γ (β − 2)y (γy + β) . (3.31)

Note that re-parametrization (3.30) ensures the generality of parameters of the Fisher-Snedecor diffusion, 
i.e.

θ > 0, β > 2, γ > 0

since a > 0, b > 0, c > 0. Comparing the obtained limits (3.31) with (3.19) we see that the limits coincide 
with the infinitesimal parameters of the Fisher-Snedecor diffusion. Since (3.29) holds, as a direct consequence 
of Theorem 2.3 we obtain Y n ⇒ Y as n → ∞ in D([0, +∞〉), where Y is the generally parametrized Fisher-
Snedecor diffusion. �
Reciprocal gamma diffusion

The reciprocal gamma diffusion Z = (Z(t), t ≥ 0) is defined as the solution of the SDE

dZ(t) = −θ

(
Z(t) − γ

β − 1

)
dt +

√
2θ

β − 1Z
2(t) dW (t), t ≥ 0, θ > 0, β > 1, γ > 0,

with the infinitesimal generator

Af(z) = −θ

(
z − γ

β − 1

)
f ′(z) + 1

2
2θ

β − 1z
2f ′′(z), f ∈ C3

c ([0,∞)). (3.32)

Let (G(n)(r), r ∈ N) be the Markov chain with the state space {0, 1, 2, . . . , n} and transition probabilities 
(3.18) with parameters

a∗ = a, b∗ = c, c∗ = 0, d∗ = b, a > 0, b > 0, c > 0,

i.e.

p0,1 = 1, pn,n−1 = 1,

pi,i+1 =
(
i

n

)2
a

nd
+ c

n2 , pi,i−1 = ai + b

n2
i

nd
, pi,i = 1 − pi,i+1 − pi,i−1, 0 otherwise, (3.33)

where i ∈ {1, 2, . . . , n − 1} and n is large enough, ensuring pi,i+1 + pi,i−1 < 1. Define the function gn :
[0, +∞〉 → R,

gn(z) = ndz.

We assume that the initial states of the Markov chain (G(n)(r), r ∈ N0) and reciprocal gamma diffusion 
Z = (Z(t), t ≥ 0) are given by G(n)(0) = i and Z(0) = z respectively, where

i(z) = i = �gn(z)� =
⌊
ndz
⌋
, z ∈ [0, +∞〉 ,
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and n is always large enough so that i(z) is in the state space of Markov chain (G(n)(r), r ∈ N0). Further-
more, we assume that the initial Markov chain (G(n)(r), r ∈ N0) never starts from states 0 or n. Notice 
that the initial state is a function of z, but we will use notation i for simplicity. For n ∈ N, we define the 
new Markov chain (H(n)(r), r ∈ N) with the state space {0, 1/nd, . . . , 1/nd−1}

H(n)(r) = g−1
n (G(n)(r)) = G(n)(r)

nd
. (3.34)

The transition operator Tn of the Markov chain (H(n)(r), n ∈ N) is given by

Tnf

(
i

nd

)
=

n∑
j=0

pijf

(
j

nd

)
= pi,i−1 f

(
i− 1
nd

)
+ pi,i f

(
i

nd

)
+ pi,i+1 f

(
i + 1
nd

)
. (3.35)

For n ∈ N, define operator

An := n2+d(Tn − I), fn ∈ Dom(An), fn(z) := f
(
g−1
n (i)

)
= f

(
i

nd

)
(3.36)

where f ∈ C3
c ([0, +∞〉) and by the following scaling of time in (H(n)(r), r ∈ N0), for each n ∈ N we obtain 

the corresponding continuous-time process (Z(n)(t), t ≥ 0):

Z(n)(t) := H(n) (�n2+dt�
)
. (3.37)

The next theorem states that the reciprocal gamma diffusion could be obtained as the limiting process of 
the time-changed processes (Z(n)(t), t ≥ 0).

Theorem 3.5. Forh n ∈ N, let (H(n)(r), r ∈ N0) be the Markov chain defined by (3.34) with the transition 
operator (3.35). Let Zn = (Z(n)(t), t ≥ 0), for each n ∈ N, be its corresponding time-changed process, with 
the time-change (3.37). Let the operators (An, n ∈ N) be defined by (3.36). Then

Zn ⇒ Z in D([0, +∞〉)

as n → ∞, where Z = (Z(t), t ≥ 0) is the RG diffusion with the infinitesimal generator A given by (3.32), 
and

θ = b, β = b

a
+ 1, γ = c

a
.

Proof. First, notice that function gn satisfies conditions given in Section 2, i.e. function gn is strictly 
monotone and

lim
n→∞

∥∥g−1
n (i + 1) − g−1

n (i)
∥∥
∞ = lim

n→∞

∣∣∣∣ 1
nd

∣∣∣∣ = 0.

Taking into account Remark 2.5, state space transformation (3.34) together with the time scale h−1
n = n2+d

yield

μn(z) = n2 (pi,i+1 − pi,i−1) , σ2
n(z) = n2−d (pi,i+1 + pi,i−1) ,

Rn(z) = 1
6n

2(1−d) (pi,i+1 − pi,i−1) f ′′′(ζ),
∣∣∣∣ζ − i

nd

∣∣∣∣ <
∣∣∣∣j − i

nd

∣∣∣∣ .



N.N. Leonenko et al. / J. Math. Anal. Appl. 486 (2020) 123934 19
Transition probabilities (3.33) further simplify

μn(z) = n2

((
i

n

)2
a

nd
+ c

n2 − ai + b

n2
i

nd

)

= c− b
i

nd
, (3.38)

σ2
n(z) = n2−d

((
i

n

)2
a

nd
+ c

n2 + ai + b

n2
i

nd

)

= 2a
(

i

nd

)2

+ c

nd
+ b

i

n2d , (3.39)

|Rn(z)| ≤ K

6

∣∣∣∣n2−2d

((
i

n

)2
a

nd
+ c

n2 − ai + b

n2
i

nd

)∣∣∣∣
= K

6

∣∣∣∣
(

c

n2d − b
i

n3d

) ∣∣∣∣, (3.40)

where K is a constant such that |f ′′′(ζ)| ≤ K. Since i = �gn(z)�, it follows

lim
n→∞

sup
z∈[0,+∞〉

∣∣∣∣ ind
− z

∣∣∣∣ = 0. (3.41)

Now, using (3.38), (3.39), (3.40) together with (3.41) and the fact that f ∈ C3
c ([0, +∞〉) we have

lim
n→∞

‖μn − μ‖∞ = 0, lim
n→∞

∥∥σ2
n − σ2∥∥

∞ = 0, lim
n→∞

‖Rn‖∞ = 0, (3.42)

where

μ(z) = c− bz, σ2(z) = 2az2.

By re-parametrizing

θ = b, β = b

a
+ 1, γ = c

a
(3.43)

it follows

μ(z) = −θ

(
z − γ

β − 1

)
, σ2(z) = 2θ

β − 1z
2. (3.44)

Notice that re-parametrization (3.43) ensures the generality of parameters of the reciprocal gamma diffusion, 
i.e.,

θ > 0, β > 1, γ > 0

since a > 0, b > 0, c > 0. Comparing the obtained limits (3.44) with (3.32) we see that the limits coincide 
with the infinitesimal parameters of the RG diffusion. Since (3.42) holds, as a direct consequence of The-
orem 2.3 we obtain Zn ⇒ Z as n → ∞ in D([0, +∞〉), where Z is the generally parametrized reciprocal 
gamma diffusion. �
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3.4. Fractional Student, Fisher-Snedecor and reciprocal gamma diffusion approximations in Skorokhod 
topology

In this section, we apply Theorem 2.6 to obtain fractional Student, Fisher-Snedecor and reciprocal gamma 
diffusion approximations in Skorokhod topology.

Corollary 3.6. Let (H(n)(r), r ∈ N0) be the Markov chain defined by (3.7). Let (X(n)(t), t ≥ 0) be the 
corresponding rescaled Markov chain given by (3.10). Let (N(t), t ≥ 0) be the renewal process defined in 
(2.16), and (E(t), t ≥ 0) be the inverse of the standard β-stable subordinator (D(t), t ≥ 0) with 0 < β < 1. 
Then

X(n)
(
n−1N

(
n1/βt

))
⇒ X(E(t)), n → ∞

in the Skorokhod space D(R) with J1 topology, where (X(t), t ≥ 0) is Student diffusion with generator

Af(x) = −θ (x− μ) f ′(x) + 1
2

2θδ2

ν − 1

(
1 +
(
x− μ

δ

)2
)
f ′′(x), f ∈ C3

c (R).

Proof. Stochastic processes (X(n)(t), t ≥ 0) and (X(t), t ≥ 0) are both càdlàg, and Theorem 3.1 implies

Xn ⇒ X in D(R)

as n → ∞. Now, simply apply Theorem 2.6 to obtain the desired result. �
Corollary 3.7. Let (H(n)(r), r ∈ N0) be the Markov chain defined by (3.21). Let (Y (n)(t), t ≥ 0) be the 
corresponding rescaled Markov chain given by (3.24). Let (N(t), t ≥ 0) be the renewal process defined in 
(2.16), and (E(t), t ≥ 0) be the inverse of the standard β-stable subordinator (D(t), t ≥ 0) with 0 < β < 1. 
Then

Y (n)
(
n−1N

(
n1/βt

))
⇒ Y (E(t)), n → ∞

in the Skorokhod space D([0, +∞〉) with J1 topology, where (Y (t), t ≥ 0) is the Fisher-Snedecor diffusion 
with generator

Af(y) = −θ

(
y − β

β − 2

)
f ′(y) + 1

2
4θ

γ(β − 2)y(γy + β)f ′′(y), f ∈ C3
c ([0, +∞〉).

Proof. Stochastic processes (Y (n)(t), t ≥ 0) and (Y (t), t ≥ 0) are both càdlàg, and Theorem 3.4 implies

Y n ⇒ Y in D([0, +∞〉)

as n → ∞. Now, simply apply Theorem 2.6 to obtain the desired result. �
Corollary 3.8. Let (H(n)(r), r ∈ N0) be the Markov chain defined by (3.34). Let (Z(n)(t), t ≥ 0) be the 
corresponding rescaled Markov chain given by (3.37). Let (N(t), t ≥ 0) be the renewal process defined in 
(2.16), and (E(t), t ≥ 0) be the inverse of the standard β-stable subordinator (D(t), t ≥ 0) with 0 < β < 1. 
Then

Z(n)
(
n−1N

(
n1/βt

))
⇒ Z(E(t)), n → ∞
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in the Skorokhod space D(([0, +∞〉)) with J1 topology, where (Z(t), t ≥ 0) is the reciprocal gamma diffusion 
with generator

Af(z) = −θ

(
z − γ

β − 1

)
f ′(z) + 1

2
2θ

β − 1z
2f ′′(z), f ∈ C3

c ([0, +∞〉).

Proof. Stochastic processes (Z(n)(t), t ≥ 0) and (Z(t), t ≥ 0) are both càdlàg, and Theorem 3.5 implies

Zn ⇒ Z in D([0, +∞〉)

as n → ∞. Now, simply apply Theorem 2.6 to obtain the desired result. �
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