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We study almost sure limiting behavior of extreme and intermediate order statistics 
arising from strictly stationary sequences. First, we provide sufficient dependence 
conditions under which these order statistics converges almost surely to the left or 
right endpoint of the population support, as in the classical setup of sequences 
of independent and identically distributed random variables. Next, we derive 
a generalization of this result valid in the class of all strictly stationary sequences. 
For this purpose, we introduce notions of conditional left and right endpoints of the 
support of a random variable given a sigma-field, and present basic properties of 
these concepts. Using these new notions, we prove that extreme and intermediate 
order statistics from any discrete-time, strictly stationary process converges almost 
surely to some random variable. We describe the distribution of the limiting variate. 
Thus we establish a strong ergodic theorem for extreme and intermediate order 
statistics.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let (Xn, n ≥ 1) be a sequence of random variables (rv’s) defined on the same probability space, and 
X1:n ≤ · · · ≤ Xn:n be the order statistics corresponding to the sample (X1, . . . , Xn). Following the standard 
notation, we will say that (Xkn:n, n ≥ 1) is a sequence of (1) extreme order statistics if and only if (iff) kn or 
n − kn is fixed; (2) intermediate order statistics iff min(kn, n − kn) → ∞ and kn/n → λ ∈ {0, 1} as n → ∞; 
and (3) central order statistics iff kn/n → λ ∈ (0, 1) as n → ∞.

In this paper we will focus on the asymptotic behavior of extreme and intermediate order statistics in the 
case when the sequence (Xn, n ≥ 1) forms a strictly stationary process. A lot is known about this behavior 
under some additional assumptions on the dependence structure between Xi’s. In particular, extreme value 
theory, dealing with limiting laws of suitably normalized extreme and intermediate order statistics, is well 
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developed; see, for example, [14–16,9,19,25,23,3] and the references given there. Yet there does not exist very 
much literature on the almost sure asymptotic behavior of extreme and intermediate order statistics, even 
in the case when (Xn, n ≥ 1) are independent and identically distributed (iid) rv’s with common cumulative 
distribution function (cdf) F satisfying some requirement. Under conditions that F is sufficiently smooth, 
Watts [22] and Chanda [2] gave Bahadur–Kiefer-type representations for intermediate order statistics of iid 
rv’s. A brief review on almost sure behavior of maxima of iid rv’s together with applications of these results 
can be found in Embrechts et al. [8]. Characterizations of the minimal almost sure growth of partial maxima 
of iid rv’s, obtained among others by Klass [12,13], were generalized to extreme upper order statistics by 
Wang [21]. Recently Holland et al. [11] studied almost sure growth rates of maxima of dependent rv’s within 
a dynamical systems framework.

In this paper, we concentrate on extension of the following almost sure property of extreme and inter-
mediate order statistics taken from Embrechts et al. ([8], Proposition 4.1.14).

Theorem 1.1. If (Xn, n ≥ 1) is a sequence of iid rv’s and (kn, n ≥ 1) is a sequence of integers such that

1 ≤ kn ≤ n for all n ≥ 1 and lim
n→∞

kn/n = λ ∈ {0, 1}, (1.1)

then

Xkn:n
n→∞−−−−→ γX1

0 (γX1
1 ) almost surely according as λ = 0 (λ = 1), (1.2)

where γX1
0 and γX1

1 are the left and right endpoints of the support of X1, respectively.

Following Smirnov [18], we can view the above theorem as an analog of the strong law of large numbers for 
extreme and intermediate order statistics. Our aim is to give its extension to the class of strictly stationary 
processes. We present such an extension in the whole generality. Firstly, our main result, Theorem 4.2, holds 
in the class of all strictly stationary processes – no assumptions on dependence structure of the sequence 
(Xn, n ≥ 1) are needed. Secondly, no restrictions on the common univariate cdf F of (Xn, n ≥ 1) are 
required.

The paper is organized as follows. In Section 2, we provide sufficient conditions on the structure of a 
strictly stationary sequence (Xn, n ≥ 1) ensuring that (1.1) still implies (1.2). In Section 3, we introduce 
concepts of the conditional left and right endpoints of the support of an rv given a sigma-field. We also 
present a brief exposition of basic properties of these concepts. Next in Section 4, we use the new notions 
to formulate and prove the main result of the paper. Namely we show that extreme and intermediate order 
statistics arising from any strictly stationary sequence of rv’s converge almost surely to some rv and we 
describe the distribution of the rv appearing in the limit. In Section 5, we give examples of application of 
the main result to some special cases of stationary processes.

Throughout the paper we use the following notation. Unless otherwise stated, the rv’s Xn, n ≥ 1, exist in 
a probability space (Ω, F , P). R, Z and N represent the sets of real numbers, integers and positive integers, 
respectively. For an rv X with cdf F we set

γX
0 := inf{x ∈ R : F (x) > 0} and γX

1 := sup{x ∈ R : F (x) < 1},

and we call γX
0 (γX

1 ) the left (right) endpoint of the support of X. We write I(·) for the indicator function, 
that is I(x ∈ A) = 1 if x ∈ A and I(x ∈ A) = 0 otherwise. By a.s.−−→ we denote almost sure convergence 
and a.s. stands for almost surely. Moreover, when in context different probability measures appear, to 
avoid confusion, we write P−a.s.−−−−→ and EP for almost sure convergence and expectation with respect to the 
measure P, respectively, and we say that an event A is true P-a.s. if P(A) = 1. Finally, an extended rv in 
(Ω, F , P) is a F-measurable function X : Ω → [−∞, ∞]. We assume the usual conventions about arithmetic 
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operations in [−∞, ∞]: if a ∈ R then a ±∞ = ±∞, a/ ±∞ = 0, a · ∞ = ∞ if a > 0 and a · ∞ = −∞ if 
a < 0, 0 · (±∞) = 0, ∞ + ∞ = ∞, −∞ −∞ = −∞.

2. Stationary and ergodic sequences

The aim of this section is to relax the iid assumption in Theorem 1.1. More precisely, we will show that 
the conclusion of this theorem will remain unchanged if the condition that (Xn, n ≥ 1) is an iid sequence is 
replaced by a weaker one that (Xn, n ≥ 1) forms a strictly stationary and ergodic process.

Theorem 2.1. Let X = (Xn; n ≥ 1) be a strictly stationary and ergodic sequence of rv’s with any cdf F and 
let (kn; n ≥ 1) be a sequence of integers satisfying (1.1). Then (1.2) holds.

Proof. We assume that λ = 0 since the case λ = 1 can be easily transformed to the former by considering 
(−Xn, n ≥ 1) instead of (Xn, n ≥ 1).

First note that, for all n ≥ 1, Xkn:n ≥ γX1
0 a.s. Therefore we are reduced to showing that 

lim supn→∞ Xkn:n ≤ γX1
0 a.s.

Define dm = −m if γX1
0 = −∞ and dm = γX1

0 + 1
m otherwise. Fix m ≥ 1. By the assumption that X is 

strictly stationary and ergodic, the sequence (I(Xn ≤ dm), n ≥ 1) is so as well. This is a simple consequence 
of Proposition 2.10 of Bradley [1]. The classic strong ergodic theorem (see, for example, Grimmet and 
Stirzaker ([10], Chapter 9.5)) gives, as n → ∞,

n∑
i=1

I(Xi ≤ dm)/n a.s.−−→ E(I(X1 ≤ dm)) = P(X1 ≤ dm) = F (dm) > 0. (2.1)

Since by assumption kn/n → 0, we get

∑n
i=1 I(Xi ≤ dm)

n
− kn

n

a.s.−−→ F (dm) > 0 as n → ∞

and therefore

P(Xkn:n ≤ dm for all large n) = P

( n∑
i=1

I(Xi ≤ dm) ≥ kn for all large n
)

= P

(∑n
i=1 I(Xi ≤ dm)

n
− kn

n
≥ 0 for all large n

)
= 1,

which means that lim supn→∞ Xkn:n ≤ dm a.s. Letting m → ∞ and using the countability of N yields 
lim supn→∞ Xkn:n ≤ γX1

0 . This completes the proof. �
It is worth emphasizing that Theorem 2.1 applies to all strictly stationary and ergodic sequences of rv’s – 

in particular no restriction is imposed on the cdf F of Xi. The class of strictly stationary and ergodic 
processes is very broad. It includes, for example, the family of linear processes, that is, processes defined by

Xn =
∞∑

i=−∞
aiεn−i, n ≥ 1,

where εk, k ∈ Z, are iid rv’s and ai, i ∈ Z, are real coefficients such that Xn exists almost surely. The 
family of linear processes covers, among others, all stationary autoregressive-moving average processes and 
all Gaussian processes with absolutely continuous spectrum.
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In the proof of Theorem 2.1 we needed ergodicity of X only to show that this implies that of the sequences 
(I(Xn ≤ dm), n ≥ 1), m ≥ 1. This observation leads to the following result.

Theorem 2.2. Theorem 2.1 is still true if we replace the assumption that X = (Xn; n ≥ 1) is ergodic by the 
condition that, for every x belonging to the support of X1,

∞∑
i=1

cx(i)/i < ∞, (2.2)

where cx(i) = P(X1 ≤ x, X1+i ≤ x) − P(X1 ≤ x)2, i ≥ 1, is the autocovariance function of the process 
(I(Xn ≤ x), n ≥ 1).

Proof. Dembińska [5] showed that (2.2) gives 
∑n

i=1 I(Xi ≤ x)/n a.s.−−→ F (x) as n → ∞. Thus we have (2.1). 
The rest of the proof runs as before. �

We have shown that the assumption that X is ergodic can be replaced by another one and the conclusion 
of Theorem 2.1 will remain unchanged. Yet, this assumption cannot be completely dropped as the following 
example shows.

Example 2.1. Let X be some non-degenerate rv and Xn = X for all n ≥ 1. Then the sequence (Xn, n ≥ 1)
is strictly stationary but

Xkn:n = X
a.s.−−→ X �= γX

0 .

We see that, if we assume only strictly stationarity of X, then the almost sure limit of Xkn:n need not 
be a constant – it can be a non-degenerate rv. The rest of the paper is devoted to the proof of almost sure 
existence of limn→∞ Xkn:n under the single assumption that X is strictly stationary and to the description 
of the distribution of the limiting rv.

3. Conditional left and right endpoints of the support

Tomkins [20] proposed a definition of conditional median. This definition has been extended to other 
quantiles as follows.

Definition 3.1. Suppose X is an rv on a probability space (Ω, F , P), G ⊆ F is a sigma-field and λ ∈ (0, 1). 
Then an rv Qλ with the following properties

(i) Qλ is G-measurable,
(ii) P(X ≥ Qλ|G) ≥ 1 − λ a.s. and P(X ≤ Qλ|G) ≥ λ a.s.

is called a conditional λth quantile of X with respect to G.

Using the concept of conditional quantile, Dembińska [6] described the distribution of the rv appearing as 
the almost sure limit of central order statistics from stationary processes. The aim of the present paper is to 
give a corresponding result for extreme and intermediate order statistics. To do this, we need an extension 
of the notion of conditional quantiles to the case of λ = 0 and λ = 1. This extension leads us to new concepts 
of conditional left and right endpoints of the support of an rv. Before we introduce these concepts, we first 
establish some properties that will guarantee the correctness of the proposed definitions.
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Lemma 3.1. Let G ⊆ F be a sigma-field. Suppose (Xn, n ≥ 1) and (Qn, n ≥ 1) are sequences of rv’s and 
extended rv’s from probability space (Ω, F , P), respectively, such that

(i) Qn is G-measurable and P(Xn ≥ Qn|G) = 1 a.s. for all n ≥ 1, and
(ii) there exist an rv X and an extended rv Q such that Xn

a.s.−−→ X and Qn
a.s.−−→ Q.

Then P(X ≥ Q|G) = 1 a.s.

Proof. Let Xn
a.s.−−→ X and Qn

a.s.−−→ Q. Then

I(X ≥ Q) ≥ lim sup
n→∞

I(Xn ≥ Qn) a.s., (3.1)

because otherwise there would exist a set Ω0 ⊆ Ω of positive probability such that

I(X(ω) ≥ Q(ω)) = 0 and lim sup
n→∞

I(Xn(ω) ≥ Qn(ω)) = 1 for ω ∈ Ω0. (3.2)

If so, for ω ∈ Ω0, we would have Xn(ω) ≥ Qn(ω) for infinitely many n. By assumption (ii) it would give 
X(ω) ≥ Q(ω) for almost all ω ∈ Ω0. Therefore, in this case, I(X(ω) ≥ Q(ω)) = 1 for almost all ω ∈ Ω0, 
which shows that (3.2) is impossible. Thus (3.1) is proved.

By (3.1) and Fatou’s Lemma for conditional expectation, we get

E(I(X ≥ Q)|G) ≥ E(lim sup
n→∞

I(Xn ≥ Qn)|G) ≥ lim sup
n→∞

E(I(Xn ≥ Qn)|G) a.s.

Hence

P(X ≥ Q|G) ≥ lim sup
n→∞

P(Xn ≥ Qn|G) = lim sup
n→∞

1 = 1 a.s.,

and the lemma follows. �
Theorem 3.1. For any rv X and any sigma-field G ⊆ F there exists an extended rv Q0 having the following 
properties

(i) Q0 is G-measurable,
(ii) P(X ≥ Q0|G) = 1 a.s.,
(iii) for any G-measurable extended rv Q0 such that P(X ≥ Q0|G) = 1 a.s., we have Q0 ≤ Q0 a.s.

Proof. By {Qt, t ∈ T} let us denote the set of all G-measurable extended rv’s Qt satisfying P(X ≥ Qt|G) = 1
a.s. Note that {Qt, t ∈ T} is non-empty since γX

0 belongs to this set.
Define Q0 to be the essential supremum of {Qt, t ∈ T}:

Q0 := ess sup
t∈T

Qt. (3.3)

It is known that ess supt∈T Qt exists and

ess sup
t∈T

Qt = sup
t∈C

Qt, (3.4)

where C is some countable subset of T ; see Chow, Robbins and Siegmund ([4], Chapter 1).
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We will show that Q0 given by (3.3) satisfies conditions (i)–(iii) of Theorem 3.1. Requirement (iii) is an 
immediate consequence of the definition of essential supremum so it suffices to prove (i) and (ii). To this 
end, let Qt and Qs be two extended rv’s belonging to the set {Qt, t ∈ T}. Then M := max(Qt, Qs) also 
belongs to {Qt, t ∈ T}. Indeed, it is obvious that M is G-measurable. Moreover

P(X ≥ max(Qt, Qs)|G) = P(X ≥ Qt|G) = 1 a.s.

on the event [Qt ≥ Qs] and

P(X ≥ max(Qt, Qs)|G) = P(X ≥ Qs|G) = 1 a.s.

on the event [Qs > Qt]. Therefore P(X ≥ max(Qt, Qs)|G) = 1 a.s. Now let Rn = maxk≤n Qtk , n ≥ 1, 
where {t1, t2, . . .} = C and C is a countable subset of T satisfying (3.4). By induction, for any n ≥ 1, Rn is 
G-measurable and P(X ≥ Rn|G) = 1 a.s. Moreover Rn ↑ Q0 a.s. Hence Lemma 3.1 gives P(X ≥ Q0|G) = 1
a.s. Relation (3.4) makes it obvious that Q0 is G-measurable and the proof is complete. �
Definition 3.2. Suppose X is an rv and G is a sigma-field with G ⊆ F . Then the extended rv Q0 from 
Theorem 3.1 is called a conditional left endpoint of the support of rv X with respect to G and will be 
denoted by γ0(X|G).

Note that γ0(X|G) is not necessarily uniquely determined but any two versions of γ0(X|G) agree a.s. 
A version of γ0(X|G) can be also viewed as a conditional quantile of order λ = 0 of the rv X with respect 
to G.

A conditional right endpoint of the support, which can be viewed as a conditional quantile of order λ = 1, 
is defined in an analogous way.

Definition 3.3. Suppose X is an rv and G is a sigma-field with G ⊆ F . The conditional right endpoint of the 
support of X given G, denoted by γ1(X|G), is defined as an extended rv Q1 with the following properties

(i) Q1 is G-measurable,
(ii) P(X ≤ Q1|G) = 1 a.s.,
(iii) for any G-measurable extended rv Q1 such that P(X ≤ Q1|G) = 1 a.s., we have Q1 ≥ Q1 a.s.

Replacing X by −X in Theorem 3.1, we immediately obtain that for any rv X and any sigma-field 
G ⊆ F there exists an extended rv Q1 satisfying conditions (i)–(iii) of the above definition. Moreover this 
rv is almost surely unique. It is also clear that for any rv X and any sigma-field G ⊆ F we have

γ1(X|G) = −γ0(−X|G). (3.5)

Relation (3.5) allows us to rewrite properties of conditional left endpoints of supports as that of conditional 
right endpoints of supports. Therefore in what follows we restrict our attention to properties of γ0(X|G).

Theorem 3.2. Let X and Y be rv’s and G ⊆ F be a sigma-field. If Y is G-measurable, then

(i) γ0(Y |G) = Y a.s.,
(ii) γ0(X + Y |G) = γ0(X|G) + Y a.s.,
(iii) γ0(XY |G) = Y γ0(X|G) a.s. provided that Y ≥ 0 a.s. or γ0(X|G) = X a.s.
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Proof. To prove (i), let Q0 be any G-measurable extended rv satisfying P(Y ≥ Q0|G) = 1 a.s. Since 
P(Y ≥ Q0|G) = I(Y ≥ Q0), it follows that I(Y ≥ Q0) = 1 a.s. and hence that Y ≥ Q0 a.s. Therefore 
γ0(Y |G) = Y a.s. by the definition of conditional left endpoint of support.

For (ii) observe that γ0(X|G) + Y is G-measurable and

P(X + Y ≥ γ0(X|G) + Y |G) = P(X ≥ γ0(X|G)|G) = 1 a.s.

Next, let Q0 be any G-measurable extended rv satisfying P(X+Y ≥ Q0|G) = 1 a.s. Then P(X ≥ Q0−Y |G) =
1 a.s. and since Q0 −Y is G-measurable, by the definition of γ0(X|G), we get Q0 −Y ≤ γ0(X|G) a.s., which 
means that Q0 ≤ γ0(X|G) + Y a.s. Thus γ0(X|G) + Y is indeed a version of γ0(X + Y |G).

To prove (iii) note that, on the event [Y = 0],

P(XY ≥ Y γ0(X|G)|G) = P(0 ≥ 0) = 1 a.s.,

on the event [Y > 0],

P(XY ≥ Y γ0(X|G)|G) = P(X ≥ γ0(X|G)|G) = 1 a.s.

and on the event [Y < 0],

P(XY ≥ Y γ0(X|G)|G) = P(X ≤ γ0(X|G)|G)

= 1 − P(X ≥ γ0(X|G)|G) + P(X = γ0(X|G)|G) = P(X = γ0(X|G)|G) a.s.

It follows that if γ0(X|G) = X a.s. or Y ≥ 0 a.s. then

P(XY ≥ Y γ0(X|G)|G) = 1 a.s.

Now, suppose Q0 is any G-measurable extended rv such that P(XY ≥ Q0|G) = 1 a.s. Then Q0 ≤ Y γ0(X|G)
a.s. provided that Y ≥ 0 a.s. or γ0(X|G) = X a.s. Indeed, on the event [Y > 0],

P(X ≥ Q0/Y |G) = 1 a.s.,

which, by the G-measurability of Q0/Y and the definition of γ0(X|G), shows that Q0/Y ≤ γ0(X|G) a.s. and 
hence that Q0 ≤ Y γ0(X|G) a.s. Next, on the event [Y = 0] we have 1 = P(0 ≥ Q0|G) = I(Q0 ≥ 0) a.s., 
which gives Q0 ≥ 0 = Y γ0(X|G) a.s. Finally, if X = γ0(X|G) a.s. then we get

P(γ0(X|G)Y ≥ Q0|G) = 1 a.s.

and the G-measurability of γ0(X|G)Y and Q0 implies

I(γ0(X|G)Y ≥ Q0) = 1 a.s.

Thus again Y γ0(X|G) ≥ Q0 a.s. as claimed. �
Theorem 3.3. Let a ∈ R, X and Y be rv’s and G ⊆ F be a sigma-field. Then

(i) γ0(a|G) = a a.s.,
(ii) γ0(aX|G) = aγ0(X|G) a.s. provided that a ≥ 0,
(iii) X ≥ Y a.s. implies γ0(X|G) ≥ γ0(Y |G) a.s.,
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(iv) X ≥ a a.s. implies γ0(X|G) ≥ a a.s.,
(v) if X is independent of G, then γ0(X|G) = γ0(X|G0) = γX

0 a.s., where G0 = {∅, Ω}, the trivial sigma-
field.

Proof. Properties (i) and (ii) follow from Theorem 3.2 (i) and (iii), respectively, by taking Y = a.
To prove (iii) note that, by the definition of γ0(Y |G), we have P(Y ≥ γ0(Y |G)|G) = 1 a.s. By assumption, 

X ≥ Y a.s. This gives P(X ≥ γ0(Y |G)|G) = 1 a.s. Hence γ0(Y |G) belongs to the family {Qt, t ∈ T} of 
G-measurable extended rv’s Qt such that P(X ≥ Qt|G) = 1 a.s. and consequently

γ0(Y |G) ≤ ess sup
t∈T

Qt = γ0(X|G) a.s.

Property (iv) is a direct consequence of (i) and (iii).
For (v) observe that (iv) together with the fact that X ≥ γX

0 imply γ0(X|G) ≥ γX
0 a.s. Therefore the 

proof is completed by showing that

γ0(X|G) ≤ γX
0 a.s. (3.6)

To see this, suppose, contrary to our claim, that (3.6) is not satisfied. Define G = {ω : γ0(X|G)(ω) > γX
0 }. 

If (3.6) is not true then P(G) > 0. Next, let Gn = {ω : γ0(X|G)(ω) > γX
0 + 1

n}, n ≥ 1. Since G =
⋃∞

n=1 Gn

and Gn+1 ⊇ Gn, we have P(G) = limn→∞ P(Gn). The independence of X and G gives

lim
n→∞

P(γ0(X|G) > γX
0 + 1

n |X ≤ γX
0 + 1

n )

= lim
n→∞

P(γ0(X|G) > γX
0 + 1

n ) = lim
n→∞

P(Gn) = P(G) > 0. (3.7)

On the other hand, for any n ≥ 1,

P(γ0(X|G) > γX
0 + 1

n |X ≤ γX
0 + 1

n ) ≤ P(γX
0 + 1

n > γX
0 + 1

n |X ≤ γX
0 + 1

n ) = 0,

because from X ≤ γX
0 + 1

n and (iii) we get γ0(X|G) ≤ γX
0 + 1

n , by (i). This clearly forces

lim
n→∞

P(γ0(X|G) > γX
0 + 1

n |X ≤ γX
0 + 1

n ) = 0,

contrary to (3.7). �
Theorem 3.4. Let X be an rv and G ⊆ F be a sigma-field. If γ0(X|G) is almost surely constant, then 
γ0(X|G) = γX

0 a.s.

Proof. By assumption, γ0(X|G) = c a.s. for some c ∈ [−∞, ∞). By the definition of γ0(X|G),

P(X ≥ c + δ) = P(X ≥ γ0(X|G) + δ) = E(P(X ≥ γ0(X|G) + δ|G))

=
{

E(1) = 1 if δ = 0,
E(Pδ) = pδ if δ > 0,

where the rv Pδ ∈ [0, 1] is such that Pδ < 1 with positive probability, which implies pδ ∈ [0, 1). Hence

γX
0 = inf{x ∈ R : P(X ≥ x) < 1} = c,

which proves the theorem. �
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Theorem 3.5. Let G be a sigma-field with G ⊆ F and X, X1, X2, . . . be rv’s. If Xn ↓ X a.s., then

γ0(Xn|G) a.s.−−→ γ0(X|G) (3.8)

Proof. First note that, since by assumption

Xn+1 ≤ Xn a.s. for all n ≥ 1,

Theorem 3.3 (iii) gives

γ0(Xn+1|G) ≤ γ0(Xn|G) a.s. for all n ≥ 1.

This means that the sequence (γ0(Xn|G), n ≥ 1) is nonincreasing a.s., which implies

lim
n→∞

γ0(Xn|G) exists (possibly infinite) a.s. (3.9)

Moreover, the G-measurability of γ0(Xn|G), n ≥ 1, shows that

Ω0 = {ω ∈ Ω: lim
n→∞

γ0(Xn|G) exists (possibly infinite)} ∈ G,

and by (3.9) we have

P(Ω0) = 1. (3.10)

Let Q0 = limn→∞ γ0(Xn|G) · I(Ω0). We will prove that Q0 is a version of γ0(X|G) and hence (3.8) holds, 
by (3.10). First note that Q0 is G-measurable as a limit of G-measurable extended rv’s γ0(Xn|G) · I(Ω0), 
n ≥ 1. Next, by Lemma 3.1, P(X ≥ Q0|G) = 1 a.s. Therefore it remains to show that if Q0 is a G-measurable 
extended rv such that P(X ≥ Q0|G) = 1 a.s., then Q0 ≤ Q0 a.s. To do this, observe that by assumption

Xn ≥ X a.s. for all n ≥ 1,

which, by the monotonicity property of conditional expectations, gives

1 = P(X ≥ Q0|G) ≤ P(Xn ≥ Q0|G) a.s.

This clearly forces P(Xn ≥ Q0|G) = 1 a.s. We conclude from the definition of γ0(Xn|G) that Q0 ≤ γ0(Xn|G)
a.s. for all n ≥ 1, hence that Q0 ≤ limn→∞ γ0(Xn|G) a.s. and finally that Q0 ≤ Q0 a.s. The proof is 
complete. �

It is worth pointing out that in Theorem 3.5 the assumption that Xn ↓ X a.s. cannot be replaced by 
Xn ↑ X, even if we additionally require that X is bounded. This is shown in the following example.

Example 3.1. Let (Ω, F , P) = ([0, 1], B([0, 1]), Leb), where B([0, 1]) denotes the Borel sigma-field of subsets 
of [0, 1] and Leb stands for Lebesgue measure. On this probability space define Xn = I([ 1

n , 1]), n ≥ 1, and 
X = 1. Then Xn ↑ X a.s. and X is bounded but, by Theorem 3.3 (v),

γ0(Xn|G0) = 0 → 0 �= γ0(X|G0) = 1 a.s.

with G0 = {∅, [0, 1]}.
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4. The strong ergodic theorem

The aim of this section is to provide a complete generalization of Theorem 2.1 by quiting the ergodicity 
assumption. To state and prove this result we need not only the new concepts of conditional left and right 
endpoints of a support but also some terminology and facts from the ergodic theory.

By (RN, B(RN), Q) we denote a probability triple, where RN is the set of sequences of real numbers 
(x1, x2, . . .), B(RN) stands for the Borel sigma-field of subsets of RN and Q is a stationary probability 
measure on the pair (RN, B(RN)).

A set B ∈ B(RN) is called

• invariant if B = T−1B,
• almost invariant for Q if

Q((B \ T−1B) ∪ (T−1B \B)) = 0,

where

T−1B = {(x1, x2, . . .) ∈ RN : (x2, x3, . . .) ∈ B}. (4.1)

The class of all invariant events is denoted by Ĩ, while the class of all almost invariant events for Q is denoted 
by IQ. The following properties of IQ and Ĩ are well known; see, for example, Durrett ([7], Chapter 6) and 
Shiryaev ([17], Chapter V).

Lemma 4.1.

(i) Ĩ and IQ are sigma-fields.
(ii) An rv X on (RN, B(RN), Q) is Ĩ-measurable (or IQ-measurable) iff

X((x1, x2, . . .)) = X((x2, x3, . . .)) for all (x1, x2, . . .) ∈ RN

(or X((x1, x2, . . .)) = X((x2, x3, . . .)) for Q-almost every (x1, x2, . . .) ∈ RN).

(iii) If B is almost invariant, there exists an invariant set C such that

Q((B \ C) ∪ (C \B)) = 0.

Now we are ready to formulate and prove the first version of the strong ergodic theorem for extreme and 
intermediate order statistics.

Theorem 4.1. Let Y be an rv on a probability space (RN, B(RN), Q), where the probability measure Q is 
stationary. Suppose that the sequence of rv’s (Yn, n ≥ 1) is defined by

Yi((x1, x2, . . .)) = Y ((xi, xi+1, . . .)) for (x1, x2, . . .) ∈ RN and i ≥ 1. (4.2)

If (kn, n ≥ 1) is a sequence of integers satisfying (1.1) then

Ykn:n
Q−a.s.−−−−−→ γ0(Y |IQ) (γ1(Y |IQ)) according as λ = 0 (λ = 1). (4.3)
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Proof. We may assume that λ = 0, because the case λ = 1 is an immediate consequence of the former. If 
we prove that

lim sup
n→∞

Ykn:n ≤ γ0(Y |IQ) a.s. (4.4)

and

lim inf
n→∞

Ykn:n ≥ γ0(Y |IQ) a.s., (4.5)

the assertion follows. Let us first show (4.4). For m ≥ 1, define rv’s Dm by

Dm((x1, x2, . . .)) =
{

−m if γ0(Y |IQ)((x1, x2, . . .)) = −∞,

γ0(Y |IQ)((x1, x2, . . .)) + 1
m otherwise.

Then Dm is IQ-measurable, which by part (ii) of Lemma 4.1 gives

Dm((xi, xi+1, . . .)) (4.6)

= Dm((x1, x2, . . .)) for any i ≥ 1 and Q-almost every (x1, x2, . . .) ∈ RN.

Fix m ≥ 1. As in the proof of Theorem 2.1 we get

Q(Ykn:n ≤ Dm for all large n) = Q

(∑n
i=1 I(Yi ≤ Dm)

n
− kn

n
≥ 0 for all large n

)
. (4.7)

Set Z = I(Y ≤ Dm) and

Zi((x1, x2, . . .)) = Z((xi, xi+1, . . .)) for (x1, x2, . . .) ∈ RN and i ≥ 1.

Then, for Q-almost every (x1, x2, . . .) ∈ RN,

Zi((x1, x2, . . .)) = Z((xi, xi+1, . . .)) = I(Y ≤ Dm)((xi, xi+1, . . .))

= I(Y ((xi, xi+1, . . .)) ≤ Dm((xi, xi+1, . . .)))

= I(Yi((x1, x2, . . .)) ≤ Dm((x1, x2, . . .))), (4.8)

where the last equality is a consequence of (4.6).
Since Z is an rv on (RN, B(RN), Q) and EQ(|Z|) < 1, the classic strong ergodic theorem (see, for example, 

Durrett [7], p. 333) gives

1
n

n∑
i=1

Zi
Q−a.s.−−−−−→ EQ(Z|IQ), (4.9)

which by (4.8) means that

1
n

n∑
i=1

I(Yi ≤ Dm) Q−a.s.−−−−−→ EQ(I(Y ≤ Dm)|IQ) = Q(Y ≤ Dm|IQ). (4.10)

We claim that

Q(Y ≤ Dm|IQ)((x1, x2, . . .)) > 0 for Q-almost every (x1, x2, . . .) ∈ RN. (4.11)
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To prove this, suppose, contrary to our claim, that Q(G) > 0, where

G := {(x1, x2, . . .) ∈ RN : Q(Y ≤ Dm|IQ)((x1, x2, . . .)) = 0}.

Let

G1 = G ∩ {(x1, x2, . . .) ∈ RN : γ0(Y |IQ)((x1, x2, . . .)) = −∞}

and

G2 = G ∩ {(x1, x2, . . .) ∈ RN : γ0(Y |IQ)((x1, x2, . . .)) > −∞}.

Then Q(G1) > 0 or Q(G2) > 0. On G1 we have

0 = Q(Y ≤ Dm|IQ) = Q(Y ≤ −m|IQ) a.s.,

which implies

Q(Y ≥ −m|IQ) = 1 a.s. on G1. (4.12)

Similarly on G2

0 = Q(Y ≤ Dm|IQ) = Q(Y ≤ γ0(Y |IQ) + 1
m |IQ) a.s.,

and consequently

Q(Y ≥ γ0(Y |IQ) + 1
m |IQ) = 1 a.s. on G2. (4.13)

If Q(G1) > 0, defining Q1((x1, x2, . . .)) = −m for (x1, x2, . . .) ∈ G1 and Q1((x1, x2, . . .)) = γ0(Y |IQ)((x1, x2,

. . .)) otherwise, we would get that the following three conditions were satisfied.

1. Q1 is IQ-measurable.
2. Q(Y ≥ Q1|IQ) = 1 a.s. by (4.12) and the definition of γ0(Y |IQ).
3. It is not true that Q1 ≤ γ0(Y |IQ) a.s. since Q1 > γ0(Y |IQ) on G1.

This contradicts the definition of γ0(Y |IQ).
If in turn Q(G2) > 0, we take

Q2((x1, x2, . . .)) =
{

γ0(Y |IQ)((x1, x2, . . .)) + 1
m if (x1, x2, . . .) ∈ G2,

γ0(Y |IQ)((x1, x2, . . .)) otherwise.

Using similar reasoning to the above, we would again contradict the definition of γ0(Y |IQ).
Thus (4.11) is proved. Combining (4.10) with (4.11) we see that, as n → ∞,

1
n

n∑
i=1

I(Yi ≤ Dm) − kn
n

→ Q(Y ≤ Dm|IQ) > 0 Q-a.s.,

which by (4.7) leads to

Q(Ykn:n ≤ Dm for all large n) = 1.
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This clearly forces

lim sup
n→∞

Ykn:n ≤ Dm Q-a.s.

Since m ≥ 1 was taken to be arbitrary, letting m → ∞ and using the countability of the set of positive 
integers, we get

lim sup
n→∞

Ykn:n ≤ γ0(Y |IQ) Q-a.s.,

which establishes (4.4).
It remains to prove (4.5). For this purpose, observe that

1 = EQ(Q(Y ≥ γ0(Y |IQ)|IQ)) = Q(Y ≥ γ0(Y |IQ)),

where the first equality is a consequence of the definition of γ0(Y |IQ). This gives

Yi ≥ γ0(Y |IQ) Q-a.s. for each i ≥ 1. (4.14)

Indeed, we have, for any i ≥ 1,

Q(Yi ≥ γ0(Y |IQ))

= Q({(x1, x2, . . .) : Yi((x1, x2, . . .)) ≥ γ0(Y |IQ)((x1, x2, . . .))})
= Q({(x1, x2, . . .) : Y ((xi, xi+1, . . .)) ≥ γ0(Y |IQ)((xi, xi+1, . . .))})
= Q(T−(i−1)({(x1, x2, . . .) : Y ((x1, x2, . . .)) ≥ γ0(Y |IQ)((x1, x2, . . .))}))
= Q({(x1, x2, . . .) : Y ((x1, x2, . . .)) ≥ γ0(Y |IQ)((x1, x2, . . .))})
= Q(Y ≥ γ0(Y |IQ)) = 1 a.s.,

where the transformation T−1 is defined in (4.1) and the fourth equality follows from the stationarity of 
the measure Q. Note that (4.14) implies, for all n ≥ 1,

Ykn:n ≥ γ0(Y |IQ) Q-a.s.,

which gives (4.5). The proof is complete. �
Remark 4.1. Since (4.9) is still true if we replace IQ by Ĩ (see, for example, Grimmet and Stirzaker [10], 
Chapter 9), and we have a version of Lemma 4.1 (ii) for Ĩ-measurable rv’s, the conclusion of Theorem 4.1
can as well have the following form

Ykn:n
Q−a.s.−−−−−→ γ0(Y |Ĩ) (γ1(Y |Ĩ)) according as λ = 0 (λ = 1). (4.15)

Theorem 4.1 deals with the almost sure limit of extreme and intermediate order statistics arising from 
the specific random sequence (Yn, n ≥ 1) defined on a probability space (RN, B(RN), Q) by (4.2).

Our goal now is to reformulate this result in terms of any strictly stationary sequence of rv’s (Xn, n ≥ 1)
existing in any probability space (Ω, F , P). To do this, for arbitrary such a sequence X = (Xn; n ≥ 1) we 
define a stationary measure Q on the pair (RN, B(RN)) by

Q(A) = P(X ∈ A) for all A ∈ B(RN). (4.16)
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Next, on the triple (RN, B(RN), Q) we introduce an rv Y : RN → R by

Y ((x1, x2, . . .)) = x1 for (x1, x2, . . .) ∈ RN (4.17)

and a sequence of rv’s Y = (Yn, n ≥ 1) by

Yi((x1, x2, . . .)) = xi for (x1, x2, . . .) ∈ RN, i ≥ 1. (4.18)

Then (4.2) holds and Theorem 4.1 shows that, for any sequence of integers satisfying (1.1), (4.3) is true. 
Since X and Y have the same distributions, the Q-almost sure convergence of the sequence (Ykn:n, n ≥ 1)
to γ0(Y |IQ) (γ1(Y |IQ)) entails the P-almost sure convergence of (Xkn:n, n ≥ 1) to an rv W such that 
W

d= γ0(Y |IQ) (γ1(Y |IQ)). To describe the structure of W , we need some more facts from the ergodic 
theory.

Recall that a set A ∈ F is called invariant with respect to the sequence X = (Xn, n ≥ 1) defined on the 
probability space (Ω, F , P) if there exists a set B ∈ B(RN) such that

A = {ω ∈ Ω : (Xi(ω), Xi+1(ω), . . .) ∈ B} for any i ≥ 1. (4.19)

The collection of all such invariant sets is denoted by IX.

Lemma 4.2. Let X = (Xn, n ≥ 1) be a strictly stationary sequence on (Ω, F , P).

(i) IX is a sigma-field.
(ii) A set A ∈ F is invariant with respect to X if and only if there exists a set B ∈ IQ satisfying (4.19).
(iii) If an rv X on (Ω, F , P) is IX-measurable then there exists an IQ-measurable rv Q on (RN, B(RN), Q)

such that X = Q((X1, X2, . . .)).

Proof. Part (i) is known; see, for example, Shiryaev ([17], Chapter V).
To show part (ii), note that if B ∈ B(RN) satisfies (4.19) then

{ω ∈ Ω : (X1(ω), X2(ω), . . .) ∈ B} = {ω ∈ Ω : (X2(ω), X3(ω), . . .) ∈ B}. (4.20)

From (4.16)

Q((B \ T−1B) ∪ (T−1B \B))

= P({ω : (X1(ω), X2(ω), . . .) ∈ B and (X2(ω), X3(ω), . . .) /∈ B})

+ P({ω : (X2(ω), X3(ω), . . .) ∈ B and (X1(ω), X2(ω), . . .) /∈ B})

= 2P(∅) = 0,

by (4.20). This means that B ∈ IQ.
To prove part (iii), one can use the Monotone-Class Theorem and part (iii) of Lemma 4.2, repeating 

reasoning given in Williams ([24], Chapter A3). �
The following theorem asserts that the rv W such that W = limn→∞ Xkn:n P-a.s. can be taken equal 

to γ0(X1|IX) (γ1(X1|IX)).
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Theorem 4.2. Let X = (Xn, n ≥ 1) be a strictly stationary sequence and (kn, n ≥ 1) be a sequence of integers 
satisfying (1.1). Then

Xkn:n
P−a.s.−−−−→ γ0(X1|IX) (γ1(X1|IX)) according as λ = 0 (λ = 1).

Proof. As in the proof of Theorem 4.1, we can restrict ourselves to the case λ = 0. From the previous 
discussion, we already know that limn→∞ Xkn:n exists P-a.s. (possibly infinite). For definiteness on the 
set (of probability P zero) of ω ∈ Ω such that limn→∞ Xkn:n(ω) does not exist, let us set, for example, 
limn→∞ Xkn:n(ω) = −∞. The proof is completed by showing that the following three conditions hold.

1. limn→∞ Xkn:n is IX-measurable.
2. P(X1 ≥ limn→∞ Xkn:n|IX) = 1 P-a.s.
3. If W̃ is an IX-measurable rv such that

P(X1 ≥ W̃ |IX) = 1 P-a.s. (4.21)

then W̃ ≤ limn→∞ Xkn:n P-a.s.
Condition 1 means that, for all A ∈ B(R),

{ω ∈ Ω : lim
n→∞

Xkn:n(ω) ∈ A} ∈ IX,

which, by the definition of IX, is equivalent to the following requirement:

for all A ∈ B(R) there exists B ∈ B(RN) such that for all n ≥ 1

{ω ∈ Ω : lim
n→∞

Xkn:n(ω) ∈ A} = {ω ∈ Ω : (Xn(ω), Xn+1(ω), . . .) ∈ B}.

One can take B = {(x1, x2, . . .) ∈ RN : limn→∞ xkn:n ∈ A}, where limn→∞ xkn:n is defined to equal 
−∞ if this limit does not exist. Indeed, by (4.15), B ∈ Ĩ, which ensures that B ∈ B(RN) and {ω ∈ Ω :
(X1(ω), X2(ω), . . .) ∈ B} = {ω ∈ Ω : (Xn(ω), Xn+1(ω), . . .) ∈ B} for all n ≥ 1.

Showing condition 2 amounts to proving that

EP(I(X1 ≥ lim
n→∞

Xkn:n)I(A)) = EP(1 · I(A)) for all A ∈ IX.

This is equivalent to

P({ω ∈ Ω: X1(ω) ≥ lim
n→∞

Xkn:n(ω)} ∩A) = P(A) for all A ∈ IX. (4.22)

By part (ii) of Lemma 4.2, for any A ∈ IX there exists B ∈ IQ such that (4.19) holds. Therefore to 
prove (4.22) it suffices to show that

Q({(x1, x2, . . .) ∈ RN : x1 ≥ lim
n→∞

xkn:n} ∩B) = Q(B) for all B ∈ IQ. (4.23)

To see this, note that by (4.3),

EQ(I(Y ≥ lim
n→∞

Ykn:n)I(B)) = EQ(1 · I(B)) for all B ∈ IQ,

which is equivalent to (4.23). The proof of condition 2 is completed.
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For condition 3, assume that (4.21) holds for some IX-measurable rv W̃ . Then, by part (iii) of Lemma 4.2, 
there exists an IQ-measurable rv Q such that W̃ = Q((X1, X2, . . .)). Hence (4.21) can be rewritten as

P({ω ∈ Ω: X1(ω) ≥ Q((X1(ω), X2(ω), . . .))} ∩A) = P(A) for all A ∈ IX,

which implies

Q({(x1, x2, . . .) ∈ RN : x1 ≥ Q((x1, x2, . . .))} ∩B) = Q(B) for all B ∈ Ĩ,

because for any B ∈ Ĩ, A = {ω ∈ Ω: (X1(ω), X2(ω), . . .) ∈ B} ∈ IX. By part (iii) of Lemma 4.1, we also 
have

Q({(x1, x2, . . .) ∈ RN : x1 ≥ Q((x1, x2, . . .))} ∩B) = Q(B) for all B ∈ IQ,

which is equivalent to

Q({Y ≥ Q} ∩B) = Q(B) for all B ∈ IQ,

that is, to

Q(Y ≥ Q|IQ) = 1 Q-a.s.

Since Q is IQ-measurable, by the definition of γ0(Y |IQ), we get

Q ≤ γ0(Y |IQ) Q-a.s.

Theorem 4.1 implies that

Q(Q ≤ lim
n→∞

Ykn:n) = 1

and hence that

P(ω ∈ Ω: Q((X1(ω), X2(ω), . . .)) ≤ lim
n→∞

Xkn:n(ω)) = 1,

which is the desired conclusion. �
5. Examples

We will apply results of previous sections to some families of strictly stationary sequences of rv’s. In 
particular, we will show that Example 2.1 and Theorem 2.1 are special cases of Theorem 4.2.

5.1. Sequences of identical rv’s

Let Xn = X for all n ≥ 1, where X is some rv. Then X = (Xn, n ≥ 1) is strictly stationary and

IX = σ(X). (5.1)

By (5.1) Theorems 4.2 and 3.2 (i) immediately give

Xkn:n
P-a.s.−−−→ γ0(X1|IX) = γ0(X|σ(X)) = X (γ1(X1|IX) = X)



398 A. Buraczyńska, A. Dembińska / J. Math. Anal. Appl. 460 (2018) 382–399
according as λ = 0 (λ = 1) for any sequence (kn, n ≥ 1) of integers satisfying (1.1). Note that the above 
conclusion agrees with that of Example 2.1.

5.2. Strictly stationary and ergodic processes

Let X = (Xn, n ≥ 1) be a strictly stationary and ergodic sequence of rv’s. Ergodicity means that the 
measure of any set A ∈ IX is either 0 or 1; see, for example, Shiryaev ([17], p. 413). Consequently any 
IX-measurable extended rv is P-almost surely constant. In particular γ0(X1|IX) is P-almost surely constant 
as an IX-measurable extended rv. Hence by Theorem 3.4 we have γ0(X1|IX) = γX1

0 P-a.s. Using the same 
arguments we show that also γ1(X1|IX) = γX1

1 P-a.s. Now Theorem 4.2 gives, for any sequence (kn, n ≥ 1)
of positive integers satisfying (1.1),

Xkn:n → γ0(X1|IX) = γX1
0 (γ1(X1|IX) = γX1

1 ) P-a.s.

according as λ = 0 (λ = 1). Thus we have deduced Theorem 2.1 as a special case of Theorem 4.2.

5.3. Random shift and scaling of strictly stationary and ergodic processes

Using results of Sections 5.1 and 5.2 we can describe the almost sure limiting behavior of extreme and 
intermediate order statistics corresponding to the following sequences of rv’s:

Rn = (Rn, n ≥ 1), Sn = (Sn, n ≥ 1),

where Rn = Xn +U , Sn = V ·Xn, n ≥ 1, (Xn, n ≥ 1) is a strictly stationary and ergodic process, U is an rv 
and V is a non-negative rv. Indeed, for every 1 ≤ k ≤ n, Rk:n = Xk:n + U and Sk:n = V ·Xk:n. Therefore, 
for any sequence (kn, n ≥ 1) of positive integers satisfying (1.1), we get, as n → ∞,

Rkn:n = Xkn:n + U
P−a.s.−−−−→ γX1

0 + U (γX1
1 + U)

and

Skn:n = V ·Xkn:n
P−a.s.−−−−→ V · γX1

0 (V · γX1
1 ),

according as λ = 0 (λ = 1).
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