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In the recent paper [1] D. Azagra studies the global shape of continuous convex 
functions defined on a Banach space X. More precisely, when X is separable, it is 
shown that for every continuous convex function f : X → R there exist a unique 
closed linear subspace Y of X, a convex function h : X/Y → R with the property 
that limt→∞ h(u + tv) = ∞ for all u, v ∈ X/Y , v �= 0, and x∗ ∈ X∗ such that 
f = h ◦ π + x∗, where π : X → X/Y is the natural projection. Our aim is to 
characterize those proper lower semicontinuous convex functions defined on a locally 
convex space which have the above representation. In particular, we show that the 
continuity of the function f and the completeness of X can be removed from the 
hypothesis of Azagra’s theorem. For achieving our goal we study general sublinear 
functions as well as recession functions associated to convex ones.

© 2020 Elsevier Inc. All rights reserved.

1. Preliminary notions and results

In the sequel X is a nontrivial real separated locally convex space (lcs for short) with topological dual 
X∗ endowed with its weak∗ topology (if not explicitly mentioned otherwise); for x ∈ X and x∗ ∈ X∗ we set 
〈x, x∗〉 := x∗(x). In some statements X will be a real normed vector space (nvs for short), or even a Hilbert 
space, in which case X∗ will be identified with X by Riesz theorem. For E a topological vector space and 
A ⊂ E, we denote by A (or clA) and spanA the closure and the linear hull of A, respectively; moreover, 
spanA := spanA. In particular, these notations apply for the subsets of X∗ which is endowed with the 
weak-star topology by default; when X is a normed vector space, the norm-closure of B ⊂ X∗ is denoted 
by cl‖·‖ B.

The domain of the function f : X → R := R ∪ {−∞, ∞} is the set dom f := {x ∈ X | f(x) < ∞}. The 
function f is proper if dom f 	= ∅ and f(x) > −∞ for all x ∈ X; f is convex if epi f := {(x, t) ∈ X × R |
f(x) ≤ t} is convex. Hence f is convex if and only if f(λx +(1 −λ)x′) ≤ λf(x) +(1 −λ)f(x′) for all x, x′ ∈ X

and λ ∈ ]0, 1[ with the convention (−∞) + ∞ := ∞ + (−∞) := ∞. A function g : X → R is sublinear if 
g(0) = 0, g is positively homogeneous [that is g(λx) = λg(x) for λ ∈ ]0, ∞[ and x ∈ X] and subadditive 
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[that is g(x + x′) ≤ g(x) + g(x′) for x, x′ ∈ X]. Clearly, any sublinear function g : X → R is convex; indeed, 
for λ ∈ ]0, 1[ and x, x′ ∈ X one has g(λx + (1 − λ)x′) ≤ g(λx) + (1 − λ)g(x′) = λg(x) + (1 − λ)g(x′). 
Of course, f is lower semicontinuous (lsc for short) iff epi f is a closed subset of X × R or, equivalently, 
{x ∈ X | f(x) ≤ α} is closed for every α ∈ R. By Γ(X) we denote the class of proper lsc convex functions 
f : X → R. Note that g is proper and epi g is a closed convex cone when g : X → R is lsc and sublinear.

Having f : X → R, its conjugate function is

f∗ : X∗ → R, f∗(x∗) := sup {〈x, x∗〉 − f(x) | x ∈ X} (x∗ ∈ X∗),

while its subdifferential is the set-valued function ∂f : X ⇒ X∗ with

∂f(x) := {x∗ ∈ X∗ | 〈x′ − x, x∗〉 ≤ f(x′) − f(x) ∀x′ ∈ X}

if f(x) ∈ R and ∂f(x) := ∅ otherwise. By [6, Th. 2.3.3], f∗ ∈ Γ(X∗) and (f∗)∗ = f (X∗ being endowed, as 
mentioned above, with the weak-star topology w∗) whenever f ∈ Γ(X); in particular dom f∗ 	= ∅. Moreover, 
for f ∈ Γ(X) one has x∗ ∈ ∂f(x) iff x ∈ ∂f∗(x∗) iff f(x) + f∗(x∗) = 〈x, x∗〉.

A central notion throughout this note is that of recession function. So, having f ∈ Γ(X), its recession 
function f∞ is (equivalently) defined by

f∞ : X → R, f∞(u) := lim
t→∞

f(x0 + tu) − f(x0)
t

,

where x0 ∈ dom f is arbitrary. The function f∞ is a proper lsc sublinear function having the property

f(x + u) ≤ f(x) + f∞(u) ∀x ∈ dom f, ∀u ∈ X (1)

(see [6, Eq. (2.28)]); moreover,

f∞(u) = sup
x∗∈dom f∗

〈u, x∗〉 ∀u ∈ X and ∂f∞(0) = dom f∗ (2)

(see [6, Exer. 2.23 and Th. 2.4.14]). In particular (see also [6, Th. 2.4.14]), if g : X → R is a (proper) lsc 
sublinear function one has

∂g(0) = {x∗ ∈ X∗ | x∗ ≤ g}, g∗ = ι∂g(0), and g = g∞ = supx∗∈∂g(0) x
∗, (3)

where ιA : E → R denotes the indicator function of A ⊂ E, being defined by ιA(v) := 0 for v ∈ A and 
ιA(v) := ∞ for v ∈ E \A. Hence ∂g(0) 	= ∅.

Recall that the mapping 0 < t 
→ f(x0+tu)−f(x0)
t ∈ R is nondecreasing for f : X → R a proper convex 

function, x0 ∈ dom f and u ∈ X. Moreover, for such a function and x, u ∈ X, the mapping ϕx,u : R → R

with ϕx,u(t) := f(x + tu), one of the following alternatives holds: 1) ϕx,u is nonincreasing on R, 2) ϕx,u is 
nondecreasing on R, 3) there exists t0 ∈ R such that ϕx,u is nonincreasing on ] −∞, t0] and nondecreasing 
on [t0, ∞[; moreover, there exists γx,u := limt→∞ f(x + tu) ∈ R.

Lemma 1. Let f ∈ Γ(X) and u ∈ X \ {0}. The following assertions are equivalent:
(a) ∃x0 ∈ dom f , ∃M ∈ R, ∀t ∈ [0, ∞[ : f(x0 + tu) ≤ M ;
(b) ∀x ∈ dom f , ∃M ∈ R, ∀t ∈ [0, ∞[ : f(x + tu) ≤ M ;
(c) f∞(u) ≤ 0.
Consequently, the following assertions are equivalent:
(a’) ∀x ∈ dom f : limt→∞ f(x + tu) = ∞;
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(b’) ∃x0 ∈ dom f : limt→∞ f(x0 + tu) = ∞;
(c’) f∞(u) > 0.

Proof. (c) ⇒ (b) Take x ∈ dom f ; then, by (1), f(x + tu) ≤ f(x) + f∞(tu) = f(x) + tf∞(u) ≤ f(x) =: M
for t ≥ 0.

(b) ⇒ (a) The implication is obvious.
(a) ⇒ (c) Since t−1 [f(x0 + tu) − f(x0)] ≤ t−1 [M − f(x0)] for t > 0, one has f∞(u) ≤ limt→∞ t−1[M −

f(x0)] = 0.
Observe that �(c’) coincides with (c), �(b’) is equivalent to (b), and �(a’) is equivalent to (a). Hence, from 

the first part, we get (a’) ⇔ (b’) ⇔ (c’). �
Having in view the statements of Theorems 5 and 6 in [1], it is worth observing that for x0 ∈ dom f , 

u ∈ X and u∗ ∈ X∗ one has

f∞(±u) = 〈±u, u∗〉 ⇐⇒ [f(x0 + tu) − f(x0) − 〈tu, u∗〉 = 0 ∀t ∈ R] . (4)

Indeed, the implication “⇐” is obvious. Assume that f∞(±u) = 〈±u, u∗〉 [⇔ f∞(tu) = 〈tu, u∗〉 for all t ∈ R]. 
Using (1) we get

f(x0 + tu) ≤ f(x0) + f∞(tu) = f(x0) + 〈tu, u∗〉 , f(x0 − tu) ≤ f(x0) − 〈tu, u∗〉 ∀t ∈ R.

Since x0 = 1
2 (x0 + tu) + 1

2 (x0 − tu), from the convexity of f and the previous inequalities we get

f(x0) ≤ 1
2f(x0 + tu) + 1

2f(x0 − tu) ≤ 1
2 [f(x0) + 〈tu, u∗〉] + 1

2 [f(x0) − 〈tu, u∗〉] = f(x0),

and so f(x0 + tu) = f(x0) + 〈tu, u∗〉 for every t ∈ R. Hence (4) holds.
Taking u 	= 0 and u∗ = 0, from (4) with x0 ∈ dom f we have that

f∞(±u) = 0 ⇐⇒ [f(x0 + tu) = f(x0) ∀t ∈ R] ⇐⇒ f |x0+Ru is constant. (5)

Moreover, it is worth observing that f∞ ≥ 0 if f is bounded from below; indeed, if f∞(u) < 0, from (1)
we have that f(x + tu) ≤ f(x) + tf∞(u), and so limt→∞ f(x + tu) = −∞, for every x ∈ dom f .

In the sequel, for ϕ, ψ : E → R and ρ ∈ {≤ , < , =} we set [ϕ ρ ψ] := {x ∈ E | ϕ(x) ρ ψ(x)}. For example 
[ϕ ≤ 0] := {x ∈ X | ϕ(x) ≤ 0}.

As in [1, Def. 3], we say that f is directionally coercive if limt→∞ f(x + tu) = ∞ for all x ∈ X and 
u ∈ X \ {0}, and f is essentially directionally coercive if f − x∗ is directionally coercive for some x∗ ∈ X∗.

From the equivalence of assertions (a’), (b’) and (c’) of Lemma 1 we get the next result.

Corollary 2. Let f ∈ Γ(X); then (a) f is directionally coercive if and only if [f∞ ≤ 0] = {0}, and (b) f is 
essentially directionally coercive if and only if there exists x∗ ∈ X∗ such that [f∞ ≤ x∗] = {0}.

The previous result motivates a deeper study of proper lsc sublinear functions; several properties of such 
functions are mentioned in [6, Th. 2.4.14].

Recall that the orthogonal spaces of the nonempty subsets A ⊂ X and B ⊂ X∗ are defined by

A⊥ := {x∗ ∈ X∗ | 〈x, x∗〉 = 0 ∀x ∈ A} and B⊥ := {x ∈ X | 〈x, x∗〉 = 0 ∀x∗ ∈ B},

respectively; clearly, A⊥ is a w∗-closed linear subspace of X∗, B⊥ is a closed linear subspace of X, A⊥ =
(spanA)⊥, B⊥ = (spanB)⊥, (A⊥)⊥ = spanA, (B⊥)⊥ = spanB. Also recall that the quasi-interior and the 
quasi-relative interior of the nonempty convex set A ⊂ X are
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qiA := {a ∈ A | R+(A− a) = X}, qriA := {a ∈ A | R+(A− a) is a linear space},

respectively, where R+ := [0, ∞[. Having in view that

R+(A− a) ⊂ span(A− a) = span(A−A) = R+(A−A) ∀a ∈ A,

for ∅ 	= A ⊂ X a convex set, one obtains (see e.g. [7]) that

qriA = {a ∈ A | R+(A− a) = span(A−A)} =
{
a ∈ A | R+(A− a) = R+(A−A)

}
, (6)

qriA = A ∩ qriA, qiA =
{

qriA if R+(A−A) = X,

∅ otherwise.
(7)

2. Some results related to sublinear functions

Throughout this section g ∈ Γ(X) is assumed to be sublinear.

Lemma 3. Let us set K := [g ≤ 0] and L := K ∩ (−K). Then K is a closed convex cone and L is a closed 
linear subspace of X. Moreover,

L = {x ∈ X | g(x) = g(−x) = 0} = [∂g(0)]⊥, (8)

g(x + u) = g(x) ∀x ∈ X, ∀u ∈ L. (9)

Proof. Because g is a lsc sublinear function, [g ≤ 0] is a closed convex cone. The set L is a closed convex 
cone as the intersection of (two) closed convex cones. Since L = −L, L is also a linear subspace of X.

Take x ∈ L; because 0 = g
(
x + (−x)

)
≤ g(x) + g(−x) ≤ 0 + 0 = 0, we get g(x) = 0 = g(−x), and so 

L ⊂ {x ∈ X | g(x) = g(−x) = 0}. The reverse inclusion being obvious, the first equality in (8) holds.
Set B := ∂g(0). Taking into account the formula for g from (3), for x ∈ X one has

x ∈ L ⇐⇒ g(±x) ≤ 0 ⇐⇒ [±〈x, x∗〉 ≤ 0 ∀x∗ ∈ B] ⇐⇒ [〈x, x∗〉 = 0 ∀x∗ ∈ B] ⇐⇒ x ∈ B⊥,

and so the second equality in (8) holds, too.
Take now x ∈ X and u ∈ L. Using the sublinearity of g one has

g(x + u) ≤ g(x) + g(u) = g(x) = g
(
(x + u) + (−u)

)
≤ g(x + u) + g(−u) = g(x + u),

and so g(x + u) = g(x). �
Proposition 4. For x∗ ∈ X∗ set Lx∗ := {x ∈ X | g(±x) = 〈±x, x∗〉. The following assertions hold:

(a) If x∗ ∈ X∗, then Lx∗ is a closed linear subspace of X, and

Lx∗ = {x ∈ X | g(±x) ≤ 〈±x, x∗〉} = [∂g(0) − x∗]⊥ , (10)

g(x + u) = g(x) + 〈u, x∗〉 ∀x ∈ X, ∀u ∈ Lx∗ . (11)

(b) If u∗ ∈ ∂g(0), then Lu∗ = [∂g(0) − ∂g(0)]⊥. Consequently, Lx∗ ⊂ Lu∗ for all x∗ ∈ X∗ and u∗ ∈ ∂g(0); 
in particular Lu∗ = Lv∗ for all u∗, v∗ ∈ ∂g(0).

Proof. (a) Clearly, h := g − x∗ is a proper lsc sublinear function. Using Lemma 3 for g replaced by h we 
obtain that Lx∗ is a closed linear subspace of X and the formulas for Lx∗ hold by the definition of L and 
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because ∂h(0) = ∂g(0) − x∗. Moreover, g(x + u) − 〈x + u, x∗〉 = g(x) − 〈x, x∗〉 for all x ∈ X and u ∈ Lx∗ , 
and so (11) holds, too.

(b) Take now u∗ ∈ ∂g(0) =: B. Then B − u∗ ⊂ B −B, whence Y := span(B − u∗) ⊂ span(B −B) =: Z. 
Since B − B = (B − u∗) − (B − u∗) ⊂ Y , we get Z ⊂ Y , and so Y = Z. Using (a) one has Lu∗ = B⊥ =
Y ⊥ = Z⊥ = (B −B)⊥ = [∂g(0) − ∂g(0)]⊥.

Let x∗ ∈ X∗. Because B − x∗ ⊂ span(B − x∗), as above one has B − B ⊂ span(B − x∗), and so 
Lx∗ = (B − x∗)⊥ = [span(B − x∗)]⊥ ⊂ (B −B)⊥ = Lu∗ . �

As seen in Proposition 4 (b), the set {Lu∗ | u∗ ∈ ∂g(0)} is a singleton; its element will be denoted by Lg

in the sequel. It follows that

u ∈ Lg ⇐⇒ g(−u) = −g(u) ⇐⇒ R ·
(
u, g(u)

)
⊂ epi g. (12)

Proposition 5. Let x∗ ∈ X∗. The following assertions are equivalent: (a) x∗ ∈ qri ∂g(0); (b) [g ≤ x∗] is 
a linear space; (b’) Lx∗ = [g ≤ x∗]; (c) x∗ ∈ ∂g(0) and [g = x∗] is a linear space; (c’) x∗ ∈ ∂g(0) and 
Lx∗ = [g = x∗].

Proof. Because x∗ ∈ qri ∂g(0) if and only if 0 ∈ qri [∂g(0) − x∗] and ∂(g − x∗)(0) = ∂g(0) − x∗, we may 
(and do) assume that x∗ = 0. Let us set B := ∂g(0) and K := [g ≤ 0]; K is a (closed) convex cone and 
l(K) := K ∩ (−K) is a linear space.

Because Lx∗ is a linear space, the equivalences (b’) ⇔ (b) and (c’) ⇔ (c) follow immediately from (10).
(c) ⇒ (b) Because 0 ∈ ∂g(0), one has g ≥ 0, and so [g ≤ 0] = [g = 0]. Hence (b) holds.
(b) ⇒ (c) Because K (= [g ≤ 0]) is a linear space, taking x ∈ K (= −K) we get g(±x) = 0 by Lemma 3. 

It follows that g ≥ 0 (⇔ 0 ∈ B) and K = [g = 0]. Hence [g = 0] is a linear space.
(b) ⇒ (a) We have to show that R+(B −B) ⊂ R+B, the reverse inclusion being obvious. For this 

assume that x∗ ∈ X∗ \ R+B. Then, by a separation theorem, there exist x ∈ X and α ∈ R such that 
〈x, x∗〉 > α ≥ 〈x, tu∗〉 for all t ∈ R+ and u∗ ∈ B, whence α ≥ 0 ≥ 〈x, u∗〉 for u∗ ∈ B, that is α ≥ 0 ≥ g(x). 
Hence 0 	= x ∈ K (= −K), and so g(±x) = 0. It follows that 〈±x, u∗〉 ≤ g(±x) = 0, whence 〈x, u∗〉 = 0, for 
all u∗ ∈ B. Hence 〈x, t(u∗ − v∗)〉 = 0 < 〈x, x∗〉 for all t ∈ R+ and u∗, v∗ ∈ B, proving that x /∈ R+(B −B). 
Therefore, (x∗ =) 0 ∈ qriB.

(a) ⇒ (b) Because 0 ∈ qriB, 0 ∈ B and cl(R+B) = R+(B −B). Take x ∈ K; then 〈x, u∗〉 ≤ g(x) ≤ 0
for u∗ ∈ B, and so 〈−x, u∗〉 ≥ 0 for all u∗ ∈ B, whence −x ∈ [cl(R+B)]+ =

(
R+(B −B)

)+. It follows that 
〈x, v∗〉 = 〈−x, 0 − v∗〉 ≥ 0, that is 〈−x, v∗〉 ≤ 0, for all v∗ ∈ B, whence g(−x) ≤ 0. Hence x ∈ −K, and so 
K is a linear space. �
Corollary 6. Let x∗ ∈ X∗. Then x∗ ∈ qi ∂g(0) if and only if [g ≤ x∗] = {0}.

Proof. Set B := ∂g(0). Assume that x∗ ∈ qiB. From (6) and (7) we have that x∗ ∈ qriB and R+(B −B) =
X∗. Using the equivalence (a) ⇔ (b’) of Proposition 5 and Proposition 4 (b) we obtain that [g ≤ x∗] =
Lx∗ = (X∗)⊥ = {0}.

Conversely, assume that [g ≤ x∗] = {0}. Using the implication (b) ⇒ (a) ∧ (b’) of Proposition 5, we get 
x∗ ∈ qriB (⊂ B) and (Lg =) Lx∗ = {0}. Using now Proposition 4 (b) we obtain that X∗ = {0}⊥ = L⊥

x∗ =(
[B −B]⊥

)⊥ = R+(B −B). Using again (7) we get x∗ ∈ qiB. �
Proposition 7. Assume that X is a separable normed vector space. Then w∗-qri ∂g(0) 	= ∅, and so there 
exists x∗ ∈ X∗ such that the set [g ≤ x∗] is a linear space.



6 C. Zălinescu / J. Math. Anal. Appl. 488 (2020) 124109
Proof. In order to get the conclusion we apply [2, Th. 2.19 (b)] which states that for any weakly∗ cs-closed1

subset C ⊂ (X∗, w∗), X being a separable nvs, one has w∗-qriC 	= ∅. So, consider (αn)n≥1 ⊂ R+ with ∑∞
n=1 αn = 1 and (x∗

n)n≥1 ⊂ C := ∂g(0) such that w∗-lim
∑n

k=1 αkx
∗
k = x∗ ∈ X∗. We need to prove that 

x∗ ∈ C. For this, observe first that there exists n0 ≥ 1 such that αn0 > 0. Then, for n ≥ n0 we have that 
βn :=

∑n
k=1 αn > 0 and u∗

n := β−1
n

∑n
k=1 αnx

∗
n ∈ C. Since βn → 1, we obtain that C � w∗-lim u∗

n = x∗. 
The proof is complete. �
Remark 8. Notice that the separability of the nvs X in Proposition 7 is essential. For example, the space 
of square summable real-valued functions X := �2(Γ), endowed with the norm ‖·‖ defined by ‖x‖ :=(∑

γ∈Γ |x(γ)|2
)1/2, is a Hilbert space, while X+ := {x ∈ X | x(γ) ≥ 0 ∀γ ∈ Γ} is a closed convex cone such 

that X+ −X+ = X. If Γ is at most countable, then qriX+ = qiX+ = {x ∈ X | x(γ) > 0 ∀γ ∈ Γ}. If Γ is 
uncountable then, as in [2, Ex. 3.11 (iii)], qriX+ = ∅.

Considering the quotient space X̂ := X/Lg := {x̂ | x ∈ X} of X with respect to Lg endowed with the 
quotient topology, X̂ becomes a separated locally convex space such that the natural projection π : X → X̂, 
defined by π(x) := x̂, is a continuous open linear operator; moreover A ⊂ X̂ is closed if and only if π−1(A)
is closed.

Fixing x∗ ∈ ∂g(0) one has Lx∗ = Lg; using (11), we obtain that

ĝx∗ : X̂ → R, ĝx∗(x̂) := g(x) − 〈x, x∗〉 (x ∈ X) (13)

is well defined.

Proposition 9. Assume that x∗ ∈ ∂g(0). Then ĝx∗ defined by (13) is a proper lsc sublinear function such 
that ĝx∗ ≥ 0 and Lĝx∗ = {0̂}. Moreover, x∗ ∈ qri ∂g(0) if and only if 0 ∈ qi ∂ĝx∗(0̂).

Proof. The fact that ĝx∗ is proper, sublinear and takes nonnegative values follows immediately from its 
definition. For α ∈ R one has

[ĝx∗ ≤ α] = {x̂ ∈ X̂ | ĝx∗(x̂) ≤ α} = π({x ∈ X | g(x) − 〈x, x∗〉 ≤ α}) = π([g − x∗ ≤ α]); (14)

using (11) we have that π−1([ĝx∗ ≤ α]) = [g−x∗ ≤ α]. Since g is lsc, g−x∗ is so; it follows that [g−x∗ ≤ α]
is closed, and so [ĝx∗ ≤ α] is closed in X̂ for every α ∈ R, whence ĝx∗ is lsc.

Because ĝx∗ ≥ 0 one has 0 ∈ ∂ĝx∗(0), and so Lĝx∗ = {x̂ | ĝx∗(x̂) = ĝx∗(−x̂) = 0}. Take x ∈ X with 
x̂ ∈ Lĝx∗ ; from the definition of ĝx∗ we have that g(±x) − 〈±x, x∗〉 = 0, and so x ∈ Lx∗ = Lg. It follows 
that x̂ = 0, and so Lĝx∗ = {0̂}. Taking α := 0 in (14) and in the equality on the line below it we obtain that 
[ĝx∗ ≤ 0] = π(Kx∗) and π−1([ĝx∗ ≤ 0]) = Kx∗ ; hence Kx∗ is a linear space if and only if [ĝx∗ ≤ 0] is a linear 
space. Using Proposition 5 we obtain that x∗ ∈ qri ∂g(0) if and only if 0 ∈ qri ĝx∗(0). Because Lĝx∗ = {0̂}
we have that cl

[
R+

(
∂ĝx∗(0̂) − ∂ĝx∗(0̂)

)]
= (X̂)∗, and so qri ĝx∗(0) = qi ĝx∗(0) by (7). �

In this context it is natural to know sufficient conditions for having [g ≤ 0] = {0}. Some sufficient 
conditions are provided in the next result. Recall that the core of the subset A of the real linear space E is 
coreA := {x ∈ E | ∀u ∈ E, ∃δ > 0, ∀t ∈ [0, δ] : x + tu ∈ A}.

Proposition 10. Let x∗ ∈ X∗. Consider the following assertions:
(i) [g ≤ x∗] = {0};

1 Having (Y, τ) a locally convex space, the set C ⊂ Y is (τ-) cs-closed if for any sequences (λn)n≥1 ⊂ R+ with ∑∞
n=1 λn = 1

and (yn)n≥1 ⊂ C for which ∑n
k=1 αkyk →τ y ∈ Y , y ∈ C (see [2, p. 21] or [6, p. 9]).
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(ii) x∗ ∈ qi ∂g(0);
(iii) x∗ ∈ core ∂g(0);
(iv) there exists a linear topology τ on X∗ such that x∗ ∈ intτ ∂g(0);
(v) the topology of X is defined by the norm ‖·‖ and x∗ ∈ int‖·‖∗

(∂g(0)), where ‖·‖∗ is the dual norm on 
X∗;

(vi) the topology of X is defined by the norm ‖·‖ and there exists α > 0 such that g(x) − 〈x, x∗〉 ≥ α ‖x‖
for all x ∈ X.

Then (vi) ⇔ (v) ⇒ (iv) ⇔ (iii) ⇒ (ii) ⇔ (i); moreover, if dimX < ∞ then (i) ⇒ (vi).

Proof. Because ∂ (g − x∗) (0) = ∂g(0) − x∗, we may (and do) assume that x∗ = 0. We set B := ∂g(0).
(vi) ⇔ (v) This assertion follows immediately from the equivalence of assertions (e) and (f) of [6, Exer. 

2.41].
(v) ⇒ (iv) This assertion is true because the topology generated by any norm on a linear space is a linear 

topology.
(iv) ⇒ (iii) It is well known that coreA = intσ A when A is a convex subset of topological vector space 

(Y, σ) with intσ A 	= ∅. The set B ⊂ X∗ being convex, the implication is true.
(iii) ⇒ (iv) Consider the core convex topology, that is the finest locally convex topology, τc on X∗ (see [3, 

Exer. 2.10] as well as [4, Sect. 6.3] for a short presentation of this topology); then core∂g(0) = intτc ∂g(0).
(iii) ⇒ (ii) Because 0 ∈ coreB, we have that 0 ∈ B and R+B = X∗, and so cl(R+B) = X∗. Therefore, 

0 ∈ qiB.
(ii) ⇔ (i) This equivalence is provided by Corollary 6.
(i) ⇒ (vi) (if dimX < ∞). Assume that dimX < ∞. It is well known that all the norms on a finite 

dimensional linear space are equivalent, and any separated linear topology on such a space is normable. So, 
let ‖·‖ be a norm on X. Because SX := {x ∈ X | ‖x‖ = 1} is compact and g is lsc, there exists x ∈ SX such 
that g(x) ≥ g(x) =: α (> 0). Taking x ∈ X \ {0}, x′ := ‖x‖−1

x ∈ SX , and so g(x) = ‖x‖ · g(x′) ≥ α ‖x‖. 
Hence (vi) holds. �

Observe that the reverse implication of (i) ⇒ (vi) from Proposition 10 is not true even when X is an 
infinite dimensional separable Hilbert space. Indeed, take X := �2 endowed with its usual norm ‖·‖2 and 

g : X → R defined by g(x) :=
(∑

n≥1 |xn|q
)1/q (= ‖x‖q) for x := (xn)n≥1 ∈ X, where q ∈ ]2, ∞[. 

Because �p ⊂ �p′ for 1 ≤ p < p′ ≤ ∞ with ‖x‖p′ ≤ ‖x‖p for x ∈ �p, g(x) ≤ ‖x‖2 for all x ∈ X, 
and so g is a finitely valued continuous sublinear function verifying (i). Assuming that (vi) holds, there 
exists α > 0 such that ‖x‖q ≥ α ‖x‖2 for all x ∈ �2. Consider the sequence x = (n−1/2)n≥1 ⊂ R; then 
ξn := (1, 2−1/2, ..., n−1/2, 0, 0, ...) ∈ �2, and so

(∑n

k=1

1
k

)1/2

= ‖ξn‖2 ≤ α−1 ‖ξn‖q = α−1
(∑n

k=1

1
kq/2

)1/q

∀n ≥ 1,

whence the contradiction ∞ = limn→∞
(∑n

k=1
1
k

)1/2 ≤ limn→∞ α−1(∑n
k=1

1
kq/2

)1/q
< ∞.

3. Applications to the shape of convex functions

The following results are motivated by the notions and results from [1].
Throughout this section f ∈ Γ(X); to f we associate Lf := Lf∞ . As seen in (2), ∂f∞(0) = dom f∗, and 

so, by Proposition 4, we have that

Lf = {u ∈ X | f∞(±u) = 〈±u, x∗〉} for some (any) x∗ ∈ dom f∗. (15)
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Because (epi f)∞ = epi f∞ (see e.g. [6, p. 74]), from (12) we have that the epigraph of f does not contain 
lines, that is epi f is sharp in the sense of [5], if and only if Lf = {0}. Observe that Im ∂f ⊂ dom f∗ ⊂ dom f∗

and so

span (Im ∂f − Im ∂f) ⊂ span (dom f∗ − dom f∗) = span
(
dom f∗ − dom f∗

)
= (Lf )⊥,

where all the closures are taken wrt the weak-star topology w∗ on X∗; moreover, the first inclusion becomes 
equality if X is a Banach space because in this case dom f∗ ⊂ cl‖·‖ Im ∂f by Brøndsted–Rockafellar theorem 
(see e.g. [6, Th. 3.1.2]), and so cl‖·‖ dom f∗ = cl‖·‖ Im ∂f .

Corollary 11. (a) The function f is directionally coercive if and only if 0 ∈ qi dom f∗.
(b) The function f is essentially directionally coercive if and only if qi dom f∗ 	= ∅.

Proof. Having x∗ ∈ X∗, one has (f − x∗)∞ = f∞ − x∗ and dom(f − x∗)∗ = dom f∗ − x∗, and so 
qi dom(f − x∗) = qi dom f∗ − x∗. Hence (a) ⇒ (b) by Corollary 2.

(a) By Corollary 2 one has that f is directionally coercive if and only if [f∞ ≤ 0] = {0}, and the latter 
is equivalent to 0 ∈ qi dom f∗ by (2) and the equivalence (i) ⇔ (ii) of Proposition 10. �

The representations of the (continuous) convex function f from Theorems 4–6 of [1] motivate the next 
result.

Proposition 12. Assume that f = h ◦ A + x∗, where x∗ ∈ X∗, h ∈ Γ(Y ) with Y a separated locally convex 
space, and A : X → Y is a continuous linear operator. Then the following assertions hold:

(a) f∞ = h∞ ◦A + x∗ and kerA ⊂ [f∞ = x∗];
(b) if h∞ ≥ 0, then x∗ ∈ ∂f∞(0) (= dom f∗), the reverse implication being true if, moreover, ImA = Y ;
(c) if [h∞ ≤ 0] = {0} then kerA = [f∞ ≤ x∗] and x∗ ∈ qri dom f∗; conversely, if ImA = Y and 

kerA = [f∞ ≤ x∗], then [h∞ ≤ 0] = {0}.
(d) if h is bounded from below, then h∞ ≥ 0 and x∗ ∈ dom f∗; if ImA = Y then inf h := infy∈Y h(y) =

−f∗(x∗), and so h is bounded from below if and only if x∗ ∈ dom f∗.
(e) Assume that ImA = Y . Then h attains its infimum on Y if and only if x∗ ∈ Im ∂f .

Proof. (a) Let x0 ∈ dom f ; then Ax0 ∈ domh and

f∞(u) = lim
t→∞

f(x0 + tu) − f(x0)
t

= lim
t→∞

h(Ax0 + tAu) − h(Ax0) + t 〈u, x∗〉
t

= h∞(Au) + 〈u, x∗〉 ∀u ∈ X,

and so f∞ = h∞ ◦A + x∗. The desired inclusion follows now immediately.
(b) Assume that h∞ ≥ 0. Then f∞ − x∗ = h∞ ◦ A ≥ 0, and so x∗ ∈ ∂f∞(0) [= dom f∗ by (2)]. Assume 

now that x∗ ∈ dom f∗ and ImA = Y . Clearly x∗ ∈ ∂f∞(0), and so f∞ ≥ x∗. Taking y ∈ Y = ImA, there 
exists u ∈ X with Au = y. Hence h∞(y) = h∞(Au) = f∞(u) − 〈u, x∗〉 ≥ 0. Therefore h∞ ≥ 0.

(c) Assume that [h∞ ≤ 0] = {0}. Then h∞ ≥ 0, and so x∗ ∈ dom f∗ by (b); moreover, by (a), kerA ⊂
[f∞ = x∗]. Take u ∈ [f∞ = x∗]; then h∞(Au) = f∞(u) − 〈u, x∗〉 = 0, and so Au = 0, that is u ∈ kerA. 
Hence kerA = [f∞ = x∗]; this shows that [f∞ = x∗] is a linear space and so, using the implications (c) ⇒
(b) ⇒ (a) of Proposition 5, we obtain that kerA = [f∞ ≤ x∗] and x∗ ∈ qri dom f∗.

Assume now that ImA = Y and kerA = [f∞ ≤ x∗]. Using the implication (b) ⇒ (c) of Proposition 5
we obtain that x∗ ∈ dom f∗ and kerA = [f∗ = x∗]. From (b) we have that h∞ ≥ 0. Take y ∈ [h∞ ≤ 0]. 
Because ImA = Y , there exists u ∈ X such that y = Au, and so f∞(u) = h∞(Au) + 〈u, x∗〉 ≤ 〈u, x∗〉. 
Hence u ∈ kerA, and so y = Au = 0.
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(d) Assume that h is bounded from below. Then f − x∗ ≥ inf h ∈ R, and so, f∗(x∗) = supx∈X [〈x, x∗〉 −
f(x)] < ∞, whence x∗ ∈ dom f∗.

Assume now that ImA = Y . Then inf h = inf h ◦A = inf(f − x∗) = −f∗(x∗). Hence, h is bounded from 
below if and only if x∗ ∈ dom f∗.

(e) Assume ImA = Y . Suppose that h attains its infimum at y ∈ Y and take x ∈ X such that Ax = y. 
Then f(x) − 〈x, x∗〉 = h(Ax) ≥ h(Ax) = f(x) − 〈x, x∗〉, whence x∗ ∈ ∂f(x) ⊂ Im ∂f . Conversely, assume 
that x∗ ∈ ∂f(x) (⊂ dom f∗). Then, as seen in (d), inf h = −f∗(x∗) = f(x) − 〈x, x∗〉 = h(Ax). �
Lemma 13. Let x∗ ∈ X∗ and L := Lx∗ := {u ∈ X | f∞(±u) = ± 〈u, x∗〉}. Then L is a closed linear subspace 
of X, dom f + L = dom f , (X \ dom f) + L = X \ dom f , and

f(x + u) = f(x) + 〈u, x∗〉 ∀x ∈ X, ∀u ∈ L. (16)

Proof. Applying Lemma 3 for g := f∞, we have that L is a closed linear subspace of X. Because 0 ∈ L the 
inclusions dom f + L ⊃ dom f and (X \ dom f) + L ⊃ X \ dom f are obvious. Take x ∈ dom f and u ∈ L. 
Then f(x +u) ≤ f(x) +f∞(u) = f(x) + 〈u, x∗〉 < ∞, and so dom f +L ⊂ dom f ; hence dom f +L = dom f . 
Assuming that for some x ∈ X \ dom f and u ∈ L one has x′ := x + u ∈ dom f we get the contradiction 
x = x′ + (−u) ∈ dom f . Hence (X \ dom f) + L = X \ dom f .

From the previous equality it is clear that f(x +u) = f(x) + 〈u, x∗〉 (= ∞) for x ∈ X \dom f and u ∈ L. 
Take now x ∈ dom f and u ∈ L. Then x + u ∈ dom f and, as seen above, f(x + u) ≤ f(x) + 〈u, x∗〉. Hence

f(x + u) ≤ f(x) + 〈u, x∗〉 ≤ f(x + u) + 〈−u, x∗〉 + 〈u, x∗〉 = f(x + u),

and so f(x + u) = f(x) + 〈u, x∗〉. Therefore, (16) holds. �
In the conditions and notation of Lemma 13 we have that f(x + u) − 〈x + u, x∗〉 = f(x) − 〈x, x∗〉 for all 

x ∈ X and u ∈ L, which shows that

hx∗ : X/L → R, hx∗(x̂) := f(x) − 〈x, x∗〉 (x ∈ X) (17)

is well defined and f = hx∗ ◦ π + x∗, where π : X → X/L is the (natural) projection defined by π(x) := x̂. 
The convexity and properness of h follow immediately from the corresponding properties of f .

Proposition 14. Let x∗ ∈ X∗, L := Lx∗ := {u ∈ X | f∞(±u) = ± 〈u, x∗〉}, and h := hx∗ be defined in (17). 
Then the following assertions hold:

(a) h ∈ Γ(X/L), h∞(û) = f∞(u) − 〈u, x∗〉 for all u ∈ X, and {û ∈ X/L | h∞(û) = h∞(−û) = 0} = {0̂};
(b) h∞ ≥ 0 if and only if x∗ ∈ dom f∗;
(c) if x∗ ∈ dom f∗ (consequently L = Lf ), then

[h∞ ≤ 0] = {0̂} ⇐⇒ x∗ ∈ qri dom f∗ ⇐⇒ L = [f∞ ≤ x∗] ⇐⇒ L = [f∞ = x∗];

(d) inf h = −f∗(x∗), and so h is bounded from below, if and only if x∗ ∈ dom f∗;
(e) h attains its infimum on X/L if and only if x∗ ∈ Im ∂f .

Proof. (a) As seen above, h is well defined, proper and convex, and f = h ◦ π + x∗, where π : X → X/L

with π(x) := x̂. For α ∈ R and x ∈ X one has

x̂ ∈ [h ≤ α] ⇐⇒ f(x) − 〈x, x∗〉 ≤ α ⇐⇒ x ∈ [f − x∗ ≤ α],
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and so π−1 ([h ≤ α]) = [f − x∗ ≤ α]. Since f − x∗ ∈ Γ(X), [f − x∗ ≤ α] is closed. Hence [h ≤ α] is closed. 
Because α ∈ R is arbitrary, it follows that h is lsc. Therefore, h ∈ Γ(X/L). The expression of h∞ is obtained 
using Proposition 12 (a). Take u ∈ X; from the expression of h∞ we have that

h∞(±û) = 0 ⇐⇒ h∞(±̂u) = 0 ⇐⇒ f∞(±u) − 〈±u, x∗〉 = 0 ⇐⇒ u ∈ L ⇐⇒ û = 0̂.

Because π is onto, the assertions (b), (d), (e) follow from assertions (b), (d) and (e) of Proposition 12, 
respectively.

(c) Because π is onto and kerπ = L, using Proposition 12 (c) we get the equivalence [h∞ ≤ 0] = {0̂} ⇔
L = [f ≤ x∗]; the other equivalences follow from (a) ⇔ (b’) ⇔ (c’) of Proposition 5 because x∗ ∈ dom f∗ =
∂f∞(0). �

Our main result is the following theorem; in its statement, for the closed linear subspace Y of X, π :
X → X/Y is the natural projection of X onto Y , that is π(x) := x̂.

Theorem 15. Let f ∈ Γ(X). The following assertions hold:
(i) For every x∗ ∈ X∗, there exist a closed linear subspace Y of X and h ∈ Γ(X/Y ) such that h is not 

constant on any line x̂+Rû with x̂ ∈ domh and û 	= 0̂ such that f = h ◦π+x∗. Moreover, for x∗ ∈ dom f∗, 
h is bounded from below, while for x∗ ∈ Im ∂f , h attains its infimum on X/Y ; in both cases Y = Lf , where, 
by (15),

Lf = {u ∈ X | f∞(±u) = 〈±u, u∗〉} for some (any) u∗ ∈ dom f∗.

(ii) There exist a closed linear subspace Y of X, a directionally coercive function h ∈ Γ(X/Y ) and 
x∗ ∈ X∗ such that f = h ◦π+x∗ if and only if qri dom f∗ 	= ∅. In such a case, x∗ ∈ qri dom f∗ and Y = Lf .

(iii) Assume that (X, 〈·, ·〉) is a Hilbert space and qri dom f∗ 	= ∅. Then there exist a unique closed linear 
subspace Y of X, a unique essentially directionally coercive function c ∈ Γ(Z) with Z := Y ⊥, and a unique 
v ∈ Y such that f = c ◦ PrZ + 〈·, v〉, where PrZ is the orthogonal projection of X onto Z. More precisely, 
Y = Lf , c = h|Z and v := PrY (x∗) for some (any) x∗ ∈ dom f∗, where PrY = IdX − PrZ .

Proof. (i) Take x∗ ∈ X∗ and consider Y := Lx∗ := {u ∈ X | f∞(±u) = 〈±u, x∗〉}. Then Y is closed linear 
subspace of X by Lemma 13. Using Proposition 14 (a) we get h ∈ Γ(X/Y ) such that f = h ◦ π + x∗ and 
h∞(±û) = 0 ⇒ û = 0̂; hence h is not constant on any line by (5). The other conclusions follow from 
Proposition 14 (d) and (e).

(ii) The assertion is a consequence of (i) and Proposition 14 (c).
(iii) We identify X∗ with X by Riesz theorem; then, for Y a closed linear subspace of X, the natural 

projection π of X onto X/Y becomes the orthogonal projection of X onto Y ⊥.
Assuming that f = c ◦ PrZ + 〈·, v〉 with c ∈ Γ(Z) essentially directionally coercive and v ∈ Y (less the 

uniqueness), then c = h + 〈·, z〉 with h ∈ Γ(Z) directionally coercive (⇔ [h∞ ≤ 0] = {0}) and z ∈ Z, whence

f = h ◦ PrZ + 〈·, z + v〉 .

Having in view Proposition 12, because PrZ is onto, one must have x∗ := 〈·, z + v〉 ∈ qri dom f∗ and 
(Z⊥ =) ker PrZ = [f∞ ≤ x∗]. Using Proposition 5, one must have (Y =) Z⊥ = Lx∗ = Lf , whence 
Z = L⊥

f = span
(
dom f∗ − dom f∗

)
by Proposition 4 (b); in particular, we got the uniqueness of Y . In order 

to get the uniqueness of v, let us consider x∗
1, x

∗
2 ∈ dom f∗. Then x∗

i = ui + vi with ui ∈ Z and vi ∈ Y

for i = 1, 2. It follows that Z � x∗
1 − x∗

2 = (u1 − u2) + (v1 − v2). Because u1 − u2 ∈ Z, v1 − v2 ∈ Y and 
Z ∩ Y = {0}, we obtain that v1 = v2. This shows that PrY (dom f∗) is a singleton {v}. Because v ∈ Y and 
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c ◦ PrZ = f − 〈·, v〉, we have that c(z) = c(PrZ(z)) = f(z) − 〈z, v〉 = f(z) for z ∈ Z, that is c = f |Z . This 
proves the uniqueness of c in the representation f = c ◦ PrZ + 〈·, v〉 with the desired properties.

In what concerns the existence of Y , c and v with the desired properties, we proceed as follows: Consider 
x∗ ∈ qri dom f∗ and Y = Lf (= Lx∗); set Z := Y ⊥ (= X/Y ). By (ii) there exist h ∈ Γ(Z) directionally 
coercive and x∗ ∈ X∗ (= X) such that f = h ◦ π + x∗ (= h ◦ PrZ +x∗). Take c := f |Z , v := PrY (x∗) ∈ Y

and z := x∗ − v ∈ Z. Then

c(z′) = f(z′) = (h ◦ PrZ)(z′) + 〈z′, x∗〉 = h(z′) + 〈z′, z + v〉 = h(z′) + 〈z′, z〉 ∀z′ ∈ Z,

that is c = h + 〈·, z〉. Hence c is essentially directionally coercive and f = c ◦ PrZ + 〈·, v〉. �
Remark 16. As in Azagra’s paper [1], consider X a Banach space and f : X → R a continuous convex 
function; when X is separable one has qri dom f∗ 	= ∅ by Proposition 7. So, from assertions (i), (ii) and (iii) 
of Theorem 15 one obtains Theorems 5, 6 and 4 of [1], respectively.

We end this note with an example which could be useful for providing (counter-) examples.

Example 17. Let X be a normed vector space and C ⊂ X∗ be a nonempty w∗-closed convex set. Then 
ϕC := (1

2 ‖·‖
2)�sC with sC(x) := supx∗∈C 〈x, x∗〉 for x ∈ X is a real-valued continuous convex function such 

that domϕ∗
C = C and (ϕC)∞ = sC . Here h1�h2 denotes the convolution of the functions h1, h2 : X → R

and is defined by (h1�h2)(x) := inf{h1(x1) + h2(x2) | x1, x2 ∈ X, x1 + x2 = x}.

Proof. Clearly, sC is a proper sublinear lsc function with ψ∗ = ιC . By [6, Exer. 3.11 1)] we have that ϕC is 
a continuous convex function such that ϕC ≤ 1

2 ‖·‖
2, while from [6, Th. 2.3.1 (ix)], ϕ∗

C = (1
2 ‖·‖

2)∗ + s∗C =
1
2 ‖·‖

2 + ιC . Hence domϕ∗
C = C, whence (ϕC)∞ = sC by (2). �

Notice that taking X := �2(Γ) and C := X+ as defined in Remark 8, and f the function defined in [1, 
Ex. 7], then f = 2ϕC , where ϕC is defined in Example 17. Then dom f∗ = X+. So Lf = (X+−X+)⊥ = {0}
which shows that f is not constant on any line [by Theorem 15 (i)]; moreover, if Γ is uncountable, then 
qri dom f∗ = qi dom f∗ = ∅ by Remark 8, and so f is not essentially directionally coercive by Theorem 15 (ii). 
So, the conclusions of [1, Ex. 7] are confirmed.
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