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Convex function f = hom+ z*, where m : X — X/Y is the natural projection. Our aim is to
Coercivity characterize those proper lower semicontinuous convex functions defined on a locally
Recession function convex space which have the above representation. In particular, we show that the
Quasi relative interior continuity of the function f and the completeness of X can be removed from the
Locally convex space hypothesis of Azagra’s theorem. For achieving our goal we study general sublinear

functions as well as recession functions associated to convex ones.
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1. Preliminary notions and results

In the sequel X is a nontrivial real separated locally convex space (lcs for short) with topological dual
X* endowed with its weak* topology (if not explicitly mentioned otherwise); for € X and 2* € X* we set
(x,2*) := z*(x). In some statements X will be a real normed vector space (nvs for short), or even a Hilbert
space, in which case X* will be identified with X by Riesz theorem. For E a topological vector space and
A C E, we denote by A (or cl A) and span A the closure and the linear hull of A, respectively; moreover,
spanA := span A. In particular, these notations apply for the subsets of X* which is endowed with the
weak-star topology by default; when X is a normed vector space, the norm-closure of B C X* is denoted
by ClH.” B. .

The domain of the function f: X — R := RU {—00, 00} is the set dom f := {x € X | f(x) < oo}. The
function f is proper if dom f # 0 and f(z) > —oo for all z € X; f is convex if epi f := {(z,t) € X X R |
f(z) <t} is convex. Hence f is convex if and only if f(Az+(1—N)a’) < Af(z)+(1—=N)f(a') forall z,2" € X
and A € ]0,1[ with the convention (—o0) + 0o := 00 + (—00) := co. A function g : X — R is sublinear if
g(0) = 0, g is positively homogeneous [that is g(Az) = Ag(z) for A € ]0,00[ and = € X| and subadditive
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[that is g(x +2') < g(x) + g(a') for z, 2" € X]. Clearly, any sublinear function g : X — R is convex; indeed,

for A € 10,1] and z,2’ € X one has g(Ax + (1 — N)z') < g(Az) + (1 — Ng(z') = Ag(z) + (1 — Ng(a').

Of course, f is lower semicontinuous (lsc for short) iff epi f is a closed subset of X x R or, equivalently,

{z € X | f(z) < a} is closed for every a € R. By I'(X) we denote the class of proper lsc convex functions

f: X — R. Note that ¢ is proper and epig is a closed convex cone when ¢ : X — R is Isc and sublinear.
Having f : X — R, its conjugate function is

X =R, ff(2") =sup{(z,z*) — f(z) | v € X} (2" € X),
while its subdifferential is the set-valued function df : X = X* with
Of(x) :={z" € X* | (2 —x,2*) < f(2') — f(x) V2’ € X}
if f(z) € R and 9f(z) := 0 otherwise. By [6, Th. 2.3.3], f* € I'(X*) and (f*)* = f (X* being endowed, as
mentioned above, with the weak-star topology w*) whenever f € T'(X); in particular dom f* # (. Moreover,
for f € T'(X) one has z* € 0f (x) iff x € Of*(z*) iff f(z) + f*(a*) = (z,z*).

A central notion throughout this note is that of recession function. So, having f € T'(X), its recession
function f is (equivalently) defined by

foo : X =R, folu):= lim
where g € dom f is arbitrary. The function f., is a proper Isc sublinear function having the property

flz+u) < f(z)+ foo(u) Vzedomf, YVue X (1)
(see [6, Eq. (2.28)]); moreover,

foo(u)=sup (u,2") Vue X and 0fw(0) = dom f* (2)

z*edom f*

(see [6, Exer. 2.23 and Th. 2.4.14]). In particular (see also [6, Th. 2.4.14]), if g : X — R is a (proper) lsc
sublinear function one has

99(0) ={z" € X" [ 2" < g}, ¢" =tog0), and g = goo =SUPscpg(0) " (3)

where 14 : E — R denotes the indicator function of A C E, being defined by 14(v) := 0 for v € A and
ta(v) := o0 for v € E'\ A. Hence 9g(0) # 0.

Recall that the mapping 0 < t — w € R is nondecreasing for f : X — R a proper convex
function, x¢ € dom f and u € X. Moreover, for such a function and z,u € X, the mapping ¢, : R = R
with ¢z, (t) :== f(x + tu), one of the following alternatives holds: 1) ¢, ,, is nonincreasing on R, 2) ¢, ,, is
nondecreasing on R, 3) there exists top € R such that ¢, , is nonincreasing on | — 0o, tp] and nondecreasing
on [tg, co[; moreover, there exists v, ., = lim; o f(x + tu) € R.

Lemma 1. Let f € I'(X) and uw € X \ {0}. The following assertions are equivalent:
(a) Jzp € dom f, IAM € R, Vi € [0,00[ : f(mg + tu) < M;
(b) Vo € dom f, AM € R, Vt € [0,00] : f(x + tu) < M;
(€) foo(u) <0.
Consequently, the following assertions are equivalent:
(a’) Vo € dom f: limy_, o f(2 + tu) = oo;



C. Zalinescu / J. Math. Anal. Appl. 488 (2020) 124109 3

(b)) Jzg € dom f : limy— 00 f(x0 + tu) = 005
(¢") foo(u) > 0.

Proof. (c) = (b) Take z € dom f; then, by (1), f(x 4+ tu) < f(x) 4+ foo(tu) = f(2) + tfoo(u) < f(z) == M
for t > 0.

(b) = (a) The implication is obvious.

(a) = (c) Since t71 [f(xo + tu) — f(z0)] < t71[M — f(x0)] for t > 0, one has foo(u) < limy_,oo t71[M —
f(zo)] = 0.

Observe that ](c’) coincides with (c)
the first part, we get (a’) < (b’) & (¢

, |(P’) is equivalent to (b), and ](a’) is equivalent to (a). Hence, from
). O

Having in view the statements of Theorems 5 and 6 in [1], it is worth observing that for 2o € dom f,
u € X and u* € X* one has

foo(£u) = (Fu,u™) < [f(zo + tu) — f(xo) — (tu,u™) =0 Vt € R]. (4)

Indeed, the implication “<” is obvious. Assume that foo(+u) = (fu,u*) [ foo(tu) = (tu,u*) for all t € R].
Using (1) we get

flxo +tu) < f(zo) + foo(tu) = f(xo) + (tu,u”), f(xo—tu) < f(xo) — (tu,u™) Vit eR.

Since g = %(xo + tu) + %(azo — tu), from the convexity of f and the previous inequalities we get

f(xo) < 5f(xo + tu) + 5 f(wo — tu) < 5[f(xo) + (tu, u™)] + 5[f(xo) — (tu,u")] = f (o),

and so f(zg + tu) = f(xo) + (tu,u*) for every ¢ € R. Hence (4) holds.
Taking u # 0 and uv* = 0, from (4) with 29 € dom f we have that

Joo(Fu) =0 <= [f(zo + tu) = f(x0) Vt € R] <= fls,+Ru is constant. (5)

Moreover, it is worth observing that fo, > 0 if f is bounded from below; indeed, if fo(u) < 0, from (1)
we have that f(x 4 tu) < f(z) + t foo(u), and so lim;—, o f(x + tu) = —o0, for every x € dom f.

In the sequel, for ¢, : E — Rand p € {<, <, =} we set [p p ] := {x € E | p(z) p ¢(z)}. For example
[p<0]:={zeX|p) <0}

As in [1, Def. 3], we say that f is directionally coercive if lim;_,o f(z 4+ tu) = oo for all z € X and
u € X \ {0}, and f is essentially directionally coercive if f — x* is directionally coercive for some x* € X*.

From the equivalence of assertions (a’), (b’) and (c¢’) of Lemma 1 we get the next result.

Corollary 2. Let f € T'(X); then (a) f is directionally coercive if and only if [foo < 0] = {0}, and (b) f is
essentially directionally coercive if and only if there exists x* € X* such that [fo < 2*] = {0}.

The previous result motivates a deeper study of proper Isc sublinear functions; several properties of such
functions are mentioned in [6, Th. 2.4.14].
Recall that the orthogonal spaces of the nonempty subsets A C X and B C X* are defined by

At ={z* e X* | (z,2") =0Vz € A} and Bt :={zc X | (z,2%) =0Vz" € B},
respectively; clearly, AL is a w*-closed linear subspace of X*, Bt is a closed linear subspace of X, A+ =

(spand)*, B+ = (spanB)*, (A1)L = spanA, (B+)L = spanB. Also recall that the quasi-interior and the
quasi-relative interior of the nonempty convex set A C X are
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qgqA:={a€ ARy (A—a)=X}, qriA:={a€ A|RL(A—a)isa linear space},
respectively, where R, := [0, co[. Having in view that
Ri(A—a) Cspan(A —a) =span(A — A) =R, (A— A) Va € A,

for ) # A C X a convex set, one obtains (see e.g. [7]) that

qiA={ac AR (A—a)=5pan(A—A)}={a € A|R (A—a) =R (A-A)}, (6)

qid ifRi(A—A) =X,

iA=ANqriA 1A=
an anad, o dl { 0 otherwise.

2. Some results related to sublinear functions

Throughout this section g € T'(X) is assumed to be sublinear.

Lemma 3. Let us set K :=[g < 0] and L := KN (=K). Then K is a closed convexr cone and L is a closed
linear subspace of X. Moreover,

L={zeX|g(x)=g(-z) =0} =[99(0)]", (8)
glx+u)=g(x) VereX, VuelL. (9)

Proof. Because g is a lsc sublinear function, [¢g < 0] is a closed convex cone. The set L is a closed convex
cone as the intersection of (two) closed convex cones. Since L = —L, L is also a linear subspace of X.
Take x € L; because 0 = g(z + (—z)) < g(z) + g(—z) < 0+ 0 = 0, we get g(z) = 0 = g(—z), and so
L c{x € X |g(x) = g(—x) = 0}. The reverse inclusion being obvious, the first equality in (8) holds.
Set B := 9g(0). Taking into account the formula for ¢ from (3), for € X one has

r €L+ g(+2) <0<+ [£ (z,2") <0 Va* € B] <= [(2,2") =0 Va* € B] <= = € B+,

and so the second equality in (8) holds, too.
Take now x € X and u € L. Using the sublinearity of g one has

g +u) < g(z) +g(v) = g(z) = g((z +v) + (—u)) < g(z +v) + g(—u) = g(z +u),
and so g(z +u) =g(z). DO

Proposition 4. For * € X* set Ly« := {zx € X | g(+x) = (fx,z*). The following assertions hold:
(a) If x* € X*, then Ly~ is a closed linear subspace of X, and

Ly = {z € X | g(£z) < (xa,2%)} = [9g(0) — 2*] -, (10)
gz +u)=g(x)+ (u,x") Ve e X, Vue€ Ly-. (11)

(b) Ifu* € 8g(0), then Ly- = [0g(0) — Ag(0)]". Consequently, Ly~ C Ly~ for allz* € X* and u* € dg(0);
in particular Ly~ = Ly« for all u*,v* € 9g(0).

Proof. (a) Clearly, h := g — z* is a proper Isc sublinear function. Using Lemma 3 for g replaced by h we
obtain that L, is a closed linear subspace of X and the formulas for L.~ hold by the definition of L and
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because Oh(0) = dg(0) — *. Moreover, g(z + u) — (x + u,2*) = g(x) — (x,z*) for all z € X and u € Ly~,
and so (11) holds, too.

(b) Take now u* € 9g(0) =: B. Then B —u* C B — B, whence Y := span(B — u*) C span(B — B) =: Z.
Since B— B = (B—u*) —(B—u*) CY,weget ZCY,and soY = Z. Using (a) one has L,~ = B+ =
V=274 = (B - B)* =109(0) - 9g(0)] .

Let * € X*. Because B — z* C span(B — z*), as above one has B — B C span(B — z*), and so
Ly = (B —2*)* = [span(B —2*)]" € (B = B)t = L,-. O

As seen in Proposition 4 (b), the set {L,~ | u* € 0g(0)} is a singleton; its element will be denoted by L,
in the sequel. It follows that

u€ Ly < g(—u) = —g(u) < R (u,g(u)) C epiyg. (12)

Proposition 5. Let z* € X*. The following assertions are equivalent: (a) x* € qridg(0); (b) [g < z*] is
a linear space; (b’) Ly« = [g < 2*]; (¢) z* € 0g(0) and [g = z*] is a linear space; (c’) z* € 9g(0) and

Ly =[g =z%].

Proof. Because z* € qridg(0) if and only if 0 € qri[0g(0) — z*] and 9(g — =*)(0) = 9g(0) — z*, we may
(and do) assume that x* = 0. Let us set B := 9¢(0) and K := [¢g < 0]; K is a (closed) convex cone and
I(K):= KN (—K) is a linear space.

Because L,- is a linear space, the equivalences (b’) < (b) and (¢’) < (c) follow immediately from (10).

(¢) = (b) Because 0 € 9¢(0), one has g > 0, and so [g < 0] = [g = 0]. Hence (b) holds.

(b) = (c) Because K (= [g < 0]) is a linear space, taking € K (= —K) we get g(+z) = 0 by Lemma 3.
It follows that ¢ > 0 (< 0 € B) and K = [g = 0]. Hence [g = 0] is a linear space.

(b) = (a) We have to show that R (B — B) C R;B, the reverse inclusion being obvious. For this
assume that ¥ € X* \ R, B. Then, by a separation theorem, there exist Z € X and o € R such that
(,T*) > a > (T,tu*) for all t € Ry and u* € B, whence o > 0 > (T, u*) for u* € B, that is a« > 0 > ¢(7).
Hence 0 £7 € K (= —K), and so g(£%) = 0. It follows that (+z,u*) < g(+x) = 0, whence (z,u*) = 0, for
all u* € B. Hence (7, t(u* —v*)) =0 < (Z,T") for all t € R and u*,v* € B, proving that T ¢ R (B — B).
Therefore, (z* =) 0 € qri B.

(a) = (b) Because 0 € qriB, 0 € B and cl(RyB) = R4 (B — B). Take « € K; then (z,u*) < g(z) <0
for u* € B, and so (—z,u*) > 0 for all u* € B, whence —z € [cl(RB)]" = (R4(B - B))+. It follows that
(x,v*) = (—x,0 — v*) > 0, that is (—z,v*) <0, for all v* € B, whence g(—z) < 0. Hence x € —K, and so
K is a linear space. 0O

Corollary 6. Let x* € X*. Then x* € qidg(0) if and only if [¢g < x*] = {0}.

Proof. Set B := 0g(0). Assume that 2* € qi B. From (6) and (7) we have that 2* € qri B and R, (B — B) =
X*. Using the equivalence (a) < (b’) of Proposition 5 and Proposition 4 (b) we obtain that [¢g < z*] =
L, = (X*)*+ = {0}.

Conversely, assume that [g < z*] = {0}. Using the implication (b) = (a) A (b’) of Proposition 5, we get
2* € qri B (C B) and (L, =) L« = {0}. Using now Proposition 4 (b) we obtain that X* = {0}* = LL =
([B- Bt )L =R, (B — B). Using again (7) we get 2* € qiB. O

Proposition 7. Assume that X is a separable normed vector space. Then w*-qridg(0) # 0, and so there
exists ©* € X* such that the set [g < x*] is a linear space.
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Proof. In order to get the conclusion we apply [2, Th. 2.19 (b)] which states that for any weakly* cs-closed'
subset C' C (X*,w*), X being a separable nvs, one has w*-qriC # (). So, consider (ay)n>1 C R4 with
Yoo o =1and (z),>1 C C := 9g(0) such that w*-lim >} _, axzi = z* € X*. We need to prove that
x* € C. For this, observe first that there exists ng > 1 such that a,, > 0. Then, for n > ng we have that
B =3 p_yan > 0and u} = 8,1 S)_ anzl € C. Since 3, — 1, we obtain that C' 3 w*-limu}, = z*.
The proof is complete. O

Remark 8. Notice that the separability of the nvs X in Proposition 7 is essential. For example, the space
of square summable real-valued functions X := ¢5(I"), endowed with the norm ||-|| defined by |jz| =
(Zwer lz(7)]? )1/2, is a Hilbert space, while X := {x € X | z(vy) > 0 Vy € T'} is a closed convex cone such
that X1 — Xy = X. If T is at most countable, then qriX; =qiXy ={z € X |z(y) >0VyeT'}.If T'is
uncountable then, as in [2, Ex. 3.11 (iii)], qri X1 = 0.

Considering the quotient space X := X/Ly :={Z | x € X} of X with respect to L, endowed with the
quotient topology, X becomes a separated locally convex space such that the natural projection 7 : X — X ,
defined by m(z) := 7, is a continuous open linear operator; moreover A C X is closed if and only if 7=1(A)
is closed.

Fixing «* € 0¢(0) one has L, = Lg; using (11), we obtain that

Gor : X 5 R, §or(@) :=g(x) — (x,2") (z€X) (13)
is well defined.

Proposition 9. Assume that x* € 9g(0). Then g,- defined by (13) is a proper lsc sublinear function such
that g+ >0 and Ly . = {0}. Moreover, z* € qridg(0) if and only if 0 € qi gy~ (0).

Proof. The fact that g,- is proper, sublinear and takes nonnegative values follows immediately from its
definition. For a € R one has

G0 <] ={F € X | G0+ (&) < a} = 7({z € X | g(2) — (w,2") < a}) = 7([g — " < a]); (14)

using (11) we have that 771([g,« < ) = [¢g—2* < a]. Since g is Isc, g — z* is so; it follows that [¢ —z* < q
is closed, and so [g,~ < ] is closed in X for every o € R, whence g+ is lsc.

Because gy« > 0 one has 0 € 09,+(0), and so L . = {Z | §2+(Z) = go=(—Z) = 0}. Take 2 € X with
T € Lg,.; from the definition of g,- we have that g(£z) — (+z,2*) = 0, and so ¢ € L+ = L,. It follows
that 7 =0, and so Lj ., = {0}. Taking o := 0 in (14) and in the equality on the line below it we obtain that
[G+ < 0] = 7(K,+) and 77 ([ge+ < 0]) = K,+; hence K~ is a linear space if and only if [g,~ < 0] is a linear
space. Using Proposition 5 we obtain that z* € qridg(0) if and only if 0 € qrig,~(0). Because L; . = {0}
we have that cl [R. (3@”(6) — OG- (6))] = (X)*, and so qrigy-(0) = qige-(0) by (7). O

In this context it is natural to know sufficient conditions for having [¢ < 0] = {0}. Some sufficient
conditions are provided in the next result. Recall that the core of the subset A of the real linear space F is
coreA:={x e E|YueFE,30>0,Vte[0,0]:x+tuec A}

Proposition 10. Let z* € X*. Consider the following assertions:
(i) lg < =7 = {0};

! Having (Y, ) a locally convex space, the set C C Y is (7-) cs-closed if for any sequences (A\n)n>1 C Ry with 522 A, =1
and (Yn)n>1 C C for which )77 aryr =" y €Y, y € C (see [2, p. 21] or [6, p. 9]).
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(ii) =* € qidg(0);
(iii) «* € core g(0);
(iv) there exists a linear topology T on X* such that x* € int, Ag(0);
(v) the topology of X is defined by the norm ||-|| and z* € int).| (9g(0)), where ||-||, is the dual norm on
X*;

(vi) the topology of X is defined by the norm ||| and there exists o > 0 such that g(x) — (x,z*) > a||x]|
forallz € X.

Then (vi) & (v) = (iv) & (iii) = (ii) & (i); moreover, if dim X < oo then (i) = (vi).

Proof. Because 0 (g — x*) (0) = 9g(0) — 2*, we may (and do) assume that * = 0. We set B := 9dg(0).

(vi) & (v) This assertion follows immediately from the equivalence of assertions (e) and (f) of [6, Exer.
2.41].

(v) = (iv) This assertion is true because the topology generated by any norm on a linear space is a linear
topology.

(iv) = (iii) It is well known that core A = int, A when A is a convex subset of topological vector space
(Y, o) with int, A # . The set B C X* being convex, the implication is true.

(iii) = (iv) Consider the core convex topology, that is the finest locally convex topology, 7. on X* (see [3,
Exer. 2.10] as well as [4, Sect. 6.3] for a short presentation of this topology); then core dg(0) = int,_ dg(0).

(iii) = (ii) Because 0 € core B, we have that 0 € B and Ry B = X*, and so cl(R;B) = X*. Therefore,
0€qiB.

(ii) < (i) This equivalence is provided by Corollary 6.

(i) = (vi) (if dim X < o0). Assume that dim X < oo. It is well known that all the norms on a finite
dimensional linear space are equivalent, and any separated linear topology on such a space is normable. So,
let ||-|| be a norm on X. Because Sx := {z € X | ||z|]| = 1} is compact and g is Isc, there exists T € Sx such
that g(z) > g(Z) =: a (> 0). Taking z € X \ {0}, 2/ := ||z| 'z € Sx, and so g(z) = ||z| - g(z') > a|z|.
Hence (vi) holds. O

Observe that the reverse implication of (i) = (vi) from Proposition 10 is not true even when X is an
infinite dimensional separable Hilbert space. Indeed, take X := {5 endowed with its usual norm ||-||, and
g : X — R defined by g(z) = (X, |mn|q)1/q (= [lzll,) for z := (5)n>1 € X, where ¢ € |2,00][.
Because £, C £y for 1 < p < p’ < oo with [lz]|,, < [lz[|, for z € £, g(z) < |z, for all z € X,
and so ¢ is a finitely valued continuous sublinear function verifying (i). Assuming that (vi) holds, there
exists a > 0 such that |lz[|, > a|z|, for all # € ¢>. Consider the sequence z = (n=Y?),>1 C R; then
&= (1,2712,...,n71/2,0,0,...) € £3, and so

n 1 1/2 ) ) " 1 1/q
(Z1) =lah<olal, =0 (S0, ms) w21,

)1/ n 1 )1/‘1

L . 2 _
whence the contradiction 0o = limp, 00 (Y j_; 1 <im0 @ (Xh_) 727 < 0.

3. Applications to the shape of convex functions
The following results are motivated by the notions and results from [1].
Throughout this section f € I'(X); to f we associate Ly := Ly_. As seen in (2), 0fo0(0) = dom f*, and

so, by Proposition 4, we have that

Ly ={u€ X | foo(fu) = (£u,z")} for some (any) z* € dom f*. (15)
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Because (epi f)oo = epi foo (see e.g. [6, p. 74]), from (12) we have that the epigraph of f does not contain
lines, that is epi f is sharp in the sense of [5], if and only if Ly = {0}. Observe that Im9f C dom f* C dom f*
and so

span (Imdf — Im 0f) C span (dom f* — dom f*) = span (dom f* — dom f*) = (Ly)™,

where all the closures are taken wrt the weak-star topology w* on X*; moreover, the first inclusion becomes
equality if X is a Banach space because in this case dom f* C cl. Im 8 f by Brgndsted-Rockafellar theorem
(see e.g. [6, Th. 3.1.2]), and so cl. dom f* = clj Im O f.

Corollary 11. (a) The function f is directionally coercive if and only if 0 € qidom f*.
(b) The function f is essentially directionally coercive if and only if qidom f* # ().

Proof. Having z* € X*, one has (f — 2%)o = foo — 2* and dom(f — z*)* = dom f* — z*, and so
gidom(f — z*) = qidom f* — z*. Hence (a) = (b) by Corollary 2.

(a) By Corollary 2 one has that f is directionally coercive if and only if [f,, < 0] = {0}, and the latter
is equivalent to 0 € qidom f* by (2) and the equivalence (i) <> (ii) of Proposition 10. O

The representations of the (continuous) convex function f from Theorems 4-6 of [1] motivate the next
result.

Proposition 12. Assume that f = ho A+ z*, where z* € X*, h € I'(Y) with Y a separated locally convex
space, and A : X —'Y is a continuous linear operator. Then the following assertions hold:

(a) foo =hoo o A+ 2" and ker A C [foo = z*|;

(b) if hoo > 0, then z* € 0f+(0) (= dom f*), the reverse implication being true if, moreover, In A =Y ;

(¢) if [hoo < 0] = {0} then ker A = [fo, < 2*] and 2* € qridom f*; conversely, if ImA =Y and
ker A = [foo < x*], then [hoo < 0] = {0}.

d) if h is bounded from below, then hoo > 0 and * € dom f*; if In A =Y then inf h := inf,cy h(y) =
—f*(x*), and so h is bounded from below if and only if * € dom f*.

(e) Assume that In A =Y. Then h attains its infimum on Y if and only if x* € ImOf.

Proof. (a) Let zg € dom f; then Azy € dom h and

foo(u) = lim f@ottu) = flwo) _ lim h(Azg + tAu) — h(Azo) +t (u, x*)

t—o0 t t—o0 t

= hoo(Au) + (u, %) Yu € X,

and s0 foo = hoo © A + z*. The desired inclusion follows now immediately.

(b) Assume that ho, > 0. Then foo — 2" = hoo 0 A > 0, and 50 2% € 0fso(0) [= dom f* by (2)]. Assume
now that z* € dom f* and Im A =Y. Clearly x* € 0f(0), and so fo, > x*. Taking y € Y = Im A, there
exists u € X with Au = y. Hence hoo (y) = hoo(Au) = foo(u) — (u, z*) > 0. Therefore ho, > 0.

(¢) Assume that [ho < 0] = {0}. Then ho, > 0, and so z* € dom f* by (b); moreover, by (a), ker A C
[foo = z*]. Take u € [foo = x*]; then hoo(Au) = foo(u) — (u,z*) = 0, and so Au = 0, that is u € ker A.
Hence ker A = [fo, = x*]; this shows that [fo = z*] is a linear space and so, using the implications (c¢) =
(b) = (a) of Proposition 5, we obtain that ker A = [foo < 2*] and z* € qridom f*.

Assume now that ImA =Y and ker A = [fo < z*]. Using the implication (b) = (c) of Proposition 5
we obtain that * € dom f* and ker A = [f* = z*]. From (b) we have that ho, > 0. Take y € [hoo < 0].
Because Im A = Y, there exists u € X such that y = Au, and s0 foo(u) = hoo(Au) + (u,2*) < (u,x*).
Hence u € ker A, and so y = Au = 0.
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(d) Assume that h is bounded from below. Then f — z* > inf h € R, and so, f*(2*) = sup,¢x [(x, z*) —
f(x)] < oo, whence z* € dom f*.

Assume now that In A =Y. Then infh = infho A = inf(f — 2*) = — f*(«*). Hence, h is bounded from
below if and only if * € dom f*.

(e) Assume Im A =Y. Suppose that h attains its infimum at § € Y and take T € X such that AT = 7.
Then f(z) — (z,z*) = h(Az) > h(AT) = f(T) — (T, 2*), whence z* € 9f(T) C ImIf. Conversely, assume
that z* € 9f(Z) (C dom f*). Then, as seen in (d), inf h = —f*(2*) = f(T) — (T, 2*) = h(AT). DO

Lemma 13. Let z* € X* and L := L+ := {u € X | foo(u) = £ (u,z*)}. Then L is a closed linear subspace
of X,dom f+ L=dom f, (X \dom f)+ L= X\domf, and

flz4+u) = f(x) + {u,z*) VreX, Vue L. (16)

Proof. Applying Lemma 3 for g := f.,, we have that L is a closed linear subspace of X. Because 0 € L the
inclusions dom f + L D dom f and (X \ dom f) + L D X \ dom f are obvious. Take x € dom f and u € L.
Then f(z+u) < f(z)+ foo(u) = f(z)+ (u,z*) < 00, and so dom f+ L C dom f; hence dom f + L = dom f.
Assuming that for some z € X \ dom f and v € L one has 2’ := = + u € dom f we get the contradiction
x=2a'+ (—u) € dom f. Hence (X \ dom f) + L = X \ dom f.

From the previous equality it is clear that f(z +u) = f(z)+ (u,2*) (= ) for z € X \ dom f and v € L.
Take now x € dom f and w € L. Then z + u € dom f and, as seen above, f(x +u) < f(x) + (u, z*). Hence

fla+u) < fla) + (u,2%) < flo+u) + (-u,27) + (u,2") = fz +u),
and so f(z +u) = f(x) + (u,x*). Therefore, (16) holds. O

In the conditions and notation of Lemma 13 we have that f(z 4+ u) — (z + u,2*) = f(z) — (x,2*) for all
x € X and u € L, which shows that

hoe: X)L =R, hy(2) := f(x) — (z,2*) (v € X) (17)

is well defined and f = h,» o + 2™, where 7 : X — X/L is the (natural) projection defined by 7(z) := Z.
The convexity and properness of h follow immediately from the corresponding properties of f.

Proposition 14. Let 2* € X*, L := Ly := {u € X | foo(Fu) = = {u,2*)}, and h := hy~ be defined in (17).
Then the following assertions hold:
(a) h € D(X/L), hoo(TW) = foo(u) — (u,z*) for allu € X, and {G € X/L | hoo () = hoo(—1) = 0} = {0};
(b) hoo > 0 if and only if * € dom f*;
(c) if * € dom f* (consequently L = Ly ), then

[hoo < 0] = {0} <= 2" € qridom f* <= L = [foo < 2] <= L = [foo = z];

(d) inf h = —f*(x*), and so h is bounded from below, if and only if x* € dom f*;
(e) h attains its infimum on X/L if and only if x* € ImOf.

Proof. (a) As seen above, h is well defined, proper and convex, and f = honw + z*, where 7 : X — X/L
with 7(z) := Z. For a € R and x € X one has

*

Teh<a <= flx)—(r,2") <a<=ze[f-—z"<da
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and so 7~ ([h < a]) = [f —2* < a]. Since f —2* € T'(X), [f — 2* < o] is closed. Hence [h < a] is closed.
Because a € R is arbitrary, it follows that h is Isc. Therefore, h € I'(X/L). The expression of h, is obtained
using Proposition 12 (a). Take u € X; from the expression of hy, we have that

oo (£T) = 0 <= hoo(£u) = 0 = foo(du) — (fu,2*) =0 <= u e L < 0 = 0.

Because 7 is onto, the assertions (b), (d), (e) follow from assertions (b), (d) and (e) of Proposition 12,
respectively.

(¢) Because 7 is onto and ker 7 = L, using Proposition 12 (c) we get the equivalence [ho < 0] = {0} <
L = [f < z*]; the other equivalences follow from (a) < (b’) < (c¢’) of Proposition 5 because z* € dom f* =
0f(0). O

Our main result is the following theorem; in its statement, for the closed linear subspace Y of X, 7 :
X — X/Y is the natural projection of X onto Y, that is w(z) := Z.

Theorem 15. Let f € T'(X). The following assertions hold:

(i) For every x* € X*, there exist a closed linear subspace Y of X and h € T(X/Y) such that h is not
constant on any line T+ Ru with T € dom h and u # 0 such that f = hom+a*. Moreover, for z* € dom f*,
h is bounded from below, while for x* € ImOf, h attains its infimum on X/Y ; in both cases Y = Ly, where,

by (15),
Ly ={ue X | fo(tu) = (£u,u")} for some (any) u* € dom f*.
(ii) There exist a closed linear subspace Y of X, a directionally coercive function h € T'(X/Y) and

z* € X* such that f = hom+x* if and only if qridom f* % 0. In such a case, * € qridom f* andY = Ly.
(iii) Assume that (X, (-,+)) is a Hilbert space and qridom f* # (. Then there exist a unique closed linear

subspace Y of X, a unique essentially directionally coercive function c € I'(Z) with Z := Y, and a unique
v €Y such that f = coPrz+ (-,v), where Pryz is the orthogonal projection of X onto Z. More precisely,
Y =Ly, ¢ =h|z and v := Pry(z*) for some (any) z* € dom f*, where Pry =Idx —Prz.

Proof. (i) Take 2* € X* and consider ¥ := Ly« := {u € X | foo(£u) = (Lu,z*)}. Then Y is closed linear
subspace of X by Lemma 13. Using Proposition 14 (a) we get h € I'(X/Y") such that f = how + z* and
hoo(£0) = 0 = @ = 0; hence h is not constant on any line by (5). The other conclusions follow from
Proposition 14 (d) and (e).

(ii) The assertion is a consequence of (i) and Proposition 14 (c).

(iii) We identify X* with X by Riesz theorem; then, for Y a closed linear subspace of X, the natural
projection 7 of X onto X/Y becomes the orthogonal projection of X onto Y.

Assuming that f = coPryz + (-,v) with ¢ € I'(Z) essentially directionally coercive and v € Y (less the
uniqueness), then ¢ = h+ (-, z) with h € I'(Z) directionally coercive (< [hoo < 0] = {0}) and z € Z, whence

f=hoPrgz+(,z+v).
Having in view Proposition 12, because Prz is onto, one must have z* := (-, z+v) € qridom f* and

(Z+ =) kerPrz = [fs < *]. Using Proposition 5, one must have (Y =) Z1 = L,« = L;, whence
Z = LJ% = Span (dom f*—dom f*) by Proposition 4 (b); in particular, we got the uniqueness of Y. In order

to get the uniqueness of v, let us consider z7,z3 € dom f*. Then z} = u; +v; with v, € Z and v; € Y
for ¢ = 1,2. Tt follows that Z > z] — 25 = (u1 — u2) + (v1 — v2). Because u; —ug € Z, v1 —vg € Y and
ZNY = {0}, we obtain that v; = vo. This shows that Pry (dom f*) is a singleton {v}. Because v € Y and
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coPry = f —(-,v), we have that ¢(z) = ¢(Prz(2)) = f(2) — (z,v) = f(z) for z € Z, that is ¢ = f|z. This
proves the uniqueness of ¢ in the representation f = co Pry + (-, v) with the desired properties.

In what concerns the existence of Y, ¢ and v with the desired properties, we proceed as follows: Consider
z* € qridom f* and Y = Ly (= Ly« ); set Z := Y+ (= X/Y). By (ii) there exist h € I'(Z) directionally
coercive and z* € X* (= X) such that f = hon 4+ 2* (= hoPryz +z*). Take ¢ := f|z, v :==Pry(z*) € Y
and z:=2* —v € Z. Then

c(2')=f(Z)=(hoPrz)(2") + (z,2") = h(z') + (', 2 +v) = h(Z) + (', 2) V' € Z,
that is ¢ = h + (-, z). Hence c is essentially directionally coercive and f = coPrz+ (-,v). O

Remark 16. As in Azagra’s paper [1], consider X a Banach space and f : X — R a continuous convex
function; when X is separable one has qridom f* # () by Proposition 7. So, from assertions (i), (ii) and (iii)
of Theorem 15 one obtains Theorems 5, 6 and 4 of [1], respectively.

We end this note with an example which could be useful for providing (counter-) examples.

Example 17. Let X be a normed vector space and C C X* be a nonempty w*-closed convex set. Then
oo = (% |-I*)Dse with so () := SUp,«cc (z,2*) for ¢ € X is a real-valued continuous convex function such
that dom ¢f = C and (pc)ec = Sc. Here h10hy denotes the convolution of the functions hy, hy : X — R
and is defined by (h10hg)(z) := inf{hq(z1) + h2(x2) | 21,22 € X, ©1 + 22 = z}.

Proof. Clearly, s¢ is a proper sublinear Isc function with ¥* = 1. By [6, Exer. 3.11 1)] we have that p¢ is
a continuous convex function such that pc < 1 ||-I*, while from [6, Th. 2.3.1 (ix)], @& (1 I-1%)* + st =
i 1I* + ¢c. Hence dom ¢} = C, whence (pc)oc = sc by (2). O

Notice that taking X := ¢5(I") and C := X, as defined in Remark 8, and f the function defined in [1,
Ex. 7], then f = 2¢¢, where ¢¢ is defined in Example 17. Then dom f* = X . So Ly = (X4 — X;)* = {0}
which shows that f is not constant on any line [by Theorem 15 (i)]; moreover, if I is uncountable, then
gridom f* = qidom f* = () by Remark 8, and so f is not essentially directionally coercive by Theorem 15 (ii).
So, the conclusions of [1, Ex. 7] are confirmed.
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