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Abstract

We study a class of free boundary problems of ecological models with nonlocal and local

diffusions, which are natural extensions of free boundary problems of reaction diffusion systems

in there local diffusions are used to describe the population dispersal, with the free boundary

representing the spreading front of the species. We first prove the existence, uniqueness and

regularity of global solution. For the classical competition, prey-predator and mutualist models,

we show that a spreading-vanishing dichotomy holds, and establish the criteria of spreading and

vanishing, and long time behavior of the solution.

Keywords: Nonlocal-local diffusions; Free boundaries; Existence-uniqueness; Spreading-

vanishing; Long-time behavior.
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1 Introduction

It is well known that random dispersal or local diffusion describes the movements of organ-

isms between adjacent spatial locations. It has been increasingly recognized the movements and

interactions of some organisms can occur between non-adjacent spatial locations. The evolution of

nonlocal diffusion has attracted a lot of attentions for both theoretically and empirically; please

refer to, for example, [1]-[3] and references therein. An extensively used nonlocal diffusion operator

to replace the local diffusion term dΔu (the Laplacian operator in R
N ) is given by

d(J ∗ u− u)(t, x) := d

(∫
RN

J(x− y)u(t, y)dy − u(t, x)

)
.

To describe the spatial spreading of species in the nonlocal diffusion processes, recently, Cao et

al. ([4]) studied the following free boundary problem of Fisher-KPP nonlocal diffusion model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = d

∫ h(t)

g(t)
J(x− y)u(t, y)dy − du+ f(t, x, u), t > 0, g(t) < x < h(t),

u(t, g(t)) = u(t, h(t)) = 0, t > 0,

h′(t) = μ

∫ h(t)

g(t)

∫ ∞

h(t)
J(x− y)u(t, x)dydx, t > 0,

g′(t) = −μ
∫ h(t)

g(t)

∫ g(t)

−∞
J(x− y)u(t, x)dydx, t > 0,

u(0, x) = u0(x), h(0) = −g(0) = h0, |x| ≤ h0,

(1.1)

where x = g(t) and x = h(t) are the moving boundaries to be determined together with u(t, x),

which is always assumed to be identically 0 for x ∈ R\[g(t), h(t)]; d, μ and h0 are positive constants.

The kernel function J : R→ R is continuous and satisfies
1This work was supported by NSFC Grant 11771110
2Corresponding author. E-mail: mxwang@hit.edu.cn
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(J) J(0) > 0, J(x) ≥ 0,

∫
R

J(x)dx = 1, J is symmetric, sup J <∞.

The reaction function f(t, x, u) satisfies

(f) f(t, x, 0) ≡ 0, there exists K0 > 0 such that f(t, x, u) < 0 for u ≥ K0, (t, x) ∈ R
+ × R, and f

is locally Lipschitz continuous in u ∈ R
+, i.e., for any A > 0 there exists L(A) > 0 such that

|f(t, x, u1)− f(t, x, u2)| ≤ L(A)|u1 − u2|, ∀ u1, u2 ∈ [0, A], (t, x) ∈ R
+ × R.

It was shown in [4] that the problem (1.1) has a unique global solution. Furthermore, the spreading-

vanishing dichotomy about free boundary problems of local diffusive logistic equation ([5]) holds

true for the nonlocal diffusive problem (1.1) when f(t, x, u) = f(u).

Motivated by the works of [4] and [6, 7, 8, 9, 10, 11] (two species local diffusion systems with

common free boundary), the authors of [12] studied a class of free boundary systems with nonlocal

diffusions and common free boundaries. They proved that such a nonlocal diffusion problem has

a unique global solution, and for models with Lotka-Volterra type competition or predator-prey

growth terms, they shown that a spreading-vanishing dichotomy holds, and obtained criteria for

spreading and vanishing. Moreover, for the weak competition case and weak predation case, they

determined the long-time asymptotic limit of the solution when spreading happens.

Kao et al. [13] studied the dynamics of a competitive model in which one diffusion is local and

the other one is nonlocal.

Inspired by the above cited papers, recently, Wang and Wang [14] investigated free boundary

problems with nonlocal and local diffusions and common free boundaries.

Free boundary problems of two species reaction diffusion systems, in which one species dis-

tributes in the whole space and the other one exists initially in a interval and invades into the

new environment with double free boundaries, had been extensively studied. For example, [10,

11, 15, 16, 17] for the competition model, [18, 19] for the predator-prey model, and [7] for the

Beddington-DeAngelis predator-prey model with nonlinear prey-taxis.

Motivated by the above mentioned works, in this paper we deal with the following free boundary

problems with nonlocal and local diffusions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = d1(J ∗ u− u) + f1(t, x, u, v), t > 0, x ∈ R,

vt = d2vxx + f2(t, x, u, v), t > 0, g(t) < x < h(t),

v = 0, g′(t) = −μvx, t ≥ 0, x = g(t),

v = 0, h′(t) = −μvx, t ≥ 0, x = h(t),

u(0, x) = u0(x), x ∈ R,

v(0, x) = v0(x), x ∈ [−h0, h0],
− g(0) = h(0) = h0 > 0,

(1.2)

where [−h0, h0] represents the initial population range of the species v(t, x); x = g(t) and x = h(t)

are the free boundaries to be determined by v(t, x); di and μ are positive constants.

Denote by C1−(R) the space of global Lipschitz continuous functions in R. We assume that the

initial functions u0, v0 satisfy{
u0 ∈ C1−(R) ∩ Cb(R), v0 ∈W 2

p ((−h0, h0)),
v0(±h0) = 0, v0 > 0 in (−h0, h0), u0 > 0 in R

(1.3)
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with p > 3, and denote by L0 the Lipschitz constant of u0.

(J1) The condition (J) holds, J is compactly supported, J ∈ C1−(R), and denote by L(J) the

Lipschitz constant of J .

The growth terms fi : R
+ × R× R

+ × R
+ → R are assumed to be continuous and satisfy

(f1) f1(t, x, 0, v) = f2(t, x, u, 0) = 0, fi is locally Lipschitz continuous in u, v ∈ R
+, i.e., for any

given A1, A2 > 0, there exists L(A1, A2) > 0 such that

|fi(t, x, u1, v1)− fi(t, x, u2, v2)| ≤ L(A1, A2)(|u1 − u2|+ |v1 − v2|), i = 1, 2

for all u1, u2 ∈ [0, A1], v1, v2 ∈ [0, A2] and all (t, x) ∈ R
+ × R;

(f2) There exists k0 > 0 such that for all v ≥ 0 and (t, x) ∈ R
+ × R, there holds f1(t, x, u, v) < 0

when u > k0;

(f3) For the given A > 0, there exists Θ(A) > 0 such that f2(t, x, u, v) < 0 for 0 ≤ u ≤ A, v ≥ Θ(A)

and (t, x) ∈ R
+ × R;

(f4) fi is Lipschitz continuous in x ∈ R, i.e., for any A1, A2 > 0, there exists L∗(A1, A2) > 0 such

that

|fi(t, x1, u, v)− fi(t, x2, u, v)| ≤ L∗(A1, A2)|x1 − x2|, i = 1, 2

for all u ∈ [0, A1], v ∈ [0, A2] and all (t, x1, x2) ∈ R
+ × R× R.

The condition (f1) implies

|f1(t, x, u, v)| ≤ L(A1, A2)u, |f2(t, x, u, v)| ≤ L(A1, A2)v

for all u ∈ [0, A1], v ∈ [0, A2] and all (t, x) ∈ R
+ × R.

It is easily seen that the conditions (f1)–(f4) hold for the classical competition, prey-predator

and mutualist models

Competition Model : f1 = u(a− u− bv), f2 = v(1− v − cu), (1.4)

Prey-predator Model : f1 = u(a− u− bv), f2 = v(1− v + cu), (1.5)

Mutualist Model : f1 = r1u

(
a− u− u

1 + bv

)
, f2 = r2v

(
1− v − v

1 + cu

)
, (1.6)

where parameters are positive constants.

Except where otherwise stated, we always assume that (f1)-(f4) hold, the kernel function J

satisfies (J1) and u0, v0 satisfy the condition (1.3) throughout this paper. Sometimes, we simply

write ‖(φ, ϕ)‖ as ‖φ, ϕ‖.
The organization of this paper is as follows. In Section 2 we prove that the problem (1.2) has a

unique global solution. For later discussion, we give some preliminary results in section 3. Section

4 is devoted to the long time behaviors of global solution, and Section 5 deals with conditions for

spreading and vanishing. In the last section we shall give some estimates of spreading speeds.



4 L. Li and M. X. Wang

2 Global existence and uniqueness of solution of (1.2)

In this section we prove the global existence and uniqueness of the solution to problem (1.2).

For convenience, we first introduce some notations. Let k0,Θ(·) be given in (f2), (f3). Denote

A1 = max {‖u0‖∞, k0} , A2 = max {‖v0‖∞, Θ(A1)} , L = L(A1, A2),

L∗ = L∗(A1, A2), A3 = 2A2max

{√
L

2d2
,
4‖v0‖C1([−h0,h0])

3A2

}
,

ΠT = [0, T ]× R, ΔT = [0, T ]× [−1, 1] with T > 0.

For the given h0, T > 0, define

H
T =

{
h ∈ C1([0, T ]) : h(0) = h0, 0 < h′(t) ≤ μA3

}
,

G
T =

{
g ∈ C1([0, T ]) : −g ∈ H

T
}
.

And for g ∈ G
T , h ∈ H

T , define

DT
g,h =

{
(t, x) ∈ R

2 : 0 < t ≤ T, g(t) < x < h(t)
}
,

X
T
1 = XT

u0
=

{
ϕ ∈ C(ΠT ) : 0 ≤ ϕ ≤ A1, ϕ

∣∣
t=0

= u0
}
,

X
T
2 = X

T
v0,g,h =

{
ϕ ∈ C(D

T
g,h) : 0 ≤ ϕ ≤ A2, ϕ

∣∣
t=0

= v0, ϕ
∣∣
x=g(t),h(t)

= 0
}
,

X
T = X

T
1 × X

T
2

The following theorem is the main result of this section.

Theorem 2.1. The problem (1.2) has a unique local solution (u, v, g, h) defined on [0, T ] for some

0 < T <∞. Moreover, (g, h) ∈ G
T ×H

T , (u, v) ∈ X
T , v ∈W 1,2

p (DT
g,h) and

(u, v, g, h) ∈ C1,1−(ΠT )×W 1,2
p (DT

g,h)× [C1([0, T ])]2, (2.1)

0 < u ≤ A1 in ΠT , 0 < v ≤ A2 in DT
g,h, (2.2)

0 < −vx(t, h(t)), vx(t, g(t)) ≤ A3, 0 < t ≤ T, (2.3)

where u ∈ C1,1−(ΠT ) means that u is differentiable continuously in t ∈ [0, T ] and is Lipschitz

continuous in x ∈ R.

If we further assume that

(f5) For any given τ , l, A1, A2 > 0, there exists L̃(τ, l, A1, A2) such that

‖f2(·, x, u, v)‖C α
2 ([0,τ ])

≤ L̃(τ, l, A1, A2) (2.4)

for all x ∈ [−l, l], u ∈ [0, A1], v ∈ [0, A2].

Then the solution (u, v, g, h) of (1.2) exists globally. Moreover, for any given T > 0, (2.1)-(2.3)

hold true, and

v ∈ C1+α/2, 2+α((0, T ]× [g(t), h(t)]), g, h ∈ C1+α/2([0, T ]). (2.5)

To prove Theorem 2.1, we first give some Lemmas which are crucial in the proof of Theorem

2.1.
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Lemma 2.2 (Maximum Principle). Assume that J satisfies (J), u and ut are continuous and u is

bounded in ΠT . If u satisfies, for some c(t, x) ∈ L∞(ΠT )⎧⎨⎩ut ≥ d(J ∗ u− u) + c(t, x)u, (t, x) ∈ (0, T ]× R,

u(0, x) ≥ 0, x ∈ R.

Then u ≥ 0 on ΠT . Moreover, u > 0 in (0, T ]× R provided u(0, x) �≡ 0 in R.

Proof. This lemma may be known, but we can’t find references, so we give it’s proof. The idea of

this proof comes from [20, Lemma 2.3] and [21, Lemma 3.3]. As u is continuous and bounded, the

function f(t) := infx∈R u(t, x) is continuous in [0, T ]. Set p(t, x) = d− c(t, x) and g(t) = e−2Ktf(t)

where K := ‖p(t, x)‖∞ + d. Suppose on the contrary and due to g(0) ≥ 0, there exist ε > 0,

0 < T0 ≤ T such that g(T0) = inf [0,T ] g(t) = −ε, g(t) > −ε for 0 ≤ t < T0, and there exists

(t∗, x∗) ∈ (0, T0)× R such that u(t∗, x∗) < −7
8εe

2Kt∗ . Therefore,

u > −εe2Kt in [0, T0)× R, u(t∗, x∗) < −7

8
εe2Kt∗ .

Let z(x) be continuous in R and satisfy minR z = z(x∗) = 1, supR z = z(±∞) = 3. Set

wσ(t, x) = −ε(3/4 + σz(x))e2Kt, with σ ∈ [0, 1].

Obviously, wσ is bounded and continuous in [0, 1]× [0, T ]× R. Notice that, when σ ≤ 1/8,

inf
ΠT0

(u− wσ) ≤ u(t∗, x∗)− wσ(t∗, x∗) < −7

8
εe2Kt∗ + ε

(
3

4
+

1

8

)
e2Kt∗ = 0;

when σ > 1/4, for all (t, x) ∈ ΠT0 ,

u(t, x)− wσ(t, x) ≥ −εe2Kt + ε(3/4 + σz(x))e2Kt ≥ εe2Kt(3/4 + σ − 1) > ε(σ − 1/4).

One can find a σ∗ ∈ (1/8, 1/4] such that infΠT0
(u−wσ∗) = 0. As wσ∗(t,±∞) ≤ −9

8εe
2Kt < u(t,±∞)

for t ∈ [0, T0], and u(0, x) ≥ 0 > −3ε/4 > wσ∗(0, x) for x ∈ R. There exists (t0, x0) ∈ (0, T0] × R

such that

u(t0, x0)− wσ∗(t0, x0) = 0 = inf
ΠT0

(u− wσ∗),

which implies ut(t0, x0)− wσ∗t(t0, x0) ≤ 0. Recall σ∗ ∈ (1/8, 1/4], 1 ≤ z(x) ≤ 3, we have

0 ≥ ut(t0, x0)− wσ∗t(t0, x0)

≥ d(J ∗ u)(t0, x0)− p(t0, x0)u(t0, x0) + 2Kε(3/4 + σ∗z(x0))e2Kt0

> −dεe−2Kt0 − ‖p(t, x)‖∞|u(t0, x0)|+ 7

4
Kεe2Kt0

> −dεe2Kt0 − 3

2
ε‖p(t, x)‖∞e2Kt0 +

7

4
Kεe2Kt0

= εe2Kt0(7K/4− d− 3‖p(t, x)‖∞/2) > 0

as K = ‖p(t, x)‖∞ + d. This derives a contradiction. So u ≥ 0 on ΠT .

If u(0, x) �≡ 0 in R, then for any given N > 0 big enough such that u(0, x) �≡ 0 in [−N,N ], we

have ⎧⎪⎨⎪⎩
ut ≥ d

∫ N

−N
J(x, y)u(t, y)dy − du+ c(t, x)u, (t, x) ∈ (0, T ]× [−N,N ],

u(0, x) ≥, �≡ 0, x ∈ [−N,N ].
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It follows by [4, Lemma 3.3] that u(t, x) > 0 in (0, T ] × [−N,N ]. The arbitrariness of N implies

u > 0 in (0, T ]× R.

Lemma 2.3. Assume that J satisfies (J). Consider the following Cauchy problem⎧⎨⎩zt = d(J ∗ z − z) + f(t, x, z), (t, x) ∈ (0, T ]× R,

z(0, x) = z0(x) > 0, x ∈ R,
(2.6)

where z0 ∈ Cb(R), f : R+ × R× R
+ → R is continuous. If f satisfies the condition (f), then (2.6)

has a unique solution z ∈ Cb(ΠT ) and 0 < z ≤ K1 := max {K0, ‖z0‖∞}.

Proof. This lemma may be known. For the convenience to readers we shall give its proof. Define

A := ‖z0‖∞ + 1, 0 < T0 ≤ min
{
1, T, 1

(2d+L(A))A

}
, and

f̃(t, x, z) = 0 when z ≤ 0, f̃(t, x, z) = f(t, x, z) when z > 0.

Then f̃(t, x, z) is still continuous. Clearly, the problem⎧⎨⎩zt = d(J ∗ z − z) + f̃(t, x, z), (t, x) ∈ (0, T0]× R,

z(0, x) = z0(x) > 0, x ∈ R

(2.7)

is equivalent to the following integral equation

z(t, x) = z0(x) +

∫ t

0

[
d(J ∗ z − z)(s, x) + f̃(s, x, z(s, x))

]
ds.

Let us define

zn(t, x) = z0(x) +

∫ t

0

[
d(J ∗ zn−1 − zn−1)(s, x) + f̃(s, x, zn−1(s, x))

]
ds, n ≥ 1,

and z0(t, x) := z0(x). The direct calculation gives

‖zn − z0‖Cb(ΠT0
) ≤ 1, ‖zn+1 − zn‖Cb(ΠT0

) ≤ T0(2d+ L(A))‖zn−1 − zn‖Cb(ΠT0
).

Due to our choice of T0, we have q := T0(2d+ L(A)) < 1. Thus

‖zn+1 − zn‖Cb(ΠT0
) ≤ qn‖z1 − z0‖Cb(ΠT0

)

inductively. This shows that {zn} is a Cauchy sequence of Cb(ΠT0). Thanks to the completeness of

Cb(ΠT0), it follows that zn → z in Cb(ΠT0) and ‖z − z0‖Cb(ΠT0
) ≤ 1. It is easy to see that z is the

unique solution of (2.7). Due to f(t, x, z) ≥ −L(A)Sgn(z)z, we have z > 0 in ΠT0 by Lemma 2.2.

Hence z(t, x) is the unique solution of (2.6) and 0 < z ≤ K1 in ΠT0 by the comparison principle.

According to the above arguments we can regard z(T0, x) as the initial data to extend the

unique solution of (2.6) to some [0, T1] with T1 > T0 and it is easy to see that T1−T0 depends only

on K1, f and d. Furthermore, the extended solution z still satisfies 0 < z ≤ K1 in [0, T1]× R. By

repeating this extension process finitely many times, the solution can be uniquely extended to T

and satisfies 0 < z ≤ K1 in [0, T ]× R.
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Proof of Theorem 2.1. Step 1: Given T > 0, we say u ∈ C1−
x (ΠT ) if there is a constant L(u, T )

such that

|u(t, x1)− u(t, x2)| ≤ L(u, T )|x1 − x2|, ∀ x1, x2 ∈ R, t ∈ [0, T ].

For s > 0 we define

X
s
u0

= {φ ∈ Cb(Πs) : φ(0, x) = u0(x), 0 ≤ φ ≤ A1} .

Choose u ∈ X
1
u0
∩ C1−

x (Π1) and consider the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt = d2vxx + f2(t, x, u(t, x), v), 0 < t ≤ 1, g(t) < x < h(t),

v(t, g(t)) = v(t, h(t)) = 0, 0 ≤ t ≤ 1,

h′(t) = −μvx(t, h(t)), 0 ≤ t ≤ 1,

g′(t) = −μvx(t, g(t)), 0 ≤ t ≤ 1,

v(0, x) = v0(x), h(0) = −g(0) = h0 > 0, |x| ≤ h0.

(2.8)

Due to the properties of f2 and u, using the similar arguments in the proof of [22, Theorem 1.1] we

can show that (2.8) has a unique solution (v, g, h) ∈ C
1+α
2

, 1+α(D
T
g,h) × [C1+α/2([0, T ])]2 for some

0 < T ≤ 1, and (v, g, h) satisfies

0 < v ≤ A2 in DT ; 0 < −vx(t, g(t)), vx(t, h(t)) ≤ A3 in (0, T ], (2.9)

where T depends only on v0, h0, α, A1, A2, f2 and the Lipschitz constant L(u, 1) of u. Put

v(t, x) = 0 when x ∈ R \ (g(t), h(t)) and consider the following problem⎧⎨⎩ũt = d(J ∗ ũ− ũ) + f1(t, x, ũ, v(t, x)), (t, x) ∈ (0, T ]× R,

ũ(0, x) = u0(x) > 0, x ∈ R.
(2.10)

It is easy to verify that the function f(t, x, ũ) := f1(t, x, ũ, v(t, x)) satisfies the condition (f). By

virtue of Lemma 2.3 we can see that (2.10) has a unique solution ũ ∈ X
T
u0
.

In the following it will be shown that ũ ∈ C1−
x (ΠT ). We straighten the boundaries and define

w(t, y) = u(t, x(t, y)) and z(t, y) = v(t, x(t, y)), where

x(t, y) =
(h(t)− g(t))y + h(t) + g(t)

2
.

Then z satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
zt = d2ξ(t)zyy + ζ(t, y)zy + f2(t, x(t, y), w, z), 0 < t ≤ T, |y| < 1,

z(t,−1) = z(t, 1) = 0, 0 ≤ t ≤ T,

z(0, y) = v0(h0y) =: z0(y), |y| ≤ 1

(2.11)

with

ξ(t) =
4

(h(t)− g(t))2
, ζ(t, y) =

h′(t) + g′(t)
h(t)− g(t)

+
(h′(t)− g′(t))y
h(t)− g(t)

.

Due to (2.9) we have

‖ξ‖L∞([0,T ]) ≤ 1/h20, ‖ζ‖L∞(ΔT ) ≤ 2μA3/h0, ‖f2‖L∞(ΔT ) ≤ C0, (2.12)
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where C0 depends only on A1, A2. By the parabolic Lp theory, z ∈W 1,2
p (ΔT ) and

‖z‖
W 1,2

p (ΔT )
≤ C, (2.13)

where C depends only on h0, v0, A1, A2, A3 and μ. Using the arguments in the proof of [22,

Theorem 1.1] we can obtain

[z, zy]Cα/2,α(ΔT ) ≤ C1, (2.14)

where C1 is independent of T−1. This implies

‖zy‖C(ΔT ) ≤ ‖z′0(y)‖C([−1,1]) + C1T
α/2 ≤ ‖z′0(y)‖C([−1,1]) + C1 := C2. (2.15)

Thanks to (2.9) and vx(t, x) = zy(t, y)
2

h(t)−g(t) , it yields

‖vx‖C(D
T
g,h)

≤ C2/h0 =: C̄. (2.16)

For (t, x), (t, x̄) ∈ ΠT , we set q(t, x, x̄) = ũ(t, x)−ũ(t, x̄) and Ω(x, x̄) = suppJ(x−·)∪suppJ(x̄−·).
Noticing J is compactly supported. Then

|q(t, x, x̄)| ≤ |q(0, x, x̄)|+
∫ t

0

(
d1

∫
Ω(x,x̄)

|J(x− ρ)− J(x̄− ρ)|ũ(s, ρ)dρ

+d1|q(s, x, x̄)|+ |f1(s, x, ũ(s, x), v(s, x))− f1(s, x̄, ũ(s, x̄), v(s, x̄))|
)
ds

≤ [
L0 +

(
2d1A1L(J)|suppJ |+ L∗ + LC̄

)
T
]|x− x̄|+

∫ t

0
(d1 + L)|q(s, x, x̄)|ds.

Thanks to Gronwall’s inequality, it derives that

|ũ(t, x)− ũ(t, x̄)| ≤ L̄(T )|x− x̄|, (2.17)

where

L̄(T ) :=
[
L0 +

(
2d1A1L(J)|suppJ |+ L∗ + LC̄

)
T
]
e(d1+L)T .

This shows that ũ ∈ C1−
x (ΠT ) and L(u, T ) = L̄(T ) ≤ L̄(1) := L̄.

Now we define the mapping Γ(u) = ũ and

Y
T
u0

=
{
φ ∈ C(ΠT ) : φ(0, x) = u0(x), 0 ≤ φ ≤ A1, |φ(t, x)− φ(t, y)| ≤ L̄|x− y|} .

Clearly, YT
u0

is complete with the metric d(φ1, φ2) = supΠT
|φ1 − φ2| and Γ maps Y

T
u0

into itself.

We shall prove that Γ is a contraction mapping in Y
T
u0

provided T sufficiently small (depends only

on v0, h0, α, A1, A2, f2 and L̄).

Step 2: Let u1, u2 ∈ Y
T
u0
, Γ(ui) = ũi, we shall show that

‖ũ‖Cb(ΠT ) ≤
1

3
‖u‖Cb(ΠT ) if 0 < T � 1. (2.18)

Let (vi, gi, hi) be the unique solution of (2.8) with u replaced by ui. Set u = u1 − u2, ũ = ũ1 − ũ2,

v = v1 − v2 and ΩT = DT
g1,h1

∪DT
g2,h2

. Then

|ũ(t, x)| =
∣∣∣∣∫ t

0
d1(J ∗ ũ− ũ)(s, x) + f1(s, x, ũ1, v1)− f1(s, x, ũ2, v2)ds

∣∣∣∣
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≤ (2d1 + L)T‖ũ‖C(ΠT ) + LT‖v1 − v2‖C(ΩT ), ∀ (t, x) ∈ ΠT . (2.19)

The main content of this step is to estimate ‖v1 − v2‖C(Ω̄T ). To this aim, we first gives some

useful estimates. Let xi(t, y), ξi(t) and ζi(t, y) be as x(t, y), ξ(t) and ζ(t, y) with (g(t), h(t)) replaced

by (gi(t), hi(t)), and let zi(t, y) = vi(t, xi(t, y)). Then zi, vi satisfy (2.15) and (2.16), respectively.

Set ξ = ξ1 − ξ2, ζ = ζ1 − ζ2, and g = g1 − g2, h = h1 − h2. Then

‖ξ‖L∞((0,T )) ≤
h0 + μA3

h40
‖g, h‖C([0,T ]), ‖ζ‖L∞(ΔT ) ≤

h0 + μA3

h20
‖g, h‖C1([0,T ]).

Define

f i
2(t, y, u, v) = f2(t, xi(t, y), u, v), wi(t, y) = ui(t, xi(t, y)), zi(t, y) = vi(t, xi(t, y)),

and set z = z1 − z2, w = w1 − w2. It then follows from (2.11) that⎧⎪⎪⎪⎨⎪⎪⎪⎩
zt − d2ξ1zyy − ζ1zy − az = d2ξz2,yy + ζz2,y + bw + c, 0 < t ≤ T, |y| < 1,

z(t,±1) = 0, 0 ≤ t ≤ T,

z(0, y) = 0, |y| ≤ 1,

(2.20)

where

a = a(t, y) =

∫ 1

0
f1
2,v(t, y, w1, z2 + (z1 − z2)τ)dτ,

b = b(t, y) =

∫ 1

0
f2
2,u(t, y, w2 + (w1 − w2)τ, z2)dτ,

c = c(t, y) = f1
2 (t, y, w1, z2)− f2

2 (t, y, w1, z2).

It is easy to see that

‖a, b‖L∞(ΔT ) ≤ L, ‖c‖L∞(ΔT ) ≤ L∗‖g, h‖C([0,T ]).

Due to (2.12), (2.13), applying the parabolic Lp theory to (2.20) we can obtain

‖z‖
W 1,2

p (ΔT )
≤ C3

(‖g, h‖C1([0,T ]) + ‖w‖C(ΔT )

)
,

where C3 depends on h0, μ, Ai. The same as (2.14), we have

[z]Cα/2,α(ΔT ) + [zy]Cα/2,α(ΔT ) ≤ C4

(‖g, h‖C1([0,T ]) + ‖w‖C(ΔT )

)
, (2.21)

where C4 > 0 is independent of T−1. When (t, y) ∈ ΔT , we have

|w1(t, y)− w2(t, y)| = |u1(t, x1(t, y))− u2(t, x2(t, y))| ≤ |u1(t, x1(t, y))− u2(t, x1(t, y))|
+|u2(t, x1(t, y))− u2(t, x2(t, y))| ≤ ‖u‖Cb(ΠT ) + L̄|x1(t, y)− x2(t, y)|
≤ C5(‖u‖Cb(ΠT ) + ‖g, h‖C([0,T ])),

where C5 depends only on h0, L̄. Therefore, ‖w‖C(ΔT ) ≤ C5

(‖u‖Cb(ΠT ) + ‖g, h‖C([0,T ])

)
. This

combined with (2.21) asserts

[z]Cα/2,α(ΔT ) + [zy]Cα/2,α(ΔT ) ≤ C6

(‖g, h‖C1([0,T ]) + ‖u‖Cb(ΠT )

)
. (2.22)
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Notice zy(0, 1) = 0. The above estimate implies

|zy(t, 1)|C([0,T ]) ≤ C6T
α/2

(‖g, h‖C1([0,T ]) + ‖u‖Cb(ΠT )

)
. (2.23)

As h(0) = g(0) = 0, it is easy to see that

|h(t)| ≤ T‖h′‖C([0,T ]), |g(t)| ≤ T‖g′‖C([0,T ]). (2.24)

Making use of (2.15) and (2.23) we have

|h′1(t)− h′2(t)| = μ|v1,x(t, h1(t))− v2,x(t, h2(t))|

= μ

∣∣∣∣2[z1,y(t, 1)− z2,y(t, 1)]

h1(t)− g1(t)
+ 2z2,y(t, 1)

g(t)− h(t)

[h1(t)− g1(t)][h2(t)− g2(t)]

∣∣∣∣
≤ μ

1

h0
|zy(t, 1)|+ 2μ|z2,y(t, 1)| |h(t)|+ |g(t)|

4h20

≤ C7T
α/2

(‖g, h‖C1([0,T ]) + ‖u‖Cb(ΠT )

)
. (2.25)

Therefore, by use of (2.24),

‖h′‖C([0,T ]) ≤ C8T
α/2

(‖g′, h′‖C([0,T ]) + ‖u‖Cb(ΠT )

)
.

Similarly, we have

‖g′‖C([0,T ]) ≤ C8T
α/2

(‖g′, h′‖C([0,T ]) + ‖u‖Cb(ΠT )

)
.

Consequently, ‖g′, h′‖C([0,T ]) ≤ ‖u‖Cb(ΠT ) provided T small enough. Recalling (2.24) we get

‖g, h‖C1([0,T ]) ≤ C9‖u‖Cb(ΠT ). (2.26)

Moreover, as z(0, y) = 0, we have |z(t, y)| = |z(t, y)− z(0, y)| ≤ tα/2[z]Cα/2,α(ΔT ) for all (t, y) ∈ ΔT .

This combined with (2.22) allows us to derive

‖z‖C(ΔT ) ≤ Tα/2[z]Cα/2,α(ΔT ) ≤ C6T
α/2

(‖g, h‖C1([0,T ]) + ‖u‖Cb(ΠT )

)
. (2.27)

Now we estimate ‖v1 − v2‖C(Ω̄T ). Fixed (t, x) ∈ ΩT , let

yi(t, x) =
2x− gi(t)− hi(t)

hi(t)− gi(t)
.

Case 1: x ∈ [g1(t), h1(t)] ∩ [g2(t), h2(t)]. Using (2.27), (2.15) and (2.26), respectively, we have

|v1(t, x)− v2(t, x)| = |z1(t, y1)− z2(t, y2)|
≤ |z1(t, y1)− z2(t, y1)|+ |z2(t, y1)− z2(t, y2)|
≤ ‖z‖C(ΔT ) + ‖z2,y‖C(ΔT )|y1 − y2|

≤ ‖z‖C(ΔT ) +
h0 + μA3

h20
‖z2,y‖C(ΔT )‖g′, h′‖C([0,T ])

≤ C6T
α/2

(‖g, h‖C1([0,T ]) + ‖u‖Cb(ΠT )

)
+

C2(h0 + μA3)

h20
‖g′, h′‖C([0,T ])

≤ C10‖u‖Cb(ΠT ). (2.28)
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Case 2: x ∈ [g1(t), h1(t)] \ [g2(t), h2(t)]. In this case v2(t, x) = 0. Without loss of generality, we

may think of x ∈ [g1(t), g2(t)) and g2(t) ≤ h1(t). Take advantage of (2.16) and (2.28), it yields

|v1(t, x)− v2(t, x)| = |v1(t, x)− v2(t, g2(t))|
≤ |v1(t, x)− v1(t, g2(t))|+ |v1(t, g2(t))− v2(t, g2(t))|
≤ ‖v1,x‖C(D

T
g1,h1

)
|g1(t)− g2(t)|+ C10‖u‖Cb(ΠT )

≤ C11‖u‖Cb(ΠT ).

Case 3: x ∈ [g2(t), h2(t)] \ [g1(t), h1(t)]. Similar to Case 2, we still have |v1(t, x) − v2(t, x)| ≤
C12‖u‖Cb(ΠT ).

In a word, ‖v1 − v2‖C(Ω̄T ) ≤ C13‖u‖Cb(ΠT ). Substitute this estimate into (2.19) derives (2.18).

Step 3: The estimate (2.18) shows that Γ is a contraction mapping in Y
T
u0
. Thus, Γ has a unique

fixed point u in Y
T
u0
. Let (v, g, h) be the unique solution of (2.8). Then (u, v, g, h) is a solution of

(1.2) and it is the unique one provided u ∈ Y
T
u0
.

To prove the uniqueness of solution of (1.2), we need to prove that u ∈ Y
T
u0

for any solution

(u, v, g, h) of (1.2). Firstly, by virtue of Lemma 2.2 and the parabolic maximum principle for the

strong solution we can see 0 < u ≤ A1 in [0, T ] × R and 0 < v ≤ A2 in [0, T ] × (g(t), h(t)). From

the above analysis we can see that u satisfies (2.17). Thus u ∈ Y
T
u0

and uniqueness is proved.

Step 4: Global existence and uniqueness. Assume that (2.4) holds. We have known that (1.2)

admits a unique solution (u, v, g, h) in some interval (0, T ], and u ∈ C1,1−(ΠT ), w ∈ C1,1−(ΔT ),

g′, h′ ∈ Cα/2([0, T ]). Thus ξ ∈ Cα/2([0, T ]), ζ ∈ Cα/2,α(ΔT ). Set F2(t, y, z) = f∗2 (t, y, w(t, y), z).
Then F2(·, ·, z) ∈ Cα/2,α(ΔT ). By the interior Schauder theory we have z ∈ C1+α/2,2+α([ε, T ] ×
[−1, 1]) for any 0 < ε < T , which implies v(T, x) ∈ C2([g(T ), h(T )]). Moreover since u(T, x) satisfies

0 < u ≤ A1 and is Lipschitz continuous in x ∈ R, we can take (u(T, x), v(T, x)) as an initial function

and [g(T ), h(T )] as the initial habitat of v and then use the above Steps 1-3 to extend the solution

from t = T to some T ′ > T . Assume that (0, T0) is the maximal existence interval of (u, v, g, h)

obtained by such extension process. We shall prove that T0 = ∞. Assume on the contrary that

T0 <∞.

Evidently, we have

0 < u ≤ A1 in [0, T0)× R; 0 < v ≤ A2 in (0, T0)× (g(t), h(t));

0 < −g′(t), h′(t) ≤ μA3 in (0, T0).

Set Λ = {h0, μ, ‖v0‖W 2
p (−h0,h0), Ai, i = 1, 2, 3}. For any 0 < T < T0, applying Lp theory to (2.11)

we obtain ‖z‖
W 1,2

p (ΔT )
≤ C14(Λ, T0). This implies that z ∈W 1,2

p (ΔT0) and

‖z‖
W 1,2

p (ΔT0
)
+ ‖z‖C(1+α)/2,1+α(ΔT0

) ≤ C15(Λ, T0),

This inequalities combined with the definition of h′ and g′ yields that g, h ∈ C1+α/2([0, T0]) and

‖g, h‖C1+α/2([0,T0])
≤ C16(Λ, T0). (2.29)

Moreover, it follows from the above arguments that v ∈ C(1+α)/2,1+α(D
T0

g,h). These facts show that

the first differential equation holds for 0 < t ≤ T0 and u ∈ C1,1−(ΠT0). Same as above, we have
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z ∈ C1+α/2,2+α([ε, T0] × [−1, 1]) and ‖z‖C1+α/2, 2+α([ε,T0]×[−1,1]) ≤ C17(ε,Λ, T0) for any 0 < ε < T0.

Therefore, v ∈ C1+α/2,2+α((0, T0]× [g(t), h(t)]) and

‖v‖C1+α/2,2+α([ε,T0]×[g(t),h(t)]) ≤ C18(ε,Λ, T0). (2.30)

The above analysis implies that the solution (u, v, g, h) exists on [0, T0]. We choose tn ∈ (ε, T0) with

tn ↗ T0, and regard tn and (u(tn, x), v(tn, x), g(tn), h(tn)) as the initial time and initial datum.

According to the arguments of Steps 1-3, we can find a constant 0 < T � 1, which depends only

on {g(tn), h(tn), g′(tn), h′(tn), ‖v(tn, ·)‖W 2
p (g(tn),h(tn))

, L(u, T0), μ, Ai, i = 1, 2, 3}, such that

the problem (1.2) has a unique solution (un, vn, gn, hn) in [tn, tn + T ]. Due to the uniqueness of

solution, (u, v, g, h) = (un, vn, gn, hn) for tn ≤ t < min {tn + T, T0}. This indicates that the solution
(u, v, g, h) can be extended uniquely to [0, tn + T ). Thanks to (2.29) and (2.30), we can choose

T > 0 independent of n. Hence, tn + T > T0 when n is large enough. This contradicts with the

definition of T0. So T0 =∞.

It follows from the above arguments that (g, h) ∈ G
T ×H

T , (u, v) ∈ X
T , and (u, v, g, h) satisfies

(2.2), (2.3) and (2.5). The proof is end.

Since g′(t) < 0, h′(t) > 0, we have the limits lim
t→∞ g(t) = g∞ ≥ −∞, lim

t→∞h(t) = h∞ ≤ ∞. If

h∞ − g∞ =∞ we call that v spreading, if g∞ > −∞ and h∞ <∞ we call that v vanishing.

3 Preliminaries

To establish the long time behaviors of (u, v) and conditions for spreading and vanishing, in

this section we will present some preliminaries. The first one focus on the comparison principle.

Lemma 3.1. Let (f1, f2) satisfy (1.4) and (u, v, g, h) be the unique solution of (1.2). Let T > 0,

ḡ, h̄ ∈ C1([0, T ]), ū ∈ Cb(ΠT ), ūt ∈ C(ΠT ), v̄ ∈ C1,2(DT
ḡ,h̄

) ∩ C(D
T
ḡ,h̄) and satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ūt ≥ d1(J ∗ ū− ū) + ū(a− ū), (t, x) ∈ (0, T ]× R,

v̄t ≥ d2v̄xx + v̄(1− v̄ + cū), (t, x) ∈ DT
ḡ,h̄,

v̄(t, ḡ(t)) ≥ 0, v̄(t, h̄(t)) ≥ 0, t ∈ [0, T ],

h̄′(t) ≥ −μv̄x(t, h̄(t)), ḡ′(t) ≤ −μv̄x(t, ḡ(t)), t ∈ [0, T ],

ū(0, x) ≥ u0(x), x ∈ R; v̄(0, x) ≥ v0(x), x ∈ [−h0, h0],
h̄(0) ≥ h0, ḡ(0) ≤ −h0.

(3.1)

Then we have

u ≤ ū in ΠT ; g ≥ ḡ, h ≤ h̄ in [0, T ]; v ≤ v̄ in DT
ḡ,h̄.

Lemma 3.1 can be proved by using Lemma 2.2 and the similar argument as that in proofs of

[8, Lemma 4.1] and [18, Lemma 3.1]. We omit the details here.

The following lemma will play an important role in the study of long time behaviors of (u, v)

when v vanishes and conditions for spreading and vanishing.
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Lemma 3.2. ([23, Proposition 2]) Let d, C, μ and η0 be positive constants, η ∈ C1([0,∞)),

w ∈ W 1,2
p ((0, T ) × (0, η(t))) and w0 ∈ W 2

p ((0, η0)) for some p > 1 and any T > 0, and wx ∈
C([0,∞)× (0, η(t)]). If (w, η) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt − dwxx ≥ −Cw, t > 0, 0 < x < η(t),

w ≥ 0, t > 0, x = 0,

w = 0, η′(t) ≥ −μwx, t > 0, x = η(t),

w(0, x) = w0(x) ≥, �≡ 0, x ∈ (0, η0),

η(0) = η0,

and lim
t→∞ η(t) = η∞ <∞, lim

t→∞ η′(t) = 0,

‖w(t, ·)‖C1([0, η(t)]) ≤M, ∀ t ≥ 1

for some constant M > 0. Then lim
t→∞ max

0≤x≤η(t)
w(t, x) = 0.

To study the long time behaviors of (u, v) when v spreading, we shall prove a lemma regarding

the estimate of solution of nonlocal diffusion inequality.

Lemma 3.3. Let K, d and θ be positive constants, w be a non-negative continuous function sat-

isfying w(t, x) ≤ K for t ≥ 0 and x ∈ R. Assume that u satisfies⎧⎨⎩ut = d(J ∗ u− u) + u(θ − u− w), (t, x) ∈ (0, T ]× R,

u(0, x) = u0(x) ≥, �≡ 0 x ∈ R,

where J satisfies (J) and u0(x) ∈ Cb(R). Then the following conclusions hold:

(i) If for some constant m ∈ [0,K],

lim inf
t→∞ w(t, x) ≥ m locally uniformly in R, (3.2)

then

lim sup
t→∞

u(t, x) ≤ (θ −m)+ locally uniformly in R,

where (θ −m)+ is the positive part of θ −m.

(ii) If θ > M and

lim sup
t→∞

w(t, x) ≤M locally uniformly in R (3.3)

for some constant M , then

lim inf
t→∞ u(t, x) ≥ θ −M locally uniformly in R.

Proof. Since we can prove this lemma by applying the methods used in the proof of [12, Lemma

3.14] with some modifications, we just give the outline.

(i) For any integer n ≥ 1, it follows from (3.2) that there exists Tn ↗∞ such that

w(t, x) ≥ m− 1/n for t ≥ Tn and x ∈ [−n− 1, n+ 1].
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For any given small ε > 0, define

σn =

⎧⎨⎩θ −m+ 1/n, θ −m > 0,

ε+ 1/n, θ −m ≤ 0,

and

an(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σn, |x| < n,

σn + 2(θ +K + 1− σn)(|x| − n), n ≤ |x| ≤ n+ 1/2,

θ +K + 1, |x| > n+ 1/2.

Clearly an ∈ C(R), a− w(t, x) ≤ an(x) for t > Tn and x ∈ R. Moreover, an(x) is nonincreasing in

n, σn ≤ an(x) ≤ θ +K + 1 and

lim
n→∞ an(x) = σ∞ :=

⎧⎨⎩θ −m, θ −m > 0,

ε, θ −m ≤ 0.

Let K1 := max {θ +K + 1, ‖u0‖∞}. It follows from Lemma 2.2 that

0 ≤ u(t, x) ≤ K1 for t ≥ 0, x ∈ R.

Let z1 be the unique solution of⎧⎨⎩zt = d(J ∗ z − z) + z[a1(x)− z], t > T1, x ∈ R,

z(T1, x) = K1, x ∈ R.
(3.4)

Making use of Lemma 2.2, we have

σ∞ ≤ z1(t, x) ≤ K1, z1(t, x) ≥ u(t, x), (t, x) ∈ [T1,∞)× R.

For n ≥ 2, let zn be the unique solution of⎧⎨⎩zt = d(J ∗ z − z) + z[an(x)− z], t > Tn, x ∈ R,

z(Tn, x) = zn−1(Tn, x), x ∈ R.
(3.5)

By virtue of Lemma 2.2 again, it follows that

σ∞ ≤ zn(t, x) ≤ K1, zn(t, x) ≥ u(t, x), (t, x) ∈ [Tn,∞)× R.

Due to an(x) ≥ σ∞ > 0 for x ∈ R and [12, Proposition 3.12], we can see that (3.4) and (3.5) admit

a unique positive steady state z̃n ∈ C(R):

d

∫
R

J(x− y)z̃n(y)dy − dz̃n + z̃n(an(x)− z̃n) = 0, x ∈ R, (3.6)

and

lim
t→∞ zn(t, x) = z̃n(x) locally uniformly in R. (3.7)
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Obviously, we have σ∞ ≤ z̃n(x) ≤ K1 for x ∈ R. Moreover, it follows from the monotonicity of

an(x) in n that zn+1(t, x) ≤ zn(t, x) for t ≥ Tn+1 and x ∈ R. Then z̃n+1(x) ≤ z̃n(x) for x ∈ R.

Therefore, there exists z̃∞(x) such that

lim
n→∞ z̃n(x) = z̃∞(x) for every x ∈ R,

where z̃∞(x) satisfies σ∞ ≤ z̃∞(x) ≤ K1 in R. Then similar to the arguments in the proof of [12,

Lemma 3.14], we can obtain the desired result.

(ii) Due to the equations of u, it is easy to prove conclusion (ii). So the details are omitted

here.

Proposition 3.4. ([18, Proposition B.1 and B.2]) Let d, β, ζ be fixed positive constants, and k be a

fixed non-negative constant. For any given ε,N > 0, there exist Tε > 0 and lε > max
{
N, π2

√
d/β

}
,

such that when the continuous and non-negative function z satisfies⎧⎨⎩ zt − dzxx ≥ (≤) z(β − ζz), t > 0, −lε < x < lε,

z(0, x) > 0, −lε < x < lε,

and for t > 0, z(t,±lε) ≥ (≤) k if k > 0, while z(t,±lε) ≥ (=) 0 if k = 0, we must have

z(t, x) > β/ζ − ε
(
z(t, x) < β/ζ + ε

)
, ∀ t ≥ Tε, x ∈ [−N,N ].

This implies

lim inf
t→∞ z(t, x) ≥ β/ζ − ε

(
lim sup
t→∞

z(t, x) < β/ζ + ε
)

uniformly on [−N,N ].

4 Longtime behavior of (u, v)

4.1 Vanishing case (h∞ − g∞ <∞)

Firstly, we shall use Lemma 3.2 to deduce lim
t→∞ max

g(t)≤x≤h(t)
v(t, x) = 0. To this purpose, we first

provide an estimate for the solution component v.

Lemma 4.1. Let (u, v, g, h) be the unique global solution of (1.2) and h∞ − g∞ <∞. Then there

exists a constant C > 0 such that

‖v(t, ·)‖C1([g(t),h(t)]) ≤ C, ∀ t ≥ 1; lim
t→∞ g′(t) = lim

t→∞h′(t) = 0.

This lemma can be proved by the similar arguments to those of [26, Theorem 2.1] and [27,

Theorem 2.2], we omit the details here.

Theorem 4.2. Let f1, f2 satisfy one of (1.4), (1.5), (1.6). If h∞ − g∞ < ∞, then the solution

(u, v, g, h) of (1.2) satisfies lim
t→∞ ‖v(t, ·)‖C([g(t),h(t)]) = 0, and

lim
t→∞u(t, x) = a locally uniformly in R if f1, f2 satisfy (1.4) or (1.5),

lim
t→∞u(t, x) = a/2 locally uniformly in R if f1, f2 satisfy (1.6).
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Proof. As 0 < u ≤ A1, 0 < v ≤ A2, we have f2(t, x, u, v) ≥ −Lv. Then lim
t→∞ ‖v(t, ·)‖C([g(t),h(t)]) = 0

is deduced by Lemmas 3.2 and 4.1 immediately.

We only prove lim
t→∞u(t, x) = a locally uniformly in R when f1, f2 satisfy (1.4). Firstly, by the

comparison principle, lim sup
t→∞

u(t, x) ≤ a uniformly in R. Secondly, as lim
t→∞ ‖v(t, ·)‖C([g(t),h(t)]) = 0

and v ≡ 0 for x ∈ R/(g(t), h(t)), it follows that lim
t→∞ v(t, x) = 0 uniformly in R. This combined

with Lemma 3.3 arrives at lim inf
t→∞ u ≥ a locally uniformly in R. The proof is finished.

4.2 Spreading case (h∞ − g∞ =∞)

4.2.1 The competition model

In this part we always suppose that f1, f2 satisfy (1.4).

Theorem 4.3. Assume ac < 1. Then h∞ − g∞ =∞ if and only if h∞ =∞ and g∞ = −∞.

The proof of this lemma is similar to those of [18, Proposition 4.1] and [23, Proposition 3], and

we omit the details.

Theorem 4.4. Assume h∞ − g∞ =∞. For the weak competition case: ac < 1 < a/b we have

lim
t→∞u = (a− b)/(1− bc), lim

t→∞ v = (1− ac)/(1− bc)

locally uniformly in R.

Proof. Step 1. It is easy to show that

lim sup
t→∞

u ≤ a =: ū1 uniformly in R (4.1)

by the comparison principle. For any given N > 0 and 0 < ε, σ � 1, let lε be determined in

Proposition 3.4 with d = d2, β = 1 − c(ū1 + σ) and ζ = 1. In view of h∞ = ∞, g∞ = −∞ and

(4.1), there exists T1 > 0 such that

u(t, x) ≤ ū1 + σ, g(t) < −lε, h(t) > lε, ∀ t ≥ T1, x ∈ [−lε, lε].

Hence, v satisfies ⎧⎨⎩vt ≥ d2vxx + v(1− c(u1 + σ)− v), t > T1, x ∈ [−lε, lε],
v(t,±lε) ≥ 0 t ≥ T1.

As v(T1, x) > 0 in [−lε, lε], it deduces by Proposition 3.4 that lim inf
t→∞ v ≥ 1−c(ū1+σ)+ε uniformly

in [−N,N ]. The arbitrariness of ε, σ and N assert

lim inf
t→∞ v ≥ 1− cū1 =: v1 locally uniformly in R.

It follows from ac < 1 < a/b that a− bv1 > 0. Making use of Lemma 3.3, we have

lim sup
t→∞

u ≤ a− bv1 =: ū2 locally uniformly in R.
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Clearly, 1− cū2 > 0. By using Proposition 3.4 again, we see that

lim inf
t→∞ v ≥ 1− cū2 =: v2 locally uniformly in R.

The assumption ac < 1 < a/b implies that a− bv2 > 0. Similarly, we have

lim sup
t→∞

u ≤ a− bv2 =: ū3 locally uniformly in R.

Step 2. We can repeat the above procedure and get two sequences {ūk} and {vk} such that

lim sup
t→∞

u ≤ ūk, lim inf
t→∞ v ≥ vk locally uniformly in R.

Using the inductive method we have the following expressions:

ūk+1 = (a− b)(1 + q + q2 + · · ·+ qk−1) + aqk, vk = 1− cūk, k ≥ 1,

where q = bc < 1. Thus, ūk → (a− b)/(1− bc) and vk → (1−ac)/(1− bc) as k →∞. Thus we have

lim sup
t→∞

u ≤ (a− b)/(1− bc), lim inf
t→∞ v ≥ (1− ac)/(1− bc) locally uniformly in R.

Step 3. It is easy to see that lim supt→∞ v ≤ 1 =: v̄1 uniformly in R. Similar to Step 1-2, by

virtue of Lemma 3.3 and Proposition 3.4 we can find two sequences {uk} and {v̄k} such that

lim inf
t→∞ u ≥ uk, lim sup

t→∞
v ≤ v̄k locally uniformly in R,

and

v̄k = (1− ac)(1 + q + q2 + · · ·+ qk−2) + qk−1, uk = a− bv̄k,

where q = bc < 1 and k ≥ 2. Take k →∞ and we have

lim inf
t→∞ u ≥ (a− b)/(1− bc), lim sup

t→∞
v ≤ (1− ac)/(1− bc) locally uniformly in R.

Combining with our early conclusion, we complete the proof.

Theorem 4.5. Assume h∞ = −g∞ =∞. For the strong competition case: ac ≥ 1 > b/a we have

lim
t→∞u(t, x) = a, lim

t→∞ v(t, x) = 0 locally uniformly in R.

Proof. The idea of this proof comes from [9, Theorem 2.4]. It follows from the comparison principle

that lim sup
t→∞

v ≤ 1 =: v̄1 uniformly in R. Applying Lemma 3.3, similar to the above we can get

lim inf
t→∞ u ≥ a− bv̄1 = a− b =: u1 locally uniformly in R.

If 1 − cu1 ≤ 0, then u1 − 1/c ≥ 0. For any given N > 0, σ > u1 − 1/c and 0 < ε � 1, using

Proposition 3.4 with d = d2, β = 1− c(u1−σ) and ζ = 1, we can deduce that, similar to the above

in the proof of Theorem 4.4,

lim sup
t→∞

v < 1− c(u1 − σ) + ε uniformly in [−N,N ].
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By the arbitrariness of ε, σ, N and v ≥ 0, it yields that

lim
t→∞ v = 0 locally uniformly in R.

If 1− cu1 > 0, apply Proposition 3.4 and Lemma 3.3 to v and u, respectively, it follows that

lim sup
t→∞

v ≤ 1− cu1 =: v̄2, lim inf
t→∞ u ≥ a− bv̄2 =: u2 locally uniformly in R.

Similar to the above, it can be shown that if 1− cu2 ≤ 0 then

lim
t→∞ v = 0 locally uniformly in R,

if 1− cu2 > 0 then

lim sup
t→∞

v ≤ 1− cu2 := v̄3 locally uniformly in R.

Repeating this process we know that if there exists a first k ≥ 1 such that cuk ≥ 1, then

lim
t→∞ v = 0 locally uniformly in R. Similar to the proof of Theorem 4.2, lim

t→∞u = a locally uniformly

in R.

If cuk < 1 for all k ≥ 1, then

lim inf
t→∞ u ≥ uk, lim sup

t→∞
v ≤ v̄k locally uniformly in R.

The inductive method shows

cuk = ac(1 + q + q2 + · · ·+ qk−1)− (q + q2 + · · ·+ qk),

where q = bc. Since 0 < cuk < 1 for k ≥ 1, we can see that bc < 1. Moreover,

v̄k = (1− ac)
1− qk−1

1− q
+ qk−1 > 0, ∀ k ≥ 1.

As ac ≥ 1 and v̄k > 0, it must be derived that ac = 1 by taking k → ∞, and hence lim
t→∞ v̄k = 0.

Recall v ≥ 0, we have lim
t→∞ v = 0 and then lim

t→∞u = a locally uniformly in R.

Similarly, the following conclusion can be proved by use of Lemma 3.3 and Proposition 3.4.

Theorem 4.6. If ac < 1 ≤ b/a and h∞ − g∞ =∞, then

lim
t→∞u = 0, lim

t→∞ v = 1 locally uniformly in R.

4.2.2 The predator-prey model

In what follows we always suppose that f1, f2 satisfy (1.5).

Theorem 4.7. h∞ − g∞ =∞ if and only if h∞ =∞ and g∞ = −∞.

The proof of Theorem 4.7 is similar to that of [18, Proposition 4.1], and we omit the details

here.

Theorem 4.8. Assume that h∞ − g∞ =∞. For the weakly hunting case: a > b, bc < 1 we have

lim
t→∞u(t, x) = (a− b)/(1 + bc), lim

t→∞ v(t, x) = (1 + ac)/(1 + bc) locally uniformly in R.
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Proof. The idea of this proof comes from [18, Theorem 4.3]. We just give the outline and omit the

details.

Step 1. It can be derived from Proposition 3.4 that lim inf
t→∞ v ≥ 1 =: v1 locally uniformly in R.

Taking advantage of a−bv1 > 0 and Lemma 3.3 we have lim sup
t→∞

u ≤ a−bv1 =: ū1 locally uniformly

in R. Then making use of Proposition 3.4 again one have lim sup
t→∞

v ≤ 1+cū1 =: v̄1 locally uniformly

in R. The assumption bc < 1 < a/b implies that a− bv̄1 > 0. By means of Lemma 3.3 repeatedly,

we have lim inf
t→∞ u ≥ a− bv̄1 =: u1 locally uniformly in R. Similarly it follows from Proposition 3.4

that lim inf
t→∞ v ≥ 1 + cu1 =: v2 locally uniformly in R.

Step 2. Repeating the above procedure, we can obtain four sequences {vk}, {ūk}, {v̄k} and

{uk} such that

uk ≤ lim inf
t→∞ u ≤ lim sup

t→∞
u ≤ ūk, vk ≤ lim inf

t→∞ v ≤ lim sup
t→∞

v ≤ v̄k

locally uniformly in R. By direct calculations we have

lim
k→∞

uk = lim
k→∞

ūk = (a− b)/(1 + bc), lim
k→∞

vk = lim
k→∞

v̄k = (1 + ac)/(1 + bc).

Thus the proof is completed.

Theorem 4.9. Assume h∞ − g∞ =∞. For the strongly hunting case: b ≥ a we have

lim
t→∞u(t, x) = 0, lim

t→∞ v(t, x) = 1 locally uniformly in R.

The proof of this theorem is similar to that of Theorem 4.5, we omit the details here.

4.2.3 The mutualist model

In what follows we always suppose that f1, f2 satisfy (1.6).

Lemma 4.10. h∞ − g∞ =∞ if and only if h∞ =∞ and g∞ = −∞.

Proof. Since r2v
(
1− v − v

1+cu

)
≥ r2v (1− 2v), this lemma can be proved by similar arguments

with Theorem 4.7. We omit the details here.

Let (u∗, v∗) is the unique positive solution of the problem:⎧⎪⎨⎪⎩
a− u− u

1 + bv
= 0,

1− v − v

1 + cu
= 0.

Theorem 4.11. Assume h∞ − g∞ =∞. Then we have

lim
t→∞u(t, x) = u∗, lim

t→∞ v(t, x) = v∗ locally uniformly in R.

Proof. Step 1. Since this proof is similar to the proof of [28, Theorem 4.3], we omit the details and

give the sketch. Firstly, it is easily seen that lim supt→∞ u(t, x) ≤ a =: ū1 uniformly in R. Then

any 0 < ε� 1 there exists Tε > 0 such that u ≤ ū1 + ε for t > Tε and x ∈ R. Hence v satisfies

vt ≤ d2vxx + r2v(1− v − v

1 + c(ū1 + ε)
), t > Tε, x ∈ (g(t), h(t)).
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It follows from comparison principle and the arbitrariness of ε that

lim sup
t→∞

v(t, x) ≤ 1

(1 + cū1)−1 + 1
=: v̄1 uniformly in R.

Repeating the above procedure we have

lim sup
t→∞

u(t, x) ≤ a

(1 + bv̄k)−1 + 1
=: ūk+1 uniformly in R

and

lim sup
t→∞

v(t, x) ≤ 1

(1 + cūk)−1 + 1
=: v̄k uniformly in R.

Step 2. Moreover, Since u satisfies

ut ≥ d1(J ∗ u− u) + r1u(a− 2u), t > 0, x ∈ R,

it follows from Lemma 3.3 that lim inft→∞ u(t, x) ≥ a/2 =: u1 locally uniformly in R. Making use

of Proposition 3.4, we have

lim inf
t→∞ v(t, x) ≥ 1

(1 + cu1)
−1 + 1

=: v1 locally uniformly in R.

Then similar to Lemma 3.3 (ii) we have

lim inf
t→∞ u(t, x) ≥ a

(1 + bv1)
−1 + 1

=: u2 locally uniformly in R.

Repeating the above procedure arrives at

lim inf
t→∞ u(t, x) ≥ a

(1 + bvk)
−1 + 1

=: uk+1 locally uniformly in R,

and

lim inf
t→∞ v(t, x) ≥ 1

(1 + cuk)
−1 + 1

=: vk locally uniformly in R.

Step 3. From the above arguments we have

uk ≤ lim inf
t→∞ u(t, x) ≤ lim sup

t→∞
u(t, x) ≤ ūk locally uniformly in R,

and

vk ≤ lim inf
t→∞ v(t, x) ≤ lim sup

t→∞
v(t, x) ≤ v̄k locally uniformly in R.

By the similar arguments with [28, Theorem 4.3], we have

lim
k→∞

uk = lim
k→∞

ūk = u∗, lim
k→∞

vk = lim
k→∞

v̄k = v∗.

The proof is finished.
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5 The criteria governing spreading and vanishing

To study the criteria governing spreading and vanishing, we first give one abstract lemma to

affirm that the habitat can be large provided that the moving parameter of free boundary is large

enough.

Lemma 5.1. ([23, Lemma 4.2]) Let C be a positive constant. For any given positive constants

r0, H, and any function w0 ∈ W 2
p ((−r0, r0)) with p > 1, w0(±r0) = 0 and w0 > 0 in (−r0, r0),

there exists μ0 > 0 such that when μ ≥ μ0 and (w, l, r) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt − wxx ≥ −Cw, t > 0, l(t) < x < r(t),

w = 0, l′(t) ≤ −μwx, t ≥ 0, x = l(t),

w = 0, r′(t) ≥ −μwx, t ≥ 0, x = r(t),

w(0, x) = w0(x), −r0 ≤ x ≤ r0,

r(0) = −l(0) = r0,

we must have lim
t→∞ l(t) ≤ −H, lim

t→∞ r(t) ≥ H.

5.1 The competition model

In this subsection we always suppose that f1, f2 satisfy (1.4) and ac < 1.

Lemma 5.2. If h∞ − g∞ <∞, then h∞ − g∞ ≤ π
√
d2/(1− ac) =: Λc.

Since the proof is similar to [18, Theorem 5.1] and [23, Theorem 4.1], we omit the details.

From Lemma 5.2 and g′(t) < 0, h′(t) > 0 for t > 0, we have

Corollary 5.3. If h0 ≥ Λc/2, then spreading happens, i.e., h∞ − g∞ = +∞.

Lemma 5.4. If h0 < Λc/2, there exists μ0 > 0 such that h∞ =∞ and g∞ = −∞ when μ ≥ μ0.

Since 1 − v − cu is bounded and v ≥ 0, we can prove Lemma 5.4 by using Lemma 5.1 and

Lemma 5.2, and the details are omitted here.

Lemma 5.5. Define Λ∗c := π
√
d2. If h0 < Λ∗c/2, then there exists μ0 > 0 such that h∞ − g∞ <∞

when 0 < μ ≤ μ0.

Proof. Clearly, (v, g, h) is a lower solution of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̄t − d2v̄xx = v̄(1− v̄), t > 0, ḡ(t) < x < h̄(t),

v̄(t, x) = 0, t > 0, x = ḡ(t), h̄(t),

ḡ′(t) = −μv̄x(t, ḡ(t)), t > 0,

h̄′(t) = −μv̄x(t, h̄(t)), t > 0,

v̄(0, x) = v0(x), x ∈ [−h0, h0],
h̄(0) = −ḡ(0) = h0.

(5.1)

Thus g(t) ≥ ḡ(t), h(t) ≤ h̄(t) for all t ≥ 0. Since h0 < Λ∗c/2, it follows from [5, Lemma 5.10] that

there exists μ0 > 0 such that h̄∞ − ḡ∞ ≤ π
√
d2 when 0 < μ ≤ μ0. Hence h∞ − g∞ <∞.
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Lemma 5.6. Suppose that h0 < Λ∗c/2, then there exist μ∗ ≥ μ∗ > 0, such that h∞ = ∞ and

g∞ = −∞ if μ > μ∗, and h∞ − g∞ <∞ if μ ≤ μ∗ or μ = μ∗.

Proof. Taking advantage of Lemmas 5.4 and 5.5, we can prove this conclusion by the same manner

as that of [18, Theorem 5.2]. The details are omitted here.

From the above discussion we immediately obtain the following spreading-vanishing dichotomy

and criteria for spreading and vanishing.

Theorem 5.7. (The competition model ) Let (u, v, g, h) be the unique solution of (1.2) with f1, f2

satisfy (1.4). Then the following alternative holds:

Either

(i) Spreading: h∞ − g∞ = ∞. If we further assume that a > b and ac < 1, then we have

h∞ − g∞ =∞ if and only if h∞ = −g∞ =∞, and

lim
t→∞u = (a− b)/(1− bc), lim

t→∞ v = (1− ac)/(1− bc) locally uniformly in R.

or

(ii) Vanishing: h∞ − g∞ <∞ and

lim
t→∞u(t, x) = a locally uniformly in R, lim

t→∞ ‖v(t, ·)‖C([g(t),h(t)]) = 0.

Moreover,

(iii) If h0 ≥ Λc/2, then h∞ = −g∞ =∞ for all μ > 0.

(iv) If h0 < Λc/2, then there exists μ0 > 0 such that h∞ = −g∞ =∞ when μ ≥ μ0.

(v) If h0 < Λ∗c/2, then there exist μ∗ ≥ μ∗ > 0 such that h∞ = −g∞ = ∞ if μ > μ∗, and

h∞ − g∞ <∞ if μ ≤ μ∗ or μ = μ∗.

5.2 The predator-prey model

In this part we always suppose that f1, f2 satisfy (1.5).

Lemma 5.8. If h∞ − g∞ <∞, then h∞ − g∞ ≤ π
√
d2/(1 + ac) =: Λp.

Since the proof is similar to [18, Theorem 5.1] and [23, Theorem 4.1], we omit the details.

Corollary 5.9. If h0 ≥ Λp/2, then spreading happens, i.e., h∞ − g∞ =∞.

Lemma 5.10. If h0 < Λp/2, then there exists μ̄ > 0 such that h∞ − g∞ =∞ when μ ≥ μ̄.

The proof of Lemma 5.10 is similar to that of Lemma 5.4. So we omit the details.

Lemma 5.11. If h0 < Λp/2, then there exists μ > 0 such that h∞ − g∞ <∞ when 0 < μ ≤ μ.

Proof. We can prove this conclusion by follow the proof of [18, Lemma 5.2]. For the convenience

of readers, we shall give the outline here.

Define functions

ū(t) = aeat
(
eat − 1 +

a

‖u0‖∞

)−1
,
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and

f(t) = M exp

{∫ t

0

[
1 + cū(s)− d2

(
π

2ζ

)2
]

ds

}
,

η(t) =

(
h20(1 + δ)2 + μπ

∫ t

0
f(s) ds

)1/2

, w(y) = cos
πy

2
,

v̄(t, x) = f(t)w(
x

η(t)
), t ≥ 0, −η(t) ≤ x ≤ η(t),

where ζ = 1
2h0 +

1
4Λp, δ is a fixed positive constant such that ζ > h0(1 + δ) and M is a positive

constant to be determined later. Direct calculation shows that

f ′(t)
f(t)

= 1 + cū(t)− d2

(
π

2ζ

)2

for t > 0.

Since ζ < Λp/2 and lim
t→∞ ū(t) = a, we have 1 + cū(t) − d2 (π/(2ζ))

2 < 0 when t is large enough.

Thus the integration
∫∞
0 f(t) dt is convergent. Define

μ =
ζ2 − h20(1 + δ)2

π
∫∞
0 f(t) dt

.

To apply Lemma 3.1, we need to verify that (ū, v̄,−η(t), η(t)) satisfies all the inequalities of (3.2)

when 0 < μ ≤ μ. Clearly, ū satisfies⎧⎨⎩ūt ≥ d1(J ∗ ū− ū) + ū(a− ū), t > 0, x ∈ R,

ū(0, x) ≥ u0(x), x ∈ R,

and η(t) > 0 for t ≥ 0. Moreover, since ζ ≥ η(t) for t ≥ 0, it follows that

v̄t − d2v̄xx − v̄(1− v̄ + cū) = f ′w − fw′
xη′

η2
+ d2(

π

2η
)2fw − fw(1− fw + cū)

≥ fw
[f ′
f

+ d2(
π

2η
)2 − 1− cū

]
=

d2π
2

4
fw(η−2 − ζ−2) ≥ 0.

for t > 0 and −η(t) < x < η(t). Recalling the definition of η and v̄, it is easily seen that

−η′(t) = −μv̄x(t,−η(t)), η′(t) = −μv̄x(t, η(t)).

Choose M > 0 such that v0(x) ≤ M cos πx
2h0(1+δ) for x ∈ [−h0, h0]. Consequently, it follows from

the above analysis and Lemma 3.1 that

g∞ ≥ − lim
t→∞ η(t) > −ζ, h∞ ≤ lim

t→∞ η(t) < ζ.

This completes the proof.

Similar to the proof of Lemma 5.6, it is easy to prove the following lemma.

Lemma 5.12. Suppose that h0 < Λp/2, then there exist μ∗ ≥ μ∗ > 0, such that h∞ = ∞ and

g∞ = −∞ if μ > μ∗, and h∞ − g∞ <∞ if μ ≤ μ∗ or μ = μ∗.
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Theorem 5.13. (The predator-prey model ) Let (u, v, g, h) be the unique solution of (1.2) in there

f1, f2 satisfy (1.5). Then the following alternative holds:

Either

(i) Spreading: h∞ = −g∞ =∞. If we further assume that a > b and bc < 1, then we have

lim
t→∞u(t, x) = (a− b)/(1 + bc), lim

t→∞ v(t, x) = (1 + ac)/(1 + bc) locally uniformly in R.

or

(ii) Vanishing: h∞ − g∞ <∞ and

lim
t→∞u(t, x) = a locally uniformly in R, lim

t→∞ ‖v(t, ·)‖C([g(t),h(t)]) = 0.

Moreover,

(iii) If h0 ≥ 1
2Λp, then h∞ = −g∞ =∞ for all μ > 0.

(iv) If h0 < 1
2Λp, then there exist μ∗ ≥ μ∗ > 0 such that h∞ = −g∞ = ∞ if μ > μ∗, and

h∞ − g∞ <∞ if μ ≤ μ∗ or μ = μ∗.

5.3 The mutualist model

In this part we suppose that f1, f2 satisfy (1.6). Taking advantage of comparison principle and

results of logistic equation ([5]), we can easily obtain the criteria governing spreading and vanishing.

Combining with our early results about long-time behaviors of (u, v), we have the following theorem.

Theorem 5.14. (The mutualist model ) Let (u, v, g, h) be the unique solution of (1.2) in there

f1, f2 satisfy (1.6). Then the following alternative holds:

Either

(i) Spreading: h∞ = −g∞ =∞ and

lim
t→∞u(t, x) = u∗, lim

t→∞ v(t, x) = v∗ locally uniformly in R.

or

(ii) Vanishing: h∞ − g∞ <∞ and

lim
t→∞u(t, x) = a/2 locally uniformly in R, lim

t→∞ ‖v(t, ·)‖C([g(t),h(t)]) = 0.

Moreover,

(iii) If h0 ≥ π
√
d2/r2 =: Λm/2, then h∞ − g∞ =∞ for all μ > 0;

(iv) If h0 < Λm/2, then there exist μ∗ ≥ μ∗ > 0 such that h∞ = −g∞ = ∞ if μ > μ∗, and
h∞ − g∞ <∞ if μ ≤ μ∗ or μ = μ∗.

6 Estimates of spreading speeds

In this section we give some rough estimates on the spreading speed of g(t) and h(t) when

spreading happens. We first recall one proposition whose proof is given in [29].
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Proposition 6.1. For any given positive constants a, d, b, and k ∈ [0, 2
√
ad), the problem

−dU ′′
+ kU ′ = U(a− bU) in (0,∞), U(0) = 0.

admits a unique positive solution U = Uk = Ua,d,k,b, and satisfies U(x)→ a/b as x→∞. Moreover,

for each μ > 0, there exists a unique k0 = k0(μ, a, d, b) ∈ (0, 2
√
ad) such that μU ′k0(0) = k0.

Furthermore, k0 = k0(μ, a, d, b) is strictly increasing in μ and a and decreasing in b.

Utilizing the function k0(μ, a, d, b), we have the following estimates for spreading speed of g(t)

and h(t). Since the proof is similar, we just give the proof of Theorem 6.2. For simplicity, we

denote k0(μ, a, d, 1) = k0(μ, a, d).

Theorem 6.2. (The competition model ) Suppose that f1, f2 satisfy (1.4) and ac < 1. If h∞−g∞ =

∞, then

−k0(μ, 1, d2) ≤ lim inf
t→∞

g(t)

t
≤ lim sup

t→∞
g(t)

t
≤ −k0(μ, 1− ac, d2),

and

k0(μ, 1− ac, d2) ≤ lim inf
t→∞

h(t)

t
≤ lim sup

t→∞
h(t)

t
≤ k0(μ, 1, d2).

Proof. Since the proof is similar to [29, Theorem 5.2], we just give the sketch. Clearly, the triplet

(v, g, h) is a lower solution of the problem (5.1). It then follows that ḡ(t) ≤ g(t) → −∞ and

h̄(t) ≥ h(t)→∞ as t→∞. Thanks to [5, Theorem 5.12], we have

lim
t→∞

ḡ(t)

t
= −k0(μ, 1, d2) lim

t→∞
h̄(t)

t
= k0(μ, 1, d2).

Thus

lim inf
t→∞

g(t)

t
≥ −k0(μ, 1, d2) lim sup

t→∞
h(t)

t
≤ k0(μ, 1, d2).

Since lim sup
t→∞

u ≤ a uniformly in R, for any 0 < ε� 1, there exists Tε such that u(t, x) ≤ a+ ε for

t ≥ Tε, x ∈ R and h(Tε) − g(Tε) > π
√
d2/

(
1− c(a+ ε)

)
. The comparison principle implies that

(v, g, h) is a upper solution to the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt − d2vxx = v(1− c(a+ ε)− v), t > Tε, g(t) < x < h(t),

v(t, x) = 0, t > Tε, x = g(t), h(t),

g′(t) = −μvx(t, g(t)), t > Tε,

h′(t) = −μvx(t, h(t)), t > Tε,

h(Tε) = h(Tε), g(Tε) = g(Tε),

v(Tε, x) = v(Tε, x), g(Tε) ≤ x ≤ h(Tε).

It follows by [5] that h∞ = −g∞ = ∞ since h(Tε) − g(Tε) > π
√

d2/
(
1− c(a+ ε)

)
. Moreover,

making use of [5, Theorem 5.12] yields that

lim
t→∞

g(t)

t
= −k0(μ, 1− c(a+ ε), d2), lim

t→∞
h(t)

t
= k0(μ, 1− c(a+ ε), d2) =: k∗0(ε).

By virtue of g(t) ≥ g(t) and h(t) ≤ h(t) for t ≥ Tε and the arbitrariness of ε, we have

lim sup
t→∞

g(t)

t
≤ −k0(μ, 1− ac, d2), lim inf

t→∞
h(t)

t
≥ k0(μ, 1− ac, d2).

The proof is completed.
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Theorem 6.3. (The predator-prey model ) Suppose that f1, f2 satisfy (1.5). If h∞− g∞ =∞, then

−k0(μ, 1 + ac, d2) ≤ lim inf
t→∞

g(t)

t
≤ lim sup

t→∞
g(t)

t
≤ −k0(μ, 1, d2),

and

k0(μ, 1, d2) ≤ lim inf
t→∞

h(t)

t
≤ lim sup

t→∞
h(t)

t
≤ k0(μ, 1 + ac, d2).

Theorem 6.4. (The mutualist model ) Suppose that f1, f2 satisfy (1.6). If h∞ − g∞ =∞, then

−k0 (μ, r2, d2, r2(2 + cu∗)/(1 + cu∗)) ≤ lim inf
t→∞

g(t)

t
≤ lim sup

t→∞
g(t)

t
≤ −k0(μ, r2, d2, 2r2),

and

k0(μ, r2, d2, 2r2) ≤ lim inf
t→∞

h(t)

t
≤ lim sup

t→∞
h(t)

t
≤ k0 (μ, r2, d2, r2(2 + cu∗)/(1 + cu∗)) .
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