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By constructing new sub- and super-solutions, we are concerned with determining 
values of β, for which there exist k-convex solutions to the boundary blow-up 
k-Hessian problem

Sk(D2u(x)) = H(x)[u(x)]k[lnu(x)]β > 0 for x ∈ Ω, u(x) → +∞

as dist(x, ∂Ω) → 0.

Here k ∈ {1, 2, · · · , N}, Sk(D2u) is the k-Hessian operator, β > 0 and Ω is a smooth, 
bounded, strictly convex domain in RN (N ≥ 2). We suppose that the nonlinearity 
behaves like uk lnβ u as u → ∞, which is more complex and difficult to deal with 
than the nonlinearity grows like up with p > k or faster at infinity. Further, several 
new results of nonexistence, global estimates and estimates near the boundary for 
the solutions are also given.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

We consider the boundary blow-up problem for the k-Hessian equation

Sk(D2u(x)) = H(x)[u(x)]k[ln u(x)]β > 0 in Ω, u = +∞ on ∂Ω, (1.1)

where β > 0, Ω is a smooth, bounded, strictly convex domain in RN(N ≥ 2), and H(x) is smooth positive 
function on Ω. The boundary blow-up condition u = +∞ on ∂Ω means

u(x) → +∞ as dist(x, ∂Ω) → 0.
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Sk(D2u)(k ∈ {1, 2, . . . , N}) denotes the kth elementary symmetric function of the eigenvalues of D2u, the 
Hessian of u, i.e.

Sk(D2u) = Sk(λ1, λ2 . . . , λN ) =
∑

1≤i1<···<ik≤N

λi1 . . . λik ,

where λ1, λ2 . . . , λN are the eigenvalues of D2u. For k = 1, i.e.

S1(D2u) =
N∑
i=1

λi = Δu

is the well known classical Laplace operator; for K = N , i.e.

SN (D2u) =
N∏
i=1

λi = det(D2u)

is the Monge–Ampère operator. A great interest has been shown by many authors in the subject of Laplace 
problems and Monge–Ampère problems, and many excellent results for Laplace problems and Monge–
Ampère problems have been obtained, for instance, see ([3,30,31,37,21,32–34,50,49,52,35,38,42]) and the 
references cited therein. In contrast to numerous results on the case k = 1 or k = N less is known about 
the situation k ∈ {2, . . . , N − 1}. Only in recent years there is a good number of investigations k-Hessian 
equations (see by instance [51,8,15,27,39,20,14,41,28,29,53,16,40,47,45,46]).

For k ∈ {1, 2, . . . , N}, let Γk be the component of {λ ∈ RN : Sk(λ) > 0} ⊂ RN containing the positive 
cone

Γ+ = {λ ∈ RN : λi > 0, i = 1, 2, . . . , N}.

It follows from [8] that

Γ+ = ΓN ⊂ · · · ⊂ Γk+1 ⊂ Γk ⊂ · · ·Γ1.

Definition 1.1. (See [39]) Let k ∈ {1, 2, . . . , N}, and let Ω be an open bounded subset of RN ; a function 
u ∈ C2(Ω) is k-convex if (λ1, λ2, . . . , λN ) ∈ Γ̄k for every x ∈ Ω, where λ1, λ2, . . . , λN are the eigenvalues of 
D2u. Equivalently, we can say that u is k-convex if Si(D2u) ≥ 0 in Ω for i = 1, . . . , k.

Definition 1.2. (See [39]) Let Ω ⊂ RN be an open set with boundary of class C2 and let k ∈ {1, . . . , N − 1}; 
we say that Ω is strictly convex if Si(κ1(x), . . . , κN−1(x)) > 0, for i = 1, . . . , N − 1 and for every x ∈ ∂Ω, 
where κi(x), i = 1, . . . , N − 1, are the principal curvatures of ∂Ω at x.

It is generally accepted that the concept of k-convexity arises naturally from the involved operator Sk. 
In fact, when Ω is strictly (k − 1)-convex and H ∈ C∞(Ω̄), Sk(D2u) changes into elliptic in the class of 
k-convex functions and the related Dirichlet problem

{
Sk(D2u) = H(x) > 0 in Ω,

u|∂Ω = φ ∈ C(∂Ω)
(1.2)

admits a unique k-convex solution. Moreover the (k−1)-convexity of the domain is necessary if φ is constant 
(see [8]).
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At the same time, we notice that the subject of blow-up solutions has received much attention starting 
with the pioneering work of Bieberbach [4]. It was about the following model involving the classical Laplace 
operator {

Δu = H(x)f(u) in Ω,

u = +∞ on ∂Ω
(1.3)

with H(x) ≡ 1 in Ω, f(u) = eu and N = 2. If f(u) = up, H(x) is growing like a negative power of 
d(x) near ∂Ω, the radial case was completely discussed in [12], the general case was discussed when p > 1
in [11], the authors obtained existence, nonexistence, uniqueness, multiplicity and estimates for all positive 
solutions. When f may exhibit non monotone behaviour, in [17], Dumont, Dupaigne, Goubet, and Radulescu 
studied the existence, asymptotic behaviour, uniqueness and numerical approximation of solutions of (1.3). 
An overview of the asymptotic behaviour of solutions of elliptic problems can be found in Ghergu and 
Radulescu [19].

Recently, in [48], Yang and Chang considered the boundary blow up solutions of Monge–Ampère equations

M [u] = K(x)up in Ω, u = +∞ on ∂Ω (1.4)

with K(x) growing like a negative power of d(x) near ∂Ω. They showed some results on the uniqueness, 
nonexistence, and the exact boundary blow up rate of the strictly convex solutions of (1.4). The latest 
results of blow-up solutions of partial differential equations can be found in ([1,36]).

However, even for problem (1.3) there is few work on the case f(u) = u[ln u]β . It is worth mention that, 
in [13], the authors studied the asymptotic behaviour near the boundary for large solutions of the semilinear 
equation {

Δu + au = b(x)f(u) in Ω,

u = +∞ on ∂Ω
(1.5)

with f(u) behaves like u[ln u]β for β > 2, and showed that this case is more difficult to handle than those 
where f(u) grows like up(p > 1) or faster at infinity. In [10], the authors extended some results of Laplacian 
case in [13] to the context of the p-Laplacian and improve the description of the asymptotic behaviour of 
the large solutions of problem (1.5).

Moreover, for k ≥ 2 we know that the k-Hessian operator is a fully nonlinear partial differential operator, 
and we notice that some fully nonlinear degenerate elliptic operators have attracted the attention of Harvey 
and Lawson ([22–25]), Caffarelli, Li and Nirenberg ([5,6]), Amendola, Galise and Vitolo [2], Galise and 
Vitolo [18], Capuzzo–Dolcetta, Leoni and Vitolo [9], and Vitolo [43]. However, in literature there aren’t 
articles on boundary blow-up solutions to the k-Hessian equation with a weakly superlinear nonlinearity. 
More precisely, the study of f(u) = u[ln u]β for β > 2 is still open for the k-Hessian problem.

Motivated by the above works, we would like do some research on problem (1.1). We’ll launch our research 
according to three different cases on H. Here we point out that our problem is new in the way of k-Hessian 
equation with a weakly superlinear nonlinearity introduced here. To the best of our knowledge, when the 
weight function H is singular, the k-convex solutions to the boundary blow-up k-Hessian problem has not 
yet to be studied, especially when the nonlinearity is weakly superlinear. In consequence, our main results of 
the present work will make new contribution to the existing literatures on the topic of k-Hessian equation. 
The existence, nonexistence and global estimates for the given problem are new, though they are proved by 
applying the method of sub- and super-solutions.

The rest of the paper is organized as follows. In Section 2 we collect some known results to be used in 
the subsequent sections. In Sections 3–5, we give the proof of the main results. In appendix, we list some 
relevant definitions.
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2. Some preliminary results

In this section, we collect some results for the convenience of later use and reference.

Lemma 2.1. (See [29], Lemma 2.1) Suppose that Ω ⊂ RN is a bounded domain, and u, v ∈ C2(Ω) are 
k-convex. If

(1) ψ(x, z, p) ≥ φ(x, z, p), ∀ (x, z, p) ∈ (Ω ×R×RN );
(2) Sk(D2u) ≥ ψ(x, u, Du) and Sk(D2v) ≤ φ(x, v, Dv) in Ω;
(3) u ≤ v on ∂Ω;
(4) ψz(x, z, p) > 0 or φz(x, z, p) > 0,

then u ≤ v in Ω.

Remark 2.2. It is not difficult to find that “ψz(x, z, p) > 0 or φz(x, z, p) > 0” in Lemma 2.1 can be relaxed 
to “ψz(x, z, p) ≥ 0 or φz(x, z, p) ≥ 0” provided that one of the inequalities in (2) is replaced by a strict 
inequality. This observation will be used later in the paper.

In the following lemma we’ll use some definitions from matrix analysis, for convenience of the reader, we 
list them in Appendix.

Lemma 2.3. Let u ∈ C2(Ω) be such that all of the principal submatrix of (uxixj
) are invertible for x ∈ Ω, 

and let g be a C2 function defined on an interval containing the range of u. Then

Sk(D2g(u)) = Sk(D2u)[g′(u)]k + [g′(u)]k−1g′′(u)
Ck

N∑
i=1

det(uxisxij
)(∇ui)TB(ui)∇ui, (2.1)

where AT denotes the transpose of the matrix A, B(ui) denotes the inverse of the i-th principal submatrix 
(uxisxij

), det(uxisxij
) is the determinant of (uxisxij

) and

∇ui = (uxi1 , uxi2 , · · · , uxik
)T , i = 1, 2, . . . , Ck

N ,

here Ck
N = N !

(N−k)!k! .

Proof. As is well known, the matrix (D2g(u)) has Ck
N distinct principal minors, and Sk(D2g(u)) equals to 

the sum of all the principal minor of size k of matrix (D2g(u)). For convenience, we only compute the i-th 
principal minor of size k. Denote i-th principal minor of size k by Di, then

Di =

∣∣∣∣∣∣∣∣∣∣

g′′(u)uxi1uxi1 + g′(u)uxi1xi1 · · · g′′(u)uxi1uxik
+ g′(u)uxi1xik

g′′(u)uxi2uxi1 + g′(u)uxi2xi1 · · · g′′(u)uxi2uxik
+ g′(u)uxi2xik

...
...

...
...

...
g′′(u)uxik

uxi1 + g′(u)uxikxi1 · · · g′′(u)uxik
uxik

+ g′(u)uxikxik

∣∣∣∣∣∣∣∣∣∣
.

The jth column of Di is the sum of two columns. The first of these two has entries

g′(u)uxisxij
(s = 1, 2, . . . , k)

and the second has entries
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g′′(u)uxis
uxij

(s = 1, 2, . . . , k).

Since the determinant of a matrix is linear in each of its columns, Di can be expressed as a sum of 2k
determinants where each summand has as its jth column one of the two types given above. Since for j �= t

the two columns

col(uxi1uxij
, uxi2uxij

, . . . , uxik
uxij

)

and

col(uxi1uxit
, uxi2uxit

, . . . , uxik
uxit

)

are proportional, any of the 2k summands which have two different columns of the second type are zero. 
Therefore

Di = [g′(u)]kD̄i + [g′(u)]k−1g′′(u)
k∑

j=1
D̄ij ,

where D̄i is the determinant whose (s, j) th entry is

uxisxij

and D̄ij(j = 1, 2 . . . , k) is the determinant obtained from D̄i by replacement of the jth column of D̄i by the 
column with entries

uxis
uxij

(s = 1, 2, . . . , k).

Therefore, if we denote the cofactor of the (s, j) th entry of D̄ij by Csj(ui), then

Di = [g′(u)]kdet(uxisxij
) + [g′(u)]k−1g′′(u)

k∑
j=1

k∑
s=1

Csj(ui)uxis
uxij

,

where det(uxisxij
) is the i-th principal minor of size k of matrix (D2u).

Since the matrix (uxisxij
) is symmetric, if we write

∇ui = col(uxi1 , uxi2 , · · · , uxik
),

then, by the formula for the inverse of a matrix,

k∑
j=1

k∑
s=1

Csj(ui)uxis
uxij

= det(uxisxij
)(∇ui)TB(ui)∇ui,

where B(ui) is the inverse of the i-th principal submatrix (uxisxij
).

Thus

Sk(D2g(u)) =
Ck

N∑
i=1

Di

=
Ck

N∑
i=1

{
[g′(u)]kdet(uxisxij

) + [g′(u)]k−1g′′(u)det(uxisxij
)(∇ui)TB(ui)∇ui

}

= Sk(D2u)[g′(u)]k + [g′(u)]k−1g′′(u)
Ck

N∑
det(uxisxij

)(∇ui)TB(ui)∇ui. �

i=1
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Let Γμ = {x ∈ Ω̄ : d(x, ∂Ω) < μ} for μ > 0.

Lemma 2.4. (Corollary 2.3 of [27]) Let Ω be bounded with ∂Ω ∈ Cl for l ≥ 2. Assume that μ > 0 is 
small such that d ∈ C2(Γμ) and g is a C2-function on (0, μ). Let x0 ∈ Γμ \ ∂Ω and y0 ∈ ∂Ω be such that 
d(x0) = |x0 − y0|. Then we have

Sk(D2g(d(x0))) = [−g′(d(x0)]kSk(ε1, . . . , εN−1)
+ [−g′(d(x0)]k−1g′′(d(x0))Sk−1(ε1, . . . , εN−1),

(2.2)

where

εi = κi(y0)
1 − κi(y0)d(x0)

, i = 1, 2, . . . , N − 1,

and κ1(y0), . . . , κN−1(y0) are the principal curvatures of ∂Ω at y0.

The following interior estimate for derivatives of smooth solutions is a simple variant of Lemma 2.2 in [32], 
which can be proved by following the idea of Theorem 3.1 and Remark 3.1 of [44].

Lemma 2.5. Let Ω be a bounded strictly (k − 1)-convex domain in RN , N ≥ 2, with ∂Ω ∈ C∞. Let η ∈
[−∞, +∞) and f ∈ C∞(Ω × (η, ∞)) with f(x, u) > 0 for (x, u) ∈ Ω × (η, ∞). Let u ∈ C∞(Ω) be a solution 
of the Dirichlet problem

{
Sk(D2u) = f(x, u), x ∈ Ω,

u(x) = c = constant, x ∈ ∂Ω
(2.3)

with η < u(x) < c in Ω. Let Ω′ be a subdomain of Ω with Ω′ ⊂ Ω and assume that η < a ≤ u(x) ≤ b for 
x ∈ Ω′ and let τ ≥ 1 be an integer. Then there exists a constant C which depends only on τ, a, b, bounds for 
the derivatives of f(x, u) for (x, u) ∈ Ω′ × [a, b], and dist(Ω′, ∂Ω) such that

||u||Cτ (Ω′) ≤ C.

The existence result below is a special case of Theorem 1.1 in [20].

Lemma 2.6. Let Ω be an open domain in RN with boundary of class C∞ and let g(x, t) be a C∞ function 
such that g > 0 and gt ≥ 0 in Ω ×R. The problem

{
Sk(D2u) = g(x, u), x ∈ Ω,

u|∂Ω = ϕ ∈ C(∂Ω)

has a unique k-convex solution if there exists a k-convex strict subsolution v, i.e. a k-convex function v such 
that v|∂Ω = ϕ and Sk(v) ≥ g(x, v) + δ in Ω, for some δ > 0.

For the proofs in Section 3–5, we introduce a function z(x).
Let Ω be a smooth, bounded, strictly convex domain in RN , by Theorem 1.1 of [7], there exists u0 ∈

C∞(Ω), which is the unique strictly convex solution to

M [u0] = 1 in Ω, u0 = 1 on ∂Ω,

where M [u0] = det(u0ij) is the Monge–Ampère operator. Set z(x) := 1 − u0(x). Then z(x) > 0 in Ω and it 
is the unique strictly concave solution to
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(−1)NM [z] = 1 in Ω, z = 0 on ∂Ω. (2.4)

Since (zxixj
) is negative definite on Ω, its trace is negative, that is Δz < 0, and hence one can apply the 

Hopf boundary lemma to conclude that |∇z| > 0 for x ∈ ∂Ω. It follows that there exist positive constants 
b1 and b2 such that

b1d(x) ≤ z(x) ≤ b2d(x) for x ∈ Ω. (2.5)

Remark 2.7. Since (zxixj
) is negative definite, the eigenvalues are negative, then, for all principal minor Δk

of order k to det(D2z), we have (−1)kΔk > a for some positive constant a, and then (−1)kSk(D2z) > aCk
N .

3. H(x) ∈ C∞(Ω̄) is positive on Ω̄

Theorem 3.1. Let Ω be a smooth, bounded, strictly convex domain in RN , N ≥ 2. Suppose H ∈ C∞(Ω̄) is 
positive. If β > k + 1, then problem (1.1) has a k-convex solution u ∈ C∞(Ω) verifying

ec1d(x)−α ≤ u(x) ≤ ec2d(x)−α

, x ∈ Ω (3.1)

for some positive numbers c1 < c2, where

α = k + 1
β − (k + 1) . (3.2)

Proof. By the fact that H ∈ C∞(Ω̄) is positive, there exist h1 > 0, h2 > 0 such that h1 ≤ H(x) ≤ h2. We 
divide the proof into several steps.

Step1. Subsolution and supersolution.
Let v(x) = ec[z(x)]−α , where z is defined by (2.4), α is defined by (3.2), c is a constant to be determined. 

By (2.1) we get

Sk(D2v)
= ckαkz−(k+1)(α+1)ekcz

−α

×{(−1)kSk(D2z)zα+1 − [cα + (α + 1)zα]
Ck

N∑
i=1

(−1)kdet(zxisxij
)(∇zi)TB(zi)∇zi}.

(3.3)

Let

Δ = (−1)kSk(D2z)zα+1 − [cα + (α + 1)zα]
Ck

N∑
i=1

(−1)kdet(zxisxij
)(∇zi)TB(zi)∇zi.

By the definition of z and Remark 2.7 we have (zxixj
) is negative definite, then all of its principal 

submatrices of order k are negative definite. It follows that there exist e1, e2 > 0 such that

−e1||∇zi||2 ≤ (∇zi)TB(zi)∇zi ≤ −e2||∇zi||2,

and trace (zxisxij
) = zxi1xi1 + · · · + zxikxik

= Δzi < 0. Therefore, since Δ(−zi) > 0 on Ω and −zi attains 
its maximum on Ω̄ at each point of ∂Ω, it follows from the maximum principle that there exists an open 
set u containing ∂Ω such that
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‖∇zi‖ ≥ e > 0

for some i.
On the other hand, it is easy to see that z is bounded below by a positive constant on Ω −u. Combining 

this with the fact that

(−1)kdet(zxisxij
) > a, (−1)kSk(D2z) > aCk

N ,

we get Δ is positive on Ω. Considering (3.2) and (3.3) we have

Sk(D2v) = ck−βαkvk(ln v)βΔ.

By β > k + 1, h1 ≤ H(x) ≤ h2 we can see there exists c2 > 0 large enough such that

Sk(D2v)(x) ≤ H(x)[v(x)]k[ln v(x)]β , x ∈ Ω (3.4)

and there exists c1 > 0 small enough such that

Sk(D2v)(x) ≥ H(x)[v(x)]k[ln v(x)]β , x ∈ Ω. (3.5)

Let v1(x) = ec1[z(x)]−α

, v2(x) = ec2[z(x)]−α . Then v1(x) is a subsolution, and v2(x) is a supersolution.

Step2. The existence of a k-convex solution u(x) ∈ C∞(Ω).
Let {σn}∞1 be a strictly increasing sequence of positive numbers such that σn → ∞ as n → ∞, and let 

Ωn = {x ∈ Ω|v1(x) < σn}. Since any level surface of v1 is a level surface of z and z is strictly convex, for 
each n ≥ 1, ∂Ωn is a strictly convex C∞-submanifold of RN of dimension N − 1.

By Lemma 2.6 there exists un ∈ C∞(Ω̄n) for n ≥ 1 such that
{

Sk(D2un) = H(x)uk
n[ln un]β , x ∈ Ωn,

un|∂Ωn
= σn = v1|∂Ωn

(3.6)

and un(x) is k-convex on Ωn and satisfies

un(x) ≥ v1(x), x ∈ Ω̄n. (3.7)

From the fact that

un(x) = v1(x) ≤ v2(x), x ∈ ∂Ωn, (3.8)

(3.4) and Lemma 2.1, we see that

v2(x) ≥ un(x), x ∈ Ω̄n. (3.9)

Clearly, for n > 1

Ω̄n ⊂ Ωn+1

and

Ω =
∞⋃

Ωn.

n=1
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We claim that

un(x) ≤ un+1(x), x ∈ Ωn. (3.10)

Indeed, since un and un+1 are both positive solutions of (3.6) on Ω̄, un is k-convex in Ωn and for x ∈ ∂Ωn ⊂
Ωn+1,

un+1(x) ≥ v1(x) = un(x),

the inequality (3.10) is a consequence of Lemma 2.1.
Let x0 ∈ Ω be fixed. If m is so large that x0 ∈ Ωm, then for all n ≥ m, we have

v1(x0) ≤ un(x0) ≤ un+1(x0) ≤ v2(x0).

Therefore, lim
n→∞

un(x0) exists. Since x0 is arbitrary, we see that for x ∈ Ω,

lim
n→∞

un(x) = u(x)

exists and

v1(x) ≤ u(x) ≤ v2(x), x ∈ Ω.

Next we prove u ∈ C∞(Ω) satisfies (1.1).
Fix an integer m. For n > m

Ω̄m ⊂ Ωn.

Suppose un is a k-convex solution of (3.6), then for x ∈ Ω̄m, a ≤ u(x) ≤ b, where a is the minimum of v1(x)
on Ω̄m and b is the maximum of v2(x) on Ω̄m. Moreover, for n > m,

0 < dist(Ω̄m, ∂Ωm+1) ≤ dist(Ω̄m, ∂Ωn) < dist(Ωm, ∂Ω).

Let j ≥ 3 be an integer. Since un is k-convex on Ω̄n, it follows from Lemma 2.5 that there exists a constant 
C∗ such that if n > m, then

|Dγun(x)| ≤ C∗, ∀x ∈ Ω̄m,

where Dγun is any partial derivative of un of order ≤ j. It follows from Ascoli’s lemma that there exists 
a subsequence {unj

(x)}∞1 of {un(x)}∞1 such that if Dη is any partial derivative operator of order ≤ j − 1, 
then the sequence {Dηunj

(x)}∞1 converges uniformly on Ω̄m. Hence u ∈ Cj−1(Ω̄) and for x ∈ Ω̄m,

Sk(D2u)(x) = lim
j→∞

Sk(D2unj
)(x)

= lim
j→∞

H(x)[unj
(x)]k[ln unj

(x)]β

= H(x)[u(x)]k[ln u(x)]β .

Since j ≥ 3 was arbitrary and m ≥ 1 is arbitrary, this argument proves that u ∈ C∞(Ω) satisfies (1.1).

Step3. Establish the estimates (3.1).
By (2.5), the form of v1 and v2 given in Step1 and the fact that v1(x) ≤ u(x) ≤ v2(x) for all x ∈ Ω, we 

infer the existence of constants c1 > 0 and c2 such that (3.1) is true. �
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The following Theorem deals with the nonexistence result.

Theorem 3.2. Let Ω be a smooth, bounded, strictly convex domain in RN , N ≥ 2. Suppose H ∈ C∞(Ω̄) is 
positive. If β ≤ k + 1, then problem (1.1) has no k-convex solution on Ω.

Proof. Let a = (a1, a2, · · · , aN ) ∈ RN − Ω̄ and

v(x) = exp

N∑
j=1

t(xj − aj)2, x ∈ Ω,

where t ≥ 1 is a constant to be determined. Then we have for 1 ≤ i, j ≤ N ,

vxixj
(x) = 4t2(xi − ai)(xj − aj)v(x), i �= j,

and for 1 ≤ i ≤ N ,

vxixi
(x) = (2t + 4t2(xi − ai)2)v(x).

Then by the property of determinant and a direct calculation we obtain

Sk(D2v)(x) =
Ck

N∑
i=1

{(2tv(x))k−1v(x)[2t + 4t2
k∑

s=1
(xis − ais)2]}.

Therefore, for x ∈ RN ,

det(vxisxij
) ≥ 2ktk[v(x)]k, Sk(D2v)(x) ≥ Ck

N2ktk[v(x)]k. (3.11)

Assume, contrary to the assertion of the theorem, that there exists a k-convex solution u of (1.1). Let 
w(x) = ecv(x). We have for x ∈ RN ,

Sk(D2w) = ckekcv[Sk(D2v) + c

Ck
N∑

i=1
det(vxisxij

)(∇vi)TB(vi)∇vi]. (3.12)

Since the matrix (vxixj
) is positive definite, B(vi) is positive definite and there exist constants 0 < l1 < l2

such that

l1||∇vi||2 ≤ (∇vi)TB(vi)∇vi ≤ l2||∇vi||2. (3.13)

By (3.11), (3.12), (3.13) and the fact that ‖∇vi‖2 = 4t2v2(x) 
k∑

s=1
(xis − ais)2 > 0 we get

Sk(D2w) ≥ ck+1l1(2t)2+kv2+kekcv
Ck

N∑
i=1

k∑
s=1

(xis − ais)2

= ck+1−βl1(2t)2+kwk[lnw]βv2+k−β
Ck

N∑
i=1

k∑
s=1

(xis − ais)2.
(3.14)

If β < k + 1, it follows from (3.14) that there exists c large enough such that

Sk(D2w) ≥ H(x)wk[lnw]β .



466 X. Zhang, M. Feng / J. Math. Anal. Appl. 464 (2018) 456–472
Fix x1 ∈ Ω and by further enlarging c if necessary we may assume that

w(x1) > u(x1) and Sk(D2w) > H(x)wk[lnw]β in Ω.

Since u(x) → ∞ as d(x) → 0, while w(x) is continuous on Ω, there exists an open connected set D such 
that

x1 ∈ D, D ⊂ Ω, u(x) < w(x) in D and u(x) = w(x) on ∂D.

On the other hand, since

Sk(D2u) = H(x)uk[ln u]β in D and u = w on ∂D,

and the matrix (wxixj
) is positive definite on D, we can apply Lemma 2.1 to conclude that w(x) ≤ u(x)

in D. It is a contradiction.
If β = k + 1, from (3.14) we have that

Sk(D2w) ≥ H(x)wk[lnw]β

for large t. Similar to the proof above, we can get contradiction. This contradiction completes our proof. �
4. H(x) ∈ C∞(Ω) is unbounded on ∂Ω

In this case we assume that H(x) ∈ C∞(Ω) satisfy

(H) C1d(x)−γ ≤ H(x) ≤ C2d(x)−γ , x ∈ Ω for some positive constants C1, C2, γ;

or the stronger condition

(H′) lim
d(x)→0

H(x)d(x)γ = C0 for some positive constants γ, C0.

Theorem 4.1. Let Ω be a smooth, bounded, strictly convex domain in RN , N ≥ 2. Suppose that H(x) ∈ C∞(Ω)
satisfies (H) and 1 < γ < k+1. If β > k+1, then problem (1.1) has a k-convex solution u ∈ C∞(Ω) verifying

ed1d(x)−α1 ≤ u(x) ≤ ed2d(x)−α1
, x ∈ Ω (4.1)

for some positive numbers d1 < d2, where

α1 = k + 1 − γ

β − (k + 1) . (4.2)

If β ≤ k, then problem (1.1) has no k-convex solution.

Proof. If β > k + 1, then let v(x) = ed[z(x)]−α1 . Similar to the proof of Theorem 3.1, we can prove the 
existence of the solution and (4.1). So we omit it.

Suppose β ≤ k.
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We first prove that if 1 < γ < k + 1, then
{

Sk(D2u) = H(x), in Ω,

u = 0, on ∂Ω
(4.3)

has a solution.
Let w = −c(z(x)) k+1−γ

k , where z is defined by (2.4). By (2.1) we obtain

Sk(D2w) = ck(k + 1 − γ

k
)kz−γ [(−1)kSk(D2z)z + 1 − γ

k

Ck
N∑

i=1
(−1)kdet(zxisxij

)(∇zi)TB(zi)∇zi].

Because of γ > 1, similar to the analysis in Theorem 3.1 there exists M1 > 0 such that

(−1)kSk(D2z)z + 1 − γ

k

Ck
N∑

i=1
(−1)kdet(zxisxij

)(∇zi)TB(zi)∇zi ≥ M1.

By (2.5) and (H) we get

Sk(D2w) ≥ H(x)

for large c. It follows from Lemma 2.6 that (4.3) has a k-convex solution w1(x).
Let w2(x) = w1(x) − min

x∈Ω̄
w1(x) + 1. Then Sk(D2w2) = H(x), x ∈ Ω, and w2 ≥ 1.

We suppose contrary that problem (1.1) has a solution u(x). If β < k, let v(x) = ec[w2(x)]
k+1
k−β

, x ∈ Ω, 
where c is a positive constant to be determined. By (2.1) we have

Sk(D2v)

= ck( k+1
k−β )kekc[w2(x)]

k+1
k−β

w
k( β+1

k−β )−1
2 [Sk(D2w2)w2

+(c k+1
k−βw

k+1
k−β

2 + β+1
k−β )

Ck
N∑

i=1
det(w2xisxij

)(∇w2i)TB(w2i)∇w2i]

≥ ck−β( k+1
k−β )kvk[ln v]βSk(D2w2)w2

≥ H(x)vk[ln v]β , x ∈ Ω

for large c.
Fix x1 ∈ Ω and by further enlarging c if necessary we may assume that

v(x1) > u(x1) and Sk(D2v) > H(x)vk[ln v]β in Ω.

Since u(x) → ∞ as d(x) → 0, while v(x) is continuous on Ω, there exists an open connected set D such that

x1 ∈ D, D ⊂ Ω, u(x) < v(x) in D and u(x) = v(x) on ∂D.

On the other hand, since

Sk(D2u) = H(x)uk[ln u]β in D and u = v on ∂D,

and the matrix (vxixj
) is positive definite on D, we can apply Lemma 2.1 to conclude that v(x) ≤ u(x)

in D. This contradiction completes our proof.
If β = k, then let v(x) = ee

cw2(x) , similar to the proof above we can get the contradiction. �
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Theorem 4.2. Let Ω be a smooth, bounded, strictly convex domain in RN , N ≥ 2. Suppose H(x) ∈ C∞(Ω)
satisfies (H′) and 1 < γ < k + 1. If β > k + 1, then for any k-convex solution u(x) of (1.1), it holds

ξ− ≤ lim inf
d(x)→0

d(x)α1 ln u(x) and lim sup
d(x)→0

d(x)α1 ln u(x) ≤ ξ+,

where α1 is defined by (4.2) and

ξ− = [C−1
0 Ck−1

N−1(M
−)k−1αk+1

1 ]
1

β−(k+1) ,

ξ+ = [C−1
0 Ck−1

N−1(M
+)k−1αk+1

1 ]
1

β−(k+1) ,

here

M− = min
y∈∂Ω

{κ1(y), κ2(y), . . . , κN−1(y)},

M+ = max
y∈∂Ω

{κ1(y), κ2(y), . . . , κN−1(y)}.

If further suppose Ω is a ball of radius R > 0, then

lim
d(x)→0

d(x)α1 ln u(x) =
(
Ck−1

N−1α
k+1
1

C0Rk−1

) 1
β−(k+1)

.

Proof. For δ > 0, we set Ωδ = {x ∈ Ω : 0 < d(x) < δ}, Γδ = {x ∈ Ω : d(x) = δ}.
Fix ε ∈ (0, 12 ) and choose δ > 0 small enough such that

C0(1 − ε)d(x)−γ ≤ H(x) ≤ C0(1 + ε)d(x)−γ

and

(1 −M+d(x))k ≥ 1 − ε

for x ∈ Ωδ.
Suppose u is a k-convex solution of (1.1).

Let v+ = e
η+(d(x))−α1−μ+max

Γδ

u(x)
, x ∈ Ωδ with μ > 0,

η+ = [(α1 + μ)k+1Δ1

C0(1 − ε)2 ]
1

β−(k+1) , η− = [(α1 − μ)k+1Δ2

C0(1 − ε) ]
1

β−(k+1) ,

where

Δ1 = (d(x))α1+μ+1

η+(α1 + μ) (M+)kCk
N−1 + [1 + α1 + μ + 1

η+(α1 + μ) (d(x))α1+μ](M+)k−1Ck−1
N−1,

Δ2 = (M−)k−1Ck−1
N−1.

Since |Dd(x)| = 1 in Ωδ, we can choose a coordinate system such that

Dd(x) = (0, 0, . . . , 0, 1),

D2d(x) = diag(d11(x), . . . , dN−1,N−1(x), 0),

where dii(x) = −κi(y)/(1 − κi(y)d(x)), and y ∈ ∂Ω is such that |x − y| = d(x) as in Lemma 2.4.
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Hence

Sk(D2v+)
= (v+)k(η+)k+1(α1 + μ)k+1(d(x))−(k+1)(α1+μ+1){[1 + α1+μ+1

η+(α1+μ) (d(x))α1+μ]Sk−1(D2(−d(x)))
+ (d(x))α1+μ+1

η+(α1+μ) Sk(D2(−d(x)))}
≤ η+(k+1−β)C−1

0 (1 − ε)−2(α1 + μ)k+1(d(x))[β−(k+1)]μH(x)(v+)k[ln v+]βΔ1
≤ H(x)(v+)k[ln v+]β , x ∈ Ωδ,

i.e. v+ is a supersolution to (1.1) in Ωδ. By (4.1), for any μ > 0,

lim
d(x)→0

(v+ − u(x)) = +∞.

Thus

u(x) ≤ v+(x), x ∈ Ωδ.

Letting μ → 0, ε → 0, we get

lim sup
d(x)→0

d(x)α1 ln u(x) ≤ [C−1
0 Ck−1

N−1(M
+)k−1αk+1]

1
β−(k+1) .

Let v− = eη
−[(d(x))−α+μ−δ−α+μ], x ∈ Ωδ with μ > 0. Similarly we obtain

Sk(D2v−) ≥ H(x)(v−)k[ln v−]β , x ∈ Ωδ,

which shows that v− is a subsolution to (1.1) in Ωδ. By (4.1), for any μ > 0,

lim
d(x)→0

(u(x) − v−) = +∞.

So we get

lim inf
d(x)→0

d(x)α1 ln u(x) ≥ [C−1
0 Ck−1

N−1(M
−)k−1αk+1]

1
β−(k+1) .

If Ω is a ball of radius R > 0, then M− = M+ = 1
R . It follows that

lim
d(x)→0

d(x)α1 ln u(x) =
(
Ck−1

N−1α
k+1

C0Rk−1

) 1
β−(k+1)

. �

5. H(x) ∈ C∞(Ω̄) can vanish on ∂Ω

In this case we assume that H(x) ∈ C∞(Ω) satisfies

(H1) D1d(x)θ ≤ H(x) ≤ D2d(x)θ, x ∈ Ω for some positive constants D1, D2, θ;

or the stronger condition

(H′
1) lim

d(x)→0
H(x)d(x)−θ = D0 for some positive constants θ, D0.



470 X. Zhang, M. Feng / J. Math. Anal. Appl. 464 (2018) 456–472
Theorem 5.1. Let Ω be a smooth, bounded, strictly convex domain in RN , N ≥ 2. Suppose that H(x) ∈ C∞(Ω̄)
satisfies (H1). If β > k + 1, then problem (1.1) has a k-convex solution u ∈ C∞(Ω) verifying

ed
′
1d(x)−α2 ≤ u(x) ≤ ed

′
2d(x)−α2

, x ∈ Ω (5.1)

for some positive numbers d′1 < d′2, where

α2 = k + 1 + θ

β − (k + 1) . (5.2)

If β ≤ k + 1, then problem (1.1) has no k-convex solution.

Proof. The proof is similar to that of Theorem 3.1 and Theorem 3.2, so we omit it. �
Theorem 5.2. Let Ω be a smooth, bounded, strictly convex domain in RN , N ≥ 2. Suppose H(x) ∈ C∞(Ω̄)
satisfies (H′

1). If β > k + 1, then for any k-convex solution u(x) of (1.1), it holds

ξ− ≤ lim inf
d(x)→0

d(x)α2 ln u(x) and lim sup
d(x)→0

d(x)α2 ln u(x) ≤ ξ+,

where α2 is defined by (5.2) and

ξ− = [D−1
0 Ck−1

N−1(M
−)k−1αk+1

2 ]
1

β−(k+1) ,

ξ+ = [D−1
0 Ck−1

N−1(M
+)k−1αk+1

2 ]
1

β−(k+1) ,

here

M− = min
y∈∂Ω

{κ1(y), κ2(y), . . . , κN−1(y)},

M+ = max
y∈∂Ω

{κ1(y), κ2(y), . . . , κN−1(y)}.

If further suppose Ω is a ball of radius R > 0, then

lim
d(x)→0

d(x)α1 ln u(x) =
(
Ck−1

N−1α
k+1
2

D0Rk−1

) 1
β−(k+1)

.

Proof. The proof is similar to that of Theorem 4.2, so we omit it. �
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Appendix

The following definitions and propositions are from [26].
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Let A be a square matrix and

A =

⎛
⎜⎜⎜⎜⎝

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

⎞
⎟⎟⎟⎟⎠ .

For index sets α ⊆ {1, 2, . . . , n}, β ⊆ {1, 2, . . . , n}, we denote by A[α, β] the submatrix of entries that lie in 
the rows of A indexed by α and the columns indexed by β. If α = β, the submatrix A[α] = A[α, β] is a 
principal submatrix of A. For k ∈ {1, 2, . . . , n}, A[{1, 2, . . . , k}] is a leading principal submatrix. If the k-by-k
submatrix is a principal submatrix, then its determinant is a principal minor (of size k); if the submatrix is a 
leading principal matrix, then its determinant is a leading principal minor. It is clear that an n-by-n matrix 
has Ck

n distinct principal submatrices of size k, but has only one leading principal submatrix of size k.
There are some conclusions on positive (negative) definite matrix. We list them here without proofs.

Proposition 1. Suppose A is a real symmetric matrix, then A is positive definite if and only if all of its 
principal minors are positive.

Proposition 2. Suppose A is a real symmetric matrix, then A is negative definite if and only if for all of its 
principal minors Δk, we have (−1)kΔk > 0.
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