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We study conditions that ensure uniqueness theorems of Cuntz–Krieger type for 
relative Cuntz–Pimsner algebras O(J, X) associated to a C∗-correspondence X
over a C∗-algebra A. We give general sufficient conditions phrased in terms of a 
multivalued map X̂ acting on the spectrum Â of A. When X(J) is of Type I 
we construct a directed graph dual to X and prove a uniqueness theorem using 
this graph. When X(J) is liminal, we show that topological freeness of this graph 
is equivalent to the uniqueness property for O(J, X), as well as to an algebraic 
condition which we call J-acyclicity of X. As an application we improve the 
Fowler–Raeburn uniqueness theorem for the Toeplitz algebra TX . We give new 
simplicity criteria for OX . We generalize and enhance uniqueness results for relative 
quiver C∗-algebras of Muhly and Tomforde. We also discuss applications to crossed 
products by endomorphisms.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The condition, known as topological freeness, was probably first formulated in [47], in the context of 
crossed products of Z-actions (see [2, pp. 225, 226] or [31] for more history of this notion). It implies that 
any faithful covariant representation of the system generates an isomorphic copy of the crossed product. 
A similar uniqueness property for Cuntz–Krieger algebras was identified in [9]. Since then, uniqueness results 
concerning various generalizations of Cuntz–Krieger algebras are typically called Cuntz–Krieger uniqueness 
theorems. This concerns, for instance, graph C∗-algebras [52]; Exel–Laca algebras [13], Matsumoto alge-
bras [41], [42], ultragraph algebras [57], [20], C∗-algebras of labelled graphs [3], C∗-algebras of topological 
graphs [26], quivers C∗-algebras [45], Exel’s crossed products [15], [14], [7], [4], crossed products by en-
domorphisms [37], [32], [33], and numerous semigroup generalizations of these constructions. Importantly, 
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Katsura’s uniqueness theorem [26] unified the combinatorial condition for graphs, called condition (L), and 
topological freeness for a homeomorphism.

Nowadays a standard model for all of the above mentioned constructions is a Cuntz–Pimsner algebra, 
introduced by Pimsner [51] and further developed by Katsura [25,28]. A Cuntz–Pimsner algebra is a universal 
C∗-algebra OX associated to a C∗-correspondence X over a C∗-algebra A. It is thus desirable to have 
uniqueness theorems for general Cuntz–Pimsner algebras OX , and some partial results in this direction 
have been obtained. For instance, when X is a Hilbert bimodule, then OX coincides with the crossed 
product A �X Z introduced in [1], and X induces a partial homeomorphism X̂ on the spectrum Â. The 
second named author proved in [31] that topologically freeness of X̂ implies the uniqueness property for 
A �X Z. By [38] the converse implication holds when A contains an essential ideal which is separable or of 
Type I. The result of [31] was adapted in [39] to C∗-correspondences whose left action is injective and by 
compacts. The authors of [39] introduced a multivalued map X̂ dual to a regular C∗-correspondence X and 
proved a uniqueness theorem for (the semigroup version of) OX under the condition they called topological 
aperiodicity. This condition seems to be well-suited for Hilbert bimodules and C∗-correspondences associated 
to transfer operators (cf. Example 9.14 below). However, already for C∗-correspondences coming from graphs 
it is too strong as the multivalued map X̂ does not capture multiplicities of edges. The original motivation 
behind the present paper was the need of developing a theory that does not have this deficiency.

In the present article we consider general C∗-correspondences and prove uniqueness theorems for relative 
Cuntz–Pimsner algebras O(J, X) where J is an ideal contained in Katsura’s ideal JX . These relative Cuntz–
Pimsner algebras O(J, X) were introduced by Muhly and Solel in [43]. They contain as extreme cases the 
Cuntz–Pimsner algebra OX , for J = JX , and the Toeplitz algebra TX , when J = {0}. This allows us to cover 
another line of uniqueness theorems inspired by Coburn’s theorem [8]. The latter type of results, proved 
for various generalized Toeplitz algebras, play a fundamental role in the theory of C∗-algebras associated 
to semigroups and semigroup actions [46], [17], [18], [19], [35], [36]. An important contribution in this line 
of research is Fowler–Raeburn’s version of the Coburn theorem [18, Theorem 2.1] proved for the Teoplitz 
algebra TX . As the authors of [18] show the geometric condition they introduce is necessary and sufficient 
for the uniqueness property of TX when the left action of A on X is by generalized compacts. In general, 
it is only sufficient. Thus, for instance, in order to deduce simplicity of the Cuntz algebra O∞ one needs 
a stronger result. As an upshot of our uniqueness theorem we get an improvement of the Fowler–Raeburn 
theorem. Namely, we show that a representation of X generates a copy of the Toeplitz algebra TX if and 
only if its ideal of covariance is {0}.

Our uniqueness theorem (Theorem 7.3) consists in fact of two statements. Firstly, we extend the con-
struction of dual multivalued maps from [39] to arbitrary C∗-correspondences X. We show that a pair 
(X, J) has the uniqueness property (Definition 6.1) whenever the dual multivalued map X̂ satisfies on Ĵ a 
weaker form of the condition introduced in [39]. We call this condition weak topological aperiodicity (Defini-
tion 3.9). It works better than topological aperiodicity, for instance, with C∗-correspondences coming from 
endomorphisms (cf. Example 9.21). It can be used to characterise simplicity of OX when the left action is 
not injective (Proposition 9.4). Moreover, when J = {0} this condition is void and hence the pair (X, {0})
always has the uniqueness property. This gives the aforementioned improvement of the Fowler–Raeburn 
theorem (see Theorem 9.1).

Secondly, in order to get sharper results we adjust the construction of the dual multivalued map. We 
take into account multiplicities of the corresponding subrepresentations and construct a directed graph 
EX = (Â, E1

X , r, s) dual to X. This can be done whenever the multiplicity theory is available, so for instance 
in the Type I case. Moreover, in order to detect the uniqueness property it suffices to consider the restriction 
of X to the ideal K = J +X(J) where X(J) is the ideal generated by 〈X, JX〉A. Therefore we assume that 
X(J) is of Type I. Then K is of Type I and we may consider the graph EKXK = (K̂, E1

KXK , r, s) dual to 
the restricted C∗-correspondence KXK. It seems that in this generality Katsura’s condition needs a slight 
strengthening. Therefore we introduce a notion of strong topological freeness (Definition 3.3). If X(J) is 
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liminal (so for instance, when it is commutative), then strong topological freeness is equivalent to Katsura’s 
topological freeness (Proposition 7.2). We prove that if EKXK is strongly topologically free, then (X, J) has 
the uniqueness property (Theorem 7.3 (A2)).

We get the nicest results in the case when X(J) is liminal. Then we are able to show that topological 
freeness is necessary for the uniqueness property for O(J, X), and in addition we characterise it using 
an algebraic condition that we call J-acyclicity (Definition 8.1). This condition was identified in a purely 
algebraic setting in [6]. In particular, by Theorem 8.3 we have:

Theorem 1.1. Let X be a C∗-correspondence over A and let J be an ideal in JX . If the ideal X(J) is liminal 
then the following conditions are equivalent:

(1) for every injective representation (ψ0, ψ1) of X whose ideal of covariance is J the map ψ0 �J ψ1 :
O(J, X) → C∗(ψ0(A) ∪ ψ1(A)) is an isomorphism;

(2) X is J-acyclic, i.e. there are no non-zero positively invariant ideals I in J such that (IX)⊗n ∼= I for 
some n > 0;

(3) the corresponding dual graph is topologically free on Ĵ, i.e. the set of base points of cycles that have no 
entrances and whose base points are contained in Ĵ has empty interior.

Our results have strong potential for numerous applications, including description of ideal lattice, cf. [29], 
[30], or pure infiniteness criteria for O(X, J), cf. [38]. A thorough discussion of such applications is beyond 
the scope of the present paper. As an illustration we discuss here simplicity criteria for OX (subsection 
9.2). We also generalize and improve uniqueness results for relative quiver C∗-algebras (subsection 9.3) and 
crossed products by endomorphisms (subsection 9.4).

The paper is organized as follows. In section 2 we present the terminology and some well known facts 
that will be used along the paper. In section 3 we discuss and establish relationships between various 
non-triviality conditions for multivalued maps and directed graphs. Section 4 presents the construction and 
properties of the multivalued map dual to a C∗-correspondence X. In section 5 we construct graphs dual 
to C∗-correspondences and prove certain technical statements that we need in the proof of our main result. 
In section 6 we discuss some general characterizations and criteria for the uniqueness property for the pair 
(X, J). Section 7 contains the proof of our general uniqueness theorem. In section 8 we introduce J-acyclicity 
of X and examine necessity of this condition and topological freeness for the uniqueness property. Finally, 
in section 9 we discuss applications of our results to TX , simplicity of OX , relative quiver C∗-algebras and 
crossed products by endomorphisms.
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2. Preliminaries

In this section, we fix terminology and recall some known facts, that we need in the sequel. We stress 
that for actions γ : A ×B → C such as multiplications, inner products, etc., we use the notation: γ(A, B) =
span{γ(a, b) : a ∈ A, b ∈ B}.
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2.1. Multivalued maps

We adopt the same conventions concerning multivalued maps as in [39]. Thus a multivalued mapping from 
a set V to a set W is by definition a mapping from V to 2W (the family of all subsets of W ). We denote such a 
multivalued mapping by f : V → W . Also, we identify the usual (single-valued) mappings with multivalued 
mappings taking values in singletons. We define the image of V ′ ⊆ V under f by f(V ′) :=

⋃
x∈V ′ f(x). The 

range of f is f(V ). We say that f is surjective if f(V ) = W . We define the preimage of W ′ ⊆ W to be the 
set f−1(W ′) := {v ∈ V : f(v) ∩W ′ �= ∅}. In particular, we call f−1(W ) = {v ∈ V : f(v) �= ∅} the domain
of f . If V and W are topological spaces, we say that a multivalued map f : V → W is continuous if f−1(U)
is open for every open subset U of W .

The composition of two multivalued maps f : V → W and g : W → Z is the multivalued map g◦f : V → Z

given by (g ◦ f)(x) :=
⋃

y∈f(x) g(y). The class of sets and multivalued maps with the above composition 
form a category (the composition is associative and identity maps are identity morphisms). A multivalued 
map is invertible in this category if and only if it is a bijective single valued map.

Given V ′ ⊆ V we define the restriction fV ′ : V ′ → W of f : V → W in the obvious way. If W ′ ⊆ W

we define W ′f : V → W ′ by the formula W ′f(v) = f(v) ∩W ′, v ∈ V . We also define W ′fV ′ : V ′ → W ′ by 

W ′fV ′(v) := W ′f(v), for v ∈ V ′.

2.2. C∗-correspondences and Hilbert bimodules

We adopt standard notations and definitions of objects related to Hilbert C∗-modules, cf. [40] and 
[53]. Thus given right Hilbert modules X and Y over a C∗-algebra A we denote by L(X, Y ) the space of 
adjointable operators from X to Y . Given x ∈ X and y ∈ Y we define Θy,x ∈ L(X, Y ) by Θy,x(z) := y〈x, z〉A, 
for z ∈ X. The elements of K(X, Y ) := span{Θy,x : x ∈ X, y ∈ Y } are called generalized compact operators. 
In particular, L(X) := L(X, X) is a C∗-algebra and K(X) := K(X, X) is an essential ideal of L(X).

If I is an ideal of A (which will always be closed and two-sided) then XI := {xa : x ∈ X, a ∈ I} is both a 
Hilbert A-submodule of X and a Hilbert I-module [29, Proposition 1.3]. In particular, we can treat K(XI)
as an ideal of K(X).

A representation of a Hilbert A-module X on a C∗-algebra C is a pair ψ = (ψ0, ψ1) consisting of a 
∗-homomorphism ψ0 : A → C and a linear map ψ : X → C such that

ψ1(x)ψ0(a) = ψ1(x · a), ψ1(x)∗ψ1(y) = ψ0(〈x, y〉A), a ∈ A, x ∈ X.

If C = B(H), where H is a Hilbert space, we say that ψ is a representation on H. Any representation ψ of 
X induces a representation ψ(1) : K(X) → C where

ψ(1)(Θx,y) = ψ1(x)ψ1(y)∗ for all x, y ∈ X. (1)

Given C∗-algebras A and B, a C∗-correspondence from A to B, written X : A → B, is a right Hilbert 
B-module X together with a ∗-homomorphism φX : A → L(X) called left action of A on X. We will write 
a · x := φX(a)(x) for a ∈ A and x ∈ X. In case that A = B we say that X is a C∗-correspondence over A.

Let A and B be C∗-algebras. A Hilbert A-B-bimodule M is both a right Hilbert B-module and a 
left Hilbert A-module such that the respective A- and B-valued inner products, A〈·, ·〉 and 〈·, ·〉B satisfy 

A〈x, y〉z = x〈y, z〉B , for every x, y, z ∈ M . Then M is a C∗-correspondence from A to B, cf. [25, Section 
3.3], [30, Proposition 1.11]. An equivalence A-B-bimodule is a Hilbert A-B-bimodule which is full on the 
left and right, that is A〈M, M〉 = A and 〈M, M〉B = B. If such a bimodule exists we say that A and B
are Morita(–Rieffel) equivalent. We write A ∼M B when we want to indicate that M is an equivalence 
A-B-bimodule. Given an A-B-bimodule M , we denote by M∗ the B-A-bimodule obtained from M by 
exchanging the roles of left and right actions (M and M∗ are anti-isomorphic as linear spaces).
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Given C∗-algebras A, B, C, and C∗-correspondences X : A → B and Y : B → C, we define a 
C∗-correspondence X ⊗B Y : A → C in the following way. Let X � Y denote the quotient of the alge-
braic tensor product of X and Y by the subspace generated by xb ⊗ y − x ⊗ (b · y) for x ∈ X, y ∈ Y and 
b ∈ B. There is a C-valued inner product on X � Y determined by the formula

〈x1 ⊗ y1, x2 ⊗ y2〉C := 〈y1, φY (〈x1, x2〉B)y2〉C ,

for x1, x2 ∈ X and y1, y2 ∈ Y . The (inner) tensor product of X and Y , denoted by X⊗BY , is the completion 
of X � Y with respect to the norm coming from the C-valued inner product defined above. Then X ⊗B Y

is a C∗-correspondence from A to C with left action given by φX⊗BY := φX ⊗ 1Y where 1Y is the identity 
map on Y . In order to lighten the notation, we will often write X ⊗ Y instead of X ⊗B Y .

If M is an equivalence A-B-bimodule then we have C∗-correspondence isomorphisms mA : M⊗BM∗ → A

and mB : M∗ ⊗A M → B given by x∗ ⊗ y �→ 〈x, y〉B and x ⊗ y∗ �→ A〈x, y〉, where we treat A and B as 
trivial C∗-correspondences with the structure inherited from C∗-algebraic operations.

The correspondences X and Y over A and B respectively are Morita equivalent, see [44, Definition 2.1], 
if there is an equivalence A-B-bimodule M and an A-B-correspondence isomorphism W from M ⊗B Y onto 
X ⊗A M . This is equivalent to saying that there is an equivalence A-B-bimodule M such that we have a 
correspondence isomorphism M ⊗B ⊗Y ⊗B M∗ ∼= X. If this holds we write X ∼M Y .

2.3. Cuntz–Pimsner algebras

Let us fix a C∗-correspondence X over a C∗-algebra A. For each n = 0, 1, 2, . . . we denote by X⊗n the 
C∗-correspondence given by the n-fold tensor product X⊗· · ·⊗X (X⊗0 := A). Relative Cuntz–Pimsner alge-
bras [43], could be viewed as crossed products associated to the product system {X⊗n}n∈N or as C∗-algebras 
associated to the ideal {K(X⊗n, X⊗m)}n,m∈N in a right tensor C∗-precategory {L(X⊗n, X⊗m)}n,m∈N, see 
[30]. We define them in terms of universal representations [16].

Definition 2.1. A representation of a C∗-correspondence X over a C∗-algebra A is a representation ψ =
(ψ0, ψ1) of the Hilbert A-module such that ψ1(a · x) = ψ0(a)ψ1(x), a ∈ A, x ∈ X, a ∈ A, x ∈ X. The 
C∗-algebra generated by ψ0(A) ∪ ψ1(X) is denoted by C∗(ψ).

Let ψ = (ψ0, ψ1) be a representation of a C∗-correspondence X on a C∗-algebra B. Then ψ1 is automat-
ically contractive map. If ψ0 is injective, then ψ1 is isometric and we say that ψ is injective. For each n > 0
there is a unique representation (ψ0, ψn) of X⊗n where

ψn(x1 ⊗ x2 ⊗ · · · ⊗ xn) := ψ1(x1)ψ1(x2) . . . ψ1(xn)

for all x1, ..., xn ∈ X. Thus we also have a representation ψ(n) : K(X⊗n) → B of the C∗-algebra K(X⊗n), cf. 
(1). If ψ is injective, then ψ(n) is also injective. If ψ is a representation on a Hilbert space H, then the above 
maps ψ(n) extend uniquely to representations ψ(n) : L(X⊗n) → B(H) such that ψ(n)(T )|(ψn(X⊗n)H)⊥ ≡ 0. 
In the sequel we will need the following:

Lemma 2.2 (Lemma 2.5 in [18]). Suppose X is a C∗-correspondence over a C∗-algebra A and that ψ =
(ψ0, ψ1) is a representation of X on a Hilbert space H. For each n > 0, let Kn := ψ(n)(K(X⊗n)) and let 
Pn be the orthogonal projection of H onto KnH = ψn(X⊗n)H. Then P1 ≥ P2 ≥ ..., Pn ∈ (Kn)′, and for 
x ∈ X⊗k and k ≥ 0 we have

ψk(x)Pn = Pn+kψk(x). (2)
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One associates to X the following two ideals in A:

J(X) := φ−1
X (K(X)) and JX := J(X) ∩ (kerφX)⊥.

Their significance is indicated in the following lemma.

Lemma 2.3. Let X and Y be two C∗-correspondences over A.

(i) If T ∈ K(Y J(X)), then T ⊗ 1X ∈ K(Y ⊗X).
(ii) If T ∈ K(Y (kerφX)⊥), then ‖T‖ = ‖T ⊗ 1X‖.

Proof. See for instance [40, Proposition 4.7] and [30, Lemma 1.9 i)]. �
Definition 2.4. Let X be a C∗-correspondence over a C∗-algebra A and let J be an ideal in J(X). We say 
that a representation ψ of X is J-covariant if

J ⊆ Iψ := {a ∈ J(X) : ψ0(a) = ψ(1)(φX(a))}.

We call Iψ the ideal of covariance for ψ (it is an ideal in J(X)). We denote by j = (jA, jX) the universal 
J-covariant representation of X, and we call the C∗-algebra O(J, X) := C∗(jA, jX) the relative Cuntz–
Pimsner algebra determined by J . In particular, if ψ is a J-covariant representation of X the maps

jA(a) �−→ ψ0(a), jX(x) �−→ ψ1(x), a ∈ A, x ∈ X

define an epimorphism ψ �J X : O(J, X) → C∗(ψ). The (unrelative) Cuntz–Pimsner is OX := O(JX , X).

Remark 2.5. The universal representation (jA, jX) is injective if and only if J ⊆ JX , see [54, Proposition 
2.21] and [28, Proposition 3.3], or [30, Corollary 4.15]. Moreover, by passing to a quotient C∗-correspondence 
one may reduce the general case to the case when J ⊆ JX , see [37] or [30, Theorem 6.23].

The C∗-algebra O(J, X) is equipped with the gauge circle action γ : T → Aut(O(J, X)) determined by 
γz(jA(a)) = jA(a) and γz(jX(x)) = zjX(x), for a ∈ A, x ∈ X and z ∈ T. We say that an ideal in O(J, X)
is gauge invariant if it is invariant with respect to this action.

We recall that an image and preimage of an ideal I in A with respect to the C∗-correspondence X are 
defined as follows:

X(I) := 〈X,φX(I)X〉A = span{〈x, a · y〉A : a ∈ I, x, y ∈ X},
X−1(I) := {a ∈ A : 〈x, a · y〉A ∈ I for all x, y ∈ X}.

Both X(I) and X−1(I) are ideals in A, cf. [29]. If X(I) ⊆ I, then the ideal I is said to be positively 
X-invariant, [29, Definition 4.8].

Given a positively X-invariant ideal I of A, the quotient space X/XI is naturally equipped with the 
structure of a C∗-correspondence over A/I. For any positively X-invariant ideal I we put

J(I) := {a ∈ A : φX/XI(a + I) ∈ K(X/XI) , aX−1(I) ⊆ I}.

A T -pair of X is a pair (I, I ′) of ideals I, I ′ of A such that I is positively X-invariant and I ⊆ I ′ ⊆ J(I)
[29, Definition 5.6]. Given an ideal J of JX we have a bijective correspondence between the gauge invariant 
ideals of the relative Cuntz–Pimsner algebra O(J, X) and the T -pairs (I, I ′) of X satisfying J ⊆ I ′, see [29, 
Proposition 11.9].
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2.4. Induced and irreducible representations

Let A be a C∗-algebra. If π is a representation of A we will usually denote the underlying Hilbert 
space by Hπ, so that we have π : A → B(Hπ). Given a representation π of A we denote by [π] the class of 
representations of A that are unitary equivalent to π. We denote by Irr(A) the class of all non-zero irreducible 
representations of A. The spectrum of A is the set Â of unitary equivalence classes of representations from 
Irr(A), equipped with the standard Jacobson topology.

Let B ⊆ A be a sub-C∗-algebra of A, and let π and ρ be representations of B and A, respectively. 
Then ρ is an extension of π, denoted by π ≤ ρ, if Hπ is a subspace of Hρ, and π(b)h = ρ(b)h for every 
b ∈ B and h ∈ Hπ. Given a representation π of B there exists a (not necessarily unique) representation 
ρ of A with π ≤ ρ (see for example [10, Proposition 2.10.2]). Moreover, if π is irreducible, then ρ can be 
chosen to be irreducible. If I is an ideal of A, then the map [π] → [π|I ] defines a homeomorphism between 
{[π] : π ∈ Irr(A), π(I) �= 0} and Î (see for example [10, Proposition 3.2.1]). We will use this map to identify 
Î with the open subset {[π] : π ∈ Irr(A), π(I) �= 0} of Â.

Let X be a right Hilbert A-module and let π : A → B(Hπ) be a representation. We may view X as a 
C∗-correspondence from L(X) to A, and Hπ as a C∗-correspondence from A to C. The corresponding tensor 
product, which we denote by X ⊗π Hπ is a C∗-correspondence from L(X) to C. In other words, X ⊗π Hπ

is a Hilbert space and we have the representation

X -Ind(π) : L(X) → B(X ⊗π Hπ) where X -Ind(π)(a)(x⊗π h) = (ax) ⊗π h ,

for every a ∈ L(X) and x ⊗π h ∈ X ⊗π Hπ. This defines the inducing functor X -Ind = X -IndL(X)
A , cf. 

[53]. Since X is an equivalence K(X)-〈X, X〉-bimodule [53, Proposition 3.8], the map [π] �→ [X -Ind(π)]
restricts to a homeomorphism [X -Ind] from 〈̂X,X〉 onto K̂(X) (see for example [53, Corollary 3.33]). Since 

we identify 〈̂X,X〉A and K̂(X) with open subsets of Â and L̂(X) respectively, we may view this map as a 

partial homeomorphism from Â to L̂(X).

Definition 2.6. Let X be a right Hilbert A-module. The map dual to X is the partial homeomorphism 
[X -Ind] : Â → L̂(X) constructed above.

Let X∗ be the Hilbert K(X)-module adjoint to X (see for example [53, page 49]). Then X∗ is naturally an 

equivalence 〈X, X〉A-K(X)-bimodule, defining a partial homeomorphism [X∗ -Ind] : L̂(X) → Â with domain 

K̂(X) and range 〈̂X,X〉A, such that the restriction K̂(X)[X
∗ -Ind]〈̂X,X〉A

is the inverse of 〈̂X,X〉A
[X -Ind]K̂(X)

(cf. [53, Theorem 3.29]. We therefore often write [X -Ind]−1 for [X∗ -Ind].

Lemma 2.7. Suppose that ψ = (ψ0, ψ1) is a representation of a C∗-correspondence X over A on a Hilbert 
space H. Let π ≤ ψ0 be a representation of A. The map ψ1(x)h �→ x ⊗π h extends to a unitary U :
ψ1(X)Hπ → X ⊗π Hπ such that

ψ(1)(T )|ψ1(X)Hπ
= U∗(X -Ind(π)(T ))U, T ∈ L(X).

In particular, L(X) � T → ψ(1)(T )|ψ1(X)Hπ
, is a representation which is equivalent to X -Ind(π).

Proof. This is straightforward, see for instance [31, Lemma 1.3] or [39, Lemma 4.10]. �
3. Non-triviality conditions for multivalued maps and directed graphs

The aim of the present section is to clarify relationships between various nontriviality conditions for 
multivalued maps and graphs. The notion of topological aperiodicity was introduced in the context of 
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semigroups of multivalued maps in [39, Definition 5.3]. We recall the corresponding condition for a single 
multivalued map, see [39, Proposition 5.5.iii)].

Definition 3.1. We say that a multivalued map f : V → V defined on a topological space is topologically 
aperiodic if for every n > 0 the set {v ∈ V : v ∈ fn(v)} has empty interior in V (here fn stands for n-times 
composition of the multivalued map f).

Multivalued maps can be viewed as directed graphs without multiple edges. More specifically, by a graph 
from V to W we mean a triple E = (E1, s, r) where E1 is a set, whose elements are called edges, and 
s : E1 → V and r : E1 → W are maps, indicating a source and a range of an edge. Sets s(E1) and r(E1) are 
called, respectively, the domain and the range of the graph E. We define a multiplicity of a pair of vertices 
(w, v) ∈ W × V to be the cardinality mE

w,v of the set {e ∈ E1 : r(e) = w, s(e) = v} = r−1(w) ∩ s−1(v). 
We say that E = (E1, s, r) has no multiple edges if every (w, v) ∈ W × V has multiplicity at most one. 
We say that two graphs E = (E1, r, s) and F = (F 1, r′, s′) from V to W are equivalent, written E ∼ F , if 
there is a bijection Φ : E1 → F 1 such that s′ ◦ Φ = s and r′ ◦ Φ = r. Clearly, two graphs are equivalent if 
and only if the corresponding multiplicities coincide: mE

w,v = mF
w,v for all (w, v) ∈ W × V . In other words, 

up to equivalence, a directed graph is given by a matrix {mv,w}v∈V,w∈W of cardinal numbers. Obviously, 
given any such matrix M = {mv,w}v∈V,w∈W there is a graph EM = (E1, r, s) whose multiplicities coincide 
with M .

Now, if f : V → W is a multivalued map then we may associate to it a directed graph Ef := ({(w, v) ∈
W × V : w ∈ f(v)}, r, s) where r(w, v) := w and s(w, v) := v. Clearly, Ef has no multiple edges and f(v) =
r(s−1(v)). Conversely, for every directed graph E = (E1, r, s) from V to W the formula fE(v) := r(s−1(v)), 
v ∈ V , defines a multivalued map fE : V → W . We have E ∼ EfE if and only if E has no multiple edges.

In case V = W , we will usually write E0 = V = W and E = (E0, E1, s, r), and call E a self-graph, a 
directed graph, or a graph with vertex set E0. In this case, for n = 2, 3, ..., we define the space En of paths 
with length n by

En := {(en, . . . , e2, e1) ∈ E1 × ...E1 × E1 : r(ek) = s(ek+1) for all 0 < k < n}.

Then (E0, En, rn, sn) where rn(en, . . . , e2, e1) := r(en) and sn(en, . . . , e2, e1) := s(e1), is a directed graph. 
We define the space E∞ of infinite paths and the map r∞ : E∞ → E0 in an obvious way. Let e =
(en, . . . , e2, e1) ∈ En be a finite path. We call the vertices s(e1) and r(ek), k = 1, ..., n, the base points of 
e. We say, after [26, Definition 5.5], that the path e non-returning if ek �= e1 for every k = 2, ..., n. A path 
e = (en, . . . , e2, e1) ∈ En is a cycle if r(en) = s(e1). If e = (en, . . . , e1) is a cycle, we say that e has no 
entrances if r−1(r(ek)) = {ek} for every k = 1, . . . , n. For any subsets V, W ⊆ E0 we define the restricted 
graph WEV to be the graph from V to W with the set of edges WE1

V := {e ∈ E1 : s(e) ∈ V and r(e) ∈
W} = s−1(V ) ∩ r−1(W ), and source and range maps being s|V and r|W . The following definition is an 
obvious generalization of [26, Definition 5.4], cf. [27, Proposition 6.12].

Definition 3.2. Let E = (E0, E1, r, s) be a directed graph whose set of vertices E0 is a topological space. We 
say that E is topologically free if for every n > 0 the set of base points of cycles of length n which have no 
entrances has empty interior. More generally, let U be an open subset of E0. We say that E is topologically 
free on U if for every n > 0 the set of base points of cycles in (UEU )n which have no entrances in the initial 
graph E has empty interior.

In the proof of uniqueness theorem we will use a slightly stronger version of the above condition. We say 
that the set V has a past in the restricted graph UEU if r−n(V ) ⊆ (UEU )n for every n ≥ 0.
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Definition 3.3. Let E = (E0, E1, r, s) be a directed graph where E0 is a topological space. Let U be an open 
subset of E0. We say that E is strongly topologically free on U if for every non-empty open set V ⊆ r∞(E∞)
that has a past in UEU , and for every n > 0 there is a non-returning path e ∈ r−m(V ) with m ≥ n. We say 
that E is strongly topologically free if it is strongly topologically free on U = E0.

Example 3.4. Consider a multivalued map f : V → V where V = {v0, v1} is equipped with the topology 
τ = {∅, V, {v0}}, and f(v1) = V and f(v0) = ∅. The corresponding graph Ef is topologically free because 
{v1} has empty interior, but E is not strongly topologically free because every path of length n > 2 that 
ends in {v0} is returning.

Fortunately, the two notions of topological freeness coincide for continuous graphs:

Definition 3.5. We say that a graph E is continuous if the set of vertices E0 is a topological space and the 
associated multivalued map r ◦ s−1 : E0 → E0 is continuous, that is for every open set V ⊆ E0 the set 
E−1(V ) := s(r−1(V )) is open in E0.

Note that if E is continuous then for every n > 0 the graph (E0, En, rn, sn) is continuous. Topological 
graphs considered by Katsura [26] and the graphs underlying topological quivers [45] are continuous.

Lemma 3.6. Let E = (E0, E1, r, s) be a directed graph such that E0 is a topological space. Let U be an open 
subset of E0. Consider the following conditions:

(i) E is strongly topologically free on U ;
(ii) E is topologically free on U .

Then (i)⇒(ii). If UEU is continuous,1 then (i)⇔(ii).

Proof. (i)⇒(ii). Suppose E is not topologically free on U . Then there are n > 0 and a non-empty open set 
V consisting of base points of cycles in (UEU )n without entrances in E. Clearly, V ⊆ r∞(E∞) has a past 
in UEU and every e ∈ r−m(V ) with m ≥ n + 1 is returning.

(ii)⇒(i). Assume, for contradiction, that there are n > 0 and a non-empty open set V ⊆ r∞(E∞) such 
that every path in E that ends in V is a path in UEU , and every path e ∈ r−m(V ) with m ≥ n is returning 
(necessarily in UEU ). By the proof of [26, Lemma 5.9] we get that for every (en, . . . , e1) ∈ r−n(V ), there is 
k0 with 2 ≤ k0 ≤ n such that (ek0 , . . . , e1) is a cycle without entrances in UEU (and hence also necessarily 
in E). Thus, using continuity of UEU , we see that sn(r−n(V )) is a non-empty open set that consists of base 
points of cycles in UEU , of length (n − 1)!, without entrances in E. �

Both version of topological freeness of E on U depend only on the restriction of E to the union of U with 
E−1(U) = s(r−1(U)):

Lemma 3.7. Let E = (E0, E1, r, s) be a directed graph where E0 is a topological space. Let U ⊆ E0 be an 
open set. The graph E is (strongly) topologically free on U if and only if its restriction to U ∪ E−1(U) is 
(strongly) topologically free on U .

Proof. For topological freeness it suffices to note that a cycle in (UEU )n has an entrance in E if and only 
if it has an entrance in U∪E−1(U)EU∪E−1(U). For strong topological freeness note that a set V ⊆ U has the 

1 In fact it suffices to assume that UEU is “quasi-continuous” in the sense that for every open V ⊆ U , if UE−1
U (V ) = s(r−1(V ))

is non-empty, then it has a non-empty interior.
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past in UEU treated as a restriction of E if and only if it has the past in UEU treated as the restriction of 
U∪E−1(U)EU∪E−1(U). �

Now we explain the relationship between topological freeness for graphs and topological aperiodicity for 
multivalued maps. In addition we will introduce yet another condition for multivalued maps which will also 
be useful.

Lemma 3.8. Let E = (E0, E1, r, s) be a directed graph such that E0 is a topological space. Let U be an open 
subset of E0. Consider the following conditions:

(i) the restricted multivalued map U(r ◦ s−1)U is topologically aperiodic;
(ii) for every non-empty open set V ⊆ r∞((UEU )∞) and every n > 0 there is v ∈ V such that for every 

path (en, ..., e1) ∈ r−n(v) ∩ (UEU )n we have v = r(en) �= s(ek) for every k = 1, ..., n;
(iii) for every non-empty open set V ⊆ r∞(E∞) that has the past in UEU , and every n > 0 there is a path 

(en, ..., e1) ∈ r−n(V ) such that r(en) �= s(ek) for every k = 1, ..., n;
(iv) E is topologically free on U .

Then (i)⇔(ii)⇒(iii)⇒(iv). If r : UE
1 → U is injective, then (iv)⇒(i). If s : UE

1
U → U is injective, then 

(iv)⇒(iii).

Proof. (ii)⇒(i). Assume that U (r ◦ s−1)U is not topologically aperiodic. Then there are a non-empty open 
set V ⊆ U and n > 0 such that every v ∈ V is a starting point of a cycle ev in UEU of length not greater 
than n. This implies that V ⊆ r∞((UEU )∞) and for each v ∈ V we may extend the cycle ev to a path of 
the form eve ∈ r−n(v) ∩ (UEU )n. Since r(ev) = s(ev) = v, we see that (ii) fails.

(i)⇒(ii). Assume that (ii) fails. Let V ⊆ r∞((UEU )∞) be a non-empty open set and let n > 0 be such 
that for every v ∈ V there exists a path (en, ..., e1) ∈ r−n(v) ∩ (UEU )n with v = r(en) = s(ek) for some 
k = 1, ..., n. This implies that every point in V is a starting point of cycle in (UEU )n!. Hence (i) fails.

(ii)⇒(iii). This obvious.
(iii)⇒(iv). Assume that E is not topologically free. Let n > 0 and let V ⊆ r∞(E∞) be a non-empty 

open set that has a past in UEU and every path e ∈ r−m(V ) with m ≥ n is returning. By the proof 
of [26, Lemma 5.9] we get that for every (en, . . . , e1) ∈ r−n(V ), there is k0 with 2 ≤ k0 ≤ n such that 
(ek0 , . . . , e1) is a cycle without entrances in UEU (and hence also necessarily in E). This implies that for 
every (en+1, . . . , e1) ∈ r−(n+1)(V ) we have r(en+1) �= s(ek) for some k = 1, ..., n.

Let V be a non-empty open set consisting of base points of cycles in (UEU )n without entrances in E. 
Then V ⊆ r∞(E∞) has a past in UEU and for every path (en, ..., e1) ∈ r−n(V ) we have r(en) = s(e1).

(iv)⇒(i). Suppose that r : UE
1 → U is injective. Then every cycle in E that ends in U has no entrances. 

Thus E is topologically free on U if and only if for every n > 0 the set of base points of cycles in (UEU )n

has empty interior. The latter is clearly equivalent to topological aperiodicity of U(r ◦ s−1)U . This shows 
(iv)⇒(i).

(iv)⇒(iii). Suppose that s : UE
1
U → U is injective and assume that (iii) does not hold. Let V ⊆ r∞(E∞) be 

a non-empty open set which has a past in UEU , and let n > 0 be such that for every path (en, ..., e1) ∈ r−n(V )
we have r(en) = s(ek) for some k = 1, ..., n. Thus V consists of base points of cycles (of period n!). We claim 
that these cycles have no entrances. Indeed, let v ∈ V and let k = 1, ..., n be the smallest number for which 
there is a cycle μv := (en, ..., ek) in E with v = r(en) = s(ek) (then μv is necessarily a cycle in UEU ). Assume 
on the contrary that (en, ..., ek) has an entrance, that is for some k′ = 1, ..., k, there is e′k′ �= ek′ in r−1(r(ek′)). 
By our assumption the path (en, ..., ek−1, e′k′) can be extended to a cycle μ′

v := (en, ..., ek−1, e′k′ , e′k′+1, ..., e
′
l)

in UEU , l′ ≤ n. However, since s : UE
1
U → U is injective, every path in UEU is determined by its length 



T.M. Carlsen et al. / J. Math. Anal. Appl. 473 (2019) 749–785 759
and starting point. We see that either μv = μ′
v or μ′

v is a concatenation of a number of cycles μv. In both 
cases we get e′k′ = ek′ , a contradiction. �
Definition 3.9. Let f : W → W be a multivalued map on a topological space W . Let U be an open subset 
of W . We say that f is weakly topologically aperiodic on U if the graph Ef associated to f satisfies condition 
(iii) in Lemma 3.8. We say that f is topologically aperiodic on U if UfU : U → U is topologically aperiodic.

The following example illustrates the relationships between weak topological aperiodicity, topological 
aperiodicity, and topological freeness.

Example 3.10. Let ϕ : Δ → V be an ordinary map defined on a subset Δ ⊆ V of a topological space V . 
Treating ϕ−1 as a multivalued map the corresponding graph Eϕ−1 is given by putting E1

ϕ−1 := {(x, y) : x ∈
ϕ−1(y)}, r(x, y) := x and s(x, y) := y. Note that r : E1

ϕ−1 → Δ is injective. In view of Lemma 3.8, for any 
open U ⊆ V , we get

ϕ is topologically aperiodic on U ⇐⇒ ϕ−1 is topologically aperiodic on U

⇐⇒ the graph Eϕ−1 is topologically free on U.

Treating ϕ as a multivalued map the associated graph Eϕ is given by putting E1
ϕ := {(ϕ(x), x) : x ∈ Δ}, 

r(y, x) := y and s(y, x) := x. Note that the source map s is injective. Recall after [32, Definition 4.8], see also 
[33, Definition 2.37], that ϕ is topologically free outside a set Y ⊆ V if the set of periodic points whose orbits 
do not intersect Y and have no entrances have empty interior (a periodic orbit O = {x, ϕ(x), ..., ϕn−1(x)} of 
a periodic point x = ϕn(x) has an entrance if there is y ∈ Δ \O such that ϕ(y) ∈ O). In view of Lemma 3.8, 
for any open U ⊆ V , we get

ϕ is weakly topologically aperiodic on U ⇐⇒ the graph Eϕ is topologically free on U

⇐⇒ ϕ is topologically free outside V \ U.

Let us restrict to the case where V = {v0, v1} is a discrete space. If Δ = V and ϕ(V ) = v1, then ϕ is weakly 
topologically aperiodic but is not topologically aperiodic on V . If f : V → V is a multivalued map such 
that f(v1) = V and f(v0) = {v1}, then f is not weakly topologically aperiodic on V but the corresponding 
graph Ef is topologically free.

4. Multivalued maps dual to C∗-correspondences

Let α : A → B be a ∗-homomorphism between two C∗-algebras A and B. Following [39, Definition 4.1]
we define the multivalued map α̂ : B̂ → Â dual to α by the formula

α̂([ρ]) := {[π] ∈ Â : π ≤ ρ ◦ α}, [ρ] ∈ B̂.

Lemma 4.1 (Proposition 4.2 in [39]). Let α̂ : B̂ → Â be the multivalued map dual to a ∗-homomorphism 
α : A → B. Then

α̂(B̂) = Â \ k̂erα and α̂−1(Â) ⊆ ̂Bα(A)B.

In particular, α̂ is onto Â if and only if α is injective. Moreover, if B is liminal, then α̂−1(Â) = ̂Bα(A)B
and α̂ is continuous.
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The following definition is a generalization of [39, Definition 4.4], originally formulated for regular 
C∗-correspondences.

Definition 4.2. Let A and B be C∗-algebras, and let X : A → B be a C∗-correspondence from A to B with 
left action φX : A → L(X). We define the multivalued map X̂ : B̂ → Â dual to X as the composition of 
multivalued maps φ̂X ◦ [X -Ind], cf. Definition 2.6.

It follows from the definition that the multivalued map X̂ is given by the formula

X̂([ρ]) := {[π] ∈ Â : π ≤ X -Ind(ρ) ◦ φX}, [ρ] ∈ B̂.

Lemma 4.3. Let A and B be C∗-algebras. Let X : A → B be a C∗-correspondence, and let X̂ : B̂ → Â be 
the associated dual multivalued map. Given an ideal I in A and an ideal J in B, the following statements 
hold:

(i) IX is a C∗-correspondence from I to B whose dual multivalued map coincides with the restriction ÎX̂.
(ii) XJ is a C∗-correspondence from A to J whose dual multivalued map coincides with the restriction X̂Ĵ .
(iii) IXJ is a C∗-correspondence from I to J whose multivalued map coincides with the restriction ÎX̂ Ĵ .

Proof. (i). Let ρ ∈ Irr(B) and π ∈ Irr(A) be such that π ≤ X -Ind(ρ) ◦ φX . If π(I) �= 0, then by the 
irreducibility of π(I), we have Hπ = φX(I)Hπ ⊆ IX ⊗ρHρ. Thus, [π] ∈ ÎX([ρ]) if and only if [π] ∈ ÎX̂([ρ]).

(ii). Let π ∈ Irr(A) and ρ ∈ Irr(J) be such that π ≤ X -Ind(ρ) ◦ φX . Then X ⊗ρ Hρ = X ⊗ρ ρ(J)Hπ =
XJ ⊗ρ Hρ, which gives the assertion.

(iii). It follows from (i) and (ii). �
For the sake of simplicity, in the remainder of this section we only consider C∗-correspondences over A

(though the following facts could be easily extended to C∗-correspondences from A to B).
The following lemma is a generalization of [39, Proposition 4.5].

Lemma 4.4. Let X be a C∗-correspondence over A and let X̂ : Â → Â be the multivalued map dual to X.

(i) We have Ĵ(X) \ k̂erφX ⊆ X̂(Â) ⊆ Â \ k̂erφX . In particular, the range of X̂ contains ĴX .
(ii) For any ideal J in A we have X̂−1(Ĵ) ⊆ X̂(J). Moreover, if X(J) is liminal and J ⊆ J(X), then 

X̂−1(Ĵ) = X̂(J).

Proof. (i). By Lemma 4.1, the range of φ̂X is Â \ k̂erφX , and hence the range of X̂ = φ̂X ◦ [X -Ind] is 
contained in Â \ k̂erφX too. Now let π ∈ Irr(J(X)) such that π(kerφX) = 0, that is [π] ∈ Ĵ(X) \ k̂erφX . 
By [10, Proposition 3.2.1], π factors to an irreducible representation π̃ ∈ Irr(J(X)/ kerφX), and since 

φX factors to an isomorphism φ̃X : J(X)/ kerφX → φX(J(X)) ⊆ K(X), we get that π̃ ◦ φ̃X
−1 is an 

irreducible representation of φX(J(X)). Extending π̃ ◦ φ̃X
−1 to an irreducible representation π̄ of K(X), 

so that π̃ ◦ φ̃X
−1 ≤ π̄, and applying φ̃X , we have π̃ ≤ π̄ ◦ φ̃X . But then π ≤ π̄ ◦ φX . Thus, if we define 

ρ := X∗ -Ind(π̄) we get [π] ∈ X̂([ρ]). Hence [π] ∈ X̂(Â).
(ii). Let π, ρ ∈ Irr(A) with π ≤ X -Ind(ρ) ◦ φX , that is [π] ∈ X̂([ρ]), and suppose that [π] ∈ Ĵ . So 

π(J) �= 0. This implies that 0 �= π(J)Hπ ⊆ φX(J)X ⊗ρ Hρ, and hence 0 �= 〈φX(J)X ⊗ρ Hρ, φX(J)X ⊗ρ

Hρ〉 = 〈Hρ, ρ(〈φX(J)X, φX(J)X〉A)Hρ〉 = 〈Hρ, ρ(X(J))Hρ〉. Therefore, ρ(X(J)) �= 0, and this shows that 
[ρ] ∈ X̂(J).

Now assume that X(J) is liminal and J ⊆ J(X). Let ρ ∈ Irr(A) be such that ρ(X(J)) �= 0, that is 
[ρ] ∈ X̂(J). Note that JX establishes Morita equivalence between K(JX) and X(J) = 〈JX, JX〉A. Hence 
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K(JX) is liminal, cf. [22], and therefore JX -Ind(ρ)(K(JX)) = K(JX ⊗ρ Hρ). The inclusion φX(J) ⊆
K(X) implies that in fact φX(J) ⊆ K(JX). Since X -Ind(ρ)(K(JX))|JX⊗ρHρ

= JX -Ind(ρ)(K(JX)) and 
X -Ind(ρ) ◦φX(J) vanishes on the orthogonal complement of JX⊗ρHρ, we see that X -Ind(ρ) ◦φX(J) consists 
of compact operators. Accordingly, by [10, 5.4.13], the representation X -Ind(ρ) ◦φX contains an irreducible 
subrepresentation π of A with π(J) �= 0, that is [π] ∈ Ĵ . Thus, [π] ∈ X̂([ρ]), and hence [ρ] ∈ X̂−1(Ĵ), as 
desired. �
Remark 4.5. In general, the range of X̂ is not equal to Ĵ(X) \ k̂erφX . Consider for instance an infinite 

dimensional space H as a C∗-correspondence over C. Then Ĵ(X) = ∅ �= [1C] = r(X̂1).

Corollary 4.6. Let X be a C∗-correspondence over A and let J be an ideal in JX . Consider the multivalued 
map Ŷ dual to the C∗-correspondence Y := JXJ over the C∗-algebra J . If X(J) is liminal, then Ŷ is 
continuous.

Proof. Let I be an ideal in J . Since X(I) ⊆ X(J) is liminal, we have X̂−1(Î) = X̂(I) by Lemma 4.4(ii). 
Hence in view of Lemma 4.3 we get Ŷ −1(Î) = X̂−1(Î) ∩ Ĵ = X̂(I) ∩ Ĵ = Ŷ (I). �
Corollary 4.7. Let X be a C∗-correspondence over A and let J be an ideal of A. If J is positively X-invariant, 
then Ĵ is negatively invariant with respect to X̂. If X(J) is liminal and J ⊆ J(X), then J is a positively 
X-invariant if and only if Ĵ is negatively X̂-invariant.

Proof. If J is a positively invariant ideal of A, then X̂(J) ⊆ Ĵ . Hence X̂−1(J) ⊆ X̂(J) ⊆ Ĵ by Lemma 4.4(ii). 
If we assume that X(J) is liminal, J ⊆ J(X) and Ĵ is negatively invariant with respect to X̂, then by 

Lemma 4.4(ii) we have X̂(J) = X̂−1(Ĵ) ⊆ Ĵ . Therefore, X(J) is contained in J . �
The following proposition is a generalization of [39, Proposition 4.6].

Proposition 4.8. Let X and Y be two C∗-correspondences over a C∗-algebra A, and let ⊗1X : L(Y ) →
L(Y ⊗ X) be the ∗-homomorphism defined by T → T ⊗ 1X for T ∈ L(Y ). Then the following diagram of 
multivalued maps commute:

Â
[(Y⊗X) -Ind]

X̂

̂L(Y ⊗X)

⊗̂1X

Â
[Y -Ind]

L̂(Y )

. (3)

Moreover, if J is an ideal of JX then X̂−1( ̂〈Y J, Y J〉A) ⊆ ̂〈Y J ⊗X,Y J ⊗X〉A, and the diagram (3) restricts 
to the following commutative diagram:

̂〈Y ⊗X,Y ⊗X〉A
[(Y⊗X) -Ind]

X̂

̂K(Y ⊗X)

⊗̂1X

̂〈Y J, Y J〉A
[Y -Ind]

K̂(Y J)

, (4)

where the vertical multivalued maps are surjective, and the horizontal arrows are homeomorphisms.
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Proof. First we describe the multivalued maps E := [Y -Ind] ◦ X̂ and F := ⊗̂1X ◦ [(Y ⊗X) -Ind] acting from 

Â to (subsets of) L̂(Y ). For each ρ ∈ Irr(A) we have

E([ρ]) = {[Y -Ind(π)] : π ∈ Irr(A), π ≤ X -Ind(ρ) ◦ φX and π(〈Y, Y 〉A) �= 0},

and

F ([ρ]) = {[σ] : σ ∈ Irr(L(Y )), σ ≤ (Y ⊗X) -Ind(ρ) ◦ 1X}.

We need to show that E([ρ]) = F ([ρ]). To this end, let [Y -Ind(π)] ∈ E([ρ]). Then

Y -Ind(π) ≤ Y -Ind(X -Ind(ρ) ◦ φX).

It is straightforward to check that Y -Ind(X -Ind(ρ) ◦φX) = (Y ⊗X) -Ind(ρ) ◦1X as representation of L(Y ). 
Thus, Y -Ind(π) ≤ (Y ⊗X) -Ind(ρ) ◦ 1X , and hence [Y -Ind(π)] ∈ F ([ρ]).

Conversely, let [σ] ∈ F ([ρ]). Since σ ≤ (Y ⊗X) -Ind(ρ) ◦ (⊗1X), we see that Hσ is a closed subspace of 
Y ⊗X ⊗Hρ such that (T ⊗ 1X ⊗ 1Hρ

)(Hσ) ⊆ Hσ for every T ∈ L(Y ). Since K(Y ) ⊆ L(Y ) acts transitively 
on Y , it follows that

Hπ : = {h ∈ X ⊗Hρ : y ⊗ h ∈ Hσ for some y ∈ Y }
= {h ∈ X ⊗Hρ : y ⊗ h ∈ Hσ for all y ∈ Y }

is a closed subspace of X ⊗Hρ such that Y ⊗Hπ = Hσ and φX(〈Y, Y 〉A)Hπ = Hπ. Define π : A → B(Hπ)
by π(a)h = X -Ind(ρ)(φX(a))h. Then π is a representation of A and π ≤ X -Ind(ρ) ◦ φX . Let T ∈ L(Y ), 
y ∈ Y , and h ∈ Hπ. Since σ ≤ (Y ⊗X) -Ind(ρ) ◦ (⊗1X) and Hπ ⊆ X ⊗Hρ, we have

Y -Ind(π)(T )(y ⊗ h) = Ty ⊗ h = σ(T )(y ⊗ h).

Because Y ⊗ Hπ = Hσ, this shows that Y -Ind(π) = σ. Since Y -Ind(π) = σ, Y -Ind(π) is irreducible. 
Since Y is a K(Y ) − 〈Y, Y 〉A-imprimitivity bimodule, π is irreducible on 〈Y, Y 〉A. So π is irreducible. Hence 
[σ] = [Y -Ind(π)] ∈ E([ρ]). Thus the diagram (3) commutes.

Now, let J be an ideal in JX . The map ⊗1X : K(Y J) → K(Y ⊗X) is injective by Lemma 2.3(ii). Hence the 

dual multivalued map ̂K(Y ⊗X) ⊗̂1X→ K̂(Y J) is surjective, by Lemma 4.1. Since Ĵ ⊆ ĴX ⊆ Ĵ(X)\ k̂erφX , it 
follows from Lemma 4.4 (i) that the multivalued map X̂ : Â−→Ĵ is surjective. According to Lemma 4.4 (ii) 
the domain of X̂ : Â −→ ̂〈Y J, Y J〉A is contained in the spectrum of X(Y (J)) = 〈X, φX(〈Y J, Y J〉A)X〉A =
〈Y J⊗X, Y J⊗X〉A. Since 〈Y J, Y J〉A ⊆ J , the surjective multivalued map X̂ : Â−→Ĵ restricts to a surjective 

multivalued map X̂ : ̂〈Y ⊗X,Y ⊗X〉A −→ ̂〈Y J, Y J〉A. Since ̂〈Y ⊗X,Y ⊗X〉A
[(Y⊗X) -Ind]−→ ̂K(Y ⊗X) and 

̂〈Y J, Y J〉A
[Y -Ind]−→ K̂(Y J) are homeomorphisms, we see that (3) restricts to the commutative diagram (4), 

with arrows having the desired properties. �
5. Dual graphs to C∗-correspondences

Let X be a C∗-correspondence from A to B. We will now adjust the construction of the dual multivalued 
map X̂, by counting the multiplicities of the corresponding subrepresentations. In order to do that we will 
assume that A is of Type I, as for such C∗-algebras a convenient multiplicity theory is available.

We will construct the graph EX dual X by specifying its multiplicities on the set of vertices Â. Thus 
EX will be determined only up to equivalence. Let ρ ∈ Irr(A). Consider the representation σ : A → B(Hσ)
where σ := X -Ind(ρ) ◦ φX and Hσ := X ⊗ρ Hρ. Since A is of type I, cf. e.g. [10, Proposition 5.4.9], there 
is a unique, up to permutation, family of mutually orthogonal projections {Ej}j∈J ⊆ B(Hσ) such that
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a) projections Ej belong to the center of σ(A)′ and sum up to identity on Hσ;
b) the subrepresentations σj of σ corresponding to the Ej are mutually disjoint;
c) σj is of multiplicity mj ;
d) the cardinals mj ’s are mutually distinct.

Now, let [π] ∈ Â. If there are no subrepresentation of σ equivalent to π, we put mX
[π],[ρ] := 0. If there is 

an irreducible subrepresentation π′ ∼= π of σ, then there is a unique j ∈ J such that π′ ≤ σj . Since σj has 
multiplicity mj , it follows, cf. [10, Proposition 5.4.7], that there are mj mutually orthogonal representations 
πi such that [πi] = [π], ⊕iπ

i ≤ σ and there are no subrepresentations of σ� (⊕iπ
i) equivalent to π. In this 

case we put mX
[π],[ρ] := mj . Note that the above description of cardinals mX

[π],[ρ] does not depend on the 
choice of a representative of [ρ], and thus they are well defined.

Definition 5.1. Let X be a C∗-correspondence over a C∗-algebra A of Type I to a C∗-algebra B. By a graph 
dual to X we mean a graph EX from B̂ to Â with multiplicities {mX

[π],[ρ]}[π]∈Â,[ρ]∈B̂ defined as above.

Remark 5.2. If EX = (E1
X , r, s) is a graph dual to a C∗-correspondence X from A to B, then the associated 

multivalued map coincides with the multivalued map dual to X from B̂ to Â. That is, we have X̂([π]) =
r(s−1([π])) for every [π] ∈ B̂. Moreover, given ideals I in A and J in B, similarly as in Lemma 4.3, we 
see that the graph dual to the restricted C∗-correspondence IXJ from I to J can be identified with the 
restriction of EX to the graph from Ĵ to Î, i.e. EIXJ = Î(EX)Ĵ .

In the discussion preceding Definition 5.1 the cardinals mX
[π],[ρ] are uniquely determined by the equivalence 

classes [π] and [ρ]. However, the decomposition ⊕iπ
i of a subrepresentation of σ into the mX

[π],[ρ]-number of 
copies of π is not unique even for the fixed representatives. In order to have a control over the choice of the 
corresponding decompositions we will use the map Q in the following proposition. This map takes values in 
the von Neumann enveloping C∗-algebra K(X)′′ of K(X).

Lemma 5.3. Let X be a C∗-correspondence over a C∗-algebra A. If J is an ideal in JX such that X(J) is 
of Type I (resp. liminal), then J is of Type I (resp. liminal).

Proof. Since JX is an K(JX)-X(J)-equivalence bimodule, we get that K(JX) is of Type I (resp. liminal). 
Thus J is of Type I (resp. liminal) because φX : J → K(JX) is an injective homomorphism and being of 
Type I (resp. liminal) passes to subalgebras. �
Proposition 5.4. Let X be a C∗-correspondence over a C∗-algebra A. Let J be an ideal in JX . Suppose 
that X(J) is of Type I, so that the graph EY = (Ĵ , E1, r, s) dual to Y := JXJ is well defined by 
Lemma 5.3. There is a map Q : E1

Y → K(X)′′ such that for any ρ ∈ Irr(A) with ρ(J) �= 0, the family 
{X -Ind(ρ)′′(Qe)}e∈s−1([ρ]) ⊆ B(X ⊗ρ Hρ) consists of mutually orthogonal projections and

X ⊗ρ Hρ = H0 ⊕
⊕

e∈s−1([ρ])

X -Ind(ρ)′′(Qe)(X ⊗ρ Hρ) (5)

where the space X -Ind(ρ)′′(Qe)(X⊗ρHρ), for e ∈ s−1([ρ]), is irreducible for X -Ind(ρ) ◦φX(J) and the equiv-
alence class of the corresponding representation of J is [r(e)], and H0 does not contain non-zero irreducible 
subspace for X -Ind(ρ) ◦ φX(J).

Proof. Let ρ ∈ Irr(A) with ρ(J) �= 0. Note that X ⊗ρ Hρ = X ⊗ρ ρ(J)Hρ = XJ ⊗ρ Hρ, and hence 
JX ⊗ρ Hρ = Y ⊗ρ Hρ. As JX is an K(JX)-X(J)-equivalence bimodule it follows that X -Ind(ρ)(K(JX))
acts on JX ⊗ρ Hρ = Y ⊗ρ Hρ in an irreducible way. In particular, Y ⊗ρ Hρ is non-zero if and only if 
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ρ(X(J)) �= 0. If ρ(X(J)) = 0, then [ρ] is a source in EY , i.e. s−1([ρ]) = ∅, and we get (5) by interpreting 
the empty sum as zero.

Assume then that ρ(X(J)) �= 0. The algebra K(JX) is of Type I because X(J) is of Type I. Hence 
X -Ind(ρ)(K(JX)) ⊇ K(Y ⊗ρ Hρ). This implies that X -Ind(ρ)′′(K(JX)′′) = B(Y ⊗ρ Hρ). Since φX(J) ⊆
K(JX) we conclude that X -Ind(ρ) ◦ φX(J) acts as zero on the orthogonal complement of Y ⊗ρ Hρ and 
σ := X -Ind(ρ) ◦φX |J : J → B(Y ⊗ρHρ) is a non-degenerate representation. Decomposing σ into irreducible 
parts we get a family of mutually orthogonal projections {Pe}e∈s−1([ρ]) ⊆ σ(J)′ ⊆ B(Y ⊗ρ Hρ) such that σ
compressed to Pe(Y ⊗ρ Hρ) is an irreducible representation whose equivalence class is r(e) ∈ Ĵ . Moreover, 
the orthogonal complement H0 of ⊕e∈s−1([ρ])Pe(Y ⊗ρ Hρ) in X ⊗ρHρ has no irreducible subrepresentations 
for X -Ind(ρ) ◦ φX(J).

For e ∈ s−1([ρ]) we may find a positive element Qe ∈ K(JX)′′] ⊆ K(X)′′ such that X -Ind(ρ)′′(Qe) = Pe. 
In this way we get operators satisfying (5). In particular, if ρ′ ∼= ρ with the equivalence given by a unitary 
U , then X -Ind(ρ) ∼= X -Ind(ρ′) with the equivalence given by the unitary X -Ind(U) : X⊗ρHρ → X⊗ρ′ Hρ′

where x ⊗ ξ �→ x ⊗ Uξ for x ∈ X and ξ ∈ Hρ. Thus we get a similar decomposition to (5) with ρ replaced 
by ρ′. In other words, the map s−1([ρ]) � e �→ Qe ∈ K(X)′′ is well defined. Gluing together the maps 
corresponding to each [ρ] ∈ Ĵ ⊆ Â we get the desired map defined on E1

Y = �[ρ]∈Ĵ s−1([ρ]). �
We recall, see [56], that if X is a Hilbert A-B-bimodule, then its Banach space bidual X ′′ is a Hilbert 

W ∗-module over the enveloping von Neumann algebras A′′, B′′. In particular, the bidual of a Hilbert 
A-module X is a Hilbert W ∗-bimodule from K(X)′′ to A′′. Moreover, every representation (ψ0, ψ1) of the 
Hilbert A-module X on a Hilbert space H extends to a weakly continuous representation (ψ′′

0 , ψ
′′
1 ) of X ′′

on H and the associated representation of K(X)′′ coincides with the weakly continuous extension ψ(1)′′ of 
the representation ψ(1) of K(X).

Property (iv) in the following lemma will be crucial in the proof of our uniqueness theorem.

Lemma 5.5. Retain the assumption of Proposition 5.4 and let Q : E1
Y → K(X)′′ be the map defined there 

(Y := JXJ). Let ψ = (ψ0, ψ1) be a representation of the C∗-correspondence X on a Hilbert space H and 
let ψ′′ = (ψ′′

0 , ψ
′′
1 ) be the corresponding representation of the dual Hilbert module X ′′ over A′′.

(i) If π ≤ ψ0 is an irreducible subrepresentation of A with π(J) �= 0 ([π] ∈ Ĵ), then the operators 
{ψ(1)′′(Qe)}e∈s−1([π]) restricted to the space ψ1(X)Hπ are mutually orthogonal projections. Moreover,

ψ1(X)Hπ = K ⊕
⊕

e∈s−1([π])

ψ′′
1 (QeX)Hπ

where for each e ∈ s−1([π]) the space ψ′′
1 (QeX)Hπ = ψ(1)′′(Qe)ψ1(X)Hπ is irreducible for ψ0(A) where 

the corresponding representation of A is equivalent to [r(e)] ∈ Ĵ , and K does not contain any non-zero 
irreducible subspaces for ψ0(A).

(ii) If, for i = 1, 2, we have πi ≤ ψ0 with [πi] ∈ Ĵ then ψ′′
1 (QeX)Hπ1 ⊥ ψ′′

1 (QfX)Hπ2 for every e ∈
s−1([π1]), f ∈ s−1([π2]) with e �= f .

(iii) For every n > 0 and π ≤ ψ0 with [π] ∈ Ĵ we have

ψn(X⊗n)Hπ =
⊕

(en,...,e1)∈s−n([π])

ψ′′
1 (QenX)...ψ′′

1 (Qe1X)Hπ ⊕
n−1⊕
i=0

ψi(X⊗i)Kn
i

where Kn
i is a ψ0(A)-invariant subspace which has no non-zero irreducible subspaces for ψ0(J).

(iv) Suppose that π ≤ ψ0 with [π] ∈ Ĵ and (en, ..., e1) ∈ s−n([π]) is a non-returning path, i.e. ek �= e1 for 
k = 2, ..., n. For every k = 1, ..., n − 1 we have
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ψk(X⊗k)ψ′′
1 (QenX)...ψ′′

1 (Qe1X)Hπ ⊥ ψ′′
1 (QenX)...ψ′′

1 (Qe1X)Hπ.

Proof. (i). By Lemma 2.7 we have a unitary U : ψ1(X)H → X ⊗ψ0 H where ψ1(x)h �→ x ⊗ψ0 h. It 
intertwines the representations ψ(1) : L(X) → B(ψ1(X)H) and X -Ind(ψ0) : L(X) → B(X ⊗ψ0 H). Hence 
it also intertwines the corresponding extended representations ψ(1)′′ and X -Ind(ψ0)′′ of L(X)′′. Moreover, 
identifying X ⊗π Hπ with a subspace of X ⊗ψ0 H we have U(ψ1(X)Hπ) = X ⊗π Hπ and therefore U also 
intertwines ψ(1)′′ : K(X)′′ → B(ψ1(X)Hπ) and X -Ind(ψ0)′′ : K(X)′′ → B(X ⊗ψ0 Hπ). Hence the assertion 
follows from Proposition 5.4.

(ii). Let Pπi
be the projection onto Hπi

, i = 1, 2. Projections Pπ1 , Pπ2 belong to the commutant of ψ0(A)
and therefore also of ψ′′

0 (A′′). Hence

(ψ′′
1 (QeX)Pπ1)∗(ψ′′

1 (QfX)Pπ2) = ψ′′
0 (〈QeX,QfX〉A′′)Pπ1Pπ2 .

If [π1] �= [π2], then Pπ1Pπ2 = 0 and in view of above ψ′′
1 (QeX)Hπ1 ⊥ ψ′′

1 (QfX)Hπ2 . If [π1] = [π2] and e �= f , 
then ψ(1)′′(Qe)ψ(1)′′(Qf )ψ1(X)Hπ2 = 0 by part (i). Accordingly ψ′′

1 (QeX)Hπ1 ⊥ ψ′′
1 (QfX)Hπ2 .

(iii). The proof is by induction on n. For n = 1 the assertion follows from (i). If the assertion holds for a 
certain n ≥ 1, then it also holds for n + 1. Indeed, it suffices to note that if H1 and H2 are orthogonal and 
ψ0(A)-invariant subspaces of H, then so are the spaces ψ1(X)H1 and ψ1(X)H2. The latter follows because

〈ψ1(X)H1, ψ1(X)H2〉 = 〈H1, ψ0(〈X,X〉A)H2〉 = 0.

(iv). Let k = 1, ..., n − 1. By part (iii) we see that ψk(X⊗k)ψ′′
1 (QenX)...ψ′′

1 (Qe1X)Hπ is equal to the 
following direct sum

⊕
(en+k,...,e1)∈s−(n+k)([π])

ψ′′
1 (Qen+k

X)...ψ′′
1 (Qe1X)Hπ ⊕

k−1⊕
i=0

ψi(X⊗i)Kk
i

where Kk
i is a ψ0(A)-invariant subspace which has no non-zero irreducible subspaces for ψ0(J), i =

0, 1, ..., k − 1. Note that Kk
i is orthogonal to ψ′′

1 (Qen−i
X)...ψ′′

1 (Qe1X)Hπ because the latter is irreducible 
for ψ0(A). This implies that ψ′′

1 (QenX)...ψ′′
1 (Qe1X)Hπ is orthogonal to each space ψi(X⊗i)Kk

i because

〈ψi(X⊗i)Kk
i , ψ

′′
1 (QenX)...ψ′′

1 (Qe1X)Hπ〉 = 〈Kk
i , ψ

′′
1 (Qen−i

X)...ψ′′
1 (Qe1X)Hπ〉 = 0.

Thus it suffices to show that

∀(en+k,...,en+1)∈s−k([r(en)]) ψ′′
1 (Qen+k

X)...ψ′′
1 (Qe1X)Hπ ⊥ ψ′′

1 (QenX)...ψ′′
1 (Qe1X)Hπ.

However, if assume that this is not true, then by part (ii) there exists (en+k, ..., en+1) ∈ s−k([r(en)]) such 
that (en+k, ..., ek+1) = (en, ..., e1). This contradicts that ek+1 �= e1. �
6. The uniqueness property

Let X be a C∗-correspondence over A, let J be an ideal in JX and let (ψ0, ψ1) be a J-covariant repre-
sentation of X. It is well known, cf. for instance [29, Corollary 11.7], [30, Theorem 9.1] or [24], that if the 
epimorphism ψ0 �J ψ1 : O(J, X) → C∗(ψ) is injective, then necessarily ψ0 is injective and

J = {a ∈ A : ψ0(a) ∈ ψ(1)(K(X))}. (6)
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In fact, ψ0 is injective and satisfies (6) if and only if the representation ψ0 �J ψ1 is faithful on the core 
subalgebra span{j(n)(T ) : T ∈ K(X⊗n), n ∈ N} ⊆ O(J, X), cf. [30, Theorem 7.3] or the proof in [24]. 
Moreover, since we consider the case where J ⊆ JX condition (6) is equivalent to

J = {a ∈ J(X) : ψ0(a) = ψ(1)(φX(a))}, (7)

see [30, Theorem 9.1 (i)]. We note that if J = {0}, then (6) implies injectivity of ψ0. If J = JX then (7) is 
automatically satisfied by any injective covariant representation (ψ0, ψ1), cf. [28, Proposition 3.3]. We are 
interested in the case when these necessary algebraic conditions are also sufficient.

Definition 6.1. Let X be a C∗-correspondence over A and let J be an ideal in JX . We say that the pair 
(X, J) has the uniqueness property if for any injective representation (ψ0, ψ1) of X satisfying (7) the map 
ψ0 �J ψ1 : O(J, X) → C∗(ψ) is an isomorphism.

In this section we gather certain general facts concerning the above property. We start with some useful 
characterizations (which are known to experts).

Lemma 6.2. Let X be a C∗-correspondence over A and let J be an ideal in JX . The following conditions 
are equivalent:

(i) The pair (X, J) has the uniqueness property.
(ii) For every injective representation ψ = (ψ0, ψ1) of X satisfying (7) there is a circle action γ : T →

Aut(C∗(ψ)) determined by γz(ψ0(a)) = ψ0(a) and γz(ψ1(x)) = zψ1(x), for a ∈ A, x ∈ X and z ∈ T.
(iii) For every injective representation ψ = (ψ0, ψ1) of X satisfying (7) there is a linear map Eψ : C∗(ψ) →

span{ψ(n)(T ) : T ∈ K(X⊗n), n ∈ N} such that

Eψ(ψn(x)ψm(y)∗) =
{
ψn(x)ψn(y)∗, n = m,

0, n �= m.

(Then Eψ is necessarily a conditional expectation).
(iv) The C∗-subalgebra jA(A) + j(1)(K(X)) of O(J, X) detects ideals in O(J, X), that is, every non-zero 

ideal K of O(J, X) has non-zero intersection with jA(A) + j(1)(K(X)).
(v) Every non-zero ideal in O(J, X) contains a non-zero gauge-invariant ideal.

Proof. Equivalence (i)⇔(ii) holds by [29, Corollary 11.7], see also [30, Theorem 9.1] or [24]. The implication 
(ii)⇒(iii) is straightforward, as the formula Eψ(b) =

∫
T
γz(b) dz, b ∈ C∗(ψ), gives the desired conditional 

expectation. To see that (iii) implies (i), note that for Eψ as in (iii) and E the corresponding conditional 
expectation on O(J, X) we have Eψ ◦ (ψ0 �J ψ1) = (ψ0 �J ψ1) ◦ E. Thus if a ∈ ker(ψ0 �J ψ1), then 
(ψ0 �J ψ1)(E(a∗a)) = 0. But since (ψ0 �J ψ1) is injective on the range of E, we get E(a∗a) = 0. However, 
E is well known to be faithful. Thus a = 0. Therefore ψ0 �J ψ1 is an isomorphism. In particular Eψ is a 
conditional expectation. We have proved that (i)⇔(ii)⇔(iii).

If K is an ideal in O(J, X) such that K ∩ (jA(A) + j(1)(K(X))) = {0}, then composing (jA, jX) with 
the quotient map O(J, X) → O(J, X)/K we get an injective representation (ψ0, ψ1) of X satisfying (7). 
Moreover, every injective representation (ψ0, ψ1) of X satisfying (7) arises in this way and we have K =
ker(ψ0 �J ψ1). This immediately gives (i)⇔(iv).

It follows from the description of gauge-invariant ideals in O(J, X), see [29, Proposition 11.9], cf. also [33, 
Theorem A.4], that gauge-invariant ideals are exactly those ideals in O(J, X) which are generated by their 
intersection with jA(A) + j(1)(K(X)). In particular, every ideal in O(J, X) which intersects non-trivially 
jA(A) + j(1)(K(X)) contains a non-zero gauge-invariant ideal. This readily gives (iii)⇔(iv). �
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Given two Morita equivalent C∗-correspondences X and Y with the equivalence given by an A-B bimod-
ule M , it is proved in [11, Proposition 4.2] that the Rieffel correspondence A �J �−→ M(J) := 〈M, JM〉B 
B

restricts to an order bijection between the ideals of JX and JY . Moreover, the corresponding relative Cuntz–
Pimsner algebras O(J, X) and O(M(J), Y ) are Morita equivalent, see [11, Theorem 4.4]. An inspection of 
the proof shows that this Morita equivalence sends gauge invariant ideals of O(J, X) to gauge invariant 
ideals of O(M(J), Y ). Thus modulo Lemma 6.2 we get that uniqueness property is preserved under Morita 
equivalence. Namely, we have:

Proposition 6.3. Let X and Y be two C∗-correspondences over A and B respectively, and let J be an ideal 
of JX . Suppose that X and Y are Morita equivalent via an equivalence A-B-bimodule M . Then the pair 
(X, J) has the uniqueness property if and only if (Y, M(J)) has the uniqueness property.

Recall that given a positively X-invariant ideal I in A the space IX is naturally a C∗-correspondence 
over I. The uniqueness property is preserved under restrictions to positively invariant ideals:

Proposition 6.4. Let X be a C∗-correspondence over a C∗-algebra A, and let J be an ideal of JX . If (J, X)
has the uniqueness property, then (I ∩ J, IX) has the uniqueness property for every positively X-invariant 
ideal I in A.

Proof. Suppose that there is a positively X-invariant ideal I such that (J ∩ I, IX) does not have the 
uniqueness property. Equivalently (see Lemma 6.2), there is a non-zero ideal L in O(J ∩ I, IX) which 
does not contain any non-zero gauge-invariant ideal. By the proof of [33, Theorem A.4], see also the proof 
of [29, Proposition 9.3], we may identify O(J ∩ I, IX) with the C∗-subalgebra of O(J, X) generated by 
jA(I) and jX(IX), and then O(J ∩ I, IX) = jA(I)O(J, X)jA(I) is the hereditary subalgebra of O(J, X)
generated by jA(I). Thus O(J ∩ I, IX) and the ideal O(J, X)jA(I)O(J, X), generated by jA(I), are Morita 
equivalent. Moreover, the equivalence bimodule jA(I)O(J, X) respects the gauge actions in the C∗-algebras 
O(J ∩ I, IX) = jA(I)O(J, X)jA(I) and O(J, X)jA(I)O(J, X) (they are gauge-invariant subalgebras of 
O(J, X)). Thus we have a lattice isomorphism K �→ K ∩ O(J, X)jA(I)O(J, X) from the set of ideals 
in O(J ∩ I, IX) to that of O(J, X)jA(I)O(J, X), which restricts to a lattice isomorphism between the 
gauge-invariant ideals. Hence, if K is an ideal in O(J, X)jA(I)O(J, X) corresponding to the ideal L in 
O(J ∩ I, IX), then K is a non-zero ideal in O(J, X) and does not contain a non-zero gauge-invariant ideal. 
Accordingly, (J, X) does not have the uniqueness property by Lemma 6.2. �
7. The uniqueness theorem

The aim of this section is to give sufficient conditions for a uniqueness property of the relations defining 
the relative Cuntz–Pimsner algebra O(J, X). In view of Lemma 3.7, to define (strong) topological freeness 
of a graph E on a given set U , it suffices to consider the restriction of E to the set U ∪ E−1(U). This 
motivates the following definition.

Definition 7.1. Let X be a C∗-correspondence over a C∗-algebra A, and let J be an ideal of JX . Suppose 
that X(J) is of Type I, so that the ideal K := J + X(J) is of Type I, by Lemma 5.3, and hence the dual 
graph EKXK to the C∗-correspondence KXK over K is well defined. We say that X is topologically free 
on J if EKXK is topologically free on Ĵ ⊆ K̂. Similarly, we say that X is strongly topologically free on J if 
EKXK is strongly topologically free on Ĵ .

Proposition 7.2. If X(J) is liminal, then X is strongly topologically free on J if and only if X is topologically 
free on J .
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Proof. Combine Lemma 3.6 and Corollary 4.6. �
Theorem 7.3 (Uniqueness theorem). Let X be a C∗-correspondence over a C∗-algebra A and let J be an 
ideal in JX . Suppose that either

A1) the dual multivalued map X̂ is weakly topologically aperiodic on Ĵ, or
A2) X(J) is of Type I and X is strongly topologically free on J .

Then the pair (X, J) has the uniqueness property.

The proof of Theorem 7.3 is given at the end of this section. For the proof, we need a couple of lemmas 
and a proposition.

We fix a C∗-correspondence X over a C∗-algebra A, an ideal J of JX and an injective representation 
ψ = (ψ0, ψ1) of X satisfying (7). We start with the analysis of representations of certain subalgebras of 
C∗(ψ). For each n ∈ N we define the following C∗-subalgebras of C∗(ψ):

Kn := ψ(n)(K(X⊗n)), KJ
n := ψ(n)(K(X⊗nJ)), Fn :=

n∑
i=0

Ki, F∞ :=
∞∑
i=0

Ki.

We call F∞ the core subalgebra of C∗(ψ). The following lemma is well-known to experts, cf. [28, Section 5].

Lemma 7.4. Let X be a C∗-correspondence over a C∗-algebra A and let J be an ideal in JX . We have the 
following properties:

(i) If a ∈ K(X⊗nJ), then a ⊗ 1X ∈ K(X⊗n+1) and ψ(n)(a) = ψ(n+1)(a ⊗ 1X).
(ii) Kn ∩ Kn+1 = KJ

n for every n ∈ N;
(iii) the sum 

∑n
k=i Kk is an ideal in Fn for every 0 ≤ i ≤ n.

Proof. (i). It follows, for instance, from [30, Proposition 3.22].
(ii). This is [28, Proposition 5.9].
(iii). It follows from [28, Lemma 5.4]. �
For every n ≥ 0, the ∗-homomorphism ψ(n) : K(X⊗n) → C∗(ψ) is injective. Therefore, ψ(n) induces 

∗-isomorphisms K(X⊗n) ∼= Kn and K(X⊗nJ) ∼= KJ
n, and homeomorphisms K̂(X⊗n) ∼= K̂n and ̂K(X⊗nJ) ∼=

K̂J
n. We will identify these topological spaces via these homeomorphisms.

Lemma 7.5. Given π ∈ Irr(Fn) with π(KJ
n) �= 0 and any extension π̃ ∈ Irr(Fn+1) of π, we have π̃(Kn+1) �= 0. 

Moreover, the following diagram of multivalued maps commutes

K̂J
n

ψ̂(n) ∼=

K̂n+1
ι̂

ψ̂(n+1)∼=

̂K(X⊗nJ) ̂K(X⊗n+1),
⊗̂1X

where ι : KJ
n → Kn+1 is the inclusion, ⊗1X : K(X⊗nJ) −→ K(X⊗n+1) is an embedding by Lemma 2.3, and 

K̂J
n ⊆ F̂n and K̂n+1 ⊆ F̂n+1 are open subsets.
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Proof. By Lemma 7.4 (i), the following diagram commutes

KJ
n

ι Kn+1

K(X⊗nJ)

ψ(n) ∼=

⊗1X K(X⊗n+1).

ψ(n+1)∼=

By Lemma 7.4 (iii), Kn is an ideal in Fn. Since KJ
n is an ideal in Kn, also KJ

n is an ideal in Fn. In particular, 
K̂J

n ⊆ F̂n and K̂n+1 ⊆ F̂n+1 are open subsets. This readily implies the assertion. �
Lemma 7.6. Given π ∈ Irr(Fn) such that π(KJ

n) = 0, there exists π̃ ∈ Irr(Fn+1) that extends π such that 
π̃(Kn+1) = 0.

Proof. Since π(KJ
n) = 0, there is an irreducible representation π : Fn/KJ

n → B(Hπ) such that π(x +Fn) =
π(x) for x ∈ Fn. Let q : Fn+1 → Fn+1/Kn+1 be the quotient map, and let Φ : Fn+1/Kn+1 → Fn/(Fn∩Kn+1)
be the canonical isomorphism. By [28, Proposition 5.12], Fn∩Kn+1 = KJ

n, so π̃ := π ◦Φ ◦ q is an irreducible 
representation of Fn+1 that extends π. Moreover, π̃(Kn+1) = 0. �

The following proposition is the main ingredient in the proof of Theorem 7.3.

Proposition 7.7. Retain the assumptions of Theorem 7.3. Let n > 0 and m > 0. For each a ∈ Fn and each 
ε > 0 there exist a representation ν : C∗(ψ) → B(Hν) and contractions Q1, Q2 ∈ B(Hν), such that

1) ‖Q1ν(a)Q2‖ ≥ ‖a‖ − ε,
2) Q1ν(ψk(X⊗k)Fn) Q2 = 0 and Q1ν(Fnψk(X⊗k)∗) Q2 = 0 for k = 1, 2, . . . , m.

Proof. Let ε > 0 and a ∈ Fn, then the functional F̂n → C defined by [π] → ‖π(a)‖ is lower semicontinu-
ous, and attains its upper bound equal to ‖a‖ (see for instance [53, App. A]). Accordingly, there exists a 
non-empty open set U ⊆ F̂n such that

‖π(a)‖ > ‖a‖ − ε for every [π] ∈ U.

Let us consider the following two cases.
Case 1). Assume that there exists an irreducible representation π : Fn → B(Hπ) with [π] ∈ U , for 

which there exists an extension πN ∈ Irr(Fn+N ), for some N ≥ 0, such that [πN ] belongs to F̂n+N \ K̂n+N

(i.e. πN (Kn+N ) = 0). Let i be the maximal number with 0 ≤ i ≤ n + N such that πN (Ki) �= 0. Thus, 
πN (

∑n+N
k=i+1 Kk) = 0, and hence [πN ] ∈ K̂i \ ̂∑n+N

k=i+1 Kk. In particular, πN : Fn+N → B(HπN
) restricts to 

an irreducible representation of Ki, and hence πN (Ki)HπN
= HπN

.
Now given any extension ν : C∗(ψ) → B(Hν) of πN , ψ̄ := (ν ◦ψ0, ν ◦ψ1) is a representation of X on Hν .
Let QπN

: Hν → HπN
be the orthogonal projection onto HπN

, and for each j > 0, let Pj : Hν → ν(Kj)Hν

be the orthogonal projection on ν(Kj)Hν . Observe that ν(Kj)Hν = ν(ψj(X⊗j))Hν (cf. Lemma 2.2). Because 
ν is an extension of πN we have that HπN

= πN (Ki)HπN
⊆ ν(Ki)Hν , so QπN

≤ Pi. Moreover, since πN

vanishes on the ideal 
∑n+N

k=i+1 Kk, it follows that QπN
Pi+1 = Pi+1QπN

= 0. Hence

QπN
≤ (Pi − Pi+1). (8)

It follows from Equation (2) in Lemma 2.2 that ν(ψk(X⊗k))Pj = Pk+jν(ψk(X⊗k))Pj for every j, k ≥ 0. 
Therefore, for k > 0 we get
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(Pi − Pi+1)ν(ψk(X⊗k))(Pi − Pi+1) = 0,

and hence by (8) it follows that QπN
ν(ψk(X⊗k))QπN

= 0. Let Qπ ∈ B(Hν) be the projection onto Hπ. Since 
Qπ ≤ QπN

we get Qπν(ψk(X⊗k))Qπ = 0 for every k > 0. In particular, putting Q1 = Q2 = Qπ ∈ ν(Fn)′, 
we get ‖Q1ν(a)Q2‖ = ‖π(a)‖ ≥ ‖a‖ − ε, and

Q1ν(ψk(X⊗k)Fn)Q2 = Qπν(ψk(X⊗k))Q2ν(Fn) = 0,

and similarly Q1ν(Fnψk(X⊗k)∗) Q2 = 0, for every k > 0, as desired.
Case 2). Assume that for every π ∈ Irr(Fn) with [π] ∈ U , every k ≥ 0 and every irreducible extension 

πk : Fn+k → B(Hk) of π we have πk(Kn+k) �= 0. It follows from Lemma 7.6 that given any π ∈ Irr(Fn)
with [π] ∈ U and every extension πk ∈ Irr(Fn+k), k ≥ 0, of π we have πk(KJ

n+k) �= 0 that is [πk] ∈ K̂J
n+k. 

In particular, U ⊆ K̂J
n.

Claim 1. There are ξ, η ∈ X⊗n with ‖ξ‖ = ‖η‖ = 1 and ‖ψn(ξ)∗aψn(η)‖ > ‖a‖ − ε/2.

Proof of Claim 1. Since Kn is an ideal in Fn, a acts on Kn as a multiplier, say m(a). The inclusion U ⊆ K̂n

implies that ‖m(a)‖ = ‖a‖. Indeed, we may identify multipliers of Kn with operators acting on the space 
of atomic representation of Kn, and then there is [π] ∈ U such that ‖a‖ = ‖π(a)‖ ≤ ‖m(a)‖. Moreover, the 

algebra of multipliers of Kn is isomorphic to L(X⊗n), with the isomorphism Ψ := ψ(n)−1
where ψ(n) is the 

unique extension of the isomorphism ψ(n) : K(X⊗n) → Kn. This implies that

‖a‖ = ‖Ψ(m(a))‖ = sup{‖〈ξ,Ψ(m(a))η〉A‖ : ξ, η ∈ X⊗n, ‖ξ‖ = ‖η‖ = 1}

= sup{‖ψn(ξ)∗ψn(Ψ(m(a))η)‖ : ξ, η ∈ X⊗n, ‖ξ‖ = ‖η‖ = 1}

= sup{‖ψn(ξ)∗aψn(η)‖ : ξ, η ∈ X⊗n, ‖ξ‖ = ‖η‖ = 1}. �
Let ξ, η ∈ X⊗n be as in Claim 1 and put g := ψn(ξ)∗aψn(η). It follows that to prove the assertion it 

suffices to show the corresponding assertion for g ∈ ψ0(A) = F0 instead of a ∈ Fn. In fact we will find 
ν : C∗(ψ) → B(Hν) and a projection Q ∈ B(Hν), such that

‖Qν(g)Q‖ ≥ ‖g‖ − ε/2, Qν(ψk(X⊗k))Q = 0 for k = 1, 2, . . . ,m.

Then Q1 := Qν(ψn(ξ))∗ and Q2 := ν(ψn(η))Q will fulfill the desired conditions for a ∈ Fn.
Accordingly, we let V := {[π] ∈ Â : ‖π(ψ−1

0 (g))‖ > ‖g‖ − ε/2}. This is an open nonempty subset of Â. 
Case 1) for g (instead of a) gives the assertion. Thus we may assume that we are in Case 2. Namely, we 
assume that for every π ∈ Irr(ψ0(A)) with [π ◦ ψ0] ∈ V and every irreducible extension πk : Fk → B(Hk), 
k ≥ 0, of π we have [πk] ∈ K̂J

k . In particular, V ⊆ Ĵ .
In the following claim and below we treat the multivalued map Â and its restriction to ĴXJ as directed 

graphs (with no multiple edges).

Claim 2. For every sequence π0 ≤ π1 ≤ . . . ≤ πl where πk ∈ Irr(Fk), l > 0, and [π0 ◦ψ0] ∈ V there is a path 
([v0, v1], . . . , [vl−1, vl]) in X̂ (treated as a graph) such that

[πk ◦ ψ(k)] = [X⊗k -Ind]([vk]), for all k = 0, ..., l. (9)

Moreover, for every path ([v0, v1], . . . , [vl−1, vl]) in X̂ with v0 ∈ V there is a sequence π0 := v0 ◦ ψ−1
0 ≤

π1 ≤ . . . ≤ πl where πk ∈ Irr(Fk) and (9) holds. In particular, ([v0, v1], . . . , [vl−1, vl]), is necessarily a path 
in ĴXJ , i.e. [vk] ∈ Ĵ for every k = 0, ..., l.
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Proof of Claim 2. Let π0 ≤ π1 ≤ . . . ≤ πl where πk ∈ Irr(Fk), l > 0, and [π0 ◦ ψ−1
0 ] ∈ V . By our 

assumption we have [πk] ∈ K̂J
k , for k = 0, ..., l. By Lemma 7.5, putting σk := πk ◦ ψ(k) we get [σk] ∈

̂K(X⊗kJ), for k = 0, ..., l, and [σk] ∈ ⊗̂1X [σk+1] for k = 0, ..., l− 1. Hence by Proposition 4.8 there is a path 
([v0, v1], . . . , [vl−1, vl]) in X̂ such that [σk] = [X⊗k -Ind]([vk]), for k = 0, ..., l, so (9) is satisfied. In particular, 
cf. Proposition 4.8, we have [vk] ∈ ̂〈X⊗kJ,X⊗kJ〉A ⊆ Ĵ for every k = 0, ..., l.

Conversely, let ([v0, v1], . . . , [vl−1, vl]) be a path in X̂ with v0 ∈ V . We put σ0 = v0. Since v0 ∈ Ĵ , 
Proposition 4.8 implies that there is σ1 ∈ IrrL(X) such that [σ1] ∈ K̂(X) and σ0 is equivalent to a 
subrepresentation of σ1 ◦ φX . Hence by Lemma 7.5, there is an extension of π0 := v0 ◦ ψ−1

0 ∈ Irr(F0) =
Irr(ψ0(A)) to π1 ∈ Irr(F1). Since v0 ∈ V we get [π1] ∈ K̂J

1 by our standing assumption. In particular, 
[π1 ◦ ψ(1)] = [X -Ind]([v1]) and hence v1 ∈ Ĵ . Thus we may apply the same argument to v1 instead of v0. 
Repeating this argument inductively, we get the desired sequence π0 ≤ π1 ≤ . . . ≤ πl. �
Subcase 2a). Suppose that A1) in Theorem 7.3 holds. By Claim 2 every v ∈ V is an end of an infinite path 
in ĴXJ . Since X̂ is weakly topologically aperiodic on Ĵ , there is a path ([v0, v1], . . . [vm−1, vm]) such that 
[v0] ∈ V and [v0] �= [vk] for k = 1, . . . , m. Let π0 ≤ π1 ≤ . . . ≤ πm, πk ∈ Irr(Fk), be the corresponding 
sequence satisfying (9) as described in Claim 2. Let ν : C∗(ψ) → B(Hν) be any extension of πm. Let 
k = 1, . . . , m. We denote by Pk : Hν → Hk the orthogonal projection onto the space

Hk := ν
(
ψk(X⊗k)∗

)
Hπk

.

By Lemma 2.7 the formula νk(b) = ν(ψ0(b))|Hk
, b ∈ A, defines a representation νk : A → B(Hk) and either 

Hk = {0} or νk ∈ Irr(A) and then

[νk] = [X⊗k -Ind]−1([πk ◦ ψ(k)]) = [X⊗k -Ind]−1[X⊗k -Ind] -Ind]([vk]) = [vk].

In particular, for every k = 1, ..., m, Pk ∈ ν(A)′ and either νk = 0 or [νk] = [vk] �= [v0] = [ν0]. Since two 
inequivalent irreducible subrepresentations are disjoint, they act on orthogonal subspaces. Hence, we get

P0Pk = PkP0 = 0, k = 1, ...,m. (10)

Moreover, since Hπk
= ψ(k)(K(X⊗k))Hπ0 and ψk(X⊗k)∗ψ(k)(K(X⊗k)) = ψk(X⊗k)∗, for each k = 1, ..., m

we have

Hk = ν(ψk(X⊗k)∗)Hπ0 .

Combining this with (10), we get P0ν(ψk(X⊗k)∗)P0 = 0. Moreover, we have ‖P0ν(g)P0‖ = ‖ν0(g)‖ =
‖v0(ψ−1

0 (g))‖ ≥ ‖g‖ − ε/2. Thus putting Q := P0 we get the assertion.

Subcase 2b). Suppose that A2) of Theorem 7.3 holds. By Claim 2, every v ∈ V is an end of an infinite 
path in the graph EY dual to the C∗-correspondence Y = JXJ over J . By strong topological freeness there 
is a path (el, ..., e1) ∈ r−l(V ) in EY with l > m such that ek �= e1 for every k = 2, ..., l. In particular, 
([r(el), s(el)], . . . , [r(e1), s(e1)]) is a path in Ŷ . Let π := s(e1) ◦ ψ−1

0 be the irreducible representation of 
F0 = ψ0(A) and extend it (in an arbitrary way) to a representation ν : C∗(ψ) → B(Hν). Let Pπ ∈ ν(F0)
be the projection onto Hπ ⊆ Hν . Let Q : E1

Y → K(X)′′ be the mapping as in Proposition 5.4. Let 
ν′′ : C∗(ψ)′′ → B(Hν) be the weakly continuous extension of ν. Using inductively Lemma 5.5(i) we get that 
the space

HQ := ν′′(ψ′′
1 (QelX)...ψ′′

1 (Qe2X)ψ′′
1 (Qe1X))Hπ
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is irreducible for ν(F0) and the equivalence class of the corresponding representation of F0 is r(el) ∈ V . 
Accordingly, if we let Q to be the projection onto HQ, then ‖ν(g)Q‖ ≥ ‖g‖ − ε/2. By Lemma 5.5(iv) we 
have

ν(ψk(X⊗k))HQ⊥HQ for k = 1, ..., l − 1.

Hence Qν(ψk(X⊗k))Q = 0 for k = 1, ..., m ≤ l − 1. �
Proof of Theorem 7.3. By Lemma 6.2 it suffices to prove that there is a conditional expectation E from 
C∗(ψ) onto F∞ which sends elements from ψm(X⊗m)Fn, n ≥ 0, m ≥ 1, to zero. To this end, it suffices to 
show that for every element of the form

b =
m∑

k=1

a∗−k + a0 +
m∑

k=1

ak

where a±k ∈ ψk(X⊗k)Fn, k = 1, ..., m, the following inequality holds ‖a0‖ ≤ ‖b‖. This follows immediately 
from Proposition 7.7. �
8. Conditions necessary for uniqueness property

Let X be a C∗-correspondence over A and let J be an ideal of JX . In this section we prove the converse 
to Theorem 7.3 in case A2). Moreover, we extend it using a fairly algebraic property called acyclicity whose 
definition is inspired by the condition introduced in [6, Definition 4.1]. This property could also be considered 
a version of pure outerness for C∗-correspondences, cf. [38, Definition 4.3] and [55, Definition 3.7].

Definition 8.1. Let X be a C∗-correspondence over A and I a positively X-invariant ideal of A. We say X is 
cyclic with respect to I if there exists n ∈ N such that (IX)⊗n is isomorphic to the trivial C∗-correspondence 
I, i.e. there exists a bijective map Ψ : (IX)⊗n → I such that aΨ(x)b = Ψ(φX(a)xb) and Ψ(〈x, y〉I) =
Ψ(x)∗Ψ(y) for every x, y ∈ (IX)⊗n and a, b ∈ I (then Ψ is necessarily isometric). In this case we say that 
IX has period n. Given an ideal J of JX we say that X is J-acyclic if there are no non-zero ideals I in J
such that X is cyclic with respect to I.

Remark 8.2. It follows readily from the definition that if X is a cyclic with respect to I, then I ⊆ (kerφX)⊥, 
IX = IXI and 〈IX, IX〉 = I.

The aim of the present section is to prove the following theorem.

Theorem 8.3. Let X be a C∗-correspondence over a C∗-algebra A, and let J be an ideal of JX . Consider the 
following conditions:

(1) the pair (X, J) has the uniqueness property;
(2) X is J-acyclic.

Then (8.3)⇒(8.3). If in addition X(J) is liminal, then (8.3)⇔(8.3)⇔(3) where

(3) X is topologically free on J .

We start with facts leading to the proof of the implication (8.3)⇒(8.3).
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Lemma 8.4. Suppose that X is cyclic with respect to a positively invariant ideal I of JX . Then the 
C∗-correspondence IX is an equivalence Hilbert bimodule.

Proof. Suppose that IX has period n. By Remark 8.2, 〈IX, IX〉 = I, i.e. X is full on the right, and 
also we have I ⊆ (kerφX)⊥. The latter implies that the homomorphism φIX = φX |IX : I → K(IX) =
φX(I)K(X)φX(I) is injective. Thus it suffices to show that φIX : I → K(IX) is surjective, cf. [25, 3.3] or 
[30, Proposition 1.11]. To this end, let us consider a universal representation (j0, j1) of (I, IX) into O(I, IX). 
Since I ⊆ JIX , this representation is injective. Note that we have

I = {a ∈ I : j0(a) = j(1)(φIX(a))} = {a ∈ I : j0(a) ∈ j(1)(K(IX))},

cf. [29, Corollary 11.7] or [30, Theorem 9.1]. Moreover, for the associated representation j(n) : K((IX)⊗n) →
O(I, IX) we also have

I = {a ∈ I : j0(a) = j(n)(φ(IX)⊗n(a))} = {a ∈ A : j0(a) ∈ j(n)(K((IX)⊗n))},

see [39, Lemma 3.6.]. Since (IX)⊗n ∼= I is an equivalence bimodule, φ(IX)⊗n : I → K((IX)⊗n) is bijective 
and we conclude that

j0(I) = j(n)(K((IX)⊗n)).

Multiplying this equality by jn((IX)⊗n)∗ from left and by jn((IX)⊗n) from right, and using positive 
invariance of I we get

j0(I) = j(1)(K(IX)).

Hence, for every T ∈ K(IX) there is a ∈ I such that j(1)(φIX(a)) = j(1)(T ). Since j(1) is injective, this 
implies that φIX(a) = T . Thus, φIX is surjective. �
Lemma 8.5. Suppose X is a periodic equivalence bimodule over A, i.e. there is n > 0 such that X⊗n ∼= A. 
Then the pair (A, X) does not have the uniqueness property.

Proof. We may identify the algebra O(A, X) with the crossed product A �X Z introduced in [1], cf. [25, 
Proposition 3.7]. We need to show that A does not detect ideals in A �X Z. Using Takai duality we may 
reduce our considerations to a classical crossed product by Z. Indeed, there is an automorphism α : B → B

and an equivalence A-B bimodule M such that X ∼= M ⊗ Bα ⊗ M∗ where Bα is the Hilbert bimodule 
associated to α, and A does not detect ideals in A �X Z if B does not detect ideals in B�α Z. However, we 
have natural isomorphisms

Bαn ∼= B⊗n
α

∼= (M∗ ⊗X ⊗M)⊗n ∼= (M∗ ⊗X⊗n ⊗M) ∼= M∗ ⊗M ∼= B.

This implies that αn = id. Using this one readily constructs a covariant representation (π, U) of (B, α) with 
π injective U such that Un = 1. Then the kernel of π �α U does not intersect B and contains differences 
b − bun, b ∈ B, where u is the universal unitary in M(B �α Z). �
Corollary 8.6. If a pair (X, J) has the uniqueness property, then X is J-acyclic.

Proof. Assume that X is cyclic with respect to a positively invariant ideal I ⊆ J . Then by Lemmas 8.4
and 8.5, the pair (I, IX) does not have the uniqueness property. Hence (X, J) does not have the uniqueness 
property by Proposition 6.4. �
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Now we turn to the proof of implication (8.3)⇒(3) in Theorem 8.3.

Lemma 8.7. Let X and Y be two C∗-correspondences over A and B respectively. Suppose that X ∼M Y are 
Morita equivalent.

(i) The dual homeomorphism M̂ : B̂ → Â intertwines the dual multivalued maps X̂ and Ŷ .
(ii) If A is of Type I, then B is of Type I, and the homeomorphism M̂ : B̂ → Â establishes isomorphism 

between the dual graphs EX and EY , i.e. mY
[π],[ρ] = mX

M̂ [π],M̂ [ρ]
for all [π], [ρ] ∈ B̂.

Proof. We will only show (ii). The reader will easily modify the prove to get (i). Suppose that A is of Type I. 
Then B is of Type I because it is Morita equivalent to A, cf. [22]. Let [π], [ρ] ∈ B̂. Recall that mY

[π],[ρ] is 
the largest cardinal such that there are mutually orthogonal representations πi, i ∈ I, |I| = mY

[π],[ρ], with 
[πi] = [π] and ⊕i∈Iπ

i ≤ Y -Ind(ρ). Since tensor product of C∗-correspondences preservers direct sums, 
cf. [53, Proposition 2.69], we get that M -Ind(πi), i ∈ I, are mutually orthogonal subrepresentations of 
M ⊗ Y -Ind(ρ) with M̂([πi]) = [M -Ind(πi)] = [M -Ind(π)] = M̂([π]) for i ∈ I. Since M ⊗ Y ∼= X ⊗M we 
have M ⊗ Y -Ind(ρ) ∼= X ⊗ M -Ind(ρ). This implies that mY

[π],[ρ] ≤ mX
M̂([π]),M̂([ρ])

. By symmetry and the 

Cantor–Bernstein Theorem we get mY
[π],[ρ] = mX

M̂([π]),M̂([ρ])
. �

Lemma 8.8. Let A and B be commutative C∗-algebras, and let X be a non-degenerate C∗-correspondence 
from A to B, that is AX = X. Suppose that the dual graph EX = (E1

X , r, s) from B̂ to Â is a “bijection”, i.e. 
both r : E1

X → Â and s : E1
X → B̂ are bijections. Then X is an equivalence bimodule (and A is isomorphic 

to B).

Proof. By assumption we have B̂ = ̂〈X,X〉B . Hence B = 〈X, X〉B , i.e. X is full on the right. Thus it suffices 
to show that the left action homomorphism φX : A → L(X) is in fact an isomorphism φX : A → K(X), 
cf. [25, 3.3] or [30, Proposition 1.11]. By Lemma 4.1, k̂erφX ⊆ Â \ r(E1

X), but by assumption r(E1
X) = Â. 

Hence φX is injective.
Since X establishes a Morita equivalence between K(X) and B we see that (up to unitary equivalence) 

every representation π of K(X) is of the form π = X -Ind(σ) for some [σ] ∈ B̂. Due to our assumptions, A
acts on the Hilbert space X ⊗σ Hσ in a non-degenerate way and this representation contains exactly one 
irreducible subrepresentation. Since A is commutative, this implies that X⊗σHσ is in fact one-dimensional. 
Hence K(X) is commutative (as all of its irreducible representations are one-dimensional). In fact we may 
identify K(X) with C0(B̂) and A with C0(Â). Then the left action of A on X becomes an injective homo-
morphism

φX : C0(Â) → M(C0(B̂)) = C(β(B̂))

where β(B̂) is the Stone–Cech compactification of B̂. We need to show that φX(C0(Â)) = C0(B̂). If we 
assume that b ∈ φX(C0(Â)) \ C0(B̂) then there is t0 ∈ β(B̂) such that b(t0) �= 0 and b|φX(C0(Â)) ≡
0. Such t0 yields an irreducible representation of C0(Â) which contradicts surjectivity of r : E1

X → Â. 
Hence φX(C0(Â)) ⊆ C0(B̂). Since two different points t1, t2 in B̂, yield two different points X -Ind(t1)
and X -Ind(t2) in Â, we see that φX(C0(Â)) separates the points B̂. Hence φX(C0(Â)) = C0(B̂) by the 
Stone–Weierstrass Theorem. �
Proposition 8.9. Let X be a C∗-correspondence over a C∗-algebra A, and let J be an ideal of JX . Suppose 
that X(J) is liminal and X is not topologically free on J . Then X is not J-acyclic.
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Proof. Let EY be the graph dual to the C∗-correspondence Y = JXJ over J . Since X is not topologically 
free on J , it follows that there exists an ideal F0 in J and m ∈ N such that every point in F̂0 is a base point of 
a cycle in EY of length m without entrances in EY , and X̂−n(F̂0) ⊆ Ĵ for every n ∈ N. Since X(F0) ⊆ X(J)
is liminal and F0 ⊆ J ⊆ J(X), we may apply Lemma 4.4(ii) to F0. Thus we get X̂−1(F̂0) = X̂(F0), and hence 
F1 := X(F0) is an ideal in J . Applying this argument inductively we conclude that the ideals Fi := Xi(F0), 
i ∈ N, are contained in J and X̂−i(F̂0) = X̂i(F0) for i ∈ N. In fact, since F̂0 consists of base points of length 
m cycles without entrances, we have X̂−m(F̂0) = F̂0, and hence Fi(mod m) = X(Fi−1) for i = 1, ..., m. In 
particular, the ideal I := F0 + F1 + ... + Fm−1 is contained in J and X(I) = I, so I is positively invariant. 
The set

Î =
m−1⋃
i=0

F̂i =
m−1⋃
i=0

X̂−i(F̂0)

consists of all base points of cycles attached to points in F̂0. Since the cycle of length m in EY attached 
to each point in Î is unique, we get that both r : EIX → Î and s : EIX → Î are bijections (the graph 
EIX dual to IX = IXI may be treated as the restriction of EY to Î). We wish to apply Lemma 8.8 to 
the C∗-correspondence IX. To this end, we claim that by taking a smaller ideal than F0, we may assume 
that IX is Morita equivalent to a Hilbert bimodule αY associated to an automorphism on a commutative 
C∗-algebra.

Indeed, since A contains an essential ideal of Type I0, cf. [50, Theorem 6.2.11], we may assume by passing 
to a smaller ideal that F0 is Morita equivalent to a commutative C∗-algebra, cf. [21, Theorem 3.3]. For the 
inductive step, assume that F0 +F1 + ... +Fk−1 is Morita equivalent to a commutative C∗-algebra for some 
k < m.

1) If Fi0 ∩ Fk �= {0} for some i0 = 0, ..., k − 1, then we may put F ′
i := Xi+m−k(Fi0 ∩ Fk), for i = 0, ..., k. 

Then 0 �= F ′
i 
 X

i(Xm−k(Fk)) = Xi(F0) = Fi for i = 0, ..., k − 1 and F ′
k = Xm(Fi0 ∩ Fk) = Fi0 ∩ Fk 
 Fi0 . 

Hence F ′
0 + F ′

1 + ... + F ′
k 
 F0 + F1 + ... + Fk−1 is Morita equivalent to a commutative C∗-algebra.

2) Assume that Fi ∩ Fk = {0} for all i0 = 0, ..., k − 1. Take any non-zero ideal F ′
k in Fk which is Morita 

equivalent to a commutative C∗-algebra. Then F0+F1+... +Fk−1+F ′
k is Morita equivalent to a commutative 

C∗-algebra (as a direct sum of algebras with this property). Moreover, putting F ′
i := Xi+m−k(F ′

k) ⊆ Fi

for i = 0, ..., k − 1. We get that F ′
0 + F ′

1 + ... + F ′
k 
 F0 + F1 + ... + Fk−1 + F ′

k is Morita equivalent to a 
commutative C∗-algebra, and F ′

i = Xi(F ′
0), i = 0, ..., k.

This, by induction, proves our claim. Thus we assume that I is Morita equivalent to a commutative 
algebra.

Let M be an equivalence bimodule establishing Morita equivalence from a commutative C∗-algebra C0(V )
to the ideal I. Then Y := M ⊗I IX ⊗I M

∗ is a C∗-correspondence over C0(V ) which is Morita equivalent 
to IX. The graphs dual to Y and IX are equivalent, by Lemma 8.7. Thus Y is an equivalence bimodule 
by Lemma 8.8. The structure of an equivalence bimodule over C0(V ) is well known. Namely, there is a
homeomorphism θ : V → V induced by Y (it is equal to r◦s−1 where (EY , r, s) is a graph dual to Y ). There 
is a line bundle L over V such that Y is isomorphic to the space of sections of L, with C0(V ) acting by 
pointwise multiplication on the right and by pointwise multiplication composed with θ∗ on the left. In our 
case we also have that θm = id. Since every line bundle is locally trivial, using the same inductive argument 
as in the proof of the claim above, we may find a non-empty open set U ⊆ V such that θ(U) = U and the 
restricted Hilbert bimodule C0(U)Y = C0(U)Y C0(U) is isomorphic to the canonical equivalence bimodule 
associated to the homeomorphism θ : U → U . Then it is straightforward to see that (C0(U)Y )⊗m ∼= C0(U). 
Since C0(U) is positively Y -invariant, the ideal I ′ := M(C0(U)) is positively X-invariant ideal in I:

I ′X = I ′IX ∼= I ′(M∗ ⊗ Y ⊗M) = M∗ ⊗ C0(U)Y ⊗M

= M∗ ⊗ C0(U)Y C0(U) ⊗M ⊆ (M∗ ⊗ Y ⊗M)I ′ ⊆ XI ′.
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Moreover, using that (C0(U)Y )⊗m ∼= C0(U) we get

(I ′X)⊗m = (M∗ ⊗ C0(U)Y ⊗M)⊗m ∼= M∗ ⊗ (C0(U)Y )⊗m ⊗M

∼= M∗ ⊗ C0(U) ⊗M ∼= I ′.

Thus, X is cyclic with respect to I ′. �
Theorem 8.3 follows from Corollary 8.6, Proposition 8.9 and Theorem 7.3.

9. Applications and examples

9.1. Toeplitz algebras

Let X be a C∗-correspondence over a C∗-algebra A. Toeplitz algebra of X, denoted by TX , is the 
C∗-algebra generated by the universal representation of X. In other words, it is the relative Cuntz–Pimsner 
algebra relative the zero ideal, that is TX = O({0}, X). Fowler and Raeburn showed in [18, Theorem 2.1]
that if (ψ0, ψ1) is a representation of X on Hilbert space H that satisfies the following geometric condition:

ψ0 acts faithfully on (ψ1(X)H)⊥, (11)

then C∗(ψ) ∼= TX with the isomorphism given by ψ0 �0 ψ1. This result was later generalized to product 
systems and more general structures, see [19], [35], [36]. One of the reasons for further development is 
that condition (11) when applied directly to a C∗-correspondence, whose left action is not by compacts, 
is too strong - it is not equivalent to faithfulness of ψ0 �0 ψ1. For instance, one can not deduce from [18, 
Theorem 2.1] simplicity of the Cuntz algebra O∞ viewed as the Toeplitz algebra TX associated to an infinite 
dimensional Hilbert space X.

Our uniqueness theorem shows that the following weaker, algebraic condition:

∀a∈A ψ0(a) ∈ ψ(1)(K(X)) =⇒ a = 0; (12)

is in fact equivalent to faithfulness of ψ0 �0 ψ1:

Theorem 9.1 (Uniqueness theorem for Toeplitz algebras). Let X be an arbitrary C∗-correspondence over 
a C∗-algebra A and let (ψ0, ψ1) be a representation of X. We have C∗(ψ) ∼= TX , with the isomorphism 
determined by ψ0(a) �→ jA(a) and ψ1(x) �→ jX(x), if and only if (ψ0, ψ1) satisfies (12).

Proof. Clearly, (ψ0, ψ1) satisfies (12) if and only if ψ0 is injective and (6) holds with J = {0}. Moreover, 
the assumptions of Theorem 7.3 with J = {0} are trivially satisfied. �

The above result supports the conjecture discussed below [36, Theorem 2.19].

9.2. Simple Cuntz–Pimsner algebras

Let X be a C∗-correspondence over a C∗-algebra A. We present here a number of simplicity crite-
ria for OX . We start by noting that a relative Cuntz–Pimsner algebra is not simple unless it is the 
unrelative Cuntz–Pimsner algebra OX . Moreover, the class of C∗-correspondences that yield simple OX

divides into two subclasses where either the left action of A on X is injective, or X is quasi-nilpotent, i.e. 
limn→∞ ‖φX⊗n(a)‖ = 0 for every a ∈ A. We say that X is minimal if there are no non-trivial X-invariant 
ideals in A.
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Lemma 9.2. Suppose that J ⊆ JX and O(J, X) is simple. Then necessarily J = JX ; X is minimal; and 
either φX is injective, or X is quasi-nilpotent and J(X) = A.

Moreover, OX is simple if and only if X is minimal and has the uniqueness property.

Proof. As ({0}, J) and ({0}, (kerφX)⊥) are always T -pairs of X, we see by [29, Theorem 11.9] that O(J, X)
is not simple unless J = JX . Similarly, OX is not simple unless there are no X-invariant ideals in A (for 
any such ideal I the pair (I, I + JX) is a T -pair). Suppose now that φX is not injective. Then I0 = kerφX

is a non-zero X-invariant ideal in A. We define I1 = I0 + JX ∩ X−1(I0) and In := In−1 + X−1(In−1) for 
n ≥ 1. Then I∞ := limn→∞ In is X-invariant ideal by [29, Lemma 4.15 and Proposition 4.16]. Thus I∞ = A

by minimality of A. For every a ∈ In, n ∈ N, we have a ∈ J(X) and ‖φX⊗n(a)‖ = 0. This implies that X is 
quasi-nilpotent and J(X) = A.

Suppose that X is minimal. Then the only T -pairs (I, I ′) for X with JX ⊆ I ′ are (0, JX) and (A, A). 
Hence OX contains no non-trivial gauge invariant ideals. Thus, cf. Lemma 6.2(v), OX is simple if and only 
if X has the uniqueness property. �
Corollary 9.3. If the dual multivalued map X̂ is weakly topologically aperiodic and X is minimal, then OX

is simple.

Proof. Combine Theorem 7.3 and the second part of Lemma 9.2. �
When X is a Hilbert A-bimodule, then X̂ is a partial homeomorphism. Thus in this case, it follows from 

[38, Theorem 9.12] that the implication in Corollary 9.3 is in fact an equivalence (at least when A contains an 
essential ideal which is separable or of Type I). Moreover, for any quasi-nilpotent C∗-correspondence X the 
dual map X̂ has no “periodic points”. Indeed, if there is [π] ∈ Â and n > 0 such that X⊗n -Ind(π) ∼= π, then 
for any a ∈ A with ‖π(a)‖ ≥ 1 and any m ∈ N we get that ‖φX⊗mn(a)‖ ≥ ‖X⊗mn -Ind(π)(a)‖ = ‖π(a)‖ ≥ 1. 
Thus when the left action on X is not injective we have the following characterization of simplicity of OX

in terms of aperiodicity of X̂:

Proposition 9.4. Let A be a C∗-algebra and X a Hilbert A-bimodule. Suppose that the left action of A on X
is not injective. The following statements are equivalent:

(1) OX is simple;
(2) X is minimal and quasi-nilpotent;
(3) X is minimal and the dual multivalued map X̂ is topologically aperiodic.

Proof. We have (1)⇒(2) by Lemma 9.2, and (2)⇒(3) is clear by the discussion above. Implication (3)⇒(1) 
follows from Corollary 9.3. �

When the left action is injective we can use the main result of [55] to get the following characterization 
of simplicity in terms of acyclicity.

Proposition 9.5. Let X be a C∗-correspondence over a unital C∗-algebra A. Suppose also that X is full on 
the right and the left action of A on X is injective and AX = X. The following statements are equivalent:

(1) OX is simple;
(2) X is minimal and non-periodic;
(3) X is minimal and A-acyclic.

Moreover, if J(X) �= A, then OX is simple if and only if X is minimal.
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Proof. We have (1)⇔(2) by [55, Theorem 3.9]. To see that (2)⇔(3) it suffices to note that our assumptions 
and minimality of X imply that there are no non-trivial positively X-invariant ideals in A. Indeed, suppose 
that X is minimal and I0 is a positively X-invariant ideal in A and I0 �= A. Then I1 := X−1(I) = {a ∈
A : 〈x, a · y〉A ∈ I for all x, y ∈ X} contains I0 but does not contain 1. Proceeding in this way we get an 
increasing sequence {In}∞n=1 of ideals in A, each of which does not contain 1. The ideal I∞ =

⋃∞
n=1 In is 

not equal to A (does not contain 1) and it is X-invariant, cf. [29, Proposition 4.16]. Thus minimality of X
implies that I∞ = {0} and hence I0 = {0}.

If J(X) �= A, then X cannot be an equivalence bimodule and all the more it cannot be periodic. �
Finally, in the liminal case, using our main results we get:

Proposition 9.6. Let X be a C∗-correspondence over a C∗-algebra A such that X(JX) is liminal. The fol-
lowing statements are equivalent:

(1) OX is simple;
(2) X is minimal and the graph dual to X is topologically free on ĴX ;
(3) X is minimal and JX-acyclic.

Proof. Combine the last parts of Theorem 8.3 and Lemma 9.2. �
9.3. Topological correspondences

Let us fix a quadruple E = (E0, E1, r, s) consisting of locally compact Hausdorff spaces E0, E1 and 
continuous maps r, s : E1 → E0. We will refer to E as to a topological graph. We also fix a continuous family 
of measures along fibers of s, i.e. a family of Radon measures λ = {λv}v∈E0 on E1 such that

(Q1) suppλv ⊆ s−1(v) for all v ∈ E0,
(Q2) v →

∫
E1 a(e)dλv(e) is an element of Cc(E0) for all a ∈ Cc(E1).

In [5], the quintuple Q = (E0, E1, r, s, λ) is called a topological correspondence (from E0 to E0). It is a 
mild but important generalization of a topological quiver introduced in [44, Example 5.4] and studied in 
[45]. Namely, a topological quiver is a topological correspondence where in (Q1) we have suppλv = s−1(v)
for all v ∈ E0. We note that if E = (E0, E1, r, s) is a topological graph in the sense of Katsura [26], i.e. 
if we additionally assume that s is a local homeomorphism, then each set s−1(v) is discrete and we may 
treat E as a topological quiver equipped with the family λ = {λv}v∈E0 of counting measures on s−1(v), 
v ∈ E0. Conversely, if Q is a topological quiver such that each λv is a counting measure on s−1(v), then s
is necessarily a local homeomorphism.

We define the support of the family of measures λ as the following union:

suppλ :=
⋃

v∈E0

suppλv.

Axiom (Q2) implies that the set map v �→ suppλv is lower semicontinuous, cf. [34, Lemma 3.28]. This 
together with axiom (Q1) gives that the restricted source map s : suppλ → E0 is open. Note that the topo-
logical correspondence Q is a topological quiver if and only if suppλ = E1. Moreover, the C∗-correspondence 
we associate to Q depends only on the closure of suppλ in E1. Thus without loss of generality we could 
assume that suppλ = E1.

We define the C∗-correspondence XQ associated to Q as the Hausdorff completion of the semi-inner 
C∗-correspondence over A = C0(E0) defined on Cc(E1) via
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(a · f · b) = (a ◦ r)f(b ◦ s) and 〈f, g〉C0(E0)(v) =
∫

s−1(v)

fgdλv,

f, g ∈ Cc(E1), a, b ∈ C0(E0), see [5, Definition 2.5], [45, 3.1]. We define the quiver C∗-algebra associated 

to Q as OXQ , cf. [45, Definition 3.17]. For every V ⊆ Ĵ(X) we define the corresponding relative quiver 
C∗-algebra as O(C0(V ), XQ), cf. [45, Section 7].

We wish to compare the topological graph E with the graph EQ dual to the C∗-correspondence XQ.

Lemma 9.7. The multiplicity of a pair of vertices (w, v) ∈ E0 × E0 for the graph dual EQ to XQ is the 
dimension of the Hilbert space L2(r−1(v) ∩ s−1(w), λw):

mQ
w,v = dim(L2(r−1(w) ∩ s−1(v), λv)).

Proof. We identify points of E0 with irreducible representations of C0(E0) by putting v(a) := a(v) for 
v ∈ E0, a ∈ C0(E0). Let v ∈ E0 and consider a representation πv : C0(E0) → B(L2

λv
(s−1(v))) defined by

(πv(a)f)(e) = a(r(e))f(e), a ∈ C0(E0), f ∈ L2
λv

(s−1(v)).

Then the formula 
(
U(x ⊗v λ)

)
(e) := λx(e), e ∈ s−1(v), x ∈ XQ, λ ∈ C, defines a unitary establishing 

the equivalence XQ -Ind(v) ∼= πv, see [5, Lemma 2.3]. Plainly, we have w ≤ πv if and only if L2(r−1(v) ∩
s−1(w), λw) is a non-zero subspace of L2

λv
(s−1(v)), and the multiplicity of the subrepresentation w of πv is 

equal to the dimension of L2(r−1(v) ∩ s−1(w), λw). This implies the assertion. �
The above lemma implies that if E = (E0, E1, r, s) is a topological graph in the sense of Katsura, 

equipped with counting measures, then the graph dual EQ to XQ is equivalent to E. For general topological 
correspondences the graph EQ is equivalent to a proper subgraph of E.

Example 9.8. Let Q = (E0, E1, r, s, λ) be a topological correspondence such that the graph E = (E0, E1, r, s)
has no multiple edges. It follows from Lemma 9.7 that the graph EQ dual to XQ is a subgraph of E
where E1

Q consists of edges e ∈ E1 with λs(e)({e}) > 0. Thus for instance if we put E0 = [0, 1], E1 =
[0, 1] × [0, 1], s(x, y) = x, r(x, y) = y and let λx be the Lebesgue measure on [0, 1], for x, y ∈ [0, 1]. Then 
(E0, E1, r, s, {λx}x∈E0) is a topological quiver and the graph EQ has no edges.

Even though, as we have seen above, the graph EQ might have much fewer edges than E, this difference 
does not affect topological freeness (at least for topological quivers).

Proposition 9.9. Let Q = (E0, E1, r, s, {λv}v∈E0) be a topological quiver. The graph E = (E0, E1, r, s) is 
topologically free if and only if the graph EQ dual to XQ is topologically free on ĴX .

Proof. By [45, Proposition 3.15], we have E0
fin = Ĵ(XQ) where

E0
fin := {v ∈ E0 : there exists a neighborhood U of v such that

r−1(U) is compact and s|r−1(U) is a local homeomorphism}.

Thus, for every w, v ∈ E0 with w ∈ Ĵ(X) the measure λv restricted to the set r−1(w) is discrete (is 
equivalent to a counting measure on r−1(w) ∩ suppλv). In view of Lemma 9.7, this implies that the number 
of edges from v to w in graphs EQ and E is the same. In other words, the restricted graphs 

Ĵ(X)EQ and 

̂E are equivalent. Moreover, we have ĴX = E0
fin ∩ Int(r(E1)), cf. [45, Proposition 3.15].
J(X)
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Now, assume that EQ is not topologically free on ĴX . Let V ⊆ ĴX be an open non-empty set consisting 
of base points of cycles in 

ĴX
(EQ)

ĴX
of length n without entrances in EQ. Since 

Ĵ(X)EQ and 
Ĵ(X)E are 

equivalent, this implies that V consists of base points of cycles in E without entrances in E. Hence E is not 
topologically free.

Conversely, assume that E is not topologically free. Let V0 ⊆ E0 be an open non-empty set consisting of 
base points of cycles in En without entrances in E. Defining inductively Vk = s(r−1(Vk−1)) for k = 1, ..., n −1, 
we see that V :=

⋃n−1
k=0 Vk is an open set consisting of base points of cycles in (VEV )n without entrances in 

E. Note that s : s−1(V ) → V is a homeomorphism (a continuous open bijection). It follows that the map 
h : V → V given by h := r ◦ s−1 is continuous and bijective. Moreover, we have hn = id and in particular 
h−1 = hn−1 is continuous. Hence h is a homeomorphism. Since r : r−1(V ) → V is equal to the composition 
h ◦ s of homeomorphisms, this map is a homeomorphism. Thus we see that V ⊆ ĴX = E0

fin ∩ Int(r(E1)). 
Accordingly, the graph EQ is not topologically free on ĴX . �
Remark 9.10. It seems very likely that the preceding proposition holds for every topological correspondence 
with suppλ = E1. The proof would require description of the spectrum of J(X), which in case of topological 
quivers is provided by [45, Proposition 3.15].

Suppose that Q = (E0, E1, r, s, {λv}v∈E0) is a topological quiver. It is shown in [45, Theorem 6.16 and 
Corollary 7.16] that topological freeness of E = (E0, E1, r, s) implies the uniqueness property of every 

pair (C0(V ), X) with V ⊆ Ĵ(X). We extend this result to topological correspondences. In addition we 
get that topological freeness of E is not only sufficient but also necessary for the uniqueness property for 
(X, JX). For relative Cuntz–Pimsner algebras we improve upon results of [45] by showing that a weaker 
form of topological freeness of E is sufficient (in fact equivalent) to the uniqueness property for O(C0(V ), X)
with V ⊆ ĴX . The following result generalizes also Katsura’s uniqueness theorems [26, Theorem 5.12], [27, 
Theorem 6.14].

Theorem 9.11. Let Q = (E0, E1, r, s, {λv}v∈E0) be a topological correspondence and let V ⊆ ĴXQ be an open 
set. Let EQ be a subgraph of E with multiplicities given in Lemma 9.7. Every injective representation of 
XQ satisfying (7) integrates to a faithful representation of O(C0(V ), X) if and only if EQ is topologically 
free on V .

Proof. Apply Theorem 8.3. �
Corollary 9.12. If Q = (E0, E1, r, s, {λv}v∈E0) is a topological quiver, then the graph E = (E0, E1, r, s)
is topologically free if and only if every injective covariant representation of XQ integrates to a faithful 
representation of the quiver C∗-algebra OXQ .

Proof. Combine Theorem 9.11 and Proposition 9.9. �
Generalization of the theory of topological quivers to topological correspondences is important for instance 

in the theory of crossed products by (completely) positive maps:

Example 9.13 (Crossed products by positive maps on C0(V )). Let P : C0(V ) → C0(V ) be a positive map 
where V is a locally compact Hausdorff space. When V is compact and P (1) = 1, such maps are called 
Markov operators in [23]. As in [34, Lemma 3.30], we associate to V a topological correspondence where 
the space of edges E1 is the closure of a relation R ⊆ V × V defined by

(v, w) ∈ R
def⇐⇒

(
∀a∈C0(V )+ a(w) > 0 =⇒ P (a)(v) > 0

)
.
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Source and range maps are given by s(v, w) := v, r(v, w) := w. The system of measures λ = {λv}v∈E0 is 
determined by

P (a)(v) =
∫

s−1(w)

a(w)dλv(w), v ∈ V, a ∈ A.

Then Q = (V, R, r, s, {λv}v∈V ) is topological correspondences and R = suppλ. By [34, Proposition 3.32 and 
Theorem 3.13], the crossed product C∗(C0(V ), P ) constructed in [34, Definition 3.5] is naturally isomorphic 
to the quiver C∗-algebra OXQ . One easily finds examples, cf. [34, Example 3.5], of Markov operators for which 
the topological correspondence Q is not the topological quiver in the sense of [45], i.e. suppλv = s−1(v) does 
not hold in general (equivalently R is not closed in V ×V ). The graph E = (V, R, r, s) has no multiple edges. 
Hence the graph EQ dual to XQ arises by taking all atoms of measures λv, v ∈ V , see Example 9.8. When 
P is multiplicative then s is injective and the associated algebras are crossed products by endomorphisms, 
see Example 9.21 below. When P is a transfer operator then r is injective and the associated algebras are 
Exel’s crossed products, see the next example.

Example 9.14 (Exel’s crossed products). Suppose that L : C0(V ) → C0(V ) is a transfer operator, that is 
L is positive and there exists an endomorphism α : C0(V ) → C0(V ) such that L(α(a)b) = aL(b) for all 
a, b ∈ C0(V ). The Exel’s crossed product C0(V ) �α,L N is naturally isomorphic to the crossed product 
C∗(C0(V ), L) by L, see [34, Theorem 4.7]. Here we consider Exel’s crossed products as defined in [14] (the 
crossed product originally defined in [12] coincides with the modified one in a number of natural cases, 
see [34]). Hence C0(V ) �α,L N ∼= OXQ where Q is the topological correspondence associated to L as in 
Example 9.13. Endomorphism α is given by a composition with a continuous proper map ϕ : Δ → V

defined on an open set Δ ⊆ V . For each v ∈ V we have suppλv ⊆ ϕ−1(v). Hence the graph EQ can be 
identified with the graph associated to the map ϕ restricted to the set Λ := {x ∈ Δ : λϕ(x)({x}) > 0}. By 
Example 3.10, we conclude that Exel’s crossed product C0(V ) �α,L N has the uniqueness property if and 
only if ϕ : Λ → V is topologically aperiodic on V . This generalizes uniqueness theorems [15, Theorem 9.1], 
[7, Theorem 6], [4, Theorem 6.1] proved in the case ϕ is a local homeomorphism and Λ = Δ = V .

9.4. Crossed products by endomorphisms

We start with recalling a general definition of crossed products by endomorphisms from [33]. Such 
C∗-algebras are special cases of crossed products by completely positive maps, see [34, Proposition 3.26].

Let α : A → A be an endomorphism of a C∗-algebra A. A representation of an endomorphism α in 
C∗-algebra B is a pair (π, U) where π : A → B is non-degenerate homomorphism of A and U ∈ M�(B) is a 
left multiplier of B such that

Uπ(a)U∗ = π(α(a)), for all a ∈ A.

Then U is necessarily a partial isometry and U∗U ∈ π(A)′. We call C∗(π, U) := C∗(π(A) ∪ Uπ(A)) ⊆
B the C∗-algebra generated by (π, U). Then U ∈ M�(C∗(π, U)) is a left multiplier of C∗(π, U). If α is 
extendible, i.e. it extends to a strictly continuous endomorphism of the multiplier algebra M(A), then 
U ∈ M(C∗(π, U)), see [32, Remark 4.1]. Let J be an ideal in (kerα)⊥. We say that a representation 
(π, U) of α is J-covariant if {a : π(a)U∗U = π(a)} ⊆ J . We say that (π, U) is strictly J-covariant if {a :
π(a)U∗U = π(a)} = J . The corresponding relative crossed product can be defined, see [33, Definition 2.7], 
as a C∗-algebra C∗(A, α; J) generated by a universal J-covariant representation (ιA, u). The representation 
(ιA, u) is necessarily strictly J-covariant and injective, in the sense that ιA is injective. By definition every 
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J-covariant representation integrates to a representation of C∗(A, α; J). In the case when J = (kerα)⊥ we 
write C∗(A, α) := C∗(A, α; (kerα)⊥) and call it the (unrelative) crossed product of A by α.

We associate to α a C∗-correspondence Xα defined by the formulas:

Xα := α(A)A, 〈x, y〉A := x∗y, a · x · b := α(a)xb, x, y ∈ α(A)A, a, b ∈ A.

Then JXα
= (kerα)⊥ and there is a bijective correspondence between J-covariant representations of α and 

of Xα, see [33, Proposition A.8]. Thus, for every ideal J ⊆ (kerα)⊥, we have

C∗(A,α; J) ∼= O(J,Xα), C∗(A,α) ∼= OXα
.

Applying case A1) in our uniqueness theorem and results of [38] we get the following theorem. The second 
part extends the known fact that topological freeness of an automorphism on a separable C∗-algebra is 
equivalent to the uniqueness property, cf. [48, Theorem 6.6], see also [49, Corollary 1], [32, Theorem 4.2].

Theorem 9.15. Let J be an ideal in (kerα)⊥. Consider the following conditions

(1) the multivalued map α̂ is weakly topologically aperiodic on Ĵ;
(2) every injective strictly J-covariant representation (π, U) of α integrates to an isomorphism C∗(π, U) ∼=

C∗(A, α; J).

Then (1)⇒(2). If α has a complemented kernel and a hereditary range, A contains an essential ideal which 
is either separable or of Type I, and J = (kerα)⊥, then (1)⇔(2).

Proof. Identifying the spectra ̂Aα(A)A and ̂α(A)Aα(A) with open subsets of Â, we have ̂Aα(A)A =
̂α(A)Aα(A). In particular, composing Xα -Ind : ̂Aα(A)A → K̂(Xα) with the homeomorphism dual to 

the isomorphism K(Eα) � Θx,y �→ xy∗ ∈ α(A)Aα(A), see [33, Lemma A.7], we get an identity on ̂Aα(A)A. 
This implies that the multivalued maps α̂ and X̂α coincide. Hence (1)⇒(2) by Theorem 7.3.

Assume that J = (kerα)⊥ is complemented ideal in A and α(A) = α(A)Aα(A) is a hereditary subalgebra 
of A. Then Xα is a Hilbert bimodule and α̂ = X̂α is a partial homeomorphism of Â. If A contains an essential 
ideal which is either separable or of Type I, then [38, Theorem 8.1] implies that (1)⇔(2). �

Suppose now that K is an ideal in A and that K is liminal. We can construct a graph on K̂ as follows. 
For any [ρ] ∈ K̂ to [π] ∈ K̂ we define the number m[π],[ρ] to be the multiplicity of subrepresentations of 
ρ̃ ◦ α|K equivalent to π, where ρ̃ is the unique extension of ρ from K to A. We denote the corresponding 
graph by EK

α = (K̂, E1
α, r, s).

Definition 9.16. Let J be an ideal in (kerα)⊥ and assume that Aα(J)A is liminal. Then K := J +Aα(J)A
is liminal (J is liminal because it is isomorphic to the subalgebra α(J) of Aα(J)A). We say that α is 
topologically free on J if the graph EK

α constructed above is topologically free on Ĵ .

Definition 9.17. We say that an endomorphism α : A → A is inner if there is an isometry u ∈ M�(A) ⊆ A′′

such that α(a) = uau∗. Otherwise we say that α is outer.

Lemma 9.18. An endomorphism α : A → A is inner if and only if Xα is isomorphic to the trivial 
C∗-correspondence A.

Proof. Suppose that α : A → A is inner and let u ∈ M�(A) ⊆ A′′ be an isometry such that α(a) = uau∗. 
We may treat u as the left centralizer u : A → A of A, cf. [50, 3.12.3]. Then u is an isometry of the trivial 
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Hilbert A-module A. Moreover, α(A)A = uAu∗A ⊆ uA and for every a, b ∈ A we have uab = uau∗ub =
α(a)ub ∈ α(A)A. Hence u : A → Xα = α(A)A is a unitary, and since α(a)ub = uau∗ub = uab, for a, b ∈ A, 
we see that u is an isomorphism of C∗-correspondences.

Conversely assume that we have an isomorphism of C∗-correspondences u : A → Xα. Since Xα =
α(A)A ⊆ A, we see that u is a left centralizer of A and hence we may treat it is a left multiplier. 
For an approximate unit in {μλ} in A and every a ∈ A we have a = limλ〈μλ, a〉 = limλ〈uμλ, ua〉 =
limλ μλu

∗ua = u∗ua. This implies that u∗u = 1 ∈ M�(A) ⊆ A′′. Furthermore, α(a) = limλ α(a)α(μλ) =
limλ u

∗uα(a)α(μλ) = limλ u(au∗α(μλ)) = uau∗. �
Theorem 9.19. Let A be a C∗-algebra and α : A → A an endomorphism. Let J be an ideal in (kerα)⊥ such 
that Aα(J)A is liminal. The following conditions are equivalent:

(1) every injective strictly J-covariant representation (π, U) of α integrates to an isomorphism C∗(π, U) ∼=
C∗(A, α; J);

(2) α is topologically free on J ;
(3) for every non-zero ideal I in J such that α(I) ⊆ I, every power (α|I)n, n > 0, of α|I is outer.

Proof. Note that K := J + Aα(J)A is liminal (J is liminal because it is isomorphic to the subalgebra 
α(J) of Aα(J)A). Arguing as in the proof of Theorem 9.15 one sees that the graph EK

α = (K̂, E1
α, r, s) is 

equivalent to the graph dual to the C∗-correspondence K(Xα)K . Hence α is topologically free on J if and 
only if Xα is topologically free on J . Using that and Lemma 9.18, we get the assertion by Theorem 8.3. �
Example 9.20 (Endomorphisms of K(H)). Let A = K(H) be a C∗-algebra of compact operators on a Hilbert 
space H. It is well known that every (non-zero) endomorphism α : A → A is of the form α(a) =

∑n
i=1 UiaU

∗
i

where {Ui}ni=1 ⊆ B(H) are isometries with mutually orthogonal ranges and n is a natural number called 
Power’s index of α. It follows that the graph dual to α consists of one vertex and n-edges. In particular,

α is topologically free on A ⇐⇒ Power’s index of α is greater than 1.

Thus, by Theorem 9.19, the crossed product C∗(A, α) has the uniqueness property if and only if n > 1. 
Note that the dual multivalued map α̂ is always an identity on the singleton Â. Thus, it is never weakly 
aperiodic. If n = 1, then the monomorphism α has a hereditary range and in this case we could infer the 
lack of uniqueness property for C∗(A, α) from the second part of Theorem 9.15.

Let us generalize the previous example.

Example 9.21 (Endomorphisms of C0(V, K(H))). Let V be a locally compact Hausdorff space and let A =
C0(V, K(H)). Suppose that (A, α) is a C0(V )-dynamical system in the sense of [33, Definition 3.7], i.e. 
α : A → A is an endomorphism of the form

α(a)(x) =
{
αx(a(ϕ(x)), x ∈ Δ,

0 x /∈ Δ,

where ϕ : Δ → V is a continuous proper map defined on an open set Δ ⊆ V , and {αx}x∈Δ is a continuous 
bundle of (non-zero) endomorphisms of K(H). The graph Eα = (Â, E1

α, r, s) dual to α can be described as 
follows: there is an edge from x ∈ V to y ∈ V if and only if x ∈ Δ and y = ϕ(x). Moreover, the multiplicity 
mα

ϕ(x),x, x ∈ Δ, is equal to Power’s index of αx. In particular, the (multivalued) map α̂ coincides with ϕ. 
Let J = C0(U) be an ideal in (kerα)⊥ = C0(Δ) and put Y = X \ U . In view of Example 3.10 we have
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α̂ is weakly topologically aperiodic on Ĵ ⇐⇒ ϕ is topologically free outside Y .

Thus, in this case Theorem 9.15 recovers [33, Theorem 4.11]. In order to improve it let Z be the set of points 
x ∈ Δ for which Power’s index of αx is 1. One readily sees that

α is topologically free on J ⇐⇒ ϕ is topologically free outside Y ∪ Z.

Thus, Theorem 9.19 leads to an improvement of [33, Theorem 4.11]. If dim(H) < ∞ then Z = ∅ and the 
uniqueness property for C∗(A, α; J) is equivalent to topological freeness of ϕ outside Y . This generalizes 
[32, Proposition 4.8] proved in the commutative case.
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