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We study global dynamics of the solution to the Cauchy problem for the focusing 
semilinear Schrödinger equation with a linear potential on the real line R:

{
i∂tu + ∂2

xu− V u + |u|p−1u = 0, (t, x) ∈ I ×R,
u(0) = u0 ∈ H,

(NLSV )

where u = u(t, x) is a complex-valued unknown function of (t, x) ∈ I×R, I denotes 
the maximal existence time interval of u, V = V (x) is non-negative and in L1(R) +
L∞(R), p belongs to the so-called mass-supercritical case, i.e. p > 5, and H is a 
Hilbert space connected to the Schrödinger operator −∂2

x + V and is called energy 
space. It is well known that (NLSV ) is locally well-posed in H. Our aim in the 
present paper is to study global behavior of the solution and prove a scattering 
result and a blow-up result for (NLSV ) with the data u0 whose mass-energy is less 
than that of the ground state Q, where the function Q = Q(x) is the unique radial 
positive solution to the stationary Schrödinger equation without the potential:

−Q′′ + Q = |Q|p−1Q, in H1(R).

The similar result for NLS without potential (V ≡ 0), which is invariant of 
translation and scaling transformation, in one space dimension was obtained by 
Akahori–Nawa. Lafontaine treated the defocusing version of (NLSV ), that is, 
(NLSV ) with a replacement of +|u|p−1u into −|u|p−1u, and prove that the solution 
scatters as t → ±∞ in H1(R) for an arbitrary data in H1(R) by Kenig-Merle’s 
argument with a profile decomposition. However, the method to the defocusing 
case cannot be applicable to our focusing case because the energy is positive in the 
defocusing case, on the other hand, the energy may be negative in the focusing case. 
To overcome this difficulty, we use a variational argument. Our proof of the blow-up 
result is based on the argument of Du–Wu–Zhang. The difficulty of our case lies 
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in deriving a uniform bound of a functional related to Virial Identity because of 
existence of the potential.

© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Background

In the present paper, we study global dynamics of the solution to the Cauchy problem for the focusing 
semilinear Schrödinger equation with a linear potential on the real line R:

{
i∂tu + ∂2

xu− V u + |u|p−1u = 0, (t, x) ∈ I ×R,

u(0) = u0 ∈ H,
(NLSV )

where u = u(t, x) is a complex-valued unknown function of (t, x), (0 ∈) I denotes a existence time interval 
of the function u, (0 �=) V ∈ L1(R) +L∞(R) := {f : f = f1 +f2, f1 ∈ L1(R), f2 ∈ L∞(R)} is a non-negative 
function of x ∈ R, where Lq = Lq(R) (1 ≤ q ≤ ∞) denotes a usual Lebesgue space, p > 5 belongs to the 
mass-supercritical region, u0 = u0(x) is a complex-valued prescribed function of x ∈ R, and H is a Hilbert 
space associated with the Schrödinger operator −∂2

x + V and is called energy space. The precise definition 
of H is given by (1.3).

The Cauchy problem (NLSV ) is locally well-posed in the energy space H (see Proposition 1.1, or Theorem 
3.7.1 in [4] for more general setting). Our aim in the present paper is to study global dynamics of the solution 
to (NLSV ) and prove a scattering result and a blow-up result of (NLSV ) with the initial data whose mass-
energy is less than that of the ground state Q1, where for ω > 0, Qω = Qω(x) is the unique radial positive 
solution to the stationary Schrödinger equation without the potential:
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−Q′′
ω + ωQω = |Qω|p−1Qω, in H1(R), (1.1)

where Hs = Hs(R) denotes the s-th ordered L2-based Sobolev space. We note that eiωtQω(x) is a non-
scattering global solution to (NLS) with u0 = Qω. Our result extends the results of NLS without potentials 
(V ≡ 0) obtained in [1,8] (see also [11,12,7] for three dimensional cases) to that of (NLSV ) with a potential 
V ≥ 0. The similar results for (NLS) with another potential were obtained in [15,20,22,13], where [15]
treats the focusing mass-supercritical NLS with a repulsive Dirac delta potential (V = δ0) in one space 
dimension (see also [3] for the defocusing case) and [20,22] studied the focusing mass-supercritical NLS 
with an inverse square potential in three spatial dimensions (V (x) = a

|x|2 with a > −1
4 ). Lafontaine [21]

studied the defocusing version of (NLSV ), that is, (NLSV ) with a replacement of +|u|p−1u into −|u|p−1u, 
and proved that the local solution can be extended globally and it tends to a free one as t → ±∞ in the 
energy space H1(R) for an arbitrary data in H1(R), if V ∈ L1

1(R) := {f ∈ L1(R) : (1 + | · |)f ∈ L1(R)}. 
However, about study of classification of global behaviors of solutions, the focusing case is more difficult 
than the defocusing one, because the sign of the energy functional of the solution to the focusing problem 
may change by the initial data, and there exists a blow-up solution.

When V ≡ 0, the Cauchy problem (NLSV ) in the energy space H is

{
i∂tu + ∂2

xu + |u|p−1u = 0, (t, x) ∈ I ×R,

u(0) = u0 ∈ H1(R).
(NLS)

NLS with the power type nonlinearity arises in various physical contexts such as nonlinear optics and 
plasma physics (see [32,29,5] for example). The nonlinearity enters due to the effect of changes in the 
field intensity on the wave propagation characteristics of the medium. There are large amount of literature 
for Mathematical results about local or global well-posedness, blow-up, scattering to a free solution, and 
stability of special solutions like solitary waves for (NLS). We mention the results about global dynamics 
for NLS without a potential after introducing several notations.

We roughly explain why the exponent p is restricted to p > 5. NLS without the potential (V = 0) is 
invariant under the scale transformation

u(t, x) 	→ uγ(t, x) := γ
2

p−1u(γ2t, γx), for γ > 0.

We note that (NLSV ) with a potential (V �= 0) does not have this scaling invariant property. Moreover, a 
simple computation gives

‖uγ(0, ·)‖L2 = γ
2

p−1− 1
2 ‖u(0, ·)‖L2 .

From this identity, we see that if the exponent p ≥ 1 satisfies

2
p− 1 − 1

2 = 0, i.e. p = 5,

then L2-norm of the initial data is also invariant. In this sense, the case of p = 5 is called L2 or mass-critical 
case. And the case of p > 5 (resp. p < 5) is called L2 or mass-supercritical case (resp. L2 or mass-subcritical 
case).

When V �= 0, the potential can be thought of as modeling inhomogeneities in the medium. In [28], 
Equation (NLSV ) with V ∈ L∞(R) is studied as a model proposed to describe the local dynamics at a 
nucleation site. We note that studies of equation (NLSV ) are essential to those of the Schrödinger equation 
with an electromagnetic potential in one spatial dimension:
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i∂tv +
(

∂

∂x
− iA

)2

v − V v + |v|p−1v = 0, (t, x) ∈ I ×R, (1.2)

where v = v(t, x) is a complex valued wave function of (t, x) ∈ I × R, and A = A(x) is a real-valued 
continuous bounded function of x ∈ R. Indeed, when for any x0 ∈ R, we introduce the following gauge 
transformation v 	→ u as

u(t, x) := exp

⎛
⎝i

x∫
x0

A(y)dy

⎞
⎠ v(t, x),

we see that v is a solution to (1.2) with the initial condition v(0) = v0 ∈ H1(R), if and only if u satisfies 
(NLSV ) with u0(x) := exp

(
i
∫ x

x0
A(y)dy

)
v0(x) ∈ H1(R).

Next we introduce several notations associated with the Schrödinger operator −∂2
x + V . We assume that 

the function V = V (x) satisfies

V is real-valued and V ∈ L1(R) + L∞(R). (A.1)

HV and LV denote the Schrödinger operators defined by

HV := − d2

dx2 + V, and LV := 1 + HV ,

respectively, with the domain

D(HV ) = D(LV ) :=
{
f ∈ H2(R) : ‖f‖LV

< ∞
}
,

where the norm ‖ · ‖LV
is defined by

‖f‖2
LV

:= ‖f‖2
H2 +

∞∫
−∞

V (x)|f(x)|2dx.

For s ≥ 0, Hs = Hs(R) denotes the usual s-th order L2-based Sobolev spaces. Then both operators HV

and LV are self-adjoint on L2(R). Thus by Stone’s theorem, the Schrödinger evolution group {e−itHV }t∈R
is generated by HV on L2(R). Moreover, if V is non-negative, i.e. V ≥ 0, then both HV and LV are 
non-negative, i.e. the estimates

(HV f, f)L2 = ‖∂xf‖2
L2 +

∞∫
−∞

V (x)|f(x)|2dx > 0

(LV f, f)L2 = ‖f‖2
L2 + (HV f, f) > ‖f‖2

L2 > 0

hold for any (0 �=) f ∈ D(HV ). Therefore, the fractional operators H
1
2
V and L

1
2
V are well defined with the 

domain

H := D(H
1
2
V ) = D(L

1
2
V ) :=

{
f ∈ H1(R) : ‖f‖

L
1
2
V

< ∞
}
, (1.3)

where the norms ‖ · ‖H and ‖ · ‖ 1
2

are defined by

LV
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‖f‖2
H := ‖f‖2

L
1
2
V

:= ‖f‖2
H1 +

∞∫
−∞

V (x)|f(x)|2dx.

We note that the norm ‖ · ‖H is equivalent to the usual Sobolev norm ‖ · ‖H1 , since V ∈ L1(R) + L∞(R)
is non-negative and the embedding H1(R) ⊂ L∞(R) holds due to one spatial dimension. We also introduce 
the norm ‖ · ‖

H
1
2
V

defined by

‖f‖2
H

1
2
V

:= ‖∂xf‖2
L2 +

∞∫
−∞

V (x)|f(x)|2dx, (1.4)

which satisfies the estimate

‖∂xf‖L2 ≤ ‖f‖
H

1
2
V

≤ ‖f‖
L

1
2
V

.

Then we see that H
1
2
V and L

1
2
V are also non-negative and self-adjoint operator on L2(R).

By using the above properties, we see that if u0 ∈ H, then e−itHV u0 belongs to

C(R : H) ∩ C1(R : H−1),

where H−1 := {f ∈ S ′(R) : ‖L− 1
2

V f‖L2 < ∞} and S ′(R) denotes a function space of tempered distributions, 
and is the unique global solution to the Cauchy problem for the linear Schrödinger equation with the 
potential:

{
i∂tu−HV u = 0, (t, x) ∈ R×R,

u(0) = u0 ∈ H,
(1.5)

(see [27] for more details for example).
Next we state the local well-posedness result of (NLSV ) in the energy space H.

Proposition 1.1 (Local well-posedness of (NLSV ) in H). Let V ∈ L1(R) +L∞(R) be non-negative and p ≥ 1. 
Then the Cauchy problem (NLSV ) is locally well-posed in the energy space H for arbitrary initial data 
u0 ∈ H. More precisely, the following statements hold:

• (Existence) For any � > 0 and u0 ∈ H satisfying ‖u0‖H ≤ �, there exists a positive time T = T (�) such 
that there exists a unique solution u ∈ C(IT ; H) ∩ C1(IT ; H−1) to (NLSV ), where IT := (−T, T ).

• (Uniqueness) Let u be the solution to (NLSV ) obtained in the Existence part. Let T1 ∈ (0, T (�)] and 
v ∈ C(IT1 ; H) ∩ C1(IT1 ; H−1) be another solution to (NLSV ) on IT1 . If v(0) = u0, then u|IT1

= v on 
IT1 .

• (Continuity of the flow map) Let � > 0 and T = T (�) be same as in the Existence part. Then the flow 
map

Ξ : {f ∈ H : ‖f‖H ≤ �} 	→ L∞
t (IT : H), Ξ[u0](t) = u(t)

is Lipschitz continuous.

By the existence result and the uniqueness result, the maximal existence times T± of the solution are well 
defined as
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T+ : = sup{T ∈ (0,∞] : there exists a unique solution u to (NLSV ) on [0, T )}
T− : = sup{T ∈ (0,∞] : there exists a unique solution u to (NLSV ) on (−T, 0]}.

Moreover, the conservation laws and the blow-up criterion hold:

• (Conservation Laws) The energy E and the mass M are conserved by the flow, i.e.

E(u(t)) = E(u0), M(u(t)) = M(u0), for any t ∈ IT ,

where the functionals E : H 	→ R and M : L2(R) 	→ R are defined as

E(φ) = EV (φ) := 1
2‖φ‖

2
H

1
2
V

− 1
p + 1 ‖φ‖p+1

Lp+1 , (1.6)

M(φ) := ‖φ‖2
L2 . (1.7)

• (Blow-up criterion) If T± < ∞, then

lim
t→±T±∓0

‖∂xu(t)‖L2 = ∞,

where double-sign corresponds.

For the proof, see Theorem 3.7.1 in [4] for example, and for the convenience of readers, we give a proof 
of the proposition in Appendix A, which is based on the contraction argument with the commutation 

relation [L
1
2
V , e

itHV ] = 0, the equivalency between the norms ‖ · ‖
L

1
2
V

and ‖ · ‖H1 and the Sobolev embedding 

H1(R) ⊂ L∞(R).
Next we are interested in whether the local solution to (NLSV ) obtained in the proposition can be 

extended globally or not, and how global solution behaves like, if global solutions exist. Let us recall the 
definitions of blow-up, glow-up and scattering. Let u be the solution to (NLSV ) on the maximal existence 
time interval (−T−, T+).

Definition 1.1 (Blow-up). We say that the solution u to (NLSV ) blows up in positive time (resp. negative 
time) if and only if T+ < ∞ (resp. T− < ∞). Then the blow-up criterion implies

lim
t→±T±∓0

‖∂xu(t)‖L2 = ∞.

Definition 1.2 (Grow-up). We say that the solution u to (NLSV ) grows up in positive time if and only if

T+ = ∞ and lim sup
t→+∞

‖∂xu(t)‖L2 = ∞.

Glow-up in negative time is defined in the similar manner.

Definition 1.3 (Scattering). We say that solution u to (NLSV ) scatters in the energy space H if and only if 
T± = ∞ and there exist scattering states u± ∈ H such that the following holds:

∥∥u(t) − e−itHV u±
∥∥
H → 0, as t → ±∞.

Scattering solution to (NLSV ) behaves like the solution to the Cauchy problem (1.5) with the initial data 
u± as t → ±∞.
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Next we recall the results about global dynamics for (NLS). Since a pioneer work by Kenig and Merle [19], 
global dynamics of solutions to focusing nonlinear Schrödinger equations with the initial condition below 
a ground state have been studied. Holmer and Roudenko [11] studied global dynamics of solutions to the 
focusing cubic semilinear Schrödinger equation in three spatial dimensions. They proved that if the initial 
data u0 ∈ H1

r (R3), where H1
r (Rd) := {f ∈ H1(Rd) : f is radially symmetric}, and satisfies the following 

condition

M(u0)E0(u0) < M(Q1)E0(Q1), (1.8)

where Q1 is the corresponding ground state, then the following relations hold:

{
‖u0‖L2 ‖∇u0‖L2 < ‖Q1‖L2 ‖∇Q1‖L2 ⇐⇒ u scatters in H1

r (R3) as t → ±∞,

‖u0‖L2 ‖∇u0‖L2 > ‖Q1‖L2 ‖∇Q1‖L2 ⇐⇒ u blows up in both time directions

Duyckaerts, Holmer, and Roudenko [7] extended the scattering result to non-radial data in H1(R3), and 
Holmer and Roudenko [12] treated non-radial data in H1(R3) which belongs to the above blow-up region 
and proved that the local solution blows up in finite time or grows up at infinite time. Fang, Xie, and 
Cazenave [8] extended the scattering result of [7] and Akahori and Nawa [1] extended both scattering and 
blow-up results of [7,12] to the mass-supercritical and energy-subcritical Schrödinger equations in general 
dimensions, i.e. 1 + 4

d < p < 1 + 4
d−2 if d ≥ 3 or 1 + 4

d < p if d = 1, 2.
Next let us recall several related results for NLS with a linear potential. Banica–Visciglia [3] studied 

the mass-supercritical defocusing Schrödinger equation with a repulsive Dirac delta potential in one space 
dimension and proved that all solutions scatter in the energy space H1(R) as t → ±∞. On the other hand, 
the author and Inui [15] studied the focusing Schrödinger equation with a repulsive Dirac delta potential in 
one space dimension, and proved the similar result obtained in [1], that is, a scattering result and a blow-up 
result below the ground state without the potential. They also classified global dynamics of the solution up 
to twice times above the ground state without the potential, if the initial data is in H1

r (R). We note that 
Inui [16] studied global dynamics of solutions to some extent above the ground state without the potential 
to NLS with the initial data which have several symmetries (see also [23,24] and the references for above 
ground states). Hong [13] studied global dynamics of solutions for the cubic focusing Schrödinger equation 
with a linear potential in three spatial dimensions and proved the similar result obtained in [20,15] if the 
potential belongs to the Kato-class.

1.2. Main results

We state our main results in the present paper. The following theorem gives dichotomy between an upper 
bound and a lower bound of solutions below the ground state Q1, where Qω is the unique positive radial 
solution to (1.1) and can be written explicitly by

Qω(x) :=
{

(p + 1)ω
2 sech2

(
(p− 1)

√
ω

2 |x|
)} 1

p−1

, (1.9)

and uniform bounds connected to a functional P0 : H1(R) 	→ R. Here P0 is defined by

P0(φ) := ‖∂xφ‖2
L2 −

p− 1
2(p + 1) ‖φ‖

p+1
Lp+1 ,

is related to Virial Identity (Lemma 3.1).
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Theorem 1.2 (Dichotomy between an upper bound and a lower bound of solutions and uniform bounds 
connected to the functional P0). Let p > 5, V ∈ L1(R) + L∞(R) be non-negative, u0 ∈ H and u be the 
unique solution to (NLSV ) on the maximal interval I = (−T−, T+). Moreover we assume that u0 satisfies

M(u0)σEV (u0) < M(Q1)σE0(Q1), (1.10)

where σ = σ(p) := p+3
p−5 and Q1 ∈ H1(R) is defined by (1.9) with ω = 1. Then the following holds:

(1) If u0 satisfies

‖u0‖σL2

∥∥∥H 1
2
V u0

∥∥∥
L2

< ‖Q1‖σL2 ‖∂xQ1‖L2 , (1.11)

then T+ = T− = ∞ and u satisfies

‖u0‖σL2

∥∥∥H 1
2
V u(t)

∥∥∥
L2

< ‖Q1‖σL2 ‖∂xQ1‖L2 , (1.12)

2EV (u0) ≤ ‖H
1
2
V u(t)‖2

L2 ≤ 2(p− 1)
p− 5 EV (u0) (1.13)

for any t ∈ R. Moreover, if u0 �= 0 and V ∈ L1(R), then there exists δ0 > 0 depending only on 
p, ‖V ‖L1 , u0, Q1 such that the estimate

P0(u(t)) ≥ δ0 (1.14)

holds for any t ∈ R.
(2) If u0 satisfies

‖u0‖σL2

∥∥∥H 1
2
V u0

∥∥∥
L2

> ‖Q1‖σL2 ‖∂xQ1‖L2 , (1.15)

then u satisfies

‖u0‖σL2

∥∥∥H 1
2
V u(t)

∥∥∥
L2

> ‖Q1‖σL2 ‖∂xQ1‖L2 , (1.16)

for any t ∈ I. Moreover, there exists δ1 > 0 depending only on p, V, u0, Q1 such that the estimate

P0(u(t)) +
∞∫

−∞

V (x)|u(t, x)|2dx < −δ1 (1.17)

holds for any t ∈ I.
(3) The equality

‖u0‖σL2‖H
1
2
V u0‖L2 = ‖Q1‖σL2‖∂xQ1‖L2 ,

is impossible.

Next we state a scattering result and a blow-up or grow-up result of solutions to (NLSV ) under an 
additional assumption on the potential V , that is

V is differentiable in a distribution sense and xV ′ ∈ L1(R) + L∞(R). (A)
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Theorem 1.3 (Scattering and blow-up or grow-up results below the ground state). In addition to the assump-
tions of Theorem 1.2, we assume that the potential V satisfies (A). Then the following holds:

(1) If u0 satisfies (1.11) and V and V ′ belong to L1
1(R), where L1

1(R) denotes the weighted Lebesgue space 
given by

L1
1(R) := {f ∈ L1(R) : ‖(1 + | · |)f‖L1 < ∞},

and is repulsive, i.e.

xV ′(x) ≤ 0 for a.e. x ∈ R,

then the global solution u scatters in H as t → ±∞. Moreover, there exists ψ± ∈ H1(R) such that

lim
t→±∞

‖u(t) − eit∂
2
xψ±‖H1 = 0. (1.18)

(2) If u0 satisfies (1.15) and the potential V satisfies the inequality

−xV ′(x) − 2V (x) ≤ 0 for a.e. x ∈ R, (1.19)

then one of the following four cases occurs:
(a) The solution u blows up in both time directions.
(b) The solution u blows up in a positive time, and u grows up in negative time.
(c) The solution u blows up in a negative time, and u grows up in positive time.
(d) The solution u glows up in both negative and positive time.

Theorem 1.4. In (2) in the above theorem, we further assume that xu0 ∈ L2(R). Then we can prove that the 
solution blows up in a finite time in both time directions, namely we can exclude the possibility that (b)–(d) 
(grow-up) occurs.

Remark 1.1. The scattering result to the free solution (1.18) in L2(R)-topology can be proved in the similar 
manner as the proof of the scattering result (1-30) in [30], since the wave operator limt→∞ eitHV eit∂

2
x is well 

defined and bounded in Lp(R) due to V ∈ L1
1(R) (see [10]). Moreover the convergence can be extended to 

H1-topology via a density argument and the Sobolev inequality ‖f‖H1 ≤ C‖f‖
1
2
H2‖f‖

1
2
L2 for f ∈ H2(R).

Remark 1.2. In (2) in the above theorem, even if u0 and V are restricted to radially symmetric functions, 
it is not known whether we can exclude the possibility that (b)–(d) (grow-up) occurs or not, because we 
consider one spatial dimension (see [25,26]).

Remark 1.3. We define a function V : R → R as

V (x) :=
{

e−x, x ≥ 0,
ex, x < 0.

Then V satisfies the all assumptions in (1) in Theorem 1.3.

Remark 1.4. Condition (1.19) and V ≥ 0 are equivalent to

V (x)
{

≥ V (sgn x)
x2 , |x| ≥ 1,

≤ V (sgn x) , |x| ≤ 1.
(1.20)
x2
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Thus from this inequality, we see that

∞∫
1

xV (x)dx ≥ V (1)[log x]x=∞
x=1 = ∞,

which implies that V /∈ L1
1(R).

In the mass-critical case, i.e. p = 5, we can also prove the following blow-up or grow-up result in the 
same manner as the proof (2) in Theorem 1.3, though a scattering result for large data is not known in the 
mass-critical case.

Corollary 1.5 (Unboundedness of solutions in the mass-critical case p = 5). Let p = 5, V be non-negative 
and satisfy (A) and (1.19) and u0 ∈ H satisfy EV (u0) < 0, then the same conclusion as (2) in Theorem 1.3
holds.

Theorem 1.2 and Theorem 1.3 can be written into another equivalent form. To state the results, we 
introduce several notations. Let ω be a positive parameter and denote the frequency. We introduce the 
action Sω,V : H 	→ R and the Nehari functional Iω,V : H 	→ R defined by

Sω(φ) = Sω,V (φ) := E(φ) + ω

2M(φ) = 1
2‖φ‖

2
H

1
2
V

+ ω

2 ‖φ‖
2
L2 −

1
p + 1‖φ‖

p+1
Lp+1 (1.21)

= 1
2 ‖∂xφ‖2

L2 + 1
2

∞∫
−∞

V (x)|φ(x)|2dx + ω

2 ‖φ‖2
L2 −

1
p + 1 ‖φ‖p+1

Lp+1 ,

Iω(φ) = Iω,V (φ) := ‖φ‖2
H

1
2
V

+ ω‖φ‖2
L2 − ‖φ‖p+1

Lp+1 (1.22)

= ‖∂xφ‖2
L2 +

∞∫
−∞

V (x)|φ(x)|2dx + ω‖φ‖2
L2 − ‖φ‖p+1

Lp+1 .

We often omit the index V , if it does not cause a confusion. We sometimes insert 0 into V , such as Sω,0
and Iω,0, to employ known results for the nonlinear Schrödinger equation without the potential.

We study the following two minimizing problems

nω = nω,V := inf{Sω(φ) : φ ∈ H \ {0}, Iω,V (φ) = 0}, for V �= 0, (1.23)

lω := nω,0 = inf{Sω,0(φ) : φ ∈ H1(R) \ {0}, Iω,0(φ) = 0}. (1.24)

lω is the minimizing problem for the nonlinear Schrödinger equation without the potential and it is well 
known that lω is positive and is attained by the ground state Qω (see [31] for example). On the other hand, 
we can prove the following properties for nω.

Proposition 1.6. Let ω > 0 and V ∈ L1(R) be non-negative and p > 5. Then the following statements are 
valid.

(1) nω = lω.
(2) nω is not attained, if μ({x ∈ R : V (x) �= 0}) > 0,

where μ denotes the Lebesgue measure.
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Next, in order to rewrite Theorem 1.2 and Theorem 1.3 into another form, we introduce the following 
subsets in H.

N+
ω := {ϕ ∈ H : Sω,V (ϕ) < nω, Iω,V (ϕ) ≥ 0},

N−
ω := {ϕ ∈ H : Sω,V (ϕ) < nω, Iω,V (ϕ) < 0}.

These subsets satisfy the relations {ϕ ∈ H : Sω,V (ϕ) < nω} = N+
ω ∪N−

ω and N+
ω ∩N−

ω = ∅. The following 
equivalency hold:

Proposition 1.7. Under the same assumptions as in Proposition 1.6, let ϕ ∈ H and let Q1 ∈ H1(R) be 
defined by (1.9) with ω = 1 and nω be given by (1.23). Then the following two statements are equivalent:

(1) ϕ satisfies the estimate (1.10) with a replacement u0 into ϕ.
(2) There exists ω = ω(ϕ, p) > 0 such that Sω,V (ϕ) < nω.

Moreover, the following equivalency also holds:

• ϕ satisfies the estimates (1.10) and (1.11) with a replacement u0 into ϕ, if and only if there exists ω > 0
such that ϕ ∈ N+

ω .
• ϕ satisfies the estimates (1.10) and (1.15) with a replacement u0 into ϕ, if and only if there exists ω > 0

such that ϕ ∈ N−
ω .

Especially, in order to prove the scattering result in Theorem 1.3, we use the above equivalency.

1.3. Strategy and difficulties for the proof of the theorems and idea to overcome them

The strategy of the proof of the dichotomy between an upper bound and a lower bound of solutions in 
Theorem 1.2 is based on combining the conservation laws of solutions to (NLSV ), the Sharp Gagliardo-
Nirenberg inequality (2.1), the Pohozaev identity (2.2) and the continuity argument of functions. The 
similar arguments were used to prove Proposition 3.4 in [20] and Theorem 1.3 in [13] respectively. In order 
to prove the uniform bounds of the functionals (1.14) and (1.17), besides using them, the upper bound 
(1.12) and the lower bound (1.16) of the solution respectively and Sobolev’s inequality are also employed. 
Virial Identity (Lemma 3.1) with the uniform bounds (1.14) and (1.17) is used to prove the scattering 
result in Theorem 1.3, especially rigidity theorem (Proposition 5.15) and the blow-up or glow-up result in 
Theorem 1.3 respectively. Different from our arguments, in the previous results [14,15], the uniform bounds 
of the functional PV (V = 0 in [14], V = δ0 (Dirac’s delta) in [15]) are derived (see Lemma 2.12 in [14] and 
Proposition 2.18 in [15] respectively) and utilized to prove the scattering result and the blow-up or glow-up 
result for their problems, where

PV (ϕ) := ‖∂xϕ‖2
L2 −

1
2

∞∫
−∞

xV ′(x)|ϕ(x)|2dx− p− 1
2(p + 1) ‖ϕ‖

p+1
Lp+1 .

However it is difficult to derive uniform bounds of the functional PV in our case because of existence of the 
term xV ′ as the second term. To overcome this difficulty, we derive the uniform bounds of the functionals 
(1.14) and (1.17) and apply them to prove the scattering result and the blow-up or glow-up result in 
Theorem 1.3 respectively.

In order to prove the blow-up or glow-up result in Theorem 1.3, besides the uniform bound (1.17), we 
mainly follow the approach by Du–Wu–Zhang [6] with the assumption of the potential V , i.e. xV ′(x) +
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2V (x) ≥ 0 for a.e. x ∈ R, who proved the similar unboundedness result for the energy-critical or energy-
supercritical Schrödinger equation without the potential by using the localized virial identity (Lemma 3.1) 
with an appropriate cut-off function similar to x2 near the origin x = 0.

Our proof of the scattering result in Theorem 1.3 is based on the argument by Kenig-Merle [19], (1. 
dispersive estimates, 2. Strichartz estimates for non-admissible pairs, 3. small data scattering, 4. linear profile 
decomposition, 5. nonlinear profiles, 6. perturbation lemma, 7. critical element, 8. rigidity theorem). They 
proved the scattering result below the Talenti function to the energy-critical focusing Schrödinger equation 
in H1

r (Rd) in d = 3, 4, 5. Their argument is utilized to prove scattering results for other nonlinear evolution 
equations including the cases of existence of potentials (see [3,20,13,15,21] for example). In order to apply 
their argument, we rewrite the conditions on the initial data in Theorem 1.2 into another equivalent form 
by using the frequency parameter ω (see Proposition 1.7). To do so, we investigate the minimizing problems 
for both (NLSV ) and (NLS) (see Proposition 1.7). We note that Proposition 1.7 is also utilized to construct 
a critical element (see Theorem 5.12), more precisely, appropriate nonlinear profiles (see Theorem 5.12), 
which is also quite different part from the defocusing case [21].

1.4. Construction of the paper

In Section 2, we give a proof of Theorem 1.2. In Section 3, we give a proof of the blow-up or glow-up 
result in Theorem 1.3. In Section 4, we give a proof of Proposition 1.7 and also prove several variational 
structures. In Section 5, we give a proof of the scattering result in Theorem 1.2.

2. Proof of Theorem 1.2

In this section, we give a proof of Theorem 1.2. The main ingredients for the proof are the Sharp 
Gagliardo-Nirenberg inequality (2.1), the conservation laws in Proposition 1.1, the Pohozaev identity (2.2), 
the continuity argument and the Sobolev embedding H1(R) ⊂ L∞(R).

Proof of Theorem 1.2. First we note that the Sharp Gagliardo-Nirenberg inequality (see [31]) gives

‖f‖p+1
Lp+1 ≤ CGN‖f‖

p+3
2

L2 ‖∂xf‖
p−1
2

L2 , (2.1)

for f ∈ H1(R). Here CGN = CGN (p, Q1) is given by

CGN :=
‖Q1‖p+1

Lp+1

‖Q1‖
p+3
2

L2 ‖∂xQ1‖
p−1
2

L2

= 2(p + 1)
p− 1

1
(‖Q1‖σL2‖∂xQ1‖L2) p−5

2
,

where we have used the Pohozaev identity

‖Q1‖p+1
Lp+1 = 2(p + 1)

p− 1 ‖∂xQ1‖2
L2 . (2.2)

We also note that since V is non-negative, the estimate

‖∂xf‖L2 ≤ ‖H
1
2
V f‖L2 (2.3)

holds for f ∈ H. Since u ∈ C(I : H) is a solution to (NLSV ) on I, we can apply the estimates (2.1) and 
(2.3) and the L2-conservation law to obtain

‖u(t)‖p+1
Lp+1 ≤ 2(p + 1)

p− 1
1

σ p−5
2

‖u0‖
p+3
2

L2 ‖H
1
2
V u(t)‖

p−1
2

L2 (2.4)

(‖Q1‖L2‖∂xQ1‖L2)
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for t ∈ I. Next for κ > 0, which will be chosen appropriately later, we introduce a function h : [0, ∞) 	→ R

defined by

h(x) := 1
2x

2 − 2
(p− 1)κ p−5

2
x

p−1
2 , for x ∈ [0,∞).

By differentiating the function h with respect to x, we have

h′(x) = x− 1
κ

p−5
2

x
p−3
2 = x

κ
p−5
2

(κ
p−5
2 − x

p−5
2 ), for x ≥ 0.

Since p > 5, we find that h′ > 0 on (0, κ) and h′ < 0 on (κ, ∞), which implies that f is increasing on (0, κ)
and f is decreasing on (κ, ∞). Therefore we have

h(x) < h(κ) = max
x>0

h(x), if x �= κ.

Moreover since u belongs to C(I : H), we can define the following continuous function g : I 	→ [0, ∞) given 
by

g(t) := ‖u0‖σL2‖H
1
2
V u(t)‖L2 ∈ C(I).

We note that the Pohozaev identity (2.2) again implies

E0(Q1) = p− 5
2(p− 1)‖∂xQ1‖2

L2 . (2.5)

Here we choose κ > 0 such as

κ := ‖Q1‖σL2‖∂xQ1‖L2 .

Then we have

h(κ) = p− 5
2(p− 1)κ

2 = M(Q1)σE0(Q1).

Noting that 2σ + p+3
2 = (p−1)σ

2 , by the assumption (1.8), the energy-conservation law and the estimate 
(2.4), we have

h(κ) = M(Q1)σE0(Q1) > M(u0)σEV (u0) = M(u0)σEV (u(t))

≥ ‖u0‖2σ
L2

{
1
2‖H

1
2
V u(t)‖2

L2 −
2

(p− 1)κ p−5
2

‖u0‖
p+3
2

L2 ‖H
1
2
V u(t)‖

p−1
2

L2

}

= h(g(t)), for t ∈ I.

From these facts, we see that for any t ∈ I,

either g(t) < κ or g(t) > κ (2.6)

is valid, which implies that g(t) �= κ. Noting that the equivalency

g(0) = κ ⇐⇒ ‖u0‖σL2‖H
1
2
V u0‖L2 = ‖Q1‖σL2‖∂xQ1‖L2
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holds, we find that the right condition is impossible. If u0 satisfies (1.15), then g(0) > κ. By the continuity 
of the function g and the relation (2.6), we have g(t) > κ for t ∈ I, which implies that (1.16) holds for t ∈ I. 
On the other hand, if u0 satisfies (1.11) holds, then g(0) < κ. By the continuity of the function g again, we 
have g(t) < κ for any t ∈ I. Thus since V is non-negative, if u0 �= 0, then we have

‖∂xu(t)‖L2 ≤ ‖H
1
2
V u(t)‖L2 <

(
‖Q1‖L2

‖u0‖L2

)σ

‖∂xQ1‖L2 , for t ∈ I,

which implies that T± = ∞ by the blow-up criterion in Proposition 1.1, and u satisfies the estimate (1.12). 
In the case of u0 = 0, it is easy to see that T± = ∞ and (1.12) holds. Next we prove the inequalities (1.13). 
The left inequality is easier to prove. Since we are considering the focusing case, the energy conservation 
law gives

EV (u0) = EV (u(t)) = 1
2‖H

1
2
V u(t)‖2

L2 −
1

p + 1‖u(t)‖p+1
Lp+1 ≤ 1

2‖H
1
2
V u(t)‖2

L2 ,

which implies that 2E(u0) ≤ ‖H
1
2
V u(t)‖2

L2 for any t ∈ R. On the other hand, by the estimates (2.4) and 
(1.12), we have

‖u(t)‖p+1
Lp+1 ≤ 2(p + 1)

p− 1

{
‖u0‖σL2‖H

1
2
V u(t)‖L2

‖Q1‖σL2‖∂xQ1‖L2

} p−5
2

‖H
1
2
V u(t)‖2

L2 ≤ 2(p + 1)
p− 1 ‖H

1
2
V u(t)‖2

L2 (2.7)

for any t ∈ R. By the energy conservation law and this estimate, we obtain

EV (u0) = EV (u(t)) ≥ 1
2‖H

1
2
V u(t)‖2

L2 −
2

p− 1‖H
1
2
V u(t)‖2

L2 = p− 5
2(p− 1)‖H

1
2
V u(t)‖2

L2 (2.8)

for any t ∈ R. By this estimate and p > 5, we have the right inequality of (1.13).
Next we prove (1.14). By the sharp Gagliardo-Nirenberg inequality (2.1), the mass conservation law, the 

Pohozaev identity (2.5) and the right estimate of (1.13), we have

‖u(t)‖p+1
Lp+1 ≤ 2(p + 1)

p− 1

{
M(u0)σE(u0)
M(Q1)σE0(Q1)

} p−5
4

‖∂xu(t)‖2
L2 , (2.9)

for any t ∈ R. We note that since u0 �= 0, by the estimate (1.13), we have EV (u0) > 0. In the case of 
V ∈ L1(R), we can prove that there exists δ > 0 depending only on ‖V ‖L1 , ‖u0‖L1 and EV (u0) such that 
the estimate ‖∂xu(t)‖L2 ≥ δ holds for any t ∈ R. Indeed, since V ∈ L1(R), by the estimate (1.13), the 
Sobolev inequality ‖f‖2

L∞ ≤ ‖f‖L2‖∂xf‖L2 due to f ∈ H1(R), and the mass conservation law, we have

2EV (u0) ≤ ‖∂xu(t)‖2
L2 +

∞∫
−∞

V (x)dx‖u(t)‖2
L∞ ≤ ‖∂xu(t)‖2

L2 + ‖V ‖L1‖u(t)‖L2‖∂xu(t)‖L2

= ‖∂xu(t)‖2
L2 + ‖V ‖L1‖u0‖L2‖∂xu(t)‖L2 ,

which implies that

‖∂xu(t)‖L2 ≥ −‖V ‖L1‖u0‖L2 +
√

(‖V ‖L1‖u0‖L2)2 + 8EV (u0)
2 =: δ > 0, (2.10)

for any t ∈ R. By the estimates (2.9) and (2.10), we have
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P0(u(t)) ≥
[
1 −

{
M(u0)σEV (u0)
M(Q1)σE0(Q1)

} p−5
4

]
‖∂xu(t)‖2

L2 ≥
[
1 −

{
M(u0)σE(u0)
M(Q1)σE0(Q1)

} p−5
4

]
δ =: δ0,

for any t ∈ R.
Finally we prove (1.17). By the definitions of the functionals P0 and EV , and the energy conservation 

law, the identities

4

⎧⎨
⎩P0(u(t)) +

∞∫
−∞

V (x)|u(t, x)|2dx

⎫⎬
⎭

= 2(p− 1)EV (u0) − (p− 5)‖∂xu(t)‖2
L2 − (p− 5)

∞∫
−∞

V (x)|u(t, x)|2dx

= 2(p− 1)EV (u0) − (p− 5)‖H
1
2
V u(t)‖2

L2 (2.11)

hold for any t ∈ I. Here by the assumption (1.10) and u0 �= 0, we can choose ε1 = ε(u0, Q1, V, p) > 0 such 
as

ε1 := 1
2

{(
M(Q1)
M(u0)

)σ

E0(Q1) − EV (u0)
}
.

Then the estimate

EV (u0) <
(
M(Q1)
M(u0)

)σ

E0(Q1) − ε1 (2.12)

holds. Moreover by the estimate (1.16) and u0 �= 0, the inequality

‖H
1
2
V u(t)‖2

L2 >

(
M(Q1)
M(u0)

)σ

‖∂xQ1‖2
L2 (2.13)

holds for any t ∈ I. Here we choose δ1 = δ(u0, Q1, V, p) > 0 such as

δ1 := p− 1
2 ε1.

Then by combining the estimates (2.11), (2.12) and (2.13) and the Pohozaev identity (2.2), we have

(the left hand side of (2.11)) <
(
M(Q1)
M(u0)

)σ

{2(p− 1)E0(Q1) − (p− 5)‖∂xQ1‖2
L2}

− 2(p− 1)ε1

= −2(p− 1)ε1 = −δ1,

for any t ∈ I, which completes the proof of the proposition. �
3. Proof of the blow-up or glow-up result

In this section, we give a proof of the blow-up or glow-up result of Theorem 1.3 by mainly following the 
approach by Du-Wu-Zhang [6]. We note that one of the assumptions of the potential V , i.e. xV ′(x) +2V (x) ≥
0 is used to deal with R4 in Lemma 3.3 and the uniform bound (1.17) of the functional is used to derive 
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(3.9). The approach is based on the following localized virial identity, which is also applied to prove the 
rigidity theorem (see Proposition 5.15) in the proof of the scattering result.

Lemma 3.1 (Localized virial identity). Let p ≥ 1, V ∈ L1(R) + L∞(R) be real-valued and satisfy V ′ ∈
L1(R) +L∞(R). Let u0 ∈ H and u ∈ C(I : H) ∩C1(I : H−1) be a solution to (NLSV ) on I. For φ ∈ W 4,∞(R), 
set

I(t) = Iφ[u](t) :=
∫
R

φ(x)|u(t, x)|2dx, for t ∈ I.

Then I ∈ C2(I) and the identities

I ′(t) = 2Im
∫
R

φ′(x)u(t, x)∂xu(t, x)dx, (3.1)

I ′′(t) = 4
∫
R

φ′′(x)|∂xu(t, x)|2dx− 2
∫
R

φ′(x)V ′(x)|u(t, x)|2dx (3.2)

− 2(p− 1)
p + 1

∫
R

φ′′(x)|u(t, x)|p+1dx−
∫
R

φ(4)(x)|u(t, x)|2dx

hold for t ∈ I.

For the proof of this lemma, see [4] for example. For convenience of the readers, we give a formal proof 
of the lemma in Appendix.

In the following, we only consider the positive time direction, since the negative time direction can be 
treated in the same manner.

Lemma 3.2. Let p ≥ 1, V ∈ L1(R) +L∞(R) be non-negative, u0 ∈ H\{0}, and u be the solution to (NLSV )
on [0, T+). We assume that T+ = ∞ and

C0 := sup
t∈[0,∞)

‖∂xu(t)‖L2 < ∞.

Then there exists a constant C1 > 0 such that for η > 0, R > 0 and t ∈
[
0, ηR

‖u0‖L2C0C1

]
, the estimate

∫
|x|>R

|u(t, x)|2dx ≤ oR(1) + η (3.3)

holds, where oR(1) denotes a function of R satisfying oR(1) → 0 as R → ∞.

Proof. Let R > 0. We can construct a function φ1 = φ1
R ∈ C∞(R) satisfying 0 ≤ φ1(x) ≤ 1 for any x ∈ R

and

φ1(x) =
{

0, 0 < |x| < R
2 ,

1, |x| ≥ R,

∣∣∣∣dφ1

dx
(x)

∣∣∣∣ ≤ C1

R
,

where C1 is a constant independent of x and R. Since φ1 ∈ W 4,∞(R), Lemma 3.2 implies that I(t) belongs to 
C1([0, ∞)). By the fundamental formula, the identity (3.1), the Hölder inequality and the mass conservation 
law, we have
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I(t) = Iφ1 [u](t) = I(0) +
t∫

0

I ′(s)ds ≤ I(0) +
t∫

0

|I ′(s)|ds

≤ I(0) + t ‖φ′‖L∞ sup
t∈R+

‖u(t)‖L2 ‖∂xu(t)‖L2

≤ I(0) + ‖u0‖L2C0C1t

R
, t ∈ R+,

where R+ := [0, ∞). Since u(0) = u0 ∈ H ⊂ L2(R), by a property of the function φ1, we have

I(0) =
∫
R

φ1(x)|u0(x)|2dx =
∫

|x|>R
2

|u0(x)|2dx = oR(1) as R → ∞.

Moreover we note that by the properties of the function φ1, the estimate 
∫
|x|>R

|u(t, x)|2dx ≤ I(t) holds for 
any t ∈ R+. Therefore, by combining the above inequalities, we obtain (3.3), which completes the proof of 
the lemma. �

Next we introduce another function φ2 = φ2
R ∈ C∞

0 (R) such that

0 ≤ φ2(x) ≤ x2,

∣∣∣∣dφ2

dx
(x)

∣∣∣∣ ≤ C2|x|,
∣∣∣∣d2φ2

dx2 (x)
∣∣∣∣ ≤ 2,

∣∣∣∣d4φ2

dx4 (x)
∣∣∣∣ ≤ 4

R2 ,

and

φ2(x) =
{

x2, 0 ≤ |x| ≤ R,

0, |x| ≥ 2R.

Then we have the following lemma.

Lemma 3.3. Besides the assumptions in Lemma 3.2, we assume that the potential V is differentiable in the 
distribution sense and satisfies xV ′ ∈ L1(R) + L∞(R) and the estimate

xV ′(x) + 2V (x) ≥ 0 for a.e. x ∈ R.

Then for q > p + 1, there exist constants C4 = C4(p, q, ‖u0‖L2 , C0) > 0 and θq = θq(p) > 0 such that for 
any R > 0 and t ∈ R+, the estimate

I ′′
φ2 [u](t) ≤8

⎧⎨
⎩P0(u(t)) +

∞∫
−∞

V (x)|u(t, x)|2dx

⎫⎬
⎭ + C4 ‖u(t)‖(p+1)θq

L2(|x|>R) + 4R−2 ‖u(t)‖2
L2(|x|>R)

+2C2‖xV ′‖L1+L∞(‖u0‖L2 + C0)‖u(t)‖L2(|x|>R)

holds, where θq := 2{q−(p+1)}
(p+1)(q−2) ∈

(
0, 2

p+1

]
.

Proof. Since u is the solution to (NLSV ) on R+, the localized virial identity (3.2) with φ = φ2 ∈ W 4,∞(R)
can be applied to obtain

I ′′(t) = I ′′
φ2 [u](t) = 8

⎧⎨
⎩P0(u(t)) +

∞∫
V (x)|u(t, x)|2dx

⎫⎬
⎭ (3.4)
−∞
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+ R1 + R2 + R3 + R4, for t ∈ R+,

where Rk = Rk(t) (k = 1, 2, 3, 4) are defined by

R1 := 4
∫
R

{
d2φ2

dx2 (x) − 2
}
|∂xu(t, x)|2dx,

R2 := −2(p− 1)
p + 1

∫
R

{
d2φ2

dx2 (x) − 2
}
|u(t, x)|p+1dx,

R3 := −
∫
R

φ(4)(x)|u(t, x)|2dx,

R4 := −2
∫
R

dφ2

dx
(x)V ′(x)|u(t, x)|2dx− 8

∞∫
−∞

V (x)|u(t, x)|2dx.

Due to 
∣∣∣d2φ2

dx2 (x)
∣∣∣ ≤ 2, the estimate R1 ≤ 0 holds for t ∈ R+. Next we estimate R2. We note that since 

q ≥ 2, the Gagliardo-Nirenberg-Sobolev inequality can be applied to get

‖f‖Lq ≤ C‖f‖
q+2
2q

L2 ‖∂xf‖
q−2
2q

L2 (3.5)

for any f ∈ H1(R), where C depends only on q. Thus due to p ≥ 1, for any q ∈ [p + 1, ∞], by the mass 
conservation law ‖u(t)‖L2 = ‖u0‖L2 and the estimate (3.5), we have

sup
t∈R+

‖u(t)‖Lq ≤ C sup
t∈R+

‖u(t)‖
q+2
2q

L2 ‖∂xu(t)‖
q−2
2q

L2 ≤ C‖u0‖
q+2
2q

L2 C
q−2
2q

0 =: C3, (3.6)

where C3 depends only on q, ‖u0‖L2 and C0. We also note that due to q > p + 1, by the Hölder inequality, 
the estimate

‖f‖Lp+1(|x|>R) ≤ ‖f‖θqL2(|x|>R)‖f‖
1−θq
Lq(|x|>R)

is valid for any f ∈ L2(|x| > R) ∩Lq(|x| > R), where θq := 2{q−(p+1)}
(q−2)(p+1) ∈ (0, 1]. By these estimates, we have

R2 = −2(p− 1)
p + 1

∫
R

{
d2φ2

dx2 (x) − 2
}
|u(t, x)|p+1dx

≤ 8(p− 1)
p + 1

∫
|x|>R

|u(t, x)|p+1dx

≤ 8(p− 1)
p + 1 ‖u(t)‖(p+1)(1−θq)

Lq(|x|>R) ‖u(t)‖(p+1)θq
L2(|x|>R)

≤ 8(p− 1)C(p+1)(1−θq)
3

p + 1 ‖u(t)‖(1+p)θq
L2(|x|>R) , for t ∈ R+.

Moreover, we estimate R3. By the properties of φ2, we have

R3 = −
∫
R

d4φ2

dx4 (x)|u(t, x)|2dx ≤ 4R−2
∫

|x|>R

|u(t, x)|2dx = 4R−2 ‖u(t)‖2
L2(|x|>R) .
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Finally we estimate R4. By the Gagliardo-Nirenberg-Sobolev inequality, the inequality

‖f‖2
L∞(|x|>R) ≤ ‖f‖L2(|x|>R)‖∂xf‖L2(|x|>R), (3.7)

holds, for any f ∈ H1(|x| > R). Since the potential V is non-negative and satisfies

xV ′(x) + 2V (x) ≥ 0, for a.e. x ∈ R,

by the properties of the function φ2, the estimate (3.7), we have

R4 = −4
∫

|x|<R

{xV ′(x) + 2V (x)}|u(t, x)|2dx

− 8
∫

|x|>R

V (x)|u(t, x)|2dx− 2
∫

|x|>R

dφ2

dx
(x)V ′(x)|u(t, x)|2dx

≤ 2C2

∫
|x|>R

|xV ′(x)||u(t, x)|2dx

≤ 2C2‖xV ′‖L1(|x|>R)+L∞(|x|>R)‖u(t)‖L2(|x|>R)
(
‖u(t)‖L2(|x|>R) + ‖∂xu(t)‖L2(|x|>R)

)
≤ 2C2‖xV ′‖L1+L∞(‖u0‖L2 + C0)‖u(t)‖L2(|x|>R),

which completes the proof of the lemma. �
We prove the blow-up or grow-up result (2) in Theorem 1.3 by using Lemmas 3.1, 3.2, 3.3.

Proof of (2) in Theorem 1.3. Let u0 ∈ H and u ∈ C(I : H) ∩C1(I : H−1) be the unique solution to (NLSV )
on I := (−T−, T+) obtained in Proposition 1.1. In the following, we only treat the positive time direction, 
since the negative time direction can be treated in the same manner. On the contrary, we assume that 
T+ = ∞ and supt∈R+

‖∂xu(t)‖L2 < ∞, where R+ := [0, ∞). Then we can define C0 ∈ (0, ∞) such as

C0 := sup
t∈R+

‖∂xu(t)‖L2 .

Since u0 satisfies the assumptions (2) in Theorem 1.2, there exists δ1 > 0 independent of t such that

P0(u(t)) +
∞∫

−∞

V (x)|u(t, x)|2dx < −δ1, for all t ∈ R+. (3.8)

By Lemma 3.3 with the estimate (3.8), we have

I ′′(t) := I ′′
φ2 [u](t) ≤− 8δ1 + C4 ‖u‖θqL2(|x|>R) + 4R−2 ‖u‖2

L2(|x|>R)

+ 2C2‖xV ′‖L1+L∞(‖u0‖L2 + C0)‖u(t)‖L2(|x|>R), for any t ∈ R+, (3.9)

where C2, C4 > 0 and θq are given in Lemma 3.3. Here since θq > 0, we can take η0 = η0(δ1) > 0 sufficiently 
small such as

C
1
2
4 η

θq
2

0 + 2η0 + {2C2‖xV ′‖L1+L∞(‖u0‖L2 + C0)}
1
2 η

1
2
0 ≤ δ1. (3.10)
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By Lemma 3.2 with η = η0 and R ≥ 1 and by the estimates (3.9)-(3.10) on R+, we have

I ′′(t) ≤ −7δ1 + oR(1), for t ∈ [0, T ] , (3.11)

where T = T (R) is defined by

T = T (R) := η0R

‖u0‖L2C0C1
,

due to u0 �= 0 and C1 > 0 is given in Lemma 3.2. By integrating the inequality (3.11) twice with respect to 
time over [0, T ], we get

I(T ) ≤ I(0) + I ′(0)T + 1
2(−7δ1 + oR(1))T 2, for R ≥ 1.

Here we take sufficiently large R = R(δ1) > 1 satisfying

−7δ1 + oR(1) < −6δ1.

Then we get

I(T ) ≤ I(0) + η0

‖u0‖L2C0C1
I ′(0)R− α0R

2, R � 1, (3.12)

where α0 is defined by

α0 := 3δ1η2
0

‖u0‖2
L2C2

0C
2
1
> 0,

and is especially independent of R. We can prove that I(0) = oR(1)R2 and I ′(0) = oR(1)R as R → ∞. 
Indeed, since u0 ∈ L2(R), by the properties of φ2, we have

I(0) =
∫

|x|<2R

φ2(x)|u0(x)|2dx ≤
∫

|x|<
√
R

x2|u0(x)|2dx +
∫

√
R<|x|<2R

x2|u0(x)|2dx

≤ R‖u0‖2
L2 + 4R2

∫
√
R<|x|

|u0(x)|2dx = oR(1)R2, as R → ∞.

And since u0 ∈ H ⊂ H1(R), by the identity (3.1), the properties of φ2 again and the Schwarz inequality, 
we have

|I ′(0)| ≤
∫

|x|<
√
R

∣∣∣∣dφ2

dx
(x)

∣∣∣∣ |u0(x)||∂xu0(x)|dx +
∫

√
R<|x|<2R

∣∣∣∣dφ2

dx
(x)

∣∣∣∣ |u0(x)||∂xu0(x)|dx

≤ C3

∫
|x|<

√
R

|x||u0(x)||∂xu0(x)|dx + C3

∫
√
R<|x|<2R

|x||u0(x)||∂xu0(x)|dx

≤ C3‖u0‖L2‖∂xu0‖L2

√
R + 2C3R

∫
√
R<|x|

|u0(x)||∂xu0(x)|dx

= oR(1)R.
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Therefore by (3.12) and these estimates, we see that

I(T ) ≤ oR(1)R2 − α0R
2 = (oR(1) − α0)R2, as R → ∞.

We take R � 1 sufficiently large such that oR(1) − α0 < 0. However, this contradicts I(T ) =∫
R φ2(x)|u(T, x)|2dx ≥ 0, which completes the proof of the blow-up or glow-up result in Theorem 1.3. �

4. Minimizing problems and variational structure

4.1. Minimizing problems

Let α, β ∈ R. For any function φ and λ ∈ R, we define a scaling transformation

φα,β
λ (x) := eαλφ(e−βλx)

For any functional S : H1(R) → R and λ0 ∈ R, the operator Lα,β
λ0

is defined as

Lα,β
λ0

S(φ) := d

dλ
S(φα,β

λ )|λ=λ0 , (4.1)

Lα,βS(φ) := Lα,β
0 S(φ). (4.2)

Let ω > 0. We introduce the functionals Kα,β
ω : H1(R) → R as follows:

Kα,β
ω (φ) = Kα,β

ω,V (φ) := Lα,βSω(φ) = ∂λSω(eαλφ(e−βλ·))|λ=0

= 2α− β

2 ‖∂xφ‖2
L2 + 2α + β

2

⎧⎨
⎩ω ‖φ‖2

L2 +
∞∫

−∞

V (x)|φ(x)|2dx

⎫⎬
⎭ (4.3)

+ β

2

∞∫
−∞

xV ′(x)|φ(x)|2dx− (p + 1)α + β

p + 1 ‖φ‖p+1
Lp+1 .

We note that the third term and the fourth term in the right hand side of (4.3) are well defined if V ∈
L1(R) + L∞(R) and xV ′ ∈ L1(R) + L∞(R) respectively.

In the following, we always assume that (α, β) satisfies the following conditions:

α > 0, β ≤ 0, 2α + β ≥ 0. (4.4)

We especially use the following two functionals H1(R) → R:

P (φ) = PV (φ) := K1/2,−1
ω (φ) = ‖∂xφ‖2

L2 −
1
2

∞∫
−∞

xV ′(x)|φ(x)|2dx− p− 1
2(p + 1) ‖φ‖

p+1
Lp+1 , (4.5)

Iω(φ) = Iω,V (φ) := K1,0
ω (φ) = ‖∂xφ‖2

L2 +
∞∫

−∞

V (x)|φ(x)|2dx + ω ‖φ‖2
L2 − ‖φ‖p+1

Lp+1 . (4.6)

P is well defined if xV ′ ∈ L1(R) +L∞(R), is related to the virial identity (Lemma 3.1), and is used to prove 
the blow-up result and the extinction of a so-called critical element (see Proposition 5.15) in the scattering 
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result. Iω is well defined if V ∈ L1(R) + L∞(R), is called Nehari functional, and is used in the variational 
argument and the linear profile decomposition (Proposition 5.7).

For ω > 0, α ∈ R, we also introduce the functional Jω : Lp+1(R) 	→ [0, ∞) defined by

Jω(φ) = Jα,0
ω,V (φ) := Sω(φ) − 1

2αKα,0
ω (φ) = p− 1

2(p + 1)‖φ‖
p+1
Lp+1 . (4.7)

Remark 4.1. The reason why we restrict β = 0 in the definition of Jω is that Jα,β
ω,V (φ) might be negative 

if β < 0 and ‖φ‖H1 is small, which is different from the case without a potential or with a Dirac’s delta 
potential (see Section 2 in [15]).

Next, we see that Kα,β
ω is positive near the origin in H1(R) under the assumption (4.4).

Lemma 4.1. Let ω > 0, p > 5 and (α, β) satisfy (4.4). Let V ∈ L1(R) + L∞(R) satisfy V ≥ 0. If β < 0, 
then we further assume that xV ′ ∈ L1(R) +L∞(R) and xV ′(x) ≤ 0 for x ∈ R. We assume that {φn}n∈N ⊂
H1(R) \ {0} be bounded in L2(R) such that ‖∂xφn‖L2 → 0 as n → ∞. Then Kα,β

ω (φn) > 0 for sufficiently 
large n.

This lemma is proved in the similar manner as the proof of Lemma 2.1 in [14] and Lemma 2.2 in [15].

Proof. Noting that p ≥ 1, the Gagliardo-Nirenberg inequality gives

‖f‖p+1
Lp+1 ≤ C0‖∂xf‖

p−1
2

L2 ‖f‖
p+3
2

L2 ,

for f ∈ H1(R), where C0 is dependent only on p. By this inequality and the assumptions of ω, p, (α, β) and 
V , we have

Kα,β
ω (φ) ≥ 2α− β

2 ‖∂xφ‖2
L2 −

(p + 1)α + β

p + 1 ‖φ‖p+1
Lp+1

≥ 2α− β

2 ‖∂xφ‖2
L2 −

C0{(p + 1)α + β}
p + 1 ‖∂xφ‖

p−1
2

L2 ‖φ‖
p+3
2

L2 , (4.8)

for any φ ∈ H1(R). Since {φn}n∈N is bounded in L2(R), there exists a constant C1 such that

C1 = sup
n∈N

‖φn‖L2 < ∞. (4.9)

Since ‖∂xφn‖L2 → 0 as n → ∞, there exists N = N(α, β, p) ∈ N such that for n ≥ N , the estimate

‖∂xφn‖L2 ≤
{

2α− β

4 · p + 1

C0C
p+3
2

1 {(p + 1)α + β}

} 2
p−5

(4.10)

holds. Noting that ∂xφn �= 0 for any n ∈ N and p > 5, for n ≥ N , by combining the estimates (4.8)-(4.10), 
we have

Kα,β
ω (φn) ≥ 2α− β

2 ‖∂xφn‖2
L2 −

C0{(p + 1)α + β}
p + 1 ‖∂xφn‖

p−1
2

L2 ‖φn‖
p+3
2

L2

= ‖∂xφn‖2
L2

(
2α− β − C0{(p + 1)α + β}‖∂xφn‖

p−5
2

L2 ‖φn‖
p+3
2

L2

)

2 p + 1
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≥ ‖∂xφn‖2
L2

(
2α− β

2 − C0C
p+3
2

1 (p + 1)α + β

p + 1 ‖∂xφn‖
p−5
2

L2

)

≥ 2α− β

4 ‖∂xφn‖2
L2 > 0,

which completes the proof of the lemma. �
For ω > 0 and α > 0, we study the following minimizing problems:

nα
ω = nα

ω,V := inf{Sω(φ) : φ ∈ H \ {0},Kα,0
ω (φ) = 0}, (4.11)

lαω = nα
ω,0 := inf{Sω,0(φ) : φ ∈ H1(R) \ {0},Kα,0

ω,0(φ) = 0}. (4.12)

If α = 1, then these are nothing but nω and lω respectively. We prove that these minimizing problems 
are independent of α and Proposition 1.6 in the following.

We prove that nα
ω = lαω and nα,β

ω is not attained. To do so, we introduce

jαω := inf{Jα,0
ω,0 (φ) : φ ∈ H \ {0},Kα,0

ω,0(φ) ≤ 0},

where ω > 0 and α > 0.

Lemma 4.2. Let ω > 0 and α > 0. Let V ∈ L1(R) + L∞(R) be non-negative and p > 5. Then we have

lαω = jαω .

Proof. First we prove jαω ≤ lαω . By the definitions of jαω and Jα
ω,0, we have

jαω ≤ inf{Jα,0
ω,0 (φ) : φ ∈ H \ {0},Kα,0

ω,0(φ) = 0}
= inf{Sω,0(φ) : φ ∈ H \ {0},Kα,0

ω,0(φ) = 0} = lαω .

Next we prove lαω ≤ jαω . In the proof, the assumptions are used. Let φ ∈ H \ {0} such that Kα,0
ω,0(φ) ≤ 0. If 

Kα,0
ω,0(φ) = 0, then by the definition of lαω and Jα,0

ω,0 , we have

lαω ≤ Sω,0(φ) = Jα,0
ω,0 (φ).

If Kα,0
ω,0(φ) < 0, then there exists λ∗ ∈ (0, 1) such that Kα,0

ω,0(λ∗φ) = 0. This follows from the continuity of 
the function λ 	→ Kα,0

ω,0(λφ) and the fact that Kα,0
ω,0(λφ) > 0 holds for small λ ∈ (0, 1) due to Lemma 4.1. 

Since the function λ 	→ Jα,0
ω,0 (λφ) is monotone increasing on [0, ∞) and λ∗ ∈ (0, 1), the relations

lαω ≤ Sω,0(λ∗φ) = Jα,0
ω,0 (λ∗φ) ≤ Jα,0

ω,0 (φ)

hold. Namely, for any φ ∈ H \ {0} satisfying Kα,0
ω,0(φ) ≤ 0, the estimate lαω ≤ Jα,0

ω,0 (φ) holds, which implies 
lαω ≤ jαω , which completes the proof of the lemma. �

For y ∈ R, we introduce the translation operator τy defined by

(τyϕ)(x) := ϕ(x− y), for x ∈ R.

Proposition 4.3. Addition to the same assumptions as in Lemma 4.2, we assume that V ∈ L1(R). Then the 
identity holds:

nα
ω = lαω .
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Proof. First we prove nα
ω ≥ lαω . Take φ ∈ H\{0} arbitrarily such that Kα,0

ω (φ) = 0. Since V is non-negative, 
the estimates Kα,0

ω,0(φ) ≤ Kα,0
ω,V (φ) = 0 hold. Thus Lemma 4.2 gives

lαω = jαω ≤ Jα,0
ω,0 (φ) = Jα,0

ω,V (φ),

which implies that

lαω ≤ inf{Jα,0
ω,V (φ) : φ ∈ H \ {0},Kα,0

ω (φ) = 0}
= inf{Sω(φ) : φ ∈ H \ {0},Kα,0

ω (φ) = 0} = nα
ω.

Next we prove nα
ω ≤ lαω . We note that the ground state Qω attains lαω , i.e. lαω = Sω,0(Qω). Since the identity 

limn→∞ Qω(x − n) = 0 holds for any x ∈ R, the estimate 0 < Qω(x − n) ≤ Qω(0) holds for any x ∈ R and 
n ∈ N and V ∈ L1(R) is non-negative, Lebesgue’s convergence theorem gives

lim
n→∞

∞∫
−∞

V (x)|Qω(x− n)|2dx = 0, (4.13)

which implies that limn→∞ Sω,V (Qω(· − n)) = Sω,0(Qω) = lαω . Since V is non-negative, Kα,0
ω,V (Qω(· − n)) ≥

Kα,0
ω,0(Qω(· − n)) = Kα,0

ω,0(Qω) = 0 holds for all n ∈ N. We only consider the case V �= 0, since in the case 
V ≡ 0, lαω = nα

ω. In this case, Kα,0
ω,V (Qω(· − n)) > 0 for any n ∈ N. On the other hand, for any n ∈ N, 

Kα,0
ω,V (λQω(· −n)) < 0 for large λ > 1 due to p > 1. Thus by combining these facts and the continuity of the 

function [1, ∞) � λ 	→ Kα,0
ω,V (λQω(· − n)) ∈ R, there exists λn > 1 such that Kα,0

ω,V (λnQω(· − n)) = 0. For 
this sequence {λn}n∈N , we can prove λn ↘ 1 as n → ∞. Indeed, since the identity Kα,0

ω,V (λnQω(· − n)) = 0
and the estimate λn > 1 hold for any n ∈ N and α > 0, we have for any n ∈ N,

0 = ‖∂xQω‖2
L2 + ω‖Qω‖2

L2 − λp−1
n ‖Qω‖p+1

Lp+1 +
∞∫

−∞

V (x)|Qω(x− n)|2dx. (4.14)

Moreover since K1,0
ω,0(Qω) = 0, we have

‖∂xQω‖2
L2 + ω‖Qω‖2

L2 = ‖Qω‖p+1
Lp+1 . (4.15)

Thus by combining the identities (4.14) and (4.15), we have

(λp−1
n − 1)‖Qω‖p+1

Lp+1 =
∞∫

−∞

V (x)|Qω(x− n)|2dx.

By combining this and (4.13), we have λn ↘ 1 as n → ∞, which implies that

lim
n→∞

|Sω,V (λnQω(· − n)) − Sω,V (Qω(· − n))| = 0.

Finally, we obtain, Sω,V (λnQω(· −n)) → Sω,0(Qω) = lαω as n → ∞. Recalling the identity Kα,0
ω,V (λnτnQω) = 0

holds for all n ∈ N, we have nα
ω ≤ lαω , which completes the proof of the proposition. �

Proposition 4.4. Addition to the assumptions of Proposition 4.3, we assume that

μ({x ∈ R : V (x) �= 0}) > 0, (4.16)
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where μ denotes the Lebesgue measure. Then we see that nα
ω is not attained, namely, there does not exist 

ϕ ∈ H\{0} such that Kα
ω,V (ϕ) = 0 and Sω,V (ϕ) = nα

ω.

Proof. On the contrary, we assume that ϕ attains nα
ω, i.e. there exists ϕ ∈ H\{0} such that Sω,V (ϕ) = nα

ω and 
Kα

ω,V (ϕ) = 0. If V (x)|ϕ(x)|2 = 0 a.e. x ∈ R, then Sω,0(ϕ) = Sω(ϕ) = nα
ω = lαω and Kα

ω,0(ϕ) = Kα
ω,V (ϕ) = 0

holds, that is, ϕ also attains lα,βω . By the uniqueness of the ground state for lαω, we have ϕ = Qω. Thus 
we obtain ϕ(x) = Qω(x) > 0 for any x ∈ R. Therefore we get V (x) = 0 a.e. x ∈ R, which contradicts 
(4.16). Therefore, we have V (x)|ϕ(x)|2 > 0 a.e. x ∈ R. Since lim|y|→∞ |ϕ(x − y)|2 = 0 for a.e. x ∈ R due to 
ϕ ∈ H ⊂ H1(R) and V ∈ L1(R), Lebesgue’s convergence theorem gives

lim
|y|→∞

∞∫
−∞

V (x)|ϕ(x− y)|2dx = 0.

Thus there exists Y > 0 such that for any y ∈ R satisfying |y| ≥ Y

0 <

∞∫
−∞

V (x)|ϕ(x− y)|2dx <

∞∫
−∞

V (x)|ϕ(x)|2dx,

which implies that for y ∈ R satisfying |y| > Y , we have

Kα
ω (τyϕ) < Kα

ω (ϕ) = 0.

Moreover we see that Kα
ω (λ0τyϕ) > 0 for small λ0 ∈ (0, 1) by Lemma 4.1. Therefore there exists λ∗ ∈ (0, 1)

such that Kα,β
ω (λ∗τyϕ) = 0 by the continuity of the function λ ∈ [λ0, 1] 	→ Kα

ω (λτyϕ). By the definitions of 
nα
ω and Jα

ω , Proposition 4.3, Lemma 4.2, |λ∗| < 1, we have

nα
ω ≤ Jα,β

ω (λ∗τyϕ) < Jα
ω (τyϕ) = Jα

ω (ϕ) = Sα
ω (ϕ) = nα

ω.

This is a contradiction, which completes the proof of the proposition. �
4.2. Rewriting the conditions in Theorem 1.2 into another form dependent on the frequency

In this subsection, we give a proof of Proposition 1.7.

Proof of Proposition 1.7. Let ϕ ∈ H. First we consider the case ϕ �= 0. We introduce the function f :
(0, ∞) 	→ R defined by

f(ω) := lω − Sω,V (ϕ), for ω > 0

We note that from Proposition 4.3, we see that the identity nω = lω holds for any ω > 0. Thus we see that 
(1) is valid if and only if supω>0 f(ω) > 0. Since lω = Sω,0(Qω), by using changing variables, the identity 

lω = ω
p+3

2(p−1)S1,0(Q1) > 0 holds for any ω > 0. Thus f can be written as

f(ω) = ω
p+3

2(p−1)S1,0(Q1) −EV (ϕ) − ω

2M(ϕ).

By differentiating f with respect to the frequency ω, we have

f ′(ω) = p + 3
ω

5−p
2(p−1)S1,0(Q1) −

1
M(ϕ).
2(p− 1) 2
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Noting that p > 5, since ϕ �= 0, we can define

ω0 = ω0(ϕ, p) :=
{

M(ϕ)
p+3
p−1S1,0(Q1)

}− 2(p−1)
p−5

> 0.

Then f ′(ω) = 0 if and only if ω = ω0. Since f ′ is monotone decreasing on (0, ∞), due to p > 5, f is maximum 
at ω = ω0, i.e.

f(ω0) = max
ω>0

f(ω)

Therefore we see that the statement (1) holds if and only if f(ω0) > 0. A direct computation gives

f(ω0) = p− 5
2(p + 3)

{
p+3
p−1S1,0(Q1)

} 2(p−1)
p−5

M(ϕ)
p+3
p−5

− EV (ϕ).

Thus f(ω0) > 0 if and only if

p− 5
2(p + 3)

{
p + 3
p− 1S1,0(Q1)

} 2(p−1)
p−5

> EV (ϕ)M(ϕ)σ

holds. Since the ground state Q1 satisfies the energy identity and the Pohozaev identity respectively:

‖Q′
1‖2

L2 + ‖Q1‖2
L2 = ‖Q1‖p+1

Lp+1 and − ‖Q′
1‖2

L2 + ‖Q1‖2
L2 = 2

p + 1‖Q‖p+1
Lp+1 ,

the identities

‖Q1‖2
L2 = p + 3

p− 1‖Q
′
1‖2

L2 = p + 3
2(p + 1)‖Q1‖p+1

Lp+1

hold. By using these identities, we have

p− 5
2(p + 3)

{
p + 3
p− 1S1,0(Q1)

} 2(p−1)
p−5

= E0(Q1)M(Q1)σ. (4.17)

Next we consider the case ϕ ≡ 0. Then Sω,V (ϕ) = EV (ϕ)M(ϕ)σ = 0. Since lω > 0, (1) holds for any ω > 0. 
On the other hand, since S1,0(Q1) > 0, by the identity (4.17), (2) also holds.

Next we prove that if ϕ satisfies (1.10) and (1.11) with u0 = ϕ, then Iω0,V (ϕ) ≥ 0. When ϕ = 0, 
Iω0,V (ϕ) = 0. When ϕ �= 0, since

ω0 =
{

M(ϕ)
p+3
p−1S1,0(Q1)

}− 2(p−1)
p−5

= 2(p + 3)
p− 5 E0(Q1)M(Q1)σM(ϕ)−

2(p−1)
p−5 ,

the identity

Iω0,V (ϕ) = ‖H
1
2
V ϕ‖2

L2 + 2(p + 3)
p− 5 E0(Q1)

{
M(Q1)
M(ϕ)

}σ

− ‖ϕ‖p+1
Lp+1 (4.18)

holds. Since ϕ satisfies (1.11), we can apply the estimate (2.7) with u(t) = ϕ to get
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Iω0,V (ϕ) > 2(p + 3)
p− 5 E0(Q1)

{
M(Q1)
M(ϕ)

}σ

− p + 3
p− 1‖H

1
2
V ϕ‖2

L2 .

By the estimate (2.8), we obtain

Iω0,V (ϕ) > 2(p + 3)
p− 5 M(ϕ)−σ{E0(Q1)M(Q1)σ −EV (ϕ)M(ϕ)σ} > 0,

where we have used the assumption (1.10).
Finally, we prove that if ϕ satisfies (1.10) and (1.12) with u0 = ϕ, then Iω0,V (ϕ) < 0. Noting that the 

identity

‖ϕ‖p+1
Lp+1 = p + 1

2 ‖H
1
2
V ϕ‖2

L2 − (p + 1)EV (ϕ)

holds, by the identity (4.18), we have

Iω0,V (ϕ) = −p− 1
2 ‖H

1
2
V ϕ‖2

L2 + 2(p + 3)
p− 5 E0(Q1)M(Q1)σM(ϕ)−σ + (p + 1)EV (ϕ).

Since ϕ satisfies (1.12), we can apply the estimate (2.13) to get

Iω0,V (ϕ) >
[
−p− 1

2 ‖∂xQ1‖2
L2 +

{
2(p + 3)
p− 5 + (p + 1)

}
E0(Q1)

](
M(Q1)
M(ϕ)

)σ

= 0

due to the assumption (1.10) and the identity (2.5), which completes the proof of the proposition. �
4.3. Variational structure

For ω > 0 and V ∈ L1(R) + L∞(R) satisfying V (x) ≥ 0 for a.e. x ∈ R, we introduce a norm ‖ · ‖
H

1
2
ω,V

‖ϕ‖2
H

1
2
ω,V

:= 1
2 ‖∂xϕ‖2

L2 + ω

2 ‖ϕ‖2
L2 + 1

2

∞∫
−∞

V (x)|ϕ(x)|2dx,

for ϕ ∈ H.

Lemma 4.5 (Equivalency of the norms and action). Let ω > 0, V ∈ L1(R) +L∞(R), p > 1 and ϕ ∈ H1(R). 
We assume that Iω,V (ϕ) ≥ 0. Then the inequality

Sω,V (ϕ) ≤ ‖ϕ‖2
H

1
2
ω,V

≤ p + 1
p− 1Sω,V (ϕ), (4.19)

holds. Moreover the estimate

c‖ϕ‖H1 ≤ ‖ϕ‖
H

1
2
ω,V

≤ C‖ϕ‖H1 (4.20)

also holds, where c is a positive constant dependent only on ω and C is a constant dependent only on ω and 
‖V ‖L1+L∞ . The estimates (4.19) and (4.20) imply that the norms ‖ · ‖2

H
1
2
ω,V

, ‖·‖2
H1 and ‖·‖2

H are equivalent 

to Sω,V (·).
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Proof. The left inequality of (4.19) is trivial, since we are considering the focusing nonlinearity. Next we 
prove the right inequality of (4.19). By the assumption of this lemma, we have

0 ≤ Iω,V (ϕ)

= ‖∂xϕ‖2
L2 +

∞∫
−∞

V (x)|ϕ(x)|2dx + ω‖ϕ‖2
L2 − ‖ϕ‖p+1

Lp+1

= (1 − p)‖ϕ‖2
H

1
2
ω,V

+ (p + 1)Sω(ϕ),

which implies the right inequality of (4.19). It is easy to see that the left inequality of (4.20) holds due to 
V (x) ≥ 0 a.e. x ∈ R. Indeed,

‖ϕ‖2
H1 = ‖∂xϕ‖2

L2 + ‖ϕ‖2
L2 ≤ max

(
2, 2

ω

)(
1
2‖∂xϕ‖

2
L2 + ω

2 ‖ϕ‖
2
L2

)
≤ max

(
2, 2

ω

)
‖ϕ‖2

H
1
2
ω,V

.

By the Sobolev embedding H1(R) ⊂ L∞(R), the estimate

∞∫
−∞

V (x)|ϕ(x)|2dx ≤ C‖V ‖L1+L∞‖ϕ‖2
H1

holds where C is a constant. By using this estimate, we have

‖ϕ‖2
H

1
2
ω,V

≤ max
(

1
2 ,

ω

2 , C‖V ‖L1+L∞

)
‖ϕ‖2

H1 ,

which completes the proof of the lemma. �
Lemma 4.6 (Invariant sets). Let p > 1, V ∈ L1(R) +L∞(R) be non-negative, u0 ∈ H and let u ∈ C(I, H) be 
a solution to (NLSV ) with u|t=0 = u0 ∈ H on I = (−T−, T+), t0 ∈ R and ω > 0. If u(t0) ∈ N+

ω , u(t) ∈ N+
ω

for any t ∈ I. On the other hand, if u(t0) ∈ N−
ω , then u ∈ N−

ω for any t ∈ I.

Proof. Since u is the solution to (NLSV ) on I, the energy and the mass conservation laws give u(t) ∈
N+

ω ∪ N−
ω for any t ∈ I due to Sω,V (u(t0)) < nω. First we consider the case u(t0) ∈ N+

ω . We only consider 
the case of t ≥ t0, since the case t < t0 can be treated in the same manner. On the contrary, we assume that 
there exists t∗ ∈ (t0, T+) such that u(t∗) ∈ N−

ω . By the continuity of the function t ∈ I 	→ Iω,V (u(t)) ∈ R, 
there exists t∗∗ ∈ [t0, t∗) such that Iω,V (u(t∗∗)) = 0. By the definition of nω and the conservation laws 
again, we have

nω > Sω,V (u(t0)) = Sω,V (u(t∗∗)) ≥ nω,

which leads to a contradiction. Thus for any t ∈ (t0, T+), u(t) ∈ N+
ω .

In the same manner as above, the second statement can be proved, which completes the proof of the 
lemma. �
Corollary 4.7 (Global existence of solution in N+

ω ). Let ω > 0, V ∈ L1(R) + L∞(R) be non-negative, p > 1
and t0 ∈ R. Let u be the solution to (NLSV ) with the initial condition u|t=t0 = u(t0) ∈ H on (−T−, T+), 
where T± denote the maximal existence times of the solution u. We further assume that u(t0) ∈ N+

ω . Then 
T+ = T− = ∞.
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Proof. We only prove that T+ = ∞, since T− = ∞ can be proved in the similar manner. On the contrary, 
we assume that T+ < ∞. Then by the blow-up criterion in Proposition 1.1 with u0 = u(t0) ∈ H, we have 
limt→T+−0 ‖∂xu(t)‖L2 = ∞. On the other hand, since u(t0) ∈ N+

ω , Lemma 4.6 implies that Iω,V (u(t)) ≥ 0
for any t ∈ I. Thus noting that ω > 0 and p > 1, we can apply Lemma 4.5 with the conservation laws and 
V ≥ 0 to get

‖∂xu(t)‖2
L2 ≤ 2‖u(t)‖2

H1 ≤ CSω,V (u(t)) = CSω,V (u(t0)) < ∞, for t ∈ I,

where C is a constant independent of t ∈ I. This contradicts limt→T+−0 ‖∂xu(t)‖L2 = ∞. Therefore we find 
T+ = ∞, which completes the proof of the corollary. �
Lemma 4.8. Let ω > 0, V ∈ L1(R) +L∞(R) be non-negative, p > 5, ε > 0, δ > 0 satisfy 2ε < δ, and k be a 
nonnegative integer. Let {ϕl}kl=0 ⊂ H1(R) be a sequence satisfying

Sω,V

(∑k
l=0 ϕl

)
≤ nω − δ, Sω,V

(∑k
l=0 ϕl

)
≥

∑k
l=0 Sω,V (ϕl) − ε,

Iω,V

(∑k
l=0 ϕl

)
≥ −ε, Iω,V

(∑k
l=0 ϕl

)
≤

∑k
l=0 Iω,V (ϕl) + ε.

Then we have 0 ≤ Sω,V (ϕl) < nω and Iω,V (ϕl) ≥ 0 for all l ∈ {0, 1, 2, · · · , k}, which implies that ϕl ∈ N+
ω , 

for all l ∈ {0, 1, 2, · · · , k}.

This lemma can be proved in the similar manner as the proof of Lemma 6.4 in [14] or Lemma 3.6 in [15].

Proof. On the contrary, we assume that there exists an l ∈ {0, 1, 2, · · · , k} such that Iω,V (ϕl) < 0. First 
we prove that J1,0

ω,V (ϕl) ≥ nω, where the functional J1,0
ω,V is defined by (4.7). We note that ϕl �= 0 due to 

Iω,V (ϕl) < 0, and limλ→0 ‖∂x(λϕl)‖L2 = ‖∂xϕl‖L2 limλ→0 λ = 0. These facts and p > 5 allow us to apply 
Lemma 4.1 with α = 1 and β = 0 to obtain Iω,V (λ0ϕl) > 0 for small λ0 ∈ (0, 1). By Iω,V (λ0ϕl) > 0 and 
Iω(ϕl) < 0 and the continuity of the function [0, ∞) � λ 	→ Iω,V (λϕl) ∈ R, there exists λ∗ ∈ (λ0, 1) such 
that Iω,V (λ∗ϕl) = 0. Noting that the function [0, ∞) � λ 	→ J1,0

ω,V (λϕl) is monotone increasing, by the 

definitions of nω and J1,0
ω,V and λ∗ < 1, we obtain

nω ≤ Sω,V (λ∗ϕl) = J1,0
ω,V (λ∗ϕl) < J1,0

ω,V (ϕl).

By the positivity and the definition of the functional J1,0
ω,V and the assumptions of this lemma, we obtain

nω < J1,0
ω,V (ϕl) ≤

k∑
l=0

J1,0
ω,V (ϕl) =

k∑
l=0

{
Sω,V (ϕl) −

1
2Iω,V (ϕl)

}

=
k∑

l=0

Sω,V (ϕl) −
1
2

k∑
l=0

Iω,V (ϕl)

≤ Sω,V

(
k∑

l=0

ϕl

)
+ ε− 1

2

{
Iω,V

(
k∑

l=0

ϕl

)
− ε

}

≤ nω − δ + ε + ε < nω,

which leads to a contradiction. Thus, Iω,V (ϕl) ≥ 0 for all l ∈ {0, 1, 2, · · · , k}. Moreover, by combining this 
estimate and the positivity of the functional J1,0

ω,V again, for any l ∈ {0, 1, 2, · · · , k}, we have
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Sω,V (ϕl) = J1,0
ω,V (ϕl) + 1

2Iω,V (ϕl) ≥ 0.

By combining this estimate and the assumptions of this lemma, we have for any l ∈ {0, 1, 2, · · · , k},

Sω,V (ϕl) ≤
k∑

l=0

Sω,V (ϕl) ≤ Sω,V

(
k∑

l=0

ϕl

)
+ ε ≤ nω − δ + ε < nω − 1

2δ < nω.

Therefore, we get ϕl ∈ N+
ω for all l ∈ {0, 1, 2, · · · , k}, which completes the proof of the proposition. �

5. Proof of the scattering part

5.1. Dispersive estimate, Strichartz estimates and small data scattering

In this subsection, we recall the dispersive estimate and the Strichartz estimates for the linear Schrodinger 
evolution group {eitHV }t∈R and a small data scattering result for (NLSV ) in the mass-critical or supercritical 
case p ≥ 5.

Lemma 5.1 (Dispersive estimate). Let V ∈ L1
1(R) be non-negative and φ ∈ L1(R). Then there exists a 

constant C = C(V ) > 0 such that the estimate

‖e−itHV φ‖L∞ ≤ C

|t| 12
‖φ‖L1 , (5.1)

holds for t ∈ R\{0}. Moreover, let a ∈ [2, ∞] and φ ∈ La′(R). Then there exists a constant C = C(a, V ) > 0
such that the estimate

‖e−itHV φ‖La(R) ≤ C|t|− 1
2+ 1

a ‖φ‖La′ (5.2)

holds for t ∈ R\{0}, where a′ is the Hölder conjugate of a: 1
a + 1

a′ = 1.

For the proof of the estimate (5.1), see [10]. The estimate (5.2) can be proved by Riesz-Thorin’s theorem 
with the estimate (5.1) and the L2-conservation law.

Remark 5.1. The reason why V ∈ L1
1(R) is assumed in the scattering part of Theorem 1.3 is due to the use 

of Lemma 5.1 for the proof.

Next we state the Strichartz estimate for {e−itHV }t∈R for L2-admissible pairs. We say that (q, r) is an 
L2-admissible pair, if and only if (q, r) satisfies

2 ≤ q ≤ ∞ and 2
q

= 1
2 − 1

r
.

Lemma 5.2 (Strichartz estimates for L2-admissible pairs). Let V ∈ L1
1(R) be non-negative, and let (q, r) be 

an L2-admissible pair and f ∈ L2(R). Then for any time interval I, there exists C depending only on q, 
such that the estimate

‖e−itHV f‖Lq
t (I:Lr

x) ≤ C‖f‖L2 ,

holds. Moreover let (qj, rj) (j = 1, 2) be L2-admissible pairs. Then for any time interval I, there exists a 
constant C depending only on q1, q2 such that the estimate
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∥∥∥∥∥∥
t∫

0

e−(t−s)HV F (s)ds

∥∥∥∥∥∥
L

q1
t

(
I:Lr1

x

)
≤ C ‖F‖

L
q′2
t

(
I:Lr′2

x

)

holds for F ∈ L
q′2
t

(
I : Lr′2

x

)
, where q′2 and r′2 are Hölder conjugate of q2 and r2 respectively.

This lemma can be proved by the dispersive estimate (Lemma 5.1) and so-called TT ∗-argument (see [18]
for example).

We need Strichartz estimates for non-admissible pairs in order to treat scattering results in the mass-
supercritical case p > 5.

Lemma 5.3 (Strichartz estimates for non-admissible pairs). Let V ∈ L1
1(R) be non-negative and let p ≥ 5

and the exponents r, a, b and γ be defined by

r := p + 1, a := 2(p− 1)(p + 1)
p + 3 , b := 2(p− 1)(p + 1)

(p− 1)2 − (p− 1) − 4 , γ := 2(p− 1)
p− 3 . (5.3)

Then for any time interval I, the estimates

∥∥e−itHV ϕ
∥∥
La

t (I:Lr
x) ≤ C ‖ϕ‖H1 ,∥∥e−itHV ϕ

∥∥
Lp−1

t (I:L∞
x ) ≤ C ‖ϕ‖H1 ,∥∥∥∥∥∥

t∫
0

e−i(t−s)HV F (s)ds

∥∥∥∥∥∥
La

t (I:Lr
x)

≤ C ‖F‖Lb′
t (I:Lr′

x ) ,

∥∥∥∥∥∥
t∫

0

e−i(t−s)HV F (s)ds

∥∥∥∥∥∥
Lp−1

t (I:L∞
x )

≤ C ‖F‖Lb′
t (I:Lr′

x ) ,

∥∥∥∥∥∥
t∫

0

e−i(t−s)HV G(s)ds

∥∥∥∥∥∥
La

t (I:Lr
x)

≤ C ‖G‖
Lγ′

t (I:L1
x) ,

hold, where ϕ ∈ H, F ∈ Lb′
t (I : Lr′

x (R)) and G ∈ Lγ′

t (I : L1
x) and b′, r′ and γ′ denote the Hölder conjugate 

of b, r and γ respectively, i.e. 1
b′ + 1

b = 1, 1
r′ + 1

r = 1 and 1
γ′ + 1

γ = 1, and C depends on p and V .

For the proof of this lemma, see [3, Section 3.1 and 3.2] and Proposition 2 in [21] (see also [9]).
Next we state a sufficient condition on Strichartz spaces to obtain the scattering result in H.

Proposition 5.4. Let p ≥ 5, V ∈ L1
1(R) be non-negative and a, r be defined by (5.3), u0 ∈ H and u ∈ C(R : H)

be a solution to (NLSV ) on R. Then if u belongs to La
t (R : Lr

x), then the solution u also belongs to 
Lp−1
t (R : L∞

x ) and scatters in H as t → ±∞.

Proof of Proposition 5.4. Since u is the solution to (NLSV ) on R, the identity

u(t) = (e−itHV u0) + i

t∫
0

e−i(t−s)HV
{
|u(s)|p−1u(s)

}
ds, t ∈ R (5.4)

holds in H-sense. The Strichartz estimates for non-admissible pairs (Lemma 5.2) give
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‖u‖Lp−1
t (R:L∞

x ) ≤ C‖u0‖H1 + C‖|u|p−1u‖Lb′
t (R:Lr′

x ) ≤ C‖u0‖H1 + C‖u‖pLa
t (R:Lr

x) < ∞ (5.5)

due to u0 ∈ H ⊂ H1(R) and u ∈ La
t (R : Lr

x), which implies u ∈ Lp−1
t (R : L∞

x ).
We only consider the positive time direction, since the negative time direction can be treated in the same 

manner. Take t1, t2 such as 0 < t1 < t2. Since LV commutes e−itHV , eitHV is unitary on L2(R) and the 
norm ‖ · ‖H is equivalent to the norm ‖ · ‖H1 , we have

‖eit2HV u(t2) − eit1HV u(t1)‖H =

∥∥∥∥∥∥
t2∫

t1

e−isHV {|u(s)|p−1u(s)}ds

∥∥∥∥∥∥
H

=

∥∥∥∥∥∥
t2∫

t1

e−isHV LV

{
|u(s)|p−1u(s)

}
ds

∥∥∥∥∥∥
L2

≤ C

t2∫
t1

‖|u(s)|p−1u(s)‖H1ds ≤ C

t2∫
t1

‖u(s)‖p−1
L∞ ‖u(s)‖H1ds

≤ C∗‖u‖p−1
Lp−1

t (t1,t2:L∞
x )

‖u‖L∞
t (R:H) → 0, as t2 > t1 → ∞, (5.6)

due to u ∈ L∞
t (R : H) ∩ Lp−1

t (R : Lr
x), where C∗ is dependent only on p, V . Thus since H is Hilbert space 

and e−itHV is symmetric on H, we can see that there exists u+ ∈ H such that the identities hold:

lim
t→∞

‖u(t) − e−itHV u+‖H = lim
t→∞

‖eitHV u(t) − u+‖H = 0,

which completes the proof of the proposition. �
Next we state a small data scattering result to (NLSV ) in the energy space H in the mass-critical or 

mass-supercritical case (p ≥ 5):

Proposition 5.5 (Small data scattering result in the energy space H). Let p ≥ 5, V ∈ L1
1(R) be non-

negative, (a, r) be defined by (5.3). Then there exists ε = ε(p, V ) > 0 such that for any φ ∈ H satisfying 
‖e−itHV φ‖La

t (R:Lr
x) ≤ ε, there exists a unique solution u ∈ La

t (R : Lr
x) to (NLSV ) such that

‖u‖La
t (R:Lr

x) ≤ 2ε.

Moreover we have

u ∈ Lp−1
t (R : Lr

x) ∩ L∞
t (R : H).

The proof is standard and can be done by a fixed point argument via the non-admissible Strichartz 
estimates (Lemma 5.3).

Proof of Proposition 5.5. Take ε > 0 sufficiently small, which will be determined later. Let φ ∈ H such 
that ‖e−itHV φ‖La

t (R:Lr
x) ≤ ε (the existence of φ can be proved via the non-admissible Strichartz estimate 

(Lemma 5.3)). We introduce the closed ball X(ε) in La
t (R : Lr

x) as

X(ε) :=
{
u ∈ La

t (R : Lr
x) : ‖u‖La

t (R:Lr
x) ≤ 2ε

}
with the metric
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d(u, v) := ‖u− v‖La
t (R:Lr

x)

for u, v ∈ La
t (R : Lr

x). We prove that the nonlinear mapping J : X(ε) 	→ X(ε)

J [u](t) := e−itHV φ + i

t∫
0

e−i(t−s)HV |u(s)|p−1u(s)ds, t ∈ R,

is contractive on X(ε). The Strichartz estimates (Lemma 5.3) give

‖J [u]‖La
t (R:Lr

x) ≤ ‖e−itHV φ‖La
t (R:Lr

x) + C1‖|u|p−1u‖Lb′
t (R:Lr′

x ) ≤ ε + C1‖u‖pLa
t (R:Lr

x)

≤ ε + C12pεp, (5.7)

for u ∈ X(ε), where C1 is dependent only on p and V . Here we choose ε = ε(p, V ) > 0 such as ε < 1
(2pC1)

1
p−1

. 

Then we have ‖J [u]‖La
t (R:Lr

x) ≤ 2ε, which implies that the mapping J is well defined from X(ε) into itself. 
We note that by the fundamental formula, the estimate

||a|p−1a− |b|p−1b| =

∣∣∣∣∣∣
1∫

0

d

dθ
|θa + (1 − θ)b|p−1(θa + (1 − θ)b)dθ

∣∣∣∣∣∣
≤ p2p−1(|a|p−1 + |b|p−1)|a− b| (5.8)

holds for a, b ∈ C. In the same manner as the proof of (5.7), we obtain

d(J [u], J [v]) ≤ C1p2p−1(2ε)p−1d(u, v) (5.9)

for u, v ∈ X(ε). Here we take ε > 0 sufficiently small such as

ε ≤ 1
4(2C1p)

1
p−1

.

Then (5.9) gives

d(J [u], J [v]) ≤ 1
2d(u, v),

which implies that the mapping J is contractive on X(ε). Thus by the contraction mapping principle, we see 
that there exists a unique u ∈ X(ε) such that J [u](t) = u(t) on t ∈ R. Therefore we have ‖u‖La

t (R:Lr
x) ≤ 2ε. 

Moreover, in the similar manner as the proof of Proposition 5.4, we have u ∈ Lp−1
t (R : Lr

x). Next we prove 
u ∈ L∞

t (R : H). By the local well-posedness result in H (Proposition 1.1), we have u ∈ L∞
t (−t, t : H) for 

small t > 0. Set

Tm := sup{T ∈ (0,∞] : ‖u‖L∞
t (0,T :H) < ∞}.

We assume that Tm < ∞. Then ‖u‖L∞
t (0,Tm:H) = ∞ by the local-wellposedness result again. Since u ∈

Lp−1
t (0, Tm : L∞

x ), there exists t1 ∈ (0, Tm) such that ‖u‖Lp−1
t (t1,Tm:L∞

x ) ≤ 1
(2C∗)

1
p−1

, where C∗ appears in the 

estimate (5.6). Since t1 ∈ (0, Tm), by the definition of Tm, we have ‖u‖L∞
t (0,t1:H) < ∞ and ‖u‖L∞

t (t1,Tm;H) =
∞. In the same manner as the proof of the estimate (5.6), we have

‖u‖L∞(t1,Tm:H) ≤ ‖u(t1)‖H + C∗‖u‖p−1
p−1 ‖u‖L∞(t1,Tm:H),
t Lt (t1,Tm:H) t
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which implies

1
2‖u‖L

∞
t (t1,Tm:H) ≤ (1 − C∗‖u‖p−1

Lp−1
t (t1,Tm:L∞

x )
)‖u‖L∞

t (t1,Tm:H) ≤ ‖u(t1)‖H < ∞.

This contradicts ‖u‖L∞
t (t1,Tm;H) = ∞. Thus we have Tm = ∞, which gives ‖u‖L∞

t (0,∞;H) < ∞. In the same 
manner, we can prove ‖u‖L∞

t (−∞,0:H) < ∞. Therefore we have u ∈ L∞
t (R : H), which completes the proof 

of the lemma. �
Corollary 5.6. Under the same assumptions as in Proposition 5.5, then there exists ε1 = ε1(p, V ) > 0 such 
that for any φ ∈ H satisfying ‖φ‖H ≤ ε1, the same conclusion as in Proposition 5.5 holds

The similar statements as Proposition 5.4 and Corollary 5.6 also hold for the focusing semilinear 
Schrödinger equation without the potential with a replacement H into H1(R):

{
i∂tu + ∂2

xu + |u|p−1u = 0, (t, x) ∈ R×R,

u|t=0 = u0 ∈ H1(R),
(NLS)

5.2. Linear profile decomposition

In order to prove the scattering result, more precisely, to construct a critical element (see Theorem 5.12
for the definition), we use a linear profile decomposition, which is proved in [21]. The abstract version was 
obtained in Theorem 2.1 in [3] (see [2] for the energy-critical wave equation and [8] for the mass-supercritical 
and energy-subcritical Schrödinger equation).

Proposition 5.7 (Linear profile decomposition). Let V ∈ L1
1(R) be non-negative and satisfy V ′ ∈ L1

1(R). Let 
{ϕn}n∈N be a bounded sequence in H. Then, up to subsequence, we can write

ϕn =
J∑

j=1
eit

j
nHV τxj

n
ψj + W J

n , ∀J ∈ N,

where tjn ∈ R, xj
n ∈ R, ψj ∈ H1(R), and the following statements hold:

• for any fixed j ∈ {1, 2, · · · , J}, we have:

either tjn = 0 for any n ∈ N, or tjn → ±∞ as n → ∞,

either xj
n = 0 for any n ∈ N, or xj

n → ±∞ as n → ∞.

• orthogonality of the parameters:

|tjn − tkn| + |xj
n − xk

n| → ∞ as n → ∞, ∀j �= k. (5.10)

• smallness of the reminder:

∀ε > 0,∃J = J(ε) ∈ N such that lim sup
n→∞

∥∥e−itHV W J
n

∥∥
L∞

t (R:L∞
x (R)) < ε.

• orthogonality in norms: for any J ∈ N,

‖ϕn‖2
L2 =

J∑∥∥ψj
∥∥2
L2 +

∥∥W J
n

∥∥2
L2 + on(1),
j=1
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‖ϕn‖2
H

1
2
V

=
J∑

j=1

∥∥τxj
n
ψj

∥∥2
H

1
2
V

+
∥∥W J

n

∥∥2
H

1
2
V

+ on(1),

as n → ∞, where the norm ‖ · ‖
H

1
2
V

is defined by (1.4). Moreover, we have

‖ϕn‖qLq =
J∑

j=1

∥∥∥eitjnHV τxj
n
ψj

∥∥∥q

Lq
+

∥∥W J
n

∥∥q

Lq + on(1), q ∈ (2,∞), ∀J ∈ N,

as n → ∞ and in particular, for any J ∈ N,

Sω,V (ϕn) =
J∑

j=1
Sω,V (eit

j
nHV τxj

n
ψj) + Sω,V (W J

n ) + on(1),

Iω,V (ϕn) =
J∑

j=1
Iω,V (eit

j
nHV τxj

n
ψj) + Iω,V (W J

n ) + on(1),

as n → ∞.

For the proof of this proposition, see Theorem 2.1 in [3], and Proposition 6 in [21]. More precisely, the 
linear profile decomposition for more general Schrödinger operator was given by Theorem 2.1 in [3], and 
Proposition 6 in [21] says that if the potential V satisfies the assumptions in Proposition 5.7, then the 
Schrödinger operator HV satisfies the assumptions of Theorem 2.1 in [3].

5.3. Perturbation lemma

In order to prove the scattering result in Theorem 1.3, especially to construct a critical element (see 
Theorem 5.12), we also use so-called perturbation lemma.

Lemma 5.8 (Perturbation lemma). Let p ≥ 5, V ∈ L1
1(R) be non-negative and (a, r) be defined by (5.3). 

For any M > 0, there exist ε = ε(M) > 0 and C = C(M) > 0 such that the following occurs: Let 
v ∈ C(R : H) ∩ La

t (R : Lr
x) satisfying ‖v‖La

t (R:Lr
x) ≤ M be a solution of the integral equation with a source 

term e ∈ La
t (R : Lr

x) with ‖e‖La
t (R:Lr

x) ≤ ε:

v(t) = e−itHV ϕ + i

t∫
0

e−i(t−s)HV {|v(s)|p−1v(s)}ds + e(t). (5.11)

Moreover we assume that ϕ0 ∈ H satisfies 
∥∥e−itHV ϕ0

∥∥
La

t (R:Lr
x) ≤ ε. Then the solution u ∈ C(R : H) to 

(NLSV ) with the initial data ϕ + ϕ0, i.e.

u(t) = e−itHV (ϕ + ϕ0) + i

t∫
0

e−i(t−s)HV {|u(s)|p−1u(s)}ds, (5.12)

satisfies the estimate ‖u− v‖La
t (R:Lr

x) < Cε, which implies u ∈ La
t (R : Lr

x).

This lemma can be proved in the similar manner as the proof of Proposition 4.7 in [8]. For the completeness 
of the paper, we give a proof of this lemma in Appendix C.
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5.4. Nonlinear profile decomposition

In order to construct a critical element, we construct so-called nonlinear profiles. By the following 
Lemma 5.9, 5.10, and 5.11, we can construct nonlinear profiles to (NLSV ) and can apply the perturba-
tion lemma (Lemma 5.8) in order to prove existence of a critical element.

Lemma 5.9 (Cauchy problem for (NLS) and nonlinear profile). Let V ∈ L1
1(R) be non-negative and p ≥ 5, 

{xn}n∈N be a sequence of real numbers such that |xn| → ∞ as n → ∞, u0 ∈ H1(R) and U ∈ C(R :
H1(R)) ∩La

t (R : Lr
x(R)) be a solution to (NLS) with the initial data u0, where (a, r) is defined by (5.3). Set 

Un(t, x) := U(t, x − xn) and we write

Un(t, x) = {e−itHV (τxn
u0)}(x) + i

t∫
0

e−i(t−s)HV
{
|Un(s, x)|p−1Un(s, x)

}
ds + gn(t, x).

Then we have

lim
n→∞

‖gn‖La
t (R:Lr

x) = 0.

This lemma can be proved by combining Proposition 7 and Proposition 8 in [21]. For the completeness 
of the paper, we give a proof of the lemma in Appendix D.

Lemma 5.10 (Final state problem for (NLSV ) and nonlinear profile). Let ω > 0, p ≥ 5, V ∈ L1
1(R) be 

non-negative, ϕ ∈ H satisfying

1
2‖ϕ‖

2
H

1
2
V

+ ω

2M(ϕ) < nω, (5.13)

and the exponent (a, r) be defined by (5.3). Then the following statements hold, where the following double-
sign corresponds:

• (Existence and Uniqueness) There exist only two solutions

W± ∈ C(R : H) ∩ La
t (R± : Lr

x)

to the final state problems

W±(t) = e−itHV ϕ±
±∞∫
t

e−i(t−s)HV {|W±(s)|p−1W±(s)}ds (5.14)

such that

lim
t→±∞

∥∥W±(t) − e−itHV ϕ
∥∥
H = 0,

where R− := (−∞, 0].
• (Conservation laws) For any t ∈ R, the identities

M(W±(t)) = M(ϕ), EV (W±(t)) = 1‖ϕ‖2
1
2
2 HV
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hold, which implies that for any t ∈ R, the identities

Sω,V (W±(t)) = 1
2‖ϕ‖

2
H

1
2
V

+ ω

2M(ϕ) < nω, Iω,V (W±(t)) = ‖ϕ‖2
H

1
2
V

+ ωM(ϕ) ≥ 0

hold, namely, for any t ∈ R, W±(t) ∈ N+
ω .

• (Nonlinear profiles) Let {tn}n∈N ⊂ R be a sequence such that limn→∞ tn = ∓∞, ϕn := eitnHV ϕ for any 
n ∈ N and W± be obtained in the above, W±,n(t, x) := W±(t − tn, x) for any n ∈ N. We assume that 
W± ∈ La

t (R : Lr
x). Then if we write

W±,n(t) = e−itHV ϕn + i

t∫
0

e−i(t−s)HV {|W±,n(s)|p−1W±,n(s)}ds + f±,n(t), (5.15)

then

lim
n→∞

‖f±,n‖La
t (R:Lr

x) = 0. (5.16)

Proof of Lemma 5.10. (Existence and Uniqueness) The proof of the existence and the uniqueness of solutions 
to the final state problem for (NLSV ) is based on the contraction mapping principle with the non-admissible 
Strichartz estimates (Lemma 5.3). We only consider the positive time direction, since the negative time 
direction can be treated in the similar manner.

For T ≥ 1 and Θ > 0, which will be determined later, we introduce the closed ball X(T, Θ) in L∞
t (T, ∞ :

H) ∩ La
t (T, ∞ : Lr

x) as

X(T,Θ) : = {u ∈ L∞
t (T,∞ : H) ∩ La

t (T,∞ : Lr
x) :

‖u− e−i(·)HV ϕ‖L∞
t (T,∞:H) + ‖u‖La

t (T,∞:Lr
x) ≤ Θ

}
with the metric

dT (u, v) := ‖u− v‖L∞
t (T,∞:L2

x) + ‖u− v‖La
t (T,∞:Lr

x)

for u, v ∈ X(T, Θ). We prove that the nonlinear mapping J : X(T, Θ) 	→ X(T, Θ)

J [u](t) := e−itHV ϕ− i

∞∫
t

e−i(t−s)HV {|u(s)|p−1u(s)}ds, t ∈ [T,∞),

is contractive on X(T, Θ), if T is sufficiently large and Θ is sufficiently small.
Let u ∈ X(T, Θ). The non-admissible Strichartz estimates (Lemma 5.3) give

‖J [u]‖La
t (T,∞:Lr

x) ≤ ‖e−itHV ϕ‖La
t (T,∞:Lr

x) + C0‖|u|p−1u‖Lb′
t (T,∞:Lr′

x )

= ‖e−itHV ϕ‖La
t (T,∞:Lr

x) + C0‖u‖pLa
t (T,∞:Lr

x)

≤ ‖e−itHV ϕ‖La
t (T,∞:Lr

x) + C0Θp, (5.17)

where C0 is a positive constant depending only on p and V . Since ϕ ∈ H ⊂ H1(R) and a < ∞, we can 
choose Θ = Θ(p, V ) and T = T (ϕ, Θ) such as
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Θ ≤
(

1
4C0

) 1
p−1

and ‖e−itHV ϕ‖La
t (T,∞:Lr

x) ≤
1
4Θ.

Then we have

‖J [u]‖La
t (T,∞:Lr

x) ≤
1
2Θ. (5.18)

In the same manner as the proof of the estimate (5.5), we have

‖u‖Lp−1
t (T,∞:L∞

x ) ≤ ‖e−itHV ϕ‖Lp−1
t (T,∞:L∞

x ) + C1‖u‖pLa
t (T,∞:Lr

x)

≤ ‖e−itHV ϕ‖Lp−1
t (T,∞:L∞

x ) + C1Θp,

where C1 is a positive constant depending only on p and V . Thus since the estimate (a +b)p−1 ≤ 2p−2(ap−1+
bp−1) holds for any a, b ≥ 0 due to p ≥ 5, we have

‖u‖p−1
Lp−1

t (T,∞:L∞
x )

≤ C2‖e−itHV ϕ‖p−1
Lp−1

t (T,∞:L∞
x )

+ C3Θp(p−1), (5.19)

where C2 and C3 are positive constants depending only on p and V . Here Θ = Θ(p, V ) and T = T (ϕ, Θ)
are chosen sufficiently small such as

Θ ≤
(

1
4C3C∗

) 1
p(p−1)

and ‖e−itHV ϕ‖Lp−1
t (T,∞:L∞

x ) ≤
(

1
4C2C∗

) 1
p−1

,

where C∗ is defined by (5.6). Then we have

‖u‖p−1
Lp−1

t (T,∞:L∞
x )

≤ 1
2C∗

. (5.20)

By this estimate and in the same manner as the proof of the estimate (5.6), we obtain

‖J [u] − e−itHV ϕ‖L∞
t (T,∞:H) ≤ C∗‖u‖p−1

Lp−1
t (T,∞:L∞

x )
‖u‖L∞

t (T,∞:H) ≤
1
2Θ. (5.21)

By combining the estimates (5.18) and (5.21), we obtain

‖J [u] − e−itHV ϕ‖L∞
t (T,∞:H) + ‖J [u]‖La

t (T,∞:Lr
x) ≤ Θ,

which implies that the mapping J is well defined on X(T, Θ). Next let u, v ∈ X(T, Θ). By using the estimate 
(5.8) and in the same manner as the proof of the estimate (5.17), we have

‖J [u] − J [v]‖La
t (T,∞:Lr

x) ≤ C0‖|u|p−1u + |v|p−1v‖Lb′
t (T,∞:Lr′

x )

≤ C0p2p−1‖(|u|p−1 + |v|p−1)|u− v|‖Lb′
t (T,∞:Lr′

x )

≤ C0p2pΘp−1‖u− v‖La
t (T,∞:Lr

x).

Here we choose Θ = Θ(p, V ) sufficiently small such as

Θ ≤ 1
(4C0p2p)

1
p−1

.

Then we have
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‖J [u] − J [v]‖La
t (T,∞:Lr

x) ≤
1
4‖u− v‖La

t (T,∞:Lr
x). (5.22)

Let t ∈ [T, ∞). Since e−itHV is a unitary operator on L2(R), by the estimate (5.8), we have

‖J [u](t) − J [v](t)‖L2 =

∥∥∥∥∥∥
∞∫
t

e−i(t−s)HV
{
|u(s)|p−1u(s) − |v(s)|p−1v(s)

}
ds

∥∥∥∥∥∥
L2

≤
∞∫
t

‖|u(s)|p−1u(s) − |v(s)|p−1v(s)‖L2ds

≤ p2p−1
∞∫
t

‖(|u(s)|p−1 + |v(s)|p−1)|u(s) − v(s)|‖L2ds

≤ p2p−1
∞∫
t

(‖u(s)‖p−1
L∞ + ‖v(s)‖p−1

L∞ )‖u(s) − v(s)‖L2ds

≤ p2p−1(‖u‖p−1
Lp−1

t (t,∞:L∞
x )

+ ‖v‖p−1
Lp−1

t (t,∞:L∞
x )

)‖u− v‖L∞
t (t,∞:L2

x), (5.23)

for t ≥ T . Here we take Θ = Θ(p, V ) sufficiently small and T = T (ϕ, Θ) sufficiently large such as

Θ ≤
(

1
C3p2p+3

) 1
p−1

and ‖e−itHV ϕ‖Lp−1
t (T,∞:L∞

x ) ≤
(

1
C2p2p+3

) 1
p−1

.

Then by the estimate (5.19), we have

p2p−1(‖u‖p−1
Lp−1

t (t,∞:L∞
x )

+ ‖v‖p−1
Lp−1

t (t,∞:L∞
x )

) ≤ p2pC2‖e−itHV ϕ‖p−1
Lp−1

t (T,∞:L∞
x

+ p2pC3Θp(p−1) ≤ 1
4 .

By this estimate and (5.23), we obtain

‖J [u] − J [v]‖L∞
t (T,∞:L2) ≤

1
4‖u− v‖L∞

t (T,∞:L2
x). (5.24)

By combining the estimates (5.22) and (5.24), we have

dT (J [u], J [v]) ≤ 1
2dT (u, v),

which implies that the mapping J is contractive. Thus by the contraction mapping principle, we see that 
there exists a unique solution W+ ∈ X(T, Θ) such that J [W+](t) = W+(t) on [T, ∞). Moreover, since the 

operator e−itHV commutes with the Schrödinger operator L
1
2
V and is unitary on L2(R) for any t ∈ R, we 

have

‖W+‖L∞
t (T,∞:H) ≤ ‖W+ − e−i(·)HV ϕ‖L∞

t (T,∞:H) + ‖e−i(·)HV ϕ‖L∞
t (T,∞H) ≤ Θ + ‖ϕ‖H,

which implies W+ ∈ L∞
t (T, ∞ : H). We can also prove that W+ ∈ C([T, ∞) : H) in the standard argument, 

so we omit the detail. In the same manner as the proof of (5.6), we find that

lim
t→∞

‖W+(t) − e−itHV ϕ‖H = 0. (5.25)

Noting that H ⊂ L2(R) and e−itHV is unitary on L2(R) again, the above relation implies that
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lim
t→∞

‖W+(t)‖L2 = ‖ϕ‖L2. (5.26)

Let t, t1 ∈ [T, ∞). By the mass conservation law in Proposition 1.1, we have M(W+(t)) = M(W+(t1)). 
Letting t1 → ∞ with (5.26), we obtain

M(W+(t)) = M(ϕ). (5.27)

Next we prove that

EV (W+(t)) = 1
2‖ϕ‖

2
H

1
2
V

, for any t ∈ [T,∞). (5.28)

In order to prove this, we first show

lim
t→∞

‖W+(t)‖Lp+1 = 0. (5.29)

Indeed, take ε > 0 arbitrarily. Since C∞
0 (R) is dense in H, there exists ϕε ∈ C∞

0 (R) such that ‖ϕ −
ϕε‖H ≤ 1

3ε. Since ϕε ∈ L1+ 1
p (R), we can apply the dispersive estimate for {e−itHV }t∈R (Lemma 5.1), to 

get ‖e−itHV ϕε‖Lp+1 ≤ C4|t|−
p−1

2(p+1) ‖ϕε‖
L

1+ 1
p

for any t �= 0, where C4 is a constant depending only on p and 
V . Here we choose T1 > 0 such as

T1 = T1(ε, ϕε) :=
(

ε

3C4‖ϕε‖
L

1+ 1
p

)− 2(p+1)
p−1

Then the above estimate gives that for any t ≥ T1, the estimate ‖e−itHV ϕε‖Lp+1 ≤ 1
3ε holds. By (5.25), 

there exists T2 = T2(ε) ≥ T , such that for any t ≥ T2, the estimate ‖W+(t) − e−itHV ϕ‖H ≤ 1
3ε holds. Thus 

for any t ≥ max(T1, T2), by combining these estimates, we have ‖W+(t)‖Lp+1 ≤ ε, which implies (5.29). 
Since the operator e−itHV commutes with the Schrödinger operator H

1
2
V and is unitary on L2(R), by using 

the relations (5.25) and (5.29), we have

lim
t→∞

∣∣∣∣EV (W+(t)) − 1
2‖ϕ‖

2
H

1
2
V

∣∣∣∣ ≤ 1
2 lim

t→∞
‖W+(t) − e−itHV ϕ‖2

H
1
2
V

+ 1
p + 1 lim

t→∞
‖W+(t)‖Lp+1 = 0, (5.30)

which implies (5.28). Take t, t1 ∈ [T, ∞) arbitrarily. The energy conservation law in Proposition 1.1 gives 
EV (W+(t)) = EV (W+(t1)). Thus letting t1 → ∞ with (5.30), we obtain (5.28). By the definition of Sω,V , 
the identities (5.27) and (5.28) and the assumption (5.13), we have

Sω,V (W+(t)) = 1
2‖ϕ‖

2
H

1
2
V

+ ω

2 ‖ϕ‖
2
L2 < nω (5.31)

for t ≥ T . In the same manner as the proof of the estimates (5.30) with the assumption (5.13), we can prove

Iω(W+(t)) = ‖ϕ‖2
H

1
2
V

+ ω‖ϕ‖2
L2 ≥ 0, (5.32)

for t ≥ T . The estimates (5.31) and (5.32) imply that W+(t) ∈ N+
ω for any t ∈ [T, ∞). Thus by Corollary 4.7, 

we find that W+ can be extended globally and belongs to C(R : H). Next we prove that W+ belongs to 
La
t (0, ∞ : Lr

x). Since W+ ∈ La
t (T, ∞ : Lr

x), it suffices to prove that W+ ∈ La
t (0, T : Lr

x). Since W+ satisfies 
the integral equation
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W+(t) = e−itHV W+(0) + i

t∫
0

e−i(t−s)HV {|W+(s)|p−1W+(s)}ds

in H-sense, by the non-admissible Strichartz estimates (Lemma 5.3) and the Sobolev embedding H ⊂
H1(R) ⊂ Lp(R), we have

‖W+‖La
t (0,T :Lr

x)

≤ ‖e−itHV W+(0)‖La
t (0,T :Lr

x) +

∥∥∥∥∥∥
t∫

0

e−i(t−s)HV {|W+(s)|p−1W (s)}ds

∥∥∥∥∥∥
La

t (0,T :Lr
x)

≤ C‖W+(0)‖H + C‖|W+|p−1W+‖Lγ′
t (0,T :L1

x) = C‖W+(0)‖H + C‖‖W+(t)‖Lp
x
‖
Lγ′

t (0,T )

≤ C‖W+(0)‖H + C‖‖W+(t)‖H‖
Lγ′

t (0,T ) ≤ C‖W+(0)‖H + CT
1
γ′ ‖W+‖L∞

t (0,T :H) < ∞,

which implies that W+ ∈ La
t (0, T : Lr

x).
(Nonlinear profile) We prove (5.16) only for the positive time direction, since the negative time direction can 
be proved in the similar manner. Since W+ satisfies the integral equation (5.14) on [0, ∞), by the definition 
(5.15) of f+,n and a simple calculation, f+,n satisfies

f+,n(t, x) = e−itHV {W+(−tn) − ϕn}(x) = e−itHV {W+(−tn) − eitnHV ϕ}(x),

for (t, x) ∈ R × R. Thus by using the non-admissible Strichartz estimate (Lemma 5.3), the identity (5.25)
and limn→∞ tn = −∞, we have (5.16), which completes the proof of the proposition. �
Lemma 5.11 (Final state problem for (NLS) and nonlinear profile). Let ω > 0, V ∈ L1

1(R) be non-negative, 
p ≥ 5, ϕ ∈ H1(R) satisfying

1
2‖∂xϕ‖

2
L2 + ω

2M(ϕ) < nω.

Then the following statements hold, where double-sign corresponds:

• (Existence and Uniqueness) Then there exist only two solutions

Y± ∈ C(R : H1(R)) ∩ La
t (R± : Lr

x(R))

to (NLS) such that the identity

lim
t→±∞

∥∥Y±(t) − e−itH0ϕ
∥∥
H1 ,

holds.
• (Conservation laws) For any t ∈ R, the identities

M(Y±(t)) = M(ϕ), E0(Y±(t)) = 1
2‖∂xϕ‖

2
L2

hold, which implies that for any ω > 0, t ∈ R, the identities

Sω,0(Y±(t)) = 1
2‖∂xϕ‖

2
L2 + ω

2 ‖ϕ‖
2
L2 and Iω,0(Y±(t)) = ‖∂xϕ‖2

L2 + ω‖ϕ‖2
L2

hold.
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• (Nonlinear profile) Let {tn}n∈N ⊂ R, {xn}n∈N ⊂ R be sequences of real numbers such that

lim
n→∞

tn = ∓∞ and lim
n→∞

|xn| = ∞.

We write

Y±,n(t, x) = e−itHV ϕn + i

t∫
0

e−i(t−s)HV {|Y±,n(s)|p−1Y±,n(s)}ds + e±,n(t, x),

for t ∈ R and x ∈ R, where ϕn = eitnHV τxn
ϕ, Y±,n(t, x) = Y±(t − tn, x − xn). Then

‖e±,n‖La
t L

r
x
→ 0

as n → ∞.

Proof of Lemma 5.11. Noting that nω = lω due to V ∈ L1(R), Existence and Uniqueness part and Conser-
vation laws part can be proved in the same manner as the proof of Lemma 5.10. Nonlinear profile part is 
proved in the similar manner as the proof of Proposition 9 in [21]. �
5.5. Construction of a critical element

In this subsection, we construct a so-called critical element, the definition of which is given in Theo-
rem 5.12, under the assumption that the scattering result in Theorem 1.3 does not hold. For ω > 0, we 
define the critical action level Sc

ω as follows:

Sc
ω := sup{S : Sω,V (ϕ) < S for any ϕ ∈ N+

ω implies u ∈ La
t (R : Lr

x(R))},

where u is a unique global solution to (NLSV ) with u|t=0 = ϕ and the exponents a, r are defined by (5.3). 
The fact that the solution u to (NLSV ) can be extended globally follows from Corollary 4.7. By the small 
data scattering result (Corollary 5.6) and the equivalency between ‖ · ‖H and Sω,V (·) (Lemma 4.5) due 
to Iω,V (·) ≥ 0, we see that Sc

ω > 0. By the contradiction argument, we will prove that Sc
ω ≥ nω in the 

following, which completes the proof of the scattering part in Theorem 1.3. We assume that Sc
ω < nω. Then 

by the definition of Sc
ω, we can take a sequence {ϕn}n∈N ⊂ N+

ω such that Sω,V (ϕn) ↘ Sc
ω as n → ∞, and 

‖un‖La
t (R:Lr

x(R)) = ∞ for all n ∈ N, where un is a unique global solution to (NLSV ) with the initial data 
ϕn ∈ N+

ω . In the following, we prove that up to subsequence, the sequence {ϕn}n∈N converges strongly in 
H as n → ∞.

Theorem 5.12 (Existence of a critical element). Let ω > 0, p > 5 and V ∈ L1
1(R) be non-negative satisfy 

V ′ ∈ L1
1(R). We assume that Sc

ω < nω. Then there exists a global solution uc ∈ C(R : H) to (NLSV ) such 
that uc(t) ∈ N+

ω for any t ∈ R and the identities holds:

Sω(uc(t)) = Sc
ω, for t ∈ R, ‖uc‖La

t (R:Lr
x(R)) = ∞.

This solution uc is called critical element.

Proof of Theorem 5.12. Let {ϕn}n∈N be same as in the above. Since ϕn ∈ N+
ω for any n ∈ N and V ∈ L1

1(R)
is non-negative, from Lemma 4.5, we see that there exists a constant C > 0 depending only on ω, p, V such 
that
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‖ϕn‖2
H ≤ CSω,V (ϕn) < Cnω

for all n ∈ N, which implies that {ϕn}n∈N is bounded in H. This allows us to apply the linear profile 
decomposition (Proposition 5.7), to obtain

ϕn =
J∑

j=1
eit

j
nHV τxj

n
ψj + W J

n , ∀J ∈ N, (5.33)

up to subsequence, where {tjn}∞n=1 ⊂ R, {xj
n}∞n=1 ⊂ R and ψj ∈ H1(R) are given in Proposition 5.7. Set 

δ = δ(ω) := 1
2 (nω − Sc

ω). Then by the assumption Sc
ω < nω, the estimates δ > 0 and Sc

ω + δ < nω hold. 
Moreover, since Sω,V (ϕn) ↘ Sc

ω as n → ∞, for sufficiently large n ∈ N, Sω,V (ϕn) + δ ≤ nω. By the 
orthogonality of the action Sω,V and the Nehari functional Iω,V in Proposition 5.7, we have

Sω,V (ϕn) =
J∑

j=1
Sω,V

(
eit

j
nHV τxj

n
ψj

)
+ Sω,V (W J

n ) + on(1), (5.34)

Iω,V (ϕn) =
J∑

j=1
Iω,V

(
eit

j
nHV τxj

n
ψj

)
+ Iω,V (W J

n ) + on(1), (5.35)

as n → ∞, where on(1) → 0 as n → ∞. Here we set ε = ε(δ) := 1
4δ > 0. Then we have ε < 1

2δ. Then by the 
identities (5.34) and (5.35) and ϕn ∈ N+

ω for any n ∈ N, we have

Sω,V (ϕn) ≤ nω − δ,

Sω,V (ϕn) ≥
J∑

j=1
Sω,V

(
eit

j
nHV τxj

n
ψj

)
+ Sω,V (W J

n ) − ε,

Iω,V (ϕn) ≥ −ε,

Iω,V (ϕn) ≤
J∑

j=1
Iω,V

(
eit

j
nHV τxj

n
ψj

)
+ Iω,V (W J

n ) + ε,

for sufficiently large n. Therefore, we can apply Lemma 4.8, to obtain for j ∈ {0, · · · , J},

eit
j
nHV τxj

n
ψj ∈ N+

ω and W J
n ∈ N+

ω , for sufficiently large n,

and

Sω,V (eit
j
nHV τxj

n
ψj) ≥ 0 and Sω,V (W J

n ) ≥ 0, for sufficiently large n. (5.36)

Thus by combining (5.34) and (5.36), we have

Sc
ω = lim sup

n→∞
Sω,V (ϕn) ≥ lim sup

n→∞

J∑
j=1

Sω,V

(
eit

j
nHV τxj

n
ψj

)
, (5.37)

for any J ∈ N. In the following, we will prove that

Sc
ω = lim supSω,V

(
eit

j
nHV τxj

n
ψj

)
for some j ∈ {1, · · · , J}. (5.38)
n→∞
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We may assume that j = 1 by reordering. If this is proved, then we can prove that

J = 1 and lim
n→∞

‖W J
n ‖H1 = 0. (5.39)

Indeed, if J ≥ 2, then by (5.37) and (5.38), we have

Sc
ω ≥ lim sup

n→∞

⎧⎨
⎩Sω,V

(
eit

1
nHV τx1

n
ψ1

)
+

J∑
j=2

Sω,V

(
eit

j
nHV τxj

n
ψj

)⎫⎬
⎭ > Sc

ω,

which leads to a contradiction. Thus we have J = 1. Moreover (5.34), (5.37) and (5.38) give

lim sup
n→∞

Sω,V (W 1
n) = 0. (5.40)

Since W 1
n belongs to N+

ω for sufficiently large n ∈ N, by combining Lemma 4.5 and (5.40), we obtain

lim sup
n→∞

∥∥W 1
n

∥∥
H1 = 0.

Now we give a proof of (5.38). On the contrary, we assume that for any j ∈ {1, · · · , J},

Sc
ω �= lim sup

n→∞
Sω,V (eit

j
nHV τxj

n
ψj).

Then for any j ∈ {1, · · · , J}, by the estimate (5.37), there exists δj > 0 such that

lim sup
n→∞

Sω,V (eit
j
nHV τxj

n
ψj) < Sc

ω − δj . (5.41)

By reordering, we can choose 0 ≤ J1 ≤ J2 ≤ J3 ≤ J4 ≤ J5 ≤ J such that

1 ≤ j ≤ J1 : tjn = 0, ∀n and xj
n = 0, ∀n,

J1 + 1 ≤ j ≤ J2 : tjn = 0, ∀n and limn→∞ |xj
n| = ∞,

J2 + 1 ≤ j ≤ J3 : limn→∞ tjn = +∞, and xj
n = 0, ∀n,

J3 + 1 ≤ j ≤ J4 : limn→∞ tjn = −∞, and xj
n = 0, ∀n,

J4 + 1 ≤ j ≤ J5 : limn→∞ tjn = +∞, and limn→∞ |xj
n| = ∞,

J5 + 1 ≤ j ≤ J : limn→∞ tjn = −∞, and limn→∞ |xj
n| = ∞.

In the above cases, we assume that if a > b, then there is no j such that a ≤ j ≤ b. We see that 
J1 ∈ {0, 1} from the orthogonality of the parameters (5.10). In the following, we only treat the case J1 = 1, 
since the case of J1 = 0 is easier to treat. Then by (5.41), we have 0 < Sω,V (ψ1) < Sc

ω − δ1, since 
(t1n, x1

n) = (0, 0) for all n ∈ N. Hence, by the definition of the critical action level Sc
ω, we can construct a 

solution N ∈ C(R : H) ∩ La
t (R : Lr

x(R)) to (NLSV ) with N |t=0 = ψ1, i.e.

N(t, x) = (e−itHV ψ1)(x) + i

t∫
0

e−i(t−s)HV {|N(s, x)|p−1N(s, x)}ds.

For every j such that J1 + 1 ≤ j ≤ J2, let U j be the solution of (NLS) with the initial data ψj ∈ H1(R). 
Since V is non-negative, by the estimate (5.41) and Proposition 4.3, we see that for sufficiently large n,

Sω,0(ψj) = Sω,0(τxj
n
ψj) ≤ Sω,V (τxj

n
ψj) ≤ Sc

ω − δj < nω = lω.
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Since the identities

Iω,0(ψj) = Iω,0(τxj
n
ψj) = Iω,V (τxj

n
ψj) −

∞∫
−∞

V (x)|ψj(x− xj
n)|2dx

hold, and τxj
n
ψj belongs to N+

ω for sufficiently large n ∈ N and V ∈ L1(R) and ψj ∈ H1(R), we have

Iω,0(ψj) ≥ lim inf
n→∞

Iω,V (τxj
n
ψj) − lim sup

n→∞

∞∫
−∞

V (x)|ψj(x− xj
n)|2dx

≥ 0 − 0 = 0,

where we have used the Lebesgue convergence theorem. Therefore, we see that the solution U j to (NLS)
belongs to ∈ C(R : H1(R)) ∩ La

t (R : Lr
x(R)) from the scattering result obtained in [8] or [1]. For j ∈ N

satisfying J1 + 1 ≤ j ≤ J2 and n ∈ N, we set

U j
n(t, x) := U j(t, x− xj

n), for t ∈ R, x ∈ R,

and we write U j
n as

U j
n(t, x) = e−itHV (τxj

n
ψj)(x) + i

t∫
0

e−i(t−s)HV {|U j
n(s, x)|p−1U j

n(s, x)}ds + gjn(t, x).

For every j such that J2 + 1 ≤ j ≤ J3, since ψj ∈ H1(R) ⊂ H, by Lemma 5.10, we can construct a solution 
W j

− ∈ C((−∞, T ) : H) ∩ La
t (−∞, T : Lr

x(R)) to the final state problem of

W j
−(t, x) = (e−itHV ψj)(x) + i

t∫
−∞

e−i(t−s)HV |W j
−(s, x)|p−1W j

−(s, x)ds

on (−∞, T ), where T denotes the maximal existence time of the function W−. We prove that T = ∞ and

W j
− ∈ C(R : H) ∩ La

t (R : Lr
x(R)).

Let t0 ∈ (−∞, T ). We note that the identity

lim
t→−∞

‖W j
−(t) − e−itHV ϕj‖H = 0 (5.42)

holds by Lemma 5.10. Since tjn → ∞ as n → ∞ in this case, by the Sobolev embedding H ⊂ Lp+1(R), the 
estimates (5.42) and (5.41), the conservation laws and the assumption Sc

ω < nω, we have

Sω,V (W j
−(t0)) = lim

n→∞
Sω,V (eit

j
nHV ψj) < Sc

ω − δj < Sc
ω < nω. (5.43)

Next we prove that

Iω,V (W j
−(t0)) ≥ 0. (5.44)

On the contrary, we assume that Iω,V (W j
−(t0)) < 0. In the same manner as the proof of (5.43), we have
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lim
n→∞

|Iω,V (W j
−(−tjn)) − Iω,V (eitHV ψj)| = 0.

Since eitHV ψj ∈ N+
ω and ψj �= 0, we also have Iω,V (eitHV ψj) > 0. Thus there exists n0 ∈ N such that 

Iω,V (W j
−(−tjn0

)) > 0. By the continuity of the function t ∈ R 	→ Iω,V (W j
−(t)) ∈ R, there exists n1 ∈ N such 

that Iω,V (W j
−(−tjn1

)) = 0. By the definition of nω, the conservation laws and the estimate (5.43), we have

nω ≤ Sω,V (W j
−(−tjn1

)) = Sω,V (W j
−(t0)) < nω,

which leads to a contradiction. Therefore we obtain (5.44). Thus by the estimates (5.43) and (5.44), we 
find that W j

−(t0) ∈ N+
ω . Thus we see that T = ∞ and W j

− ∈ C(R : H1(R)) from Corollary 4.7. Moreover, 
by the estimate (5.43), the conservation laws and the definition of the critical action level Sc

ω, we see that 
W j

− ∈ La
t (R : Lr

x(R)). Then for j ∈ N satisfying J2 + 1 ≤ j ≤ J3, we define

W j
−,n(t, x) := W j

−(t− tjn, x), for t ∈ R, x ∈ R,

and we write W j
−,n as

W j
−,n(t, x) = {e−itHV (eit

j
nHV ϕj)}(x) + i

t∫
0

e−i(t−s)HV {|W j
−,n(s, x)|p−1W j

−,n(s, x)}ds + f j
−,n(t, x).

For every j such that J3 + 1 ≤ j ≤ J4, in the same manner as in the case J2 + 1 ≤ j ≤ J3, by the function 
ψj ∈ H1(R) ⊂ H, we can construct a solution W j

+ ∈ C(R+ : H1(R)) ∩ La
t (R+ : Lr

x(R)) to the final state 
problem of

W j
+(t, x) =

(
e−itHV ψj

)
(x) − i

∞∫
t

e−i(t−s)HV |W j
+(s, x)|p−1W j

+(s, x)ds

on R2. For j ∈ N satisfying J3 + 1 ≤ j ≤ J4, we define

W j
+,n(t, x) := W j

+(t− tjn, x), for t ∈ R, x ∈ R,

and write W j
+,n as

W j
+,n(t, x) = {e−itHV (eit

j
nHV ϕj)}(x) + i

t∫
0

e−i(t−s)HV {|W j
+,n(s, x)|p−1W j

+,n(s, x)}ds + f j
+,n(t, x).

For every j such that J4 +1 ≤ j ≤ J5, by using ψj ∈ H1(R), we can construct a solution Y j
− ∈ C((−∞, T ) :

H1(R)) ∩ La
t (−∞, T : Lr

x(R)) to the final state problem of

Y j
−(t, x) =

(
e−itH0ψj

)
(x) + i

t∫
−∞

e−i(t−s)H0 |Y j
−(s, x)|p−1Y j

−(s, x)ds,

on (t, x) ∈ (−∞, T ) ×R, where T denotes the maximal existence time of the function Y j
−, by Lemma 5.11. 

We prove that T = ∞ and Y j
− ∈ C(R : H1(R)) ∩ La

t (R : Lr
x(R)). Let t0 ∈ (−∞, T ). Since p + 1 > 2, 

ψj ∈ H1(R) and tjn → ∞ as n → ∞ in this case, in the same manner as the proof of (3.3) in [21], we can 
prove
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lim
n→∞

‖eitjnHV τxj
n
ψj‖Lp+1 = 0. (5.45)

Since the solution operator e−itHV commutes with the fractional operator H
1
2
V and is unitary on L2(R) for 

any t ∈ R and V is non-negative, by the conservation law in Lemma 5.11 and the translation invariance in 
L2-norm, we obtain for any n ∈ N,

Sω,0(Y j
−(t0)) = 1

2‖∂xψ
j‖2

L2 + ω

2 ‖ψ
j‖2

L2 = 1
2‖∂xτxj

n
ψj‖2

L2 + ω

2 ‖τxj
n
ψj‖2

L2

≤ 1
2‖H

1
2
V τxj

n
ψj‖2

L2 + ω

2 ‖τxj
n
ψ‖2

L2

= Sω,V

(
eit

j
nHV τxj

n
ψj

)
+ 1

p + 1‖e
itjnHV τxj

n
ψj‖p+1

Lp+1 .

By this estimate, (5.45), the relation (5.41) and Proposition 4.3, we obtain

Sω,0(Y j
−(t0)) ≤ lim sup

n→∞
Sω,V

(
eit

j
nHV τxj

n
ψj

)
+ 1

p + 1 lim sup
n→∞

‖eitjnHV τxj
n
ψj‖p+1

Lp+1

≤ Sc
ω − δj < nω = lω.

In the same manner as above, we can prove Iω,0(Y j
−(t0)) ≥ 0. Thus we can apply the scattering result for 

(NLS) obtained in [8] or [1] to find that T = ∞ and Y j
− ∈ C(R : H1(R)) ∩ La

t (R : Lr
x(R)). For j ∈ N such 

that J4 + 1 ≤ j ≤ J5, set

Y j
−,n(t, x) := Y j

−(t− tjn, x− xj
n), for t ∈ R, x ∈ R

and write Y j
−,n as

Y j
−,n(t, x) = {e−itHV (eit

j
nHV ψj)}(x) + i

t∫
0

e−i(t−s)HV {Y j
−,n(s, x)|p−1Y j

−,n(s, x)}ds + ej−,n(t, x).

For every j such that J5 + 1 ≤ j ≤ J , in the same manner as in the case J4 + 1 ≤ j ≤ J5, by using 
ψj ∈ H1(R), we can construct a solution Y j

+ ∈ C(R : H1(R)) ∩ La
t (R : Lr

x(R)) to the final state problem

Y j
+(t, x) =

(
e−itH0ψj

)
(x) − i

∞∫
t

e−i(t−s)H0{|Y j
+(s, x)|p−1Y j

+(s, x)}ds,

on R2. In the same manner as the proof of above, we can prove Y j
+ ∈ C(R : H1(R)) ∩ La

t (R : Lr
x(R)). For 

j ∈ N such that J5 + 1 ≤ j ≤ J , set

Y j
+,n(t, x) := Y j

+(t− tjn, x− xj
n), for t ∈ R, x ∈ R,

and write Y j
+,n as

Y j
+,n(t, x) = {e−itHV (eit

j
nHV ψj)}(x) + i

t∫
0

e−i(t−s)HV {|Y j
+,n(s, x)|p−1Y j

+,n(s, x)}ds + ej+,n(t, x).

For J ∈ N and n ∈ N, we introduce an approximate solution ZJ
n to (NLSV ), which is called nonlinear 

profile, a function zJn and a remainder term rJn as
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ZJ
n (t, x) := N(t, x) +

J2∑
j=J1+1

U j
n(t, x) +

J3∑
j=J2+1

W j
−,n(t, x) +

J4∑
j=J3+1

W j
+,n(t, x) (5.46)

+
J5∑

j=J4+1
Y j
−,n(t, x) +

J6∑
j=J5+1

Y j
+,n(t, x),

zJn(t, x) :=
t∫

0

e−i(t−s)HV

⎧⎨
⎩|N(s, x)|p−1N(s, x) +

J2∑
j=J1+1

|U j
n(s, x)|p−1U j

n(s, x)

+
J3∑

j=J2+1
|W j

−,n(s, x)|p−1W j
−,n(s, x) +

J4∑
j=J3+1

|W j
+,n(s, x)|p−1W j

+,n(s, x)

+
J5∑

j=J4+1
|Y j

−,n(s, x)|p−1Y j
−,n(s, x) +

J∑
j=J5+1

|Y j
+,n(s, x)|p−1Y j

+,n(s, x)

⎫⎬
⎭ ds,

rJn(t, x) :=
J2∑

j=J1+1
gjn(t, x) +

J3∑
j=J2+1

f j
+,n(t, x) +

J4∑
j=J3+1

f j
−,n(t, x) +

J5∑
j=J4+1

ej−,n +
J6∑

j=J5+1
ej+,n,

respectively, for (t, x) ∈ R ×R. By the identity (5.33), the function ZJ
n can be written as

ZJ
n (t, x) = {e−itHV (ϕn −W J

n )}(x) + izJn(t, x) + rJn(t, x).

For any J ∈ N, Lemmas 5.9, 5.10, 5.11 give

lim
n→∞

∥∥rJn∥∥La
t (R:Lr

x) = 0. (5.47)

Since each term in the right-hand side of (5.46) belongs to C(R : H1(R)) ∩La
t (R : Lr

x(R)) and we have the 
orthogonality of the parameters (5.10), we can apply Corollary 5.1 with N = J in [3] with the non-admissible 
Strichartz estimate (Lemma 5.3), to obtain

lim
n→∞

∥∥∥∥∥∥zJn −
t∫

0

e−i(t−s)HV
{
|ZJ

n (s)|p−1ZJ
n (s)

}
ds

∥∥∥∥∥∥
La

t (R:Lr
x)

= 0. (5.48)

Therefore, if we write ZJ
n as

ZJ
n (t, x) = {e−itHV (ϕn −W J

n )}(x) + i

t∫
0

e−i(t−s)HV {|ZJ
n (s, x)|p−1ZJ

n (s, x)}ds + sJn(t, x),

then by the identities (5.47) and (5.48), we have

lim
n→∞

∥∥sJn∥∥La
t (R:Lr

x) = 0.

In order to apply the perturbation lemma (Lemma 5.8 with v = ZJ
n , ϕ = ϕn−W J

n , ϕ0 = −W J
n and e = sJn), 

we have to show a bound on supJ∈N

{
lim supn→∞

∥∥ZJ
n

∥∥
La

t (R:Lr
x)

}
. We can apply Corollary 5.2 in [3] in this 

case to obtain
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lim sup
n→∞

∥∥ZJ
n

∥∥p

La
t (R:Lr

x) ≤ 2 ‖N‖pLa
t (R:Lr

x) + 2
J2∑

j=J1+1

∥∥U j
∥∥p

La
t (R:Lr

x)

+ 2
J3∑

j=J2+1

∥∥∥W j
−

∥∥∥p

La
t (R:Lr

x)
+ 2

J4∑
j=J3+1

∥∥∥W j
+

∥∥∥p

La
t (R:Lr

x)

+ 2
J5∑

j=J4+1

∥∥∥V j
−

∥∥∥p

La
t (R:Lr

x)
+ 2

J∑
j=J5+1

∥∥∥V j
+

∥∥∥p

La
t (R:Lr

x)
,

=:
J∑

j=1
aj ,

where we have used the translation invariance of the norm La
t (R : Lr

x) with respect to time and space and 
we set aj := 2 ‖N‖pLa

t (RLr
x) if 1 ≤ j ≤ J1, 2 

∥∥U j
∥∥p

La
t (RLr

x) if J1 + 1 ≤ j ≤ J2, and so on.

Since {ϕn}n∈N is bounded in H and V is non-negative, by the orthogonality of the L2-norm and H
1
2
V -norm 

in the linear profile decomposition (Proposition 5.7), we find that there exists a finite set J ⊂ {1, 2, · · · , J}
such that 

∥∥ψj
∥∥
H1 ≤ ‖ψj‖H ≤ ε0 for any j /∈ J , where ε0 is a constant given in the small data scattering 

result (Proposition 5.5). Thus by Proposition 5.5, we have

lim sup
n→∞

∥∥ZJ
n

∥∥p

La
t (R:Lr

x) ≤
∑
j∈J

aj +
∑
j /∈J

aj ≤
∑
j∈J

aj + C
∑
j /∈J

‖ψj‖p
H

1
2
V

≤
∑
j∈J

aj + C lim
n→∞

∑
j /∈J

‖τxj
n
ψj‖p

H
1
2
V

≤
∑
j∈J

aj + C lim
n→∞

∑
j /∈J

‖eitnj HV τxj
n
ψj‖p

H
1
2
V

≤
∑
j∈J

aj + Cnω =: M,

where M is a positive constant independent of J .
Set εM = ε(M) > 0, which is given in Lemma 5.8. Then by Proposition 5.7, we find that there exists J0 =

J0(εM ) ∈ N such that for any J ∈ N satisfying J ≥ J0, the estimate lim supn→∞
∥∥e−itHV W J

n

∥∥
La

t (R:Lr
x) < εM

holds due to a, r < ∞ and W J
n ∈ H for any J ∈ N and sufficiently large n ∈ N. Then by Lemma 5.8, we 

find that un ∈ La
t (R : Lr

x) for sufficiently large n, which contradicts ‖un‖La
t (R:Lr

x) = ∞ for any n ∈ N. 
Therefore, we obtain J = 1.

Then by (5.33), (5.38), (5.39), we have

ϕn = eit
1
nHV τx1

n
ψ1 + W 1

n , Sc
ω = lim sup

n→∞
Sω,V (eit

1
nHV τx1

n
ψ1), lim

n→∞
‖W 1

n‖H1 = 0.

In the same argument as the proof of Lemma 6.3 in [8], we can prove that {t1n}n∈N is bounded. Thus we may 
assume that t1n = 0 for any n ∈ N up to subsequence. In the same argument as the proof of Proposition 4.1 
in [3], we get x1

n = 0 for any n ∈ N. Let uc be the solution to (NLSV ) with the initial data ψ1 ∈ N+
ω . Then 

by the conservation law, we have Sc
ω = Sω,V (uc). The global solution uc does not scatter by a contradiction 

argument and the perturbation lemma (see the proof of Proposition 6.1 in [8] for more detail). �
5.6. Extinction of the critical element

In this subsection, we study properties of the critical element to (NLSV ) obtained in Theorem 5.12. First 
we prove precompactness of the flow of the critical element in the energy space H. Second we prove a so-
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called rigidity lemma by using the repulsiveness of the potential, which concludes the proof of the scattering 
part of Theorem 1.3.

Lemma 5.13 (Precompactness of the critical element). Let ω > 0, p > 5, V ∈ L1
1(R) satisfy V ′ ∈ L1

1(R), u
be a critical element, i.e. u ∈ C(R : H) is a solution to (NLSV ) on R which satisfies u(t) ∈ N+

ω for any 
t ∈ R and

Sω,V (u(t)) = Sc
ω, ‖u‖La

t (R:Lr
x(R)) = ∞.

Then H := {u(t) ∈ H : t ∈ R} ⊂ H, which is the orbit of the solution u, is precompact in H, i.e. H is 
compact in H.

Proof of Lemma 5.13. Let {tn} ⊂ R be a sequence. It suffices to prove that there exist a subsequence of 
{u(tn)}n∈N and the function ψ ∈ H such that limn→∞ u(tn) = ψ in H.

For any t ∈ R, since u(t) ∈ N+
ω , the estimate Iω,V (u(t)) ≥ 0 holds. Since Sω,V (u(t)) = Sc

ω,V for any 
t ∈ R by the assumption, Lemma 4.5 gives

‖u(t)‖H ≤ C
√

Sω(u(t)) = C
√

Sc
ω < ∞

for any t ∈ R, where C is dependent only on ω and p, which implies that {u(tn)}n∈R is bounded in H. We 
note that the identity Sω(u(tn)) = Sc

ω,V holds for any n ∈ N. Set ϕn := u(tn) ∈ H for n ∈ N and let un be 
the unique solution to (NLSV ) with un(0) = ϕn (see Proposition 1.1). Then we can prove that for any n ∈ N, 
un is global, belongs to C(R : H) and ‖un‖La

t (R:Lr
x) = ∞. Indeed, since Sω,V (ϕn) = Sω,V (u(tn)) < nω and 

Iω,V (ϕn) = Iω,V (u(tn)) ≥ 0, we see that un is global and belongs to C(R : H) from Corollary 4.7 with 
t0 = tn. And on the contrary, we assume that there exists n0 ∈ N such that ‖un0‖La

t (R:Lr
x) < ∞. Then 

by the perturbation lemma (Lemma 5.8), we can find ψ̃ ∈ H such that Sc
ω = Sω,V (u(tn0)) = Sω,V (ϕn0) <

Sω(ψ̃) < nω and if ũ is defined as the solution to (NLSV ) with ũ(0) = ψ̃ on R, then ‖ũ‖La
t (R:Lr

x) < ∞, which 
contradicts the definition of Sc

ω. The existence of such ψ̃ is proved as follows more precisely. We define the 
function f : [−1, ∞) 	→ R as

f(λ) := Sω,V ((1 + λ)ϕn0) = ‖ϕn0‖2
H

1
2
ω,V

(1 + λ)2 − 1
p + 1‖ϕn0‖p+1

Lp+1(1 + λ)p+1

=: A(1 + λ)2 −B(1 + λ)p+1,

where A := ‖ϕn0‖2
H

1
2
ω,V

, B := 1
p+1‖ϕn0‖p+1

Lp+1 . Noting that

f ′(λ) = (1 + λ)
{
2A−B(p + 1)(1 + λ)p−1} ,

we see that if λ0 is defined by λ0 := −1 +
{

2A
B(p+1)

} 1
p−1 , then f is increasing on (−1, λ0) and f is decreasing 

on (λ0, ∞). Therefore, in the case of λ0 > 0, by letting λ such as λ → +0 with the perturbation lemma 
(Lemma 5.8), we can find such ψ̃, on the other hand, in the case of λ0 < 0, by letting λ such as λ → −0
with the perturbation lemma, we can find such ψ̃.

Thus we can repeat the same argument as in the proof of Theorem 5.12 with ϕn = u(tn) and we can find 
a subsequence of {u(tn)}n∈N and the function ψ ∈ H such that limn→∞ u(tn) = ψ in H, which completes 
the proof of the lemma. �
Lemma 5.14 (Precompactness of the flow implies uniform localization). Let V ∈ L1(R) + L∞(R) be non-
negative, u ∈ C(R : H) and p ≥ 1 and let H ⊂ H be the set of the flow defined by
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H := {u(t) ∈ H : t ∈ R} .

Then if H is precompact in H, for any ε > 0, there exists R = R(ε) > 0 such that

∫
|x|>R

|∂xu(t, x)|2dx +
∫

|x|>R

|u(t, x)|2dx +
∫

|x|>R

|u(t, x)|p+1dx < ε, for any t ∈ R.

This lemma can be proved in the same manner as the proof of Lemma 5.6 in [11] and Corollary 3.3 in 
[7]. For the convenience of readers, we give a proof of the lemma in Appendix E.

Next we give a proof of the so-called rigidity theorem under the precompactness of the orbit of the flow, 
and the repulsiveness of the potential (xV ′ ≤ 0).

Proposition 5.15 (Rigidity theorem). Besides the assumptions (1) in Theorem 1.2, we assume that V belongs 
to L1(R), xV ′ belongs to L1(R) +L∞(R) and satisfies xV ′(x) ≤ 0 for a.e. x ∈ R, i.e. V is repulsive. Let u ∈
C(R : H) be the unique solution to (NLSV ) with u(0) = u0. If the orbit of the flow H := {u(t) ∈ H : t ∈ R}
to (NLSV ) is precompact in H. Then u = 0 for any t ∈ R.

The repulsiveness of the potential V in the scattering part is used only in the proof of the proposition 
(see also Proposition 13 in [21]). The proof of the proposition is based on the localized virial identity 
(Lemma 3.1).

Proof of Proposition 5.15. On the contrary, we assume that there exists t0 ∈ R such that u(t0) �= 0. Let 
R > 0 be a parameter, which will be determined later. We can take φ = φ(x) ∈ C∞

0 (R) such that

0 ≤ φ(x) ≤ x2, |φ′(x)| ≤ C1|x|, |φ′′(x)| ≤ 2, |φ(4)(x)| ≤ 4
R2 ,

for x ∈ R, where C1 is a constant independent of x, and

φ(x) =
{

x2, 0 ≤ |x| ≤ R,

0, |x| ≥ 2R.

Since u is the solution to (NLSV ) on R, we can apply the localized virial identity (Lemma 3.1) to obtain

I ′′(t) = 8P0(u(t)) + R1 + R2 + R3 + R4, for t ∈ R, (5.49)

where Rj (j = 1, 2, 3, 4) are defined by

R1 := 4
∫
R

{φ′′(x) − 2}|∂xu(t, x)|2dx,

R2 := −2(p− 1)
p + 1

∫
R

{φ′′(x) − 2}|u(t, x)|p+1dx,

R3 := −
∫
R

φ(4)(x)|u(t, x)|2dx,

R4 := −2
∫
R

φ′(x)V ′(x)|u(t, x)|2dx.
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By the properties of the function φ, we have

|R1| = 4

∣∣∣∣∣∣
∫
R

{φ′′(x) − 2}|∂xu(t, x)|2dx

∣∣∣∣∣∣ ≤ 16
∫

|x|>R

|∂xu(t, x)|2dx,

|R2| =

∣∣∣∣∣∣
2(p− 1)
p + 1

∫
R

{φ′′(x) − 2}|u(t, x)|p+1dx

∣∣∣∣∣∣ ≤
8(p− 1)
p + 1

∫
|x|>R

|u(t, x)|p+1dx,

|R3| =

∣∣∣∣∣∣
∫
R

φ(4)(x)|u(t, x)|2dx

∣∣∣∣∣∣ ≤
4
R2

∫
|x|>R

|u(t, x)|2dx.

Since V satisfies xV ′(x) ≤ 0 for a.e. x ∈ R, by the properties of φ, we have

R4 = −4
∫

|x|≤R

xV ′(x)|u(t, x)|2dx− 2
∫

|x|>R

φ′(x)V ′(x)|u(t, x)|2dx

≥ −2
∫

|x|>R

φ′(x)V ′(x)|u(t, x)|2dx

≥ −2
∫

|x|>R

|φ′(x)||V ′(x)||u(t, x)|2dx

≥ −2C1

∫
|x|>R

|xV ′(x)||u(t, x)|2dx,

for any t ∈ R and R > 0. Since xV ′ ∈ L1(R) + L∞(R), there exist V1 ∈ L1(R) and V2 ∈ L∞(R) such that 
the identity xV ′ = V1 + V2 holds. By the estimate (1.13) in Theorem 1.2 and the energy conservation law, 
we have

−‖∂xu(t)‖L2 ≥ −‖H
1
2
V u(t)‖L2 > −

√
2(p− 1)
p− 5 EV (u0) = −

√
2(p− 1)
p− 5 EV (u(t0))

for any t ∈ R. Thus by these facts, the Gagliardo-Nirenberg-Sobolev inequality ‖f‖2
L∞ ≤ ‖f‖L2‖∂xf‖L2 for 

f ∈ H1(R) and the mass conservation law, we have

R4 ≥ −2C1‖u(t)‖2
L∞

∫
|x|>R

|V1(x)|dx− 2C1‖V2‖L∞

∫
|x|>R

|u(t, x)|2dx

≥ −2C1‖u(t)‖L2‖∂xu(t)‖L2

∫
|x|>R

|V1(x)|dx− 2C1‖V2‖L∞

∫
|x|>R

|u(t, x)|2dx

≥ −2C1‖u(t0)‖L2

√
2(p− 1)
p− 5 EV (u(t0))

∫
|x|>R

|V1(x)|dx− 2C1‖V2‖L∞

∫
|x|>R

|u(t, x)|2dx =: R̃4,

for t ∈ R. Therefore, by combining the above estimates, for any R ≥ 1 and t ∈ R, the estimate
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I ′′(t) ≥8P0(u(t)) − (|R1| + |R2| + |R3|) + R4

≥8P0(u(t))

− 16

⎧⎪⎨
⎪⎩

∫
|x|>R

|∂xu(t, x)|2dx +
∫

|x|>R

|u(t, x)|2dx +
∫

|x|>R

|u(t, x)|p+1dx

⎫⎪⎬
⎪⎭ + R̃4 (5.50)

holds. By u(t0) �= 0 and the mass conservation law, we have u0 �= 0, which allows us to apply Theorem 1.2
to find that there exists δ0 > 0 independent of t such that P0(u(t)) > δ0. Since H is precompact in H, by 
Lemma 5.13, there exists R0 = R0(δ0) such that for R ≥ R0, the estimate holds

∫
|x|>R

|∂xu(t, x)|2dx +
∫

|x|>R

|u(t, x)|2dx +
∫

|x|>R

|u(t, x)|p+1dx ≤ δ0
4 , (5.51)

for any t ∈ R. Since V1 ∈ L1(R), by the precompactness of H again, there exists R1 = R1(δ0, V ) > 0
independent of t such that for R ≥ R1, the estimate

R̃4 < δ0 (5.52)

holds for any t ∈ R. Fix R ≥ max(R0, R1) arbitrarily. By combining the estimates (5.50)-(5.52), the estimate

I ′′(t) ≥ δ0

holds for any t ∈ R. For any t > 0, by integrating the above estimate twice with respect to time over [0, t], 
we have

I(t) > δ0
2 t2 + I ′(0)t + I(0),

which implies that

lim
t→∞

I(t) = ∞. (5.53)

On the other hand, by the definition of the function I, the property of φ and the mass conservation law, 
the estimate

I(t) =
∫

|x|≤2R

φ(x)|u(t, x)|2dx ≤ 4R2 ‖u(t)‖2
L2 = 4R2‖u(0)‖L2 =: C2,

holds for any t ∈ R, where C2 = C2(R, ‖u(0)‖L2) is independent of t, which contradicts (5.53). Therefore 
we see that for any t ∈ R, u(t) = 0, which completes the proof of the proposition. �

Finally, we complete the proof of the scattering part of Theorem 1.3 by combining Theorem 5.12, 
Lemma 5.14 and Proposition 5.15.

Proof of the scattering part of Theorem 1.3. By the definition of Sc
ω, it suffices to prove nω ≤ Sc

ω. On the 
contrary, we assume that nω > Sc

ω. Then from Theorem 5.12, we can find a critical element uc ∈ C(R : H)
to (NLSV ). Lemma 5.13 implies that the orbit of the flow {uc(t) ∈ H : t ∈ R} is precompact in H. Thus the 
rigidity theorem (Proposition 5.15) implies that uc(t) = 0 for any t ∈ R, which gives Sω,V (uc(t)) = 0 for 
any t ∈ R. However, this contradicts Sω,V (uc(t)) = Sc

ω > 0 for any t ∈ R. Therefore we see that nω ≤ Sc
ω, 

which completes the proof of the scattering part of the theorem. �
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Appendix A. Proof of the local well-posedness in the energy space H

In this appendix, we give a proof of the local well-posedness result for (NLSV ) in the energy space H
(Proposition 1.1) via the standard argument (see also Theorem 3.7.1 in [4] for more general operator HV ).

Proof of Proposition 1.1. (Existence) Let � > 0 and u0 ∈ H such that ‖u0‖H ≤ �. For T > 0 and Θ > 0, 
which will be determined later (see (A.4)), we set IT := (−T, T ) and we introduce a closed ball X(T, Θ) in 
L∞
t (IT : H) as

X(T,Θ) :=
{
u ∈ L∞

t (IT : H) : ‖u‖L∞
t (IT :H) ≤ Θ

}
with the metric dT (u, v) := ‖u − v‖L∞

t (IT :L2), for u, v ∈ L∞
t (IT : H). We prove that the nonlinear mapping 

J : X(T, Θ) 	→ X(T, Θ)

J [u](t) := e−itHV u0 + i

t∫
0

e−i(t−s)HV |u(s)|p−1u(s)ds, t ∈ IT

is well defined and is contractive on X(T, Θ), if Θ = Θ(ρ) is sufficiently large and T = T (Θ) is sufficiently 
small.

Since V is non-negative and belongs to L1(R) + L∞(R), by the Sobolev embedding H1(R) ⊂ L∞(R), 
the estimate

‖f‖2
H1 ≤ ‖f‖2

H = ‖f‖2
H1 +

∞∫
−∞

V (x)|f(x)|2dx ≤ (1 + C‖V ‖L1+L∞)‖f‖2
H1 (A.1)

holds for any f ∈ H, where C is a positive constant independent of f and V . Since L
1
2
V and e−itHV are 

commute with each other for any t ∈ R and {e−itHV }t∈R is unitary on L2(R), by the Sobolev embedding 
H1(R) ⊂ L∞(R) again and the above equivalency of the norms, we have

‖J [u](t)‖H ≤ ‖u0‖H +

∣∣∣∣∣∣
t∫

0

‖L
1
2
V (|u(s)|p−1u(s))‖L2ds

∣∣∣∣∣∣
≤ ‖u0‖H + C

∣∣∣∣∣∣
t∫

0

‖|u(s)|p−1u(s)‖H1ds

∣∣∣∣∣∣
≤ � + C1TΘp, for t ∈ IT , (A.2)

where C1 is a positive constant dependent only on p and ‖V ‖L1+L∞ . Here we choose Θ = Θ(�) and T = T (Θ)
such as

Θ ≥ 2� and 0 < T ≤ 1
p−1 . (A.3)
2C1Θ
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Then the estimate

‖J [u]‖L∞(IT :H) ≤ �,

holds, which implies that the mapping J is well defined from X(T, Θ) into itself.
By the fundamental formula of calculus, the estimate

||a|p−1a− |b|p−1b| =

∣∣∣∣∣∣
1∫

0

d

dθ
|θa + (1 − θ)b|p−1(θa + (1 − θ)b)dθ

∣∣∣∣∣∣
≤ p2p−1(|a|p−1 + |b|p−1)|a− b|

holds for a, b ∈ C. By using this estimate and in the same manner as the proof of (A.2), we obtain

dT (J [u], J [v]) ≤ C2TΘp−1dT (u, v)

for u, v ∈ X(T, Θ), where C2 is dependent only on p and ‖V ‖L1+L∞ . Here we take T = T (Θ) such that

0 < T ≤ 1
2C2Θp−1 . (A.4)

Then the estimate

dT (J [u], J [v]) ≤ 1
2dT (u, v)

holds, which implies that the mapping J is contractive on X(T, Θ). Thus by the contraction mapping 
principle, we see that there exists a unique u ∈ X(T, Θ) such that J [u](t) = u(t) on t ∈ IT .

(Uniqueness) On the contrary, we assume that there exists t ∈ (0, T1) such that u(t) �= v(t) in L2-sense. 
Then we can define t0 := inf {t ∈ [0, T1) , u (t) �= v (t)} > 0. Since both u and v belong to C([0, T1) : L2), 
we have u(t0) = v(t0) by the continuity. Since (NLSV ) is invariant with respect to the time translation, we 
may assume t0 = 0. In the same manner as the proof of the Existence part, for small τ ∈ (0, T1), we have

dτ (u, v) ≤ C2τ(‖u‖p−1
Lt(IT1 :H) + ‖v‖p−1

Lt(IT1 :H))dτ (u, v) ≤
1
2dτ (u, v),

which implies u(t) = v(t) on [0, τ). This contradicts the definition of t0. Therefore u(t) = v(t) on [0, T1). 
We can also prove u(t) = v(t) on (−T1, 0] in the same manner.

(Continuity of the flow map) Let u0 ∈ H and v0 ∈ H such that ‖u0‖H ≤ � and ‖v0‖H ≤ � respectively. 
Let u ∈ X(T, Θ) and v ∈ X(T, Θ) be solutions to (NLSV ) with u(0) = u0 and v(0) = v0 respectively. In the 
same manner as the proof of the Existence part, we have

dT (u, v) ≤ ‖u0 − v0‖L2 + C2TΘp−1dT (u, v) ≤ ‖u0 − v0‖L2 + 1
2dT (u, v),

which implies that the flow map Ξ : {f ∈ H : ‖f‖H ≤ �} 	→ X(T, Θ) is Lipschitz continuous with the 
Lipschitz constant 2.

(Conservation laws) The proof of the conservation laws is standard. So we omit the detail.
(Blow-up criterion) We only consider the positive time direction, since the negative time direction can 

be treated in the same manner. We assume that

lim inf ‖∂xu(t)‖L2 < ∞.

t→T+−0
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Then we can define

C3 := lim inf
t→T+−0

‖∂xu(t)‖L2 .

We can find a sequence {tk}k∈N ⊂ [0, T+) such that

lim
k→∞

tk = T+ (A.5)

sup
k∈N

‖∂xu(tk)‖L2 ≤ C3 + 1 (A.6)

The identity (A.1), the L2-conservation law and (A.6) give

sup
k∈N

‖u(tk)‖2
H ≤ (1 + C‖V ‖L1+L∞)(‖u0‖2

L2 + sup
k∈N

‖∂xu(tk)‖2
L2)

≤ (1 + C‖V ‖L1+L∞)(‖u0‖2
L2 + 1 + C3) =: ρ1

Thus by the result of the Existence part, there exists a positive time T = T (ρ1) independent of k such 
that for any k ∈ N, there exists a unique solution u ∈ C([tk, tk + T (r1) : H) ∩ C1([tk, tk + T (ρ1) : H−1) to 
(NLSV ). However, by (A.5), we can take tk such as tk + T (ρ1) > T+, which contradicts the maximality of 
T+. Therefore we obtain

lim inf
t→T+−0

‖∂xu(t)‖L2 = ∞,

which completes the proof of the proposition. �
Appendix B. Proof of the localized virial identity (Lemma 3.1)

In this appendix, we give a proof of the localized virial identity (Lemma 3.1) only for smooth rapidly 
decaying solutions. For the proof of H1-solutions, see [17].

Proof of Lemma 3.1. Since V is real-valued and u is a smooth rapidly decaying solution to (NLSV ) on I, 
by the definition of the function I and the integration by parts, we have

I ′(t) = 2
∫
R

φ(x)Re{u(t, x)∂tu(t, x)}dx = −2Im
∫
R

φ(x)u(t, x)∂2
xu(t, x)dx

= 2Im
∫
R

φ′(x)u(t, x)∂xu(t, x)dx,

for t ∈ I. By the integration by parts again, we get

I ′′(t) = 2Im
∫
R

φ′(x)∂tu(t, x)∂xu(t, x)dx + 2Im
∫
R

φ′(x)u(t, x)∂x∂tu(t, x)dx

= 4Im
∫
R

φ′(x)∂tu(t, x)∂xu(t, x)dx− 2Im
∫
R

φ′′(x)u(t, x)∂tu(t, x)dx

=: A1 + A2.

We note that the following identities hold for (t, x) ∈ I ×R:
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i∂tu(t, x) = −∂2
xu(t, x) + V (x)u(t, x) − |u(t, x)|p−1u(t, x), (B.1)

∂x(|∂xu(t, x)|2) = 2Re{∂2
xu(t, x)∂xu(t, x)},

∂x(|u(t, x)|2) = 2Re{u(t, x)∂xu(t, x)}, (B.2)

∂x(|u(t, x)|p+1) = (p + 1)|u(t, x)|p−1Re{u(t, x)∂xu(t, x)}.

By using the identities and the integration by parts again, we have

A1 = −4Re
∫
R

φ′(x)∂2
xu(t, x)∂xu + 4Re

∫
R

φ′(x)V (x)u(t, x)∂xu(t, x)dx

− 4Re
∫
R

φ′(x)|u(t, x)|p−1u(t, x)∂xu(t, x)dx

= 2
∫
R

φ′′(x)|∂xu(t, x)|2dx− 2
∫
R

φ′′(x)V (x)|u(t, x)|2dx (B.3)

− 2
∫
R

φ′(x)V ′(x)|u(t, x)|2dx + 4
p + 1

∫
R

|u(t, x)|p+1dx.

By the identities (B.1) and (B.2) and the integration by parts, we obtain

A2 = −2Re
∫
R

φ′′(x)∂2
xu(t, x)u(t, x)dx

+ 2
∫
R

φ′′(x)V (x)|u(t, x)|2dx− 2
∫
R

φ′′(x)|u(t, x)|p+1dx

= −
∫
R

φ(4)(x)|u(t, x)|2dx + 2
∫
R

φ′′(x)|∂xu(t, x)|2dx (B.4)

+ 2
∫
R

φ′′(x)V (x)|u(t, x)|2dx− 2
∫
R

φ′′(x)|u(t, x)|p+1dx.

By adding the identities (B.3) and (B.4), we obtain (3.2), which completes the proof of the lemma. �
Appendix C. Proof of the perturbation lemma (Lemma 5.8)

In this appendix, we give a proof of the perturbation lemma (Lemma 5.8). In order to prove the lemma, 
we use the following Gronwall-type inequality.

Lemma C.1. Let 1 ≤ μ < ν ≤ ∞, q = q(μ, ν) := μν
ν−μ ∈ [1, ∞), 0 < T ≤ ∞, f ∈ Lq

t (−T, T ), g ∈ Lν
loc(−T, T )

and η > 0. Then the function fg : (−T, T ) 	→ R belongs to Lμ
t (−T, T ). Moreover, if the estimate

‖g‖Lν
t (−t,t) ≤ η + ‖fg‖Lμ

t (−t,t)

holds for any t ∈ (0, T ], then the estimate

‖g‖Lν
t (−t,t) ≤ ηΨ(‖f‖Lq

t (−t,t))

holds for any t ∈ (0, T ], where Ψ(s) := 2Γ(3 + 2s) for s > 0 and Γ is the Gamma function defined by
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Γ(s) :=
∞∫
0

ts−1e−tdt, for s > 0.

For the proof of this lemma, see Lemma 8.1 in [8]. Now we give a proof of Lemma 5.8.

Proof of Lemma 5.8. Set w := u −v ∈ C(R : H). Then since u and v satisfies (5.12) and (5.11) respectively, 
w satisfies

w(t) = e−itHV ϕ0 + i

t∫
0

e−i(t−s)HV [|w(s) + v(s)|p−1{w(s) + v(s)} − |v(s)|p−1v(s)]ds− e(t), (C.1)

on t ∈ R. Here we fix ε > 0 and T > 0 arbitrarily, which will be determined later. We note that since p ≥ 5, 
there exists a positive constant Cp depending only on p, such that for any a, b ∈ C, the estimate

||a + b|p−1(a + b) − |b|p−1b| ≤ Cp(|a|p + |b|p−1|a|) (C.2)

holds. Let t ∈ (0, T ). By taking La
t (−t, t : Lr

x)-norm of the equation (C.1), using the assumptions 
‖e−itHV ϕ‖La

t (R:Lr
x) ≤ ε and ‖e‖La

t (R:Lr
x) ≤ ε, the non-admissible Strichartz estimate (Lemma 5.3) due 

to V ∈ L1
1(R) and p ≥ 5, the Hölder inequality and the identity pb′ = a, we have

‖w‖La
t (−t,t:Lr

x) ≤ ε + ‖|w + v|p−1(w + v) − |v|p−1v‖Lb′
t (−t,t:Lr′

x ) + ε

≤ 2ε + Cp‖|v|p−1|w| + |w|p‖Lb′
t (−t,t:Lr′

x )

≤ 2ε + Cp‖‖v(t)‖p−1
Lr

x
‖w(t)‖Lr

x
‖Lb′

t (−t,t) + Cp‖‖w(t)‖pLr
x
‖Lb′

t (−t,t)

=: 2ε + Cp‖fg‖Lb′
t (−t,t) + Cp‖g‖pLa

t (−t,t)

‖g‖La
t (−t,t) ≤ Aε + A‖fg‖Lb′

t (−t,t) + A‖g‖pLa
t (−t,t), (C.3)

where A := max(2, Cp), the functions f : R 	→ [0, ∞) and g : R 	→ [0, ∞) are defined by

f(t) := ‖v(t)‖p−1
Lr

x
∈ Lω

t (R), and g(t) := ‖w(t)‖Lr
x
∈ La

t (−T, T )

respectively. Here ω is defined by ω = ω(p) := 2(p+3)
p+1 and satisfies 1

ω = 1
b′ −

1
a , and we have used the fact 

that v ∈ La
t (R : Lr

x), u ∈ L∞
t (R : H) and the Sobolev embedding H ⊂ H1(R) ⊂ Lr

x(R). Moreover, since the 
estimate ‖v‖La

t (R:Lr
x) ≤ M holds, the inequality

‖f‖Lω
t (R) = ‖v‖p−1

La
t (R:Lr

x) ≤ Mp−1 (C.4)

is valid. Here we choose ε = ε(M) = ε(M, A) > 0 satisfying

ε ≤ 2−(p−1){2AΨ(Mp−1)}−
p

p−1 , (C.5)

where Ψ is same as in Lemma C.1. Next we will prove that ‖g‖La
t (R) < ∞. Since g ∈ L∞

t (R) and a < ∞, there 

exists a positive T0 = T0(ε) such that ‖g‖pLa
t (−T0,T0) < ε. In fact, it suffices to take 0 < T0 < 1

2

(
ε

‖g‖L∞
t (R)

) a
p . 

Thus we can define the value

T∗ := sup{T ∈ (0,∞] : ‖g‖p a < ε} > 0.
Lt (−T,T )
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We claim that T∗ = ∞. Indeed, on the contrary, we assume that T∗ < ∞. Then by the continuity, we have 
‖g‖pLa

t (−T∗,T∗) = ε. Then by the estimate (C.3), we have

‖g‖La
t (−t,t) ≤ 2Aε + A‖fg‖Lb′

t (−t,t)

for any t ∈ (0, T∗]. We can apply the Gronwall-type estimate (Lemma C.1) with μ = b′, ν = a, q = ω and 
η = 2Aε, to obtain

‖g‖La
t (−t,t) ≤ 2AεΨ(‖f‖Lω

t (−t,t)) ≤ 2AεΨ(Mp−1),

for any t ∈ (0, T∗], where we have used the estimate (C.4). By this estimate and the inequality (C.5), we 
obtain ‖g‖p−1

La
t (−t,t) ≤

ε
2 , for any t ∈ (0, T∗], which leads to a contradiction. Thus we see that T∗ = ∞. Here 

we set

C(M) := 2AΨ(Mp−1).

By the repeating above argument, we find that

‖w‖La
t (R:Lr

x) = ‖g‖La
t (R) ≤ 2AεΨ(Mp−1) = C(M)ε,

which completes the proof of the lemma. �
Appendix D. Proof of Lemma 5.9

Proof of Lemma 5.9. Up to subsequence, we may assume that xn → ∞ or xn → −∞ as n → ∞. We only 
consider the case xn → ∞ as n → ∞, since the case xn → −∞ can be treated in the same manner.

First we claim that for ψ ∈ H1(R), the identity

lim
n→∞

∥∥∥eit∂2
x(τxn

ψ) − e−itHV (τxn
ψ)

∥∥∥
La

t (R:Lr
x)

= 0 (D.1)

holds. To prove this, we will show that

lim
T→∞

sup
n∈N

‖e−itHV (τxn
ψ)‖La

t ((|t|>T ):Lr
x) = 0. (D.2)

Let ε > 0. Since C∞
0 (R) is dense in H1(R), there exists ψ̃ ∈ C∞

0 (R) depending on ε > 0 such that the 
estimate holds:

‖ψ − ψ̃‖H1 ≤ ε.

By this estimate and the non-admissible Strichartz estimate (Lemma 5.3) due to p ≥ 5 and V ∈ L1
1(R), we 

have

∥∥e−itHV (τxn
ψ̃ − τxn

ψ)
∥∥
La

t (R:Lr
x) ≤ C0‖τxn

ψ̃ − τxn
ψ‖H1 = C0‖ψ̃ − ψ‖H1 ≤ C0ε, (D.3)

where we have used the translation invariance of the norm ‖ · ‖H1 and C0 depends only on p and V . For 
any n ∈ N, since τxn

ψ̃ ∈ Lr′ , we can apply the dispersive estimate (5.2) to get

‖e−itHV (τxn
ψ̃)‖Lr ≤ C1|t|−

1
2

(
1
r′ −

1
r

)
‖τxn

ψ̃‖Lr′ = C1|t|−
1
2
(
1− 2

r

)
‖ψ̃‖Lr′
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for t �= 0, where we have also used the translation invariance of the Lr′-norm and C1 depends only on p and 
V . We note that since the estimates

a

2

(
1 − 2

r

)
= (p− 1)2

p + 3 > 1

hold due to p ≥ 5 > 3+
√

17
2 , the function |t| 12

(
1− 2

r

)
belongs to La

t (|t| ≥ 1, ∞). From this integrability, we see 
that there exists large T0 � 1 such that for any T ≥ T0, the estimate

sup
n∈N

‖e−itHV (τxn
ψ̃)‖La

t ((|t|>T ):Lr
x) ≤ ε, (D.4)

holds. We note that the identity τxn
ψ = τxn

ψ̃ + (τxn
ψ − τxn

ψ̃) holds for any n ∈ N. Thus combining the 
estimates (D.3) and (D.4) gives that for T ≥ T0, the estimate

sup
n∈N

‖e−itHV (τxn
ψ)‖La

t ((|t|>T ):Lr
x) ≤ (1 + C0)ε,

holds, which completes the proof of the identity (D.2). Next in order to prove (D.1), we will show that for 
any T > 0, the identity

lim
n→∞

∥∥∥eit∂2
x(τxn

ψ) − e−itHV (τxn
ψ)

∥∥∥
La

t (−T,T :Lr
x)

= 0 (D.5)

holds. Indeed, for any n ∈ N, set un(t, x) := eit∂
2
x(τxn

ψ)(x) − e−itHV (τxn
ψ)(x) on (t, x) ∈ R × R. We note 

that for any n ∈ N, since τxn
ψ ∈ H, we see that the function un belongs to C(R : H) ∩La

t (R : Lr
x) and is the 

unique solution to the Schrödinger equation with the potential and the inhomogeneous term −V eit∂
2
xτxn

ψ:

i∂tun −HV un = −V eit∂
2
xτxn

ψ, (t, x) ∈ R×R.

Thus the inhomogeneous non-admissible Strichartz estimate (Lemma 5.3) due to p ≥ 5 and V ∈ L1
1(R)

gives

‖un‖La
t (−T,T :Lr

x) ≤ C2‖V eit∂
2
xτxn

ψ‖
Lγ′

t (−T,T :L1
x) ≤ C2(2T )

1
γ′ ‖V eit∂

2
xτxn

ψ‖L∞
t (−T,T :L1

x)

= C2(2T )
1
γ′ ‖V τxn

eit∂
2
xψ‖L∞

t (−T,T :L1
x) = C2(2T )

1
γ′ ‖(τ−xn

V )eit∂
2
xψ‖L∞

t (−T,T :L1
x) (D.6)

for any n ∈ N, where we have used the fact that the translation operator τy commutes with the free 
Schrödinger solution operator eit∂2

x for any y ∈ R and t ∈ R. In the same manner as the proof of (3.17) in 
[21], we can prove

lim
n→∞

‖(τ−xn
V )eit∂

2
xψ‖L∞

t (−T,T :L1
x) = 0. (D.7)

Indeed, let ε > 0. Since eit∂
2
xψ ∈ C([−T, T ] : H1) due to ψ ∈ H1(R) and [−T, T ] is closed, eit∂2

xψ is uniformly 
continuous in H1(R) on [−T, T ], that is, there exists δ = δ(ε) > 0 such that for any t0, t1 ∈ [−T, T ] satisfying 
|t0 − t1| < δ,

‖eit0∂2
xψ − eit1∂

2
xψ‖H1 ≤ ε. (D.8)

Take t ∈ [−T, T ] and t0 = t0(t, δ) ∈ [−T, T ] with |t − t0| < δ arbitrarily. Since eit0∂
2
xψ ∈ H1(R), there exists 

M1 = M1(ε, t0) > 0 such that for any x ∈ R satisfying |x| > M1, the estimate
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|eit0∂2
xψ(x)| ≤ ε (D.9)

holds. For x ∈ R satisfying |x| > M1, the Sobolev embedding H1(R) ⊂ L∞(R) gives

|eit∂2
xψ(x)| ≤ |eit∂2

xψ(x) − eit0∂
2
xψ(x)| + |eit0∂2

xψ(x)|

≤ C3‖eit∂
2
xψ − eit0∂

2
xψ‖H1 + ε ≤ (C3 + 1)ε,

where C3 is a positive constant, which implies that for any t ∈ [−T, T ], there exists M1 = M1(t, ε) such 
that the estimate holds:

‖eit∂2
xψ‖L∞

x (|x|>M1) ≤ (C3 + 1)ε.

On the other hand, since V ∈ L1(R), there exists M2 = M2(V, ε) > 0 such that the estimate holds:
∫

|x|>M2

|V (x)|dx ≤ ε. (D.10)

Set M = M(t, V, ε) := max(M1, M2). Since we are considering the case limn→∞ xn = ∞, there exists 
n0 = n0(M) ∈ N such that for any n ∈ N satisfying n ≥ n0, xn ≥ 2M . Then for n ∈ N with n ≥ n0, the 
relation holds:

x ∈ R with |x + xn| ≤ M =⇒ |x| ≥ M. (D.11)

For n ∈ N satisfying n ≥ n0 and t ∈ [−T, T ], the relations (D.10)-(D.11) and the Sobolev embedding 
H1(R) ⊂ L∞(R) give

‖(τ−xn
V )eit∂

2
xψ‖L1 =

∫
|x+xn|≥M

|V (x + xn)||(eit∂2
xψ)(x)|dx +

∫
|x+xn|<M

|V (x + xn)||(eit∂2
xψ)(x)|dx

≤ ‖eit∂2
xψ‖L∞

x

∫
|x+xn|≥M

|V (x + xn)|dx +
∫

|x|≥M

|V (x + xn)||(eit∂2
xψ)(x)|dx

≤ C3‖ψ‖H1

∫
|x|≥M

|V (x)|dx + ‖eit∂2
xψ‖L∞

x (|x|≥M)

∫
|x|>M

|V (x + xn)|dx

≤ {C3‖ψ‖H1 + (C3 + 1)‖V ‖L1}ε =: C4ε,

where C4 is a positive constant depending on ‖V ‖L1 and ‖ψ‖H1 . This gives that for any n ∈ N satisfying 
n ≥ n0, the estimate

‖(τ−xn
)eit∂

2
xψ‖L∞

t (−T,T :L1
x) ≤ C4ε

holds, which completes the proof of (D.7). By combining (D.6) and (D.7), we have (D.5). Moreover by 
combining (D.2) and (D.5), we can prove (D.1). In the same manner as the proof of Proposition 8 in [21], 
we can prove

lim
n→∞

∥∥∥∥∥∥
t∫

0

ei(t−s)∂2
x
{
|Un(s)|p−1Un(s)

}
ds−

t∫
0

e−i(t−s)HV {|Un(s)|p−1Un(s)}ds

∥∥∥∥∥∥
La

t (R:Lr
x)

= 0.

So we omit the detail. �
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Appendix E. Proof of the uniform localization via precompactness

In this appendix, we give a proof of Lemma 5.14, which can be proved in the similar manner as the proof 
of Lemma 5.6 in [11] and Corollary 3.3 in [7].

Proof of Lemma 5.14. On the contrary, there exists ε > 0 such that for any n ∈ N, there exists {tn}n∈N ⊂ R

such that ∫
|x|>n

|∂xu(tn, x)|2dx +
∫

|x|>n

|u(tn, x)|2dx +
∫

|x|>n

|u(tn, x)|p+1dx ≥ ε. (E.1)

Since H is precompact in H, there exists φ ∈ H such that, passing to a subsequence of {tn}n∈N , the identity 
limn→∞ u(tn) = φ in H holds. By combining this fact, the equivalency of the norms ‖ · ‖H1 and ‖ · ‖H, 
and the Sobolev embedding H1(R) ⊂ Lp+1(R), there exists N1 = N1(ε, p) ∈ N such that for n ≥ N1, the 
estimate holds:∫

R

|∂xu(tn, x) − ∂xφ(x)|2dx +
∫
R

|u(tn, x) − φ(x)|2dx +
∫
R

|u(tn, x) − φ(x)|p+1dx <
ε

2(p + 1) . (E.2)

Since φ ∈ H ⊂ H1(R) ⊂ Lp+1(R), there exists N2 = N2(ε, p) ∈ N such that for n ≥ N2, the estimate
∫

|x|>n

|∂xφ(x)|2dx +
∫

|x|>n

|φ(x)|2dx +
∫

|x|>n

|φ(x)|p+1dx <
ε

2(p + 1) , (E.3)

holds. Thus for any n ∈ N satisfying n ≥ max(N1, N2), by combining the estimates (E.2) and (E.3), we 
have ∫

|x|>n

|∂xu(t, x)|2dx +
∫

|x|>n

|u(t, x)|2dx +
∫

|x|>n

|u(t, x)|p+1dx < ε.

This contradicts (E.1), which completes the proof of the lemma. �
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