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1. Introduction

Let H be a separable Hilbert space. Consider the following problem

d

dt
[k ∗ (u− u0)](t) + Au(t) = f(u(t)), t > 0, (1.1)

u(0) = u0, (1.2)

where the unknown function u takes values in H, the kernel k ∈ L1
loc(R+), A is an unbounded linear operator, 

and f : H → H is a given function. Here ∗ denotes the Laplace convolution, i.e., (k∗v)(t) =
∫ t

0 k(t −s)v(s)ds.
It should be mentioned that, nonlocal equations have been employed to model different problems related 

to processes in materials with memory (see, e.g., [3,4,6,16]). In particular, when the kernel k(t) = g1−α(t) :=

t−α/Γ(1 − α), α ∈ (0, 1), equation (1.1) is in the form of fractional differential equations as the term 
d

dt
[k ∗

(u − u0)] represents the Caputo fractional derivative of order α, and this equation has been a subject of an 
extensive study. In a specific setting, for example, when H = L2(Ω), Ω ⊂ RN , and A = −Δ is the Laplace 
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operator associated with a boundary condition of Dirichlet/Neumann type, equation (1.1) with a class of 
kernel functions is utilized to describe anomalous diffusion phenomena including slow/ultra-slow diffusion, 
which were remarked in [18].

Our motivation for the present work is that, up to our knowledge, no attempt has been made to establish 
regularity results for (1.1)-(1.2). Moreover, the stability analysis in the sense of Lyapunov for (1.1) has been 
less known. In the special case when k = g1−α, we refer to some results on stability analysis given in [1,7,8]. 
In the case of multi-term fractional derivatives, i.e. k =

∑m
i=1 μig1−αi

, μi > 0, αi ∈ (0, 1), some results on 
regularity and long-time estimate were established for linear equations in [2,12,13]. An asymptotic estimate 
result was also made for linear ultra-slow diffusion equations in [11]. In the recent paper [19], Vergara and 
Zacher investigated a concrete model of type (1.1), which is a nonlocal semilinear partial differential equation 
(PDE). Using a maximum principle for the linearized equation, they proved the asymptotic stability for zero 
solution of this equation. It is worth noting that, the technique used in [19] does not work for the abstract 
equation (1.1). In this paper, the regularity and asymptotic stability of solutions to (1.1) will be analyzed 
by using a new representation of solutions together with a new Gronwall type inequality. In order to deal 
with (1.1), we make the following standing hypotheses.

(A) The operator A : D(A) → H is densely defined, self-adjoint, and positively definite with compact 
resolvent.

(K) The kernel function k ∈ L1
loc(R+) is nonnegative and nonincreasing, and there exists a function l ∈

L1
loc(R+) such that k ∗ l = 1 on (0, ∞).

(F) The nonlinear function f : H → H is locally Lipschitzian, i.e., for each ρ > 0 there is a nonnegative 
number κ(ρ) such that

‖f(v1) − f(v2)‖ ≤ κ(ρ)‖v1 − v2‖, ∀v1, v2 ∈ Bρ,

where Bρ is the closed ball in H with center at origin and radius ρ.

Noting that, the hypothesis (K) was used in a lot of works, e.g. [9,10,17–19,21]. This enables us to 
transform equations of type (1.1) to a Volterra integral equation with completely positive kernel, which is 
a main subject discussed in [16]. In this case, one writes (k, l) ∈ PC. Some typical examples of (k, l) were 
given in [18], e.g.,

• k(t) = g1−α(t) and l(t) = gα(t), t > 0: slow diffusion (fractional order) case.

• k(t) =
1∫

0

gβ(t)dβ and l(t) =
∞∫
0

e−pt

1 + p
dp, t > 0: ultra-slow diffusion (distributed order) case.

• k(t) = g1−α(t)e−γt, γ ≥ 0, and l(t) = gα(t)e−γt + γ

t∫
0

gα(s)e−γsds, t > 0: tempered fractional order 

case.

For more examples on (K), we refer the reader to [17].
Owing these hypotheses, we are able to derive, in the next section, a variation-of-parameter formula as 

well as the concept of mild solution for inhomogeneous equations. We show that a mild solution is also a 
weak solution, and it is a strong solution if the external force function is Hölder continuous and the kernel 
function l is sectorial and smooth enough. Section 3 is devoted to the semilinear equations, in which we prove 
the local/global solvability and asymptotic stability for (1.1). In addition, we show that, the mild solution 
of semilinear problem is also Hölder continuous. Finally, we present in the last section an application of 
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the abstract results, where we show a concrete condition ensuring the Hölder regularity and asymptotic 
stability of solutions to multi-term fractional in time PDEs.

2. Preliminaries

For μ ∈ R+, consider the following scalar integral equations

s(t) + μ(l ∗ s)(t) = 1, t ≥ 0, (2.1)

r(t) + μ(l ∗ r)(t) = l(t), t > 0. (2.2)

The existence and uniqueness of s and r were examined in [5, Section 20.4] (see also [14]). In the case 
l(t) = gα(t), following from the Laplace transform of s(·) and r(·), we know that s(t) = Eα,1(−μtα) and 
r(t) = tα−1Eα,α(−μtα), here Eα,β is the Mittag-Leffler function defined by

Eα,β(z) =
∞∑

n=0

zn

Γ(αn + β) , z ∈ C.

Recall that the kernel function l is said to be completely positive iff s(·) and r(·) take nonnegative values for 
every μ > 0. The complete positivity of l is equivalent to that (see [3]), there exist α ≥ 0 and k ∈ L1

loc(R+)
nonnegative and nonincreasing which satisfy αl + l ∗ k = 1. In particular, the hypothesis (K) ensures that l
is completely positive.

Denote by s(·, μ) and r(·, μ) the solutions of (2.1) and (2.2), respectively. We collect some properties of 
these functions.

Proposition 2.1. Let the hypothesis (K) hold. Then for every μ > 0, s(·, μ), r(·, μ) ∈ L1
loc(R+). In addition, 

we have:

(1) The function s(·, μ) is nonnegative and nonincreasing. Moreover,

s(t, μ)

⎡
⎣1 + μ

t∫
0

l(τ)dτ

⎤
⎦ ≤ 1, ∀t ≥ 0. (2.3)

(2) The function r(·, μ) is nonnegative and the following relations hold

s(t, μ) = 1 − μ

t∫
0

r(τ, μ)dτ = k ∗ r(·, μ)(t), t ≥ 0. (2.4)

(3) For each t > 0, the functions μ �→ s(t, μ) and μ �→ r(t, μ) are nonincreasing.

Proof. The justification for (2.3) and (2.4) can be found in [3]. The last statement was proved in [15, Lemma 
5.1 and Lemma 5.3]. �
Remark 2.1.

(1) As mentioned in [19], the functions s(·, μ) and r(·, μ) take nonnegative values even in the case μ ≤ 0.
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(2) Equation (2.1) is equivalent to the problem

d

dt
[k ∗ (s− 1)] + μs = 0, s(0) = 1.

This can be seen by convoluting both sides of equation (s − 1) + μl ∗ s = 0 with k and using k ∗ l = 1.
(3) Let v(t) = s(t, μ)v0 + (r(·, μ) ∗ g)(t), here g ∈ L1

loc(R+). Then v solves the problem

d

dt
[k ∗ (v − v0)](t) + μv(t) = g(t), v(0) = v0.

Indeed, by formulation and the relation k ∗ r = s, we have

k ∗ (v − v0) = k ∗ (s− 1)v0 + k ∗ r ∗ g

= k ∗ (s− 1)v0 + s ∗ g.

So

d

dt
[k ∗ (v − v0)] = d

dt
[k ∗ (s− 1)]v0 + s(0, μ)g + s′(·, μ) ∗ g

= −μs(·, μ)v0 + g − μr(·, μ) ∗ g

= −μ[s(·, μ)v0 + r(·, μ) ∗ g] + g

= −μv + g,

thanks to the fact that s(0, μ) = 1 and s′(t, μ) = −μr(t, μ), t > 0.
(4) We deduce from (2.3) that, if l /∈ L1(R+) then lim

t→∞
s(t, μ) = 0 for every μ > 0.

(5) It follows from (2.4) that 
∫ t

0 r(τ, μ)dτ ≤ μ−1, ∀t > 0. If l /∈ L1(R+) then 
∫∞
0 r(τ, μ)dτ = μ−1 for every 

μ > 0.

We are now in a position to prove a Gronwall type inequality, which plays an important role in our 
analysis.

Proposition 2.2. Let v be a nonnegative function satisfying

v(t) ≤ s(t, μ)v0 +
t∫

0

r(t− τ, μ)[αv(τ) + β(τ)]dτ, t ≥ 0, (2.5)

for μ > 0, α > 0, v0 ≥ 0, and β ∈ L1
loc(R+). Then

v(t) ≤ s(t, μ− α)v0 +
t∫

0

r(t− τ, μ− α)β(τ)dτ.

Particularly, if β is constant and α < μ then

v(t) ≤ s(t, μ− α)v0 + β (1 − s(t, μ− α)).

μ− α
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Proof. Let w(t) be the expression in the right hand side of (2.5). Then v(t) ≤ w(t) for t ≥ 0, and w solves 
the problem

d

dt
[k ∗ (w − v0)](t) + μw(t) = αv(t) + β(t),

w(0) = v0,

thanks to Remark 2.1 (2). This is equivalent to

d

dt
[k ∗ (w − v0)](t) + (μ− α)w(t) = α(v(t) − w(t)) + β(t),

w(0) = v0,

which implies

w(t) = s(t, μ− α)v0 +
t∫

0

r(t− τ, μ− α)[α(v(τ) − w(τ)) + β(τ)]dτ

≤ s(t, μ− α)v0 +
t∫

0

r(t− τ, μ− α)β(τ)dτ,

in accordance with v(τ) − w(τ) ≤ 0 for τ ≥ 0 and the positivity of r.
Finally, if β is constant, we employ (2.4) to get

t∫
0

r(t− τ, μ− α)βdτ = β

t∫
0

r(τ, μ− α)dτ = β

μ− α
(1 − s(t, μ− α)),

which completes the proof. �
Let us mention that, the hypothesis (A) ensures the existence of an orthonormal basis of H consisting of 

eigenfunctions {en}∞n=1 of the operator A and we have

Av =
∞∑

n=1
λnvnen,

where λn > 0 is the eigenvalue corresponding to the eigenfunction en of A,

D(A) = {v =
∞∑

n=1
vnen :

∞∑
n=1

λ2
nv

2
n < ∞}.

We can assume that 0 < λ1 ≤ λ2 ≤ ... ≤ λn → ∞ as n → ∞.
For γ ∈ R, one can define the fractional power of A as follows

D(Aγ) =
{
v =

∞∑
n=1

vnen :
∞∑

n=1
λ2γ
n v2

n < ∞
}
,

Aγv =
∞∑

n=1
λγ
nvnen.
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Let Vγ = D(Aγ). Then Vγ is a Banach space endowed with the norm

‖v‖γ = ‖Aγv‖ =
( ∞∑

n=1
λ2γ
n v2

n

) 1
2

.

Furthermore, for γ > 0, we can identify the dual space V ∗
γ of Vγ with V−γ .

We now define the following operators

S(t)v =
∞∑

n=1
s(t, λn)vnen, t ≥ 0, v ∈ H, (2.6)

R(t)v =
∞∑

n=1
r(t, λn)vnen, t > 0, v ∈ H. (2.7)

It is easily seen that S(t) and R(t) are linear. We show some basic properties of these operators in the 
following lemma.

Lemma 2.3. Let {S(t)}t≥0 and {R(t)}t>0, be the families of linear operators defined by (2.6) and (2.7), 
respectively. Then

(1) For each v ∈ H and T > 0, S(·)v ∈ C([0, T ]; H), S(t)v ∈ D(A) for t > 0, and AS(·)v ∈ C((0, T ]; H). 
Moreover,

‖S(t)v‖ ≤ s(t, λ1)‖v‖, t ∈ [0, T ], (2.8)

‖AS(t)v‖ ≤ ‖v‖
(1 ∗ l)(t) , t ∈ (0, T ]. (2.9)

(2) Let v ∈ H, T > 0 and g ∈ C([0, T ]; H). Then R(·)v ∈ C((0, T ]; H), R ∗ g ∈ C([0, T ]; H) and A(R ∗ g) ∈
C([0, T ]; V− 1

2
). Furthermore,

‖R(t)v‖ ≤ r(t, λ1)‖v‖, t ∈ (0, T ], (2.10)

‖(R ∗ g)(t)‖ ≤
t∫

0

r(t− τ, λ1)‖g(τ)‖dτ, t ∈ [0, T ], (2.11)

‖A(R ∗ g)(t)‖− 1
2
≤

⎛
⎝ t∫

0

r(t− τ, λ1)‖g(τ)‖2dτ

⎞
⎠

1
2

, t ∈ [0, T ]. (2.12)

Proof. (1) For the first statement, we observe that

‖S(t)v‖2 =
∞∑

n=1
s2(t, λn)v2

n. (2.13)

Since s(t, λn) ≤ 1 for every t ≥ 0, n ∈ N, this series is uniformly convergent on [0, T ]. So is series (2.6). Due 
to the fact that s(·, λn) is continuous, we get S(·)v ∈ C([0, T ]; H). Estimate (2.8) is deduced from (2.13) by 
using s(t, λn) ≤ s(t, λ1) for all n > 1.
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Considering

AS(t)v =
∞∑

n=1
λns(t, λn)vnen, (2.14)

we have

‖AS(t)v‖2 =
∞∑

n=1
λ2
ns

2(t, λn)v2
n. (2.15)

In view of (2.3), we get

λns(t, λn) ≤ λn

1 + λn(1 ∗ l)(t) ≤ 1
(1 ∗ l)(t) , ∀t > 0.

Substituting into (2.15), we have ‖AS(t)v‖ ≤ ‖v‖
(1 ∗ l)(t) , for every t > 0. In addition, for any δ such that 

0 < δ < T , one has λns(t, λn) ≤ 1
(1 ∗ l)(δ) for t ≥ δ, which implies that the convergence of (2.15) as well as 

(2.14) is uniform on [δ, T ]. That is, AS(·)v ∈ C([δ, T ]; H).
(2) Recall that r(·, μ) is continuous on (0, ∞) (see, e.g. [14]). So for any δ ∈ (0, T ) and μ > 0, r(·, μ) ∈

C([δ, T ]). This ensures that the series

‖R(t)v‖2 =
∞∑

n=1
r2(t, λn)v2

n (2.16)

is uniformly convergent on [δ, T ]. So is series (2.7). Inequality (2.10) follows from (2.16) since r(t, ·) is 
nonincreasing.

We now prove that R ∗ g ∈ C([0, T ]; H). Denoting gn(t) = (g(t), en), we first check that

(R ∗ g)(t) =
∞∑

n=1
[r(·, λn) ∗ gn](t)en. (2.17)

Indeed, since g ∈ C([0, T ]; H), the series ‖g(t)‖ =
∞∑

n=1
|gn(t)|2 is uniformly convergent on [δ, T ]. Given ε > 0, 

for δ ≤ τ ≤ t ≤ T and p ∈ N, we have

‖
n+p∑
k=n

r(τ, λk)gk(t− τ)ek‖ ≤ r(τ, λ1)
(

n+p∑
k=n

|gk(t− τ)|2
) 1

2

< ε,

provided that n is large enough. So the series 
∞∑
n=1

r(τ, λn)gn(t − τ)en converges uniformly on [δ, T ] and one 

can take integration term by term on [δ, t], i.e.

t∫
R(t− τ)g(τ)dτ =

∞∑
n=1

⎛
⎝ t∫

r(τ, λn)gn(t− τ)dτ

⎞
⎠ en.
δ δ
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Fix t > 0 and put hn(δ) =
t∫
δ

r(τ, λn)gn(t − τ)dτ . Arguing as above for the uniform convergence of the series 
∞∑

n=1
hn(δ)en on [0, t], we can pass to the limit as δ → 0 to get (2.17). Taking (2.17) into account, by the 

Hölder inequality, one has

|[r(·, λn) ∗ gn](t)| ≤
t∫

0

√
r(t− τ, λn)

√
r(t− τ, λn)|gn(τ)|dτ

≤

⎛
⎝ t∫

0

r(t− τ, λn)dτ

⎞
⎠

1
2
⎛
⎝ t∫

0

r(t− τ, λn)|gn(τ)|2dτ

⎞
⎠

1
2

≤
(

1
λn

(1 − s(t, λn))
) 1

2

⎛
⎝ t∫

0

r(t− τ, λ1)|gn(τ)|2dτ

⎞
⎠

1
2

≤ 1

λ
1
2
n

⎛
⎝ t∫

0

r(t− τ, λ1)|gn(τ)|2dτ

⎞
⎠

1
2

, (2.18)

thanks to (2.4) and the monotonicity of r(t, ·). Then it follows

n+p∑
k=n

|[r(·, λk) ∗ gk](t)|2 ≤ 1
λ1

t∫
0

r(t− τ, λ1)
(

n+p∑
k=n

|gk(τ)|2
)
dτ

≤ ε

λ1

t∫
0

r(t− τ, λ1)dτ ≤ ε

λ2
1
,

for n large, thanks to the uniform convergence of 
∞∑
n=1

|gn(t)|2 on [0, T ] and relation (2.4). Hence (2.17) is 

uniformly convergent on [0, T ] and then R ∗ g ∈ C([0, T ]; H). Estimate (2.11) takes place by employing 
(2.10).

Finally, we show that A(R ∗ g) ∈ C([0, T ]; V− 1
2
). Noticing that

A(R ∗ g)(t) =
∞∑

n=1
λn[r(·, λn) ∗ gn](t)en,

we obtain

‖A(R ∗ g)(t)‖2
− 1

2
= ‖A 1

2 (R ∗ g)(t)‖2 =
∞∑

n=1

(
λ

1
2
n [r(·, λn) ∗ gn](t)

)2
. (2.19)

Using estimate (2.18), one can claim the uniform convergence of (2.19) on [0, T ] and estimate (2.12) follows. 
Thus A(R ∗ g) ∈ C([0, T ]; V− 1

2
) as desired.

The proof is complete. �
Remark 2.2.

(1) Obviously, S(0)v = v for every v ∈ H.
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(2) We have (R ∗ g)(0) = 0. Indeed, it follows from (2.11) that

‖(R ∗ g)(t)‖ ≤ sup
τ∈[0,T ]

‖g(τ)‖
t∫

0

r(t− τ, λ1)dτ

= sup
τ∈[0,T ]

‖g(τ)‖λ−1
1 (1 − s(t, λ1)) → 0 as t → 0.

(3) Lemma 2.3 implies that A 1
2S(·)v, A 1

2 (R ∗ g) ∈ C((0, T ]; H) for every v ∈ H and g ∈ C([0, T ]; H). 
Equivalently, S(·)v, R ∗ g ∈ C((0, T ]; V 1

2
).

Given g ∈ C([0, T ]; H) and u0 ∈ H, consider the linear problem

d

dt
[k ∗ (u− u0)](t) + Au(t) = g(t), t ∈ (0, T ], (2.20)

u(0) = u0. (2.21)

Based on the operators S(t) and R(t), we introduce the following definition of mild solutions to (2.20)-(2.21).

Definition 2.1. A function u ∈ C([0, T ]; H) is called a mild solution to the problem (2.20)-(2.21) on [0, T ] iff

u(t) = S(t)u0 +
t∫

0

R(t− s)g(s)ds, t ∈ [0, T ]. (2.22)

3. Weak solution and regularity

3.1. Existence and uniqueness

In the sequel, we will define weak solution for (2.20)-(2.21) and show that a mild solution is also a weak 
solution.

Definition 3.1. Let (A) and (K) hold, g ∈ C([0, T ]; H) and u0 ∈ H be given. A function u ∈ C([0, T ]; H) ∩
C((0, T ]; V 1

2
) is said to be a weak solution to (2.20)-(2.21) on [0, T ] iff u(0) = u0 and equation (2.20) holds 

in V− 1
2
.

Theorem 3.1. If u is a mild solution to the problem (2.20)-(2.21), then it is a weak solution.

Proof. Let u be defined by (2.22). Then Lemma 2.3 ensures that S(·)u0 and R ∗ g belong to C([0, T ]; H), 
so u = S(·)u0 + R ∗ g ∈ C([0, T ]; H). By Remark 2.2, we get u(0) = u0 and u ∈ C((0, T ]; V 1

2
).

By formulation, we have

k(τ)(u(t− τ) − u0) =
∞∑

n=1
k(τ)[s(t− τ, λn) − 1]u0nen

+
∞∑

n=1
k(τ)[r(·, λn) ∗ gn](t− τ)en

for δ ≤ τ ≤ t ≤ T , where δ ∈ (0, T ), and these series are uniformly convergent on [δ, t]. So one has
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t∫
δ

k(τ)(u(t− τ) − u0)dτ =
∞∑

n=1

t∫
δ

k(τ)[s(t− τ, λn) − 1]dτu0nen

+
∞∑

n=1

t∫
δ

k(τ)[r(·, λn) ∗ gn](t− τ)dτen. (3.1)

For fixed t ∈ (0, T ], put

hn(δ) =
t∫

δ

k(τ)[s(t− τ, λn) − 1]dτ u0n +
t∫

δ

k(τ)[r(·, λn) ∗ gn](t− τ)dτ.

Obviously, hn is continuous on [0, t] for all n, and the function δ �→ h(δ) =
∫ t

δ
k(τ)(u(t − τ) − u0)dτ is also 

continuous on [0, t]. Then the series 
∑∞

n=1 hn(δ)en converges uniformly on [0, t], which enables us to pass 
to the limit in (3.1) to obtain

k ∗ (u− u0)(t) =
∞∑

n=1
k ∗ (s(·, λn) − 1)(t)u0nen +

∞∑
n=1

k ∗ [r(·, λn) ∗ gn](t)en

=
∞∑

n=1
k ∗ (s(·, λn) − 1)(t)u0nen +

∞∑
n=1

[s(·, λn) ∗ gn](t)en, (3.2)

thanks to (2.4). We testify that, it is possible to take differentiation term by term in (3.2). It suffices to 
prove that the series

∞∑
n=1

d

dt
[k ∗ (s(·, λn) − 1)](t)u0nen +

∞∑
n=1

d

dt
[s(·, λn) ∗ gn](t)en (3.3)

is uniformly convergent on [δ, T ] for any δ ∈ (0, T ). Indeed, by Remark 2.1 we have

d

dt
[k ∗ (s(·, λn) − 1)](t) = −λns(t, λn),

d

dt
[s(·, λn) ∗ gn](t) = gn(t) − λn[r(·, λn) ∗ g](t).

Therefore, (3.3) becomes

−
∞∑

n=1
λns(t, λn)u0nen −

∞∑
n=1

λn[r(·, λn) ∗ g](t)en +
∞∑

n=1
gn(t)en

= −AS(t)u0 −A(R ∗ g)(t) + g(t),

which are uniformly convergent on [δ, T ] as shown in Lemma 2.3. Hence, we can take differentiation in (3.2)
and get the equation

d

dt
[k ∗ (u− u0)](t) = −AS(t)u0 −A(R ∗ g)(t) + g(t) = −Au(t) + g(t), t ∈ (0, T ],

which holds in V− 1
2
. The proof is complete. �

We are in a position to prove the uniqueness of weak solution.
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Theorem 3.2. Problem (2.20)-(2.21) has a unique weak solution.

Proof. It remains to show the uniqueness. Let hμ = −s′μ = μr, then hμ is nonnegative and solves the 
equation

hμ(t) + μ(hμ ∗ l)(t) = μl(t), t > 0, μ > 0.

In addition, for 1 ≤ p < ∞, f ∈ Lp(0, T ), one has hn ∗ f → f in Lp(0, T ) as n → ∞ ([20]). Put kμ = k ∗ hμ, 
then kμ = μk ∗ r = μsμ, thanks to (2.4). Hence kμ ∈ W 1,1(0, T ). This enables us to employ the fundamental 
identity ([18, Lemma 2.3])

(v(t), (kμ ∗ v)′(t)) = 1
2(kμ ∗ ‖v(·)‖2)′(t) + 1

2kμ(t)‖v(t)‖2

+ 1
2

t∫
0

‖v(t) − v(t− s)‖2[−k′μ(s)]ds, t ∈ [0, T ], v ∈ C([0, T ];H).

Therefore

(v(t), (kμ ∗ v)′(t)) ≥ 1
2(kμ ∗ ‖v(·)‖2)′(t), t ∈ [0, T ], v ∈ C([0, T ];H), (3.4)

thanks to the fact that kμ is nonincreasing.
Let u1 and u2 be weak solutions of (1.1)-(1.2). Put v = u2 − u2, then we have

((k ∗ v)′(t), w) + (Av(t), w) = 0, ∀t ∈ (0, T ], w ∈ V 1
2
,

v(0) = 0.

Then

((hn ∗ k ∗ v)(t), w) + (hn ∗ 1 ∗Av(t), w) = 0, ∀t ∈ (0, T ], w ∈ V 1
2
,

which is equivalent to

((kn ∗ v)′(t), w) + (hn ∗Av(t), w) = 0, ∀t ∈ (0, T ], w ∈ V 1
2
.

Taking w = v(t) and using (3.4) yields

1
2(kn ∗ ‖v(·)‖2)′(t) + (hn ∗Av(t), v(t)) ≤ 0, ∀t ∈ (0, T ].

Let q(t) = 1
2 (kn ∗ ‖v(·)‖2)′(t) + (hn ∗Av(t), v(t)), then q(t) ≤ 0, ∀t ∈ (0, T ]. Noting that, the relation

1
2(kn ∗ ‖v(·)‖2)′(t) = qn(t) := q(t) − (hn ∗Av(t), v(t))

is equivalent to (see [18, Lemma 2.4])

1
2‖v(t)‖

2 = 1
n
qn(t) + l ∗ qn(t), t ∈ (0, T ]. (3.5)

Since qn(t) → q(t) − (Av(t), v(t)) as n → ∞, for t ∈ (0, T ], we obtain



JID:YJMAA AID:123655 /FLA Doctopic: Applied Mathematics [m3L; v1.279; Prn:14/11/2019; 14:41] P.12 (1-23)
12 T.D. Ke et al. / J. Math. Anal. Appl. ••• (••••) ••••••
1
2‖v(t)‖

2 = l ∗ [q(·) − ‖A 1
2 v(·)‖2](t) ≤ 0, t ∈ (0, T ].

Thus v = 0 and the proof is complete. �
3.2. Regularity

By using (K), the problem (2.20)-(2.21) can be transformed to the integral equation

u(t) + l ∗Au(t) = u0 + l ∗ g(t), t ∈ [0, T ].

This allows us to employ the resolvent theory in [16] for regularity analysis. Noting that the solution operator 
for the equation

u(t) + l ∗Au(t) = u0, t ∈ [0, T ], (3.6)

is given by S(t)u0 = u(t), where S(t) is defined by (2.6). It should be mentioned that (2.6) is a representation 
for the resolvent of (3.6) stated in [16, Theorem 1.1], in the case that A has a discrete spectrum. We refer 
to S(·) as the resolvent family.

We recall some notions and facts stated in [16].

Definition 3.2. Let l ∈ L1
loc(R+) be a function of subexponential growth, i.e. 

∞∫
0

|l(t)|e−εtdt < ∞ for every 

ε > 0.

• Suppose that l̂(λ) 
= 0 for all Reλ > 0. For θ > 0, l is said to be θ-sectorial if |arg l̂(λ)| ≤ θ for all 
Reλ > 0.

• For given m ∈ N, l is called m-regular if there exists a constant c > 0 such that

|λn l̂(n)(λ)| ≤ c|l̂(λ)| for all Reλ > 0, 0 ≤ n ≤ m.

Definition 3.3. Equation (3.6) is called parabolic if the following conditions hold:

(1) l̂(λ) 
= 0, 1/l̂(λ) ∈ ρ(−A) for all Reλ ≥ 0.
(2) There is a constant M ≥ 1 such that U(λ) = λ−1(I + l̂(λ)A)−1 satisfies

‖U(λ)‖ ≤ M

|λ| for all Reλ > 0.

Denote by Σ(ω, θ) the open sector with vertex ω ∈ R and angle 2θ in the complex plane, i.e.

Σ(ω, θ) = {λ ∈ C : |arg (λ− ω)| < θ}.

We have the following sufficient condition for (3.6) to be parabolic.

Proposition 3.3. [16, Proposition 3.1] Assume that l ∈ L1
loc(R+) is of subexponential growth and is θ-sectorial 

for some θ < π. If A is closed linear densely defined, such that ρ(−A) ⊃ Σ(0, θ), and

‖(λI + A)−1‖ ≤ M

|λ| for all λ ∈ Σ(0, θ), (3.7)

then (3.6) is parabolic.
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Let us mention that, by the assumption (A), −A generates a contraction C0-semigroup in H, which is 
given by

e−tAv =
∞∑

n=1
e−tλn(v, en)en, v ∈ H,

and (3.7) holds for M = 1 and for any θ < π.
The following result on the resolvent family for (3.6) plays an important role in our analysis.

Proposition 3.4. [16, Theorem 3.1] Assume that (3.6) is parabolic and the kernel function l is m-regular for 
some m ≥ 1. Then there is a resolvent family S(·) ∈ C(m−1)((0, ∞); L(H)) for (3.6), and a constant M ≥ 1
such that

‖tnS(n)(t)‖ ≤ M, for all t > 0, n ≤ m− 1.

In order to obtain the differentiability of the resolvent family, we replace (K) by a stronger assumption.

(K*) The assumption (K) is satisfied with l being 2-regular and θ-sectorial with some θ < π.

Employing Proposition 3.4, we have the following statement.

Lemma 3.5. Let (A) and (K*) hold. Then the resolvent family S(·) defined by (2.6) is differentiable on (0, ∞), 
the relation

S′(t) = −AR(t), t ∈ (0,∞), (3.8)

and the estimate

‖S′(t)‖ ≤ M

t
, t ∈ (0,∞), (3.9)

hold for some M ≥ 1.

Proof. The assumption (A) ensures that −A generates a bounded analytic semigroup. So (3.6) is parabolic, 
according to Proposition 3.3. Therefore, it follows from Proposition 3.4 that S(·) is differentiable on (0, ∞)
and estimate (3.9) takes place. Finally, it is deduced from the formulation of S and R given by (2.6)-(2.7)
that

S′(t)v =
∞∑

n=1
∂ts(t, λn)(v, en)en

=
∞∑

n=1
−λnr(t, λn)(v, en)en = −AR(t)v, t > 0, v ∈ H,

thanks to (2.4), which proves (3.8). �
Denote by Cγ([a, b]; H), γ ∈ (0, 1), the space of Hölder continuous functions on [a, b], that is, f ∈

Cγ([a, b]; H) iff

‖f‖Cγ = sup ‖f(t1) − f(t2)‖
|t − t |γ < ∞.
t1,t2∈[a,b] 1 2
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Definition 3.4. Let (A) and (K) hold, g ∈ C([0, T ]; H) and u0 ∈ H be given. A function u ∈ C([0, T ]; H)
is said to be a strong solution to (2.20)-(2.21) on [0, T ] iff u(0) = u0, u(t) ∈ D(A) for t > 0, and equation 
(2.20) holds in H.

Theorem 3.6. Let the hypotheses of Lemma 3.5 hold. Assume that the function g in (2.20) belongs to 
Cγ([0, T ]; H), and u is the weak solution of (2.20)-(2.21). Then u ∈ C([0, T ]; H) ∩ Cγ([δ, T ]; H) for any 
0 < δ < T , and u is a strong solution.

Proof. Recall that the unique weak solution of (2.20)-(2.21) is given by

u(t) = S(t)u0 + (R ∗ g)(t) = u1(t) + u2(t), t ∈ [0, T ]. (3.10)

We first show that u2 is Hölder continuous on [δ, T ]. Indeed, for t ∈ [δ, T ), h > 0, t + h ≤ T , we have

‖u2(t + h) − u2(t)‖ ≤
t∫

0

‖R(τ)‖‖g(t + h− τ) − g(t− τ)‖dτ

+
t+h∫
t

‖R(τ)‖‖g(t + h− τ)‖dτ

= I1 + I2.

Considering I1, one gets

I1 ≤
t∫

0

r(τ, λ1)‖g‖Cγhγdτ = ‖g‖Cγhγλ−1
1 (1 − s(t, λ1))

≤ ‖g‖Cγλ−1
1 hγ .

Concerning I2, the relation S′(t) = −AR(t) for t > 0 implies

I2 ≤ ‖(−A)−1‖
t+h∫
t

‖S′(τ)‖‖g(t + h− τ)‖dτ

≤ ‖A−1‖‖g‖∞M

t+h∫
t

dτ

τ
= ‖A−1‖‖g‖∞M ln

(
1 + h

t

)

≤ ‖A−1‖‖g‖∞Mγ−1
(
h

t

)γ

≤ ‖A−1‖‖g‖∞Mγ−1δ−γhγ ,

here we utilize the inequality

ln(1 + r) ≤ rγ

γ
for r > 0, γ ∈ (0, 1).

So we have proved that ‖u2(t + h) − u2(t)‖ ≤ Chγ with

C = ‖g‖Cγλ−1
1 + ‖A−1‖‖g‖∞Mγ−1δ−γ .
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It remains to show that u1 ∈ Cγ([δ, T ]; H). Let 0 < δ ≤ t < T and h > 0. Using the mean value formula

S(t + h)v − S(t)v = h

1∫
0

S′(t + θh)vdθ, v ∈ H,

we have

‖u1(t + h) − u1(t)‖ = ‖S(t + h)u0 − S(t)u0‖

≤ h

1∫
0

‖S′(t + θh‖‖v‖dθ

≤ M‖v‖h
1∫

0

dθ

t + θh
= M‖v‖ ln

(
1 + h

t

)

≤ M‖v‖γ−1δ−γhγ .

Finally, we have to show that u = S(·)u0 + R ∗ g is a strong solution to (2.20)-(2.21). In the proof of 
Theorem 3.1, we have testified that u fulfills (2.20) in V− 1

2
by reasoning that A(R ∗ g)(t) ∈ V− 1

2
for t > 0. 

In fact, by Lemma 2.3, AS(t)u0 ∈ H for t > 0. So it suffices to prove A(R ∗ g)(t) ∈ H for t > 0 under 
the assumption that g is Hölder continuous. Indeed, using the relation S′(t) = −AR(t) for t > 0 again, we 
obtain

A(R ∗ g)(t) =
t∫

0

AR(t− τ)g(τ)dτ = −
t∫

0

S′(t− τ)g(τ)dτ

= −
t∫

0

S′(t− τ)[g(τ) − g(t)]dτ + [I − S(t)]g(t).

Then

‖A(R ∗ g)(t)‖ ≤
t∫

0

‖S′(t− τ)‖‖g(τ) − g(t)‖dτ + ‖[I − S(t)]g(t)‖

≤ M‖g‖Cγ

t∫
0

(t− τ)γ−1dτ + ‖[I − S(t)]g(t)‖

≤ M‖g‖Cγγ−1T γ + 2‖g‖∞, for 0 < t ≤ T,

which completes the proof. �
4. Stability and regularity for semilinear equations

Definition 4.1. A function u ∈ C([0, T ]; H) is called a mild solution of the problem (1.1)-(1.2) on [0, T ] iff

u(t) = S(t)u0 +
t∫
R(t− s)f(u(s))ds,
0
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for every t ∈ [0, T ], where S(·) and R(·) are given by (2.6)-(2.7).

In the next theorem, we prove a local solvability result.

Theorem 4.1. Let (A), (K) and (F) be satisfied. Then there exists t∗ > 0 such that the problem (1.1)-(1.2)
has a unique mild solution defined on [0, t∗]. Moreover, u(t) ∈ V 1

2
for all t ∈ (0, t∗].

Proof. We make use of the contraction mapping principle. For given ζ ∈ (0, T ] and u0 ∈ H, let Φ :
C([0, ζ]; H) → C([0, ζ]; H) be the mapping defined by

Φ(u)(t) = S(t)u0 +
t∫

0

R(t− τ)f(u(τ))dτ, t ∈ [0, ζ]. (4.1)

Taking ρ > ‖u0‖ and assuming that u ∈ Bρ, the closed ball in C([0, ζ]; H) with center at origin and radius 
ρ, we have

‖Φ(u)(t)‖ ≤ ‖S(t)‖‖u0‖ +
t∫

0

‖R(t− τ)‖‖f(u(τ))‖dτ

≤ s(t, λ1)‖u0‖ +
t∫

0

r(t− τ, λ1)[κ(ρ)‖u(τ)‖ + ‖f(0)‖]dτ

≤ ‖u0‖ + [κ(ρ)ρ + ‖f(0)‖]λ−1
1 (1 − s(t, λ1)), t ∈ [0, ζ],

here we employ the hypothesis (F), Proposition 2.1 and Lemma 2.3. Since s(·, λ1) ∈ AC([0, ζ]) and s(0, λ1) =
1, one can choose ζ such that the last expression is smaller than ρ as long as t ∈ [0, ζ]. That is, Φ(Bρ) ⊂ Bρ.

Using (F) again, one gets

‖Φ(u1)(t) − Φ(u2)(t)‖ ≤
t∫

0

r(t− τ, λ1)‖f(u1(τ) − f(u2(τ))‖dτ

≤
t∫

0

r(t− τ, λ1)κ(ρ)‖u1(τ) − u2(τ)‖dτ

≤ κ(ρ)‖u1 − u2‖∞λ−1
1 (1 − s(t, λ1)), t ∈ [0, ζ],

where ‖ · ‖∞ is the sup norm in C([0, ζ]; H). Taking t∗ ≤ ζ such that κ(ρ)(1 − s(t∗, λ1)) < λ1, we see that 
Φ is a contraction as a map from Bρ into itself, with Bρ now in C([0, t∗]; H). So the problem (1.1)-(1.2)
has a unique solution defined on [0, t∗]. In addition, since t �→ g(t) = f(u(t)) is a continuous function, 
Φ(u)(t) ∈ D(A 1

2 ) for t > 0 due to Remark 2.2. So u(t) ∈ V 1
2

for t > 0. The proof is complete. �
We now discuss some circumstances, in which solutions exist globally.

Theorem 4.2. Let (A) and (K) hold. For any T > 0, if the nonlinear function f is globally Lipschitzian, that 
is, κ(ρ) = κ0 is a constant, then the problem (1.1)-(1.2) has a unique global mild solution u ∈ C([0, T ]; H) ∩
C((0, T ]; V 1

2
). If, in addition, that κ0 < λ1 and l /∈ L1(R+), then every mild solution to (1.1) is globally 

bounded and asymptotically stable.



JID:YJMAA AID:123655 /FLA Doctopic: Applied Mathematics [m3L; v1.279; Prn:14/11/2019; 14:41] P.17 (1-23)
T.D. Ke et al. / J. Math. Anal. Appl. ••• (••••) •••••• 17
Proof. Let β > 0 and ‖u‖β = sup
t∈[0,T ]

e−βt‖u(t)‖. Then ‖ · ‖β is equivalent to the sup norm in C([0, T ]; H). 

From the estimate

‖Φ(u1)(t) − Φ(u2)(t)‖ ≤
t∫

0

r(t− τ, λ1)κ0‖u1(τ) − u2(τ)‖dτ,

we get

e−βt‖Φ(u1)(t) − Φ(u2)(t)‖ ≤

⎛
⎝κ0

t∫
0

r(t− τ, λ1)e−β(t−τ)dτ

⎞
⎠ ‖u1 − u2‖β

≤

⎛
⎝κ0

T∫
0

r(t, λ1)e−βtdt

⎞
⎠ ‖u1 − u2‖β .

Choosing β > 0 such that

κ0

T∫
0

r(t, λ1)e−βtdt < 1,

we obtain that Φ is a contraction map from C([0, T ]; H) endowed with the norm ‖ · ‖β into itself, which 
ensures the existence and uniqueness of solution to (1.1)-(1.2). In addition, we have u(t) ∈ V 1

2
for t ∈ (0, T ], 

by the same reasoning as in the proof of Theorem 4.1.
Now assume that κ0 < λ1. Let u be a solution of (1.1)-(1.2), then we have

‖u(t)‖ ≤ s(t, λ1)‖u0‖ +
t∫

0

r(t− τ, λ1)[κ0‖u(τ)‖ + ‖f(0)‖]dτ, ∀t ≥ 0.

Using the Gronwall type inequality given in Proposition 2.2, we get

‖u(t)‖ ≤ s(t, λ1 − κ0)‖u0‖ + 1
λ1 − κ0

‖f(0)‖(1 − s(t, λ1 − κ0))

≤ ‖u0‖ + 1
λ1 − κ0

‖f(0)‖, ∀t ≥ 0,

which yields the global boundedness of u.
Let u and v be solutions of (1.1), then we have

‖u(t) − v(t)‖ ≤ s(t, λ1)‖u(0) − v(0)‖ +
t∫

0

r(t− τ, λ1)κ0‖u(τ) − v(τ)‖dτ,

thanks to (F) and Lemma 2.8. Employing Proposition 2.2 again, we obtain

‖u(t) − v(t)‖ ≤ s(t, λ1 − κ0)‖u(0) − v(0)‖, ∀t ≥ 0.

Since l /∈ L1(R+), it follows from Proposition 2.1(1) that s(t, λ1 − κ0) → 0 as t → ∞, which completes the 
proof. �
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The following theorems show the main results of this section.

Theorem 4.3. Let (A), (K) and (F) hold. If f(0) = 0 and lim sup
ρ→0

κ(ρ) = α with α ∈ [0, λ1), then there exists 

δ > 0 such that the problem (1.1)-(1.2) admits a unique global mild solution u ∈ C([0, T ]; H) ∩C((0, T ]; V 1
2
), 

provided that ‖u0‖ ≤ δ.

Proof. By assumption, for θ ∈ (0, λ1 −α), there exists η > 0 such that ‖f(v)‖ = ‖f(v) −f(0)‖ ≤ κ(η)‖v‖ ≤
(α + θ)‖v‖ as long as ‖v‖ ≤ η. Now we consider the solution map Φ : Bη → C([0, T ]; H) defined by (4.1). 
We see that

‖Φ(u)(t)‖ ≤ s(t, λ1)‖u0‖ +
t∫

0

r(t− τ, λ1)(α + θ)‖u(τ)‖dτ

≤ s(t, λ1)‖u0‖ + (α + θ)ηλ−1
1 (1 − s(t, λ1))

≤ s(t, λ1)[‖u0‖ − (α + θ)λ−1
1 η] + (α + θ)λ−1

1 η

≤ η, ∀t ∈ [0, T ],

provided that ‖u0‖ ≤ αλ−1
1 η, thanks to the fact that (α + θ)λ−1

1 < 1. Fixing an θ and η mentioned above, 
for δ = αλ−1

1 η, we have shown that Φ(Bη) ⊂ Bη as ‖u0‖ ≤ δ. It remains to show that Φ : Bη → Bη is a 
contraction mapping. Indeed, let u1, u2 ∈ Bη, then

‖Φ(u1)(t) − Φ(u2)(t)‖ ≤
t∫

0

r(t− s, λ1)κ(η)‖u1(s) − u2(s)‖ds

≤ (α + θ)λ−1
1 (1 − s(t, λ1))‖u1 − u2‖∞, ∀t ∈ [0, T ],

which implies the assertion. The uniqueness follows from the Gronwall type inequality stated in Proposi-
tion 2.2. The proof is complete. �
Theorem 4.4. Let the hypotheses of Theorem 4.3 hold. If l /∈ L1(R+), then the zero solution of (1.1)-(1.2)
is asymptotically stable.

Proof. Taken θ and δ from the proof of Theorem 4.3, for ‖u0‖ ≤ δ and a corresponding solution u of 
(1.1)-(1.2), we have

‖u(t)‖ ≤ s(t, λ1)‖u0‖ +
t∫

0

r(t− τ, λ1)(α + θ)‖u(τ)‖dτ.

Using Proposition 2.2, we get

‖u(t)‖ ≤ s(t, λ1 − α− θ)‖u0‖, ∀t ≥ 0.

Since l /∈ L1(R+) and λ1−α− θ > 0, we have s(t, λ1−α− θ) → 0 as t → ∞, and the last inequality ensures 
the stability and attractivity of the zero solution. The proof is complete. �

We now present a linearized stability result as a consequence of Theorem 4.4.
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Corollary 4.5. Let (A) and (K) hold. Assume that the nonlinearity f is continuously differentiable such that 
f(0) = 0 and A − f ′(0) remains positively definite. Then the zero solution of (1.1) is asymptotically stable.

Proof. Denote Ã = A − f ′(0), f̃(v) = f(v) − f ′(0)v. Then equation (1.1) is equivalent to

d

dt
[k ∗ (u− u0)](t) + Ãu(t) = f̃(u(t)), t > 0. (4.2)

By assumption, Ã fulfills (A). Furthermore, f̃ is also continuously differentiable, so it is locally Lipschitzian 
and, therefore, f̃ satisfies (F). Specifically, let v1, v2 ∈ Bρ, then by using the mean value formula, we have

‖f̃(v2) − f̃(v1)‖ = ‖
1∫

0

f̃ ′(v1 + (1 − t)(v2 − v1))(v2 − v1)dt‖

≤

⎛
⎝ 1∫

0

‖f̃ ′(v1 + (1 − t)(v2 − v1))‖dt

⎞
⎠ ‖v2 − v1‖

≤ sup
‖v‖≤2ρ

‖f̃ ′(v)‖‖v2 − v1‖.

Taking κ(ρ) = sup
‖v‖≤2ρ

‖f̃ ′(v)‖, we see that lim
ρ→0

κ(ρ) = 0, thanks to the fact that f̃ ′(v) = f ′(v) − f ′(0) → 0

as v → 0. So one can apply Theorem 4.4 for (4.2) (with α = 0) to get the conclusion. �
To end this section, we prove the Hölder continuity of the mild solution to (1.1)-(1.2).

Theorem 4.6. Let (A), (K*) and (F) hold. Then the mild solution to (1.1)-(1.2) is Hölder continuous on 
[δ, T ] for every 0 < δ < T .

Proof. Let u be the mild solution to (1.1)-(1.2). Then

u(t) = S(t)u0 +
t∫

0

R(t− τ)f(u(τ))dτ

= u1(t) + u2(t).

By the same reasoning as in the proof of Theorem 3.6, we have u1 ∈ Cγ([δ, T ]; H) for every 0 < δ < T and 
γ ∈ (0, 1).

Regarding u2, let ρ = ‖u2‖∞ and 0 < δ ≤ t ≤ T , then we see that

‖u2(t + h) − u2(t)‖ ≤
t∫

0

‖R(τ)‖‖f(u2(t + h− τ)) − f(u2(t− τ))‖dτ

+
t+h∫
t

‖R(τ)‖‖f(u2(t + h− τ))‖dτ

≤
t∫
r(τ, λ1)κ(ρ)‖u2(t + h− τ) − u2(t− τ)‖dτ
0
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+ ‖A−1‖
t+h∫
t

‖S′(τ)‖(‖f(0)‖ + κ(ρ)ρ)dτ

≤
t∫

0

r(t− τ, λ1)κ(ρ)‖u2(τ + h) − u2(τ)‖dτ

+ ‖A−1‖M(‖f(0)‖ + κ(ρ)ρ)γ−1δ−γhγ ,

here we use (F) and the arguments as in the proof of Theorem 3.6 for estimating the second integral.
Applying Proposition 2.2 for v(t) = ‖u2(t + h) − u2(t)‖, one gets

‖u2(t + h) − u2(t)‖ ≤ ‖A−1‖M(‖f(0)‖ + κ(ρ)ρ)γ−1δ−γs(t, λ1 − κ(ρ))hγ ,

which implies u2 ∈ Cγ([δ, T ]; H). �
5. Application

Let Ω ⊂ RN be a bounded domain with smooth boundary ∂Ω. We apply the obtained results to the 
following two-term time-fractional PDE:

∂α
t u(t, x) + μ∂β

t u(t, x) + (−Δ)γu(t, x) = F

⎛
⎝∫

Ω

u2(t, x)dx

⎞
⎠G(x, u(t, x)), (5.1)

for t > 0, x ∈ Ω,

u(t, x) = 0, for t ≥ 0, x ∈ ∂Ω, (5.2)

u(0, x) = u0(x), for x ∈ Ω, (5.3)

where 0 < α < β < 1, μ ≥ 0, γ > 0, ∂α
t and ∂β

t stand for the Caputo fractional derivatives of order α and 
β in t, respectively; Δ is the Laplacian with the domain D(Δ) = H2(Ω) ∩H1

0 (Ω). Let H = L2(Ω) with the 

inner product (u, v) =
∫
Ω

u(x)v(x)dx. Put

k(t) = g1−α(t) + μ g1−β(t), (5.4)

A = (−Δ)γ ,

f(v)(x) = F

⎛
⎝∫

Ω

v2(x)dx

⎞
⎠G(x, v(x)), v ∈ L2(Ω).

Then the problem (5.1)-(5.3) is in the form of (1.1)-(1.2). Observe that, the kernel function k is completely 
monotonic, i.e. (−1)nk(n)(t) ≥ 0 for t ∈ (0, ∞). As mentioned in [18], k admits a resolvent function l such 
that k ∗ l = 1 on (0, ∞) and in this case, (1 ∗ l)(t) ∼ g1+α(t) as t → ∞. Thus

s(t, μ) ≤ 1
1 + μ(1 ∗ l)(t) → 0 as t → ∞, for any μ > 0.

Let λ
 be the first eigenvalue of −Δ, that is λ
 = inf
u∈H1

0 (Ω)
{‖∇u‖2 : ‖u‖ = 1}. This implies that the first 

eigenvalue λ1 of A = (−Δ)γ is given by λ1 = λγ .
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Noting that, the nonlinearity in (5.1) can be seen as a perturbation depending not only on the state but 
also on the energy of the system. We assume that

(H1) F ∈ C1(R) obeys the estimate |F (r)| ≤ a + b|r|ν , for some nonnegative numbers a, b and ν.
(H2) G : Ω ×R → R is a Carathéodory function and satisfies the Lipschitz condition in the second variable, 

i.e.

|G(x, y1) −G(x, y2)| ≤ h(x)|y1 − y2|, ∀x ∈ Ω, y1, y2 ∈ R,

here h ∈ L∞(Ω) is a nonnegative function. In addition, assume that G(x, 0) = 0 for a.e. x ∈ Ω.

Theorem 5.1. Let (H1)-(H2) holds. Assume that

a‖h‖∞ < λγ
Δ if ν > 0, (5.5)

(a + b)‖h‖∞ < λγ
Δ if ν = 0, (5.6)

where ‖h‖∞ = ess supx∈Ω|h(x)|. Then the problem (5.1)-(5.3) has a unique global mild solution. Furthermore, 
the zero solution of (5.1) is asymptotically stable.

Proof. We first verify that f maps L2(Ω) into itself. Indeed, using (H1)-(H2) we get

‖f(v)‖ = F

⎛
⎝∫

Ω

v2(x)dx

⎞
⎠

⎛
⎝∫

Ω

|G(x, v(x))|2dx

⎞
⎠

1
2

≤ F

⎛
⎝∫

Ω

v2(x)dx

⎞
⎠

⎛
⎝∫

Ω

h2(x)v2(x)dx

⎞
⎠

1
2

≤ (a + b‖v‖2ν)‖h‖∞‖v‖.

In addition, we can check that f is locally Lipschitzian due to the assumption that F ′ is continuous and G
is Lipschitzian. Specifically, for v1, v2 ∈ L2(Ω), ‖v1‖, ‖v2‖ ≤ ρ, we see that

‖f(v1) − f(v2)‖ ≤ |F (‖v1‖2) − F (‖v2‖2)|

⎛
⎝∫

Ω

|G(x, v1(x))|2dx

⎞
⎠

1
2

+ |F (‖v2‖2)|

⎛
⎝∫

Ω

|G(x, v1(x)) −G(x, v2(x))|2dx

⎞
⎠

1
2

≤ |F ′ (θ‖v1‖2 + (1 − θ)‖v2‖2) | · |‖v1‖2 − ‖v2‖2| · ‖h‖∞‖v1‖

+ (a + b‖v2‖2ν)‖h‖∞‖v1 − v2‖

≤ κ(ρ)‖v1 − v2‖,

where

κ(ρ) = 2ρ2‖h‖∞ sup
2
|F ′(r)| + (a + bρ2ν)‖h‖∞.
r∈[0,ρ ]
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Hence lim
ρ→0

κ(ρ) = a‖h‖∞ if ν > 0 and lim
ρ→0

κ(ρ) = (a + b)‖h‖∞ as ν = 0. Using (5.5)-(5.6) and Theorem 4.3, 
we have the conclusion that, the problem (5.1)-(5.3) has a unique global mild solution. In addition, the zero 
solution of (5.1) is asymptotically stable, due to Theorem 4.4. �
Let us mention that, the mild solution for (5.1)-(5.3) is Hölder continuous on [δ, T ] for every 0 < δ < T . 
Indeed, the Laplace transform l̂ is given by l̂(λ) = (λα + μλβ)−1. Obviously,

|arg l̂(λ)| = |arg (λα + μλβ)−1|
= |arg (λα + μλβ)|

<
π

2 for all Reλ > 0.

So l is π2 -sectorial. In addition, by a direct computation, one has

λl̂′(λ) = −(λα + μλβ)−2(αλα + μβλβ)

λ2 l̂′′(λ) = 2(λα + μλβ)−3[αλα + μβλβ ]2

+ (λα + μλβ)−2[α(1 − α)λα + μβ(1 − β)λβ ].

Observing that, for every η1, η2 ∈ (0, 1) and Reλ > 0,

|η1λ
α + η2μλ

β | ≤ |λα + μλβ |,

we have

|λl̂′(λ)| ≤ |l̂(λ)|, |λ2 l̂′′(λ)| ≤ 3|l̂(λ)|,

which ensures that l is 2-regular, and (K*) is fulfilled. So the Hölder regularity of the mild solution follows 
from Theorem 4.6.
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