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We show that if a Banach lattice is projective, then every bounded sequence that can 
be mapped by a homomorphism onto the basis of c0 must contain an �1-subsequence. 
As a consequence, if Banach lattices �p or FBL[E] are projective, then p = 1 or 
E has the Schur property, respectively. On the other hand, we show that C(K) is 
projective whenever K is an absolute neighbourhood retract, answering a question 
by de Pagter and Wickstead.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we continue the program proposed by B. de Pagter and A. W. Wickstead [10] of studying 
the projective Banach lattices.

Definition 1.1. Let λ > 1 be a real number. A Banach lattice P is λ-projective if whenever X is a Banach 
lattice, J a closed ideal in X and Q : X −→ X/J the quotient map, then for every Banach lattice homo-
morphism T : P −→ X/J , there is a Banach lattice homomorphism T̂ : P −→ X such that T = Q ◦ T̂ and 
‖T̂‖ ≤ λ ‖T‖.

A Banach lattice is called projective in [10] if it is (1 + ε)-projective for every ε > 0. For a more intuitive 
terminology, and by analogy to similar notions in Banach spaces, we will call this 1+-projective instead of 
just projective. Note that if P is λ-projective, then P is μ-projective for every μ ≥ λ. We will call a Banach 

✩ Authors supported by project MTM2017-86182-P (Government of Spain, AEI/FEDER, EU) and project 20797/PI/18 by 
Fundación Séneca, ACyT Región de Murcia. Third author supported by FPI contract of Fundación Séneca, ACyT Región de 
Murcia.
* Corresponding author.

E-mail addresses: avileslo@um.es (A. Avilés), gonzalo.martinez2@um.es (G. Martínez-Cervantes), josedavid.rodriguez@um.es
(J.D. Rodríguez Abellán).
https://doi.org/10.1016/j.jmaa.2020.124129
0022-247X/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jmaa.2020.124129
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2020.124129&domain=pdf
mailto:avileslo@um.es
mailto:gonzalo.martinez2@um.es
mailto:josedavid.rodriguez@um.es
https://doi.org/10.1016/j.jmaa.2020.124129


2 A. Avilés et al. / J. Math. Anal. Appl. 489 (2020) 124129
lattice ∞-projective if it is λ-projective for some λ > 1. It is clear that, in the case of ∞-projective, Q can 
be taken any surjective Banach lattice homomorphism.

The notion of free Banach lattice was also introduced in [10]. If A is a set with no extra structure, the 
free Banach lattice generated by A, denoted by FBL(A), is a Banach lattice together with a bounded map 
u : A −→ FBL(A) having the following universal property: for every Banach lattice Y and every bounded 
map v : A −→ Y there is a unique Banach lattice homomorphism S : FBL(A) −→ Y such that S ◦ u = v

and ‖S‖ = sup {‖v(a)‖ : a ∈ A}. The same idea is applied by A. Avilés, J. Rodríguez and P. Tradacete to 
define the concept of the free Banach lattice generated by a Banach space E, FBL[E]. This is a Banach 
lattice together with a bounded operator u : E −→ FBL[E] such that for every Banach lattice Y and every 
bounded operator T : E −→ Y there is a unique Banach lattice homomorphism S : FBL[E] −→ Y such 
that S ◦ u = T and ‖S‖ = ‖T‖.

In [4] and [10] it is shown that both objects exist and are unique up to Banach lattices isometries. A 
more explicit description of these spaces is given in [4] as follows:

Let A be a non-empty set. For x ∈ A, let δx : [−1, 1]A −→ R be the evaluation function given by 
δx(x∗) = x∗(x) for every x∗ ∈ [−1, 1]A, and for every f : [−1, 1]A −→ R define

‖f‖ = sup
{

n∑
i=1

|f(x∗
i )| : n ∈ N, x∗

1, . . . , x
∗
n ∈ [−1, 1]A, sup

x∈A

n∑
i=1

|x∗
i (x)| ≤ 1

}
.

The Banach lattice FBL(A) is the Banach lattice generated by the evaluation functions δx inside the 
Banach lattice of all functions f : [−1, 1]A −→ R with finite norm. The natural identification of A inside 
FBL(A) is given by the map u : A −→ FBL(A) where u(x) = δx. Since every function in FBL(A) is a 
uniform limit of such functions, they are all continuous (with respect to the product topology) and positively 
homogeneous, i.e. they commute with multiplication by positive scalars.

Now, let E be a Banach space. For a function f : E∗ −→ R consider the norm

‖f‖FBL[E] = sup
{

n∑
i=1

|f(x∗
i )| : n ∈ N, x∗

1, . . . , x
∗
n ∈ E∗, sup

x∈BE

n∑
i=1

|x∗
i (x)| ≤ 1

}
.

The Banach lattice FBL[E] is the closure of the vector lattice in RE∗ generated by the evaluations 
δx : x∗ 	→ x∗(x) with x ∈ E. These evaluations form the natural copy of E inside FBL[E]. All the functions 
in FBL[E] are positively homogeneous and weak∗-continuous when restricted to the closed unit ball BE∗ . 
An alternative approach to the construction of FBL[E] has been given in [11].

In our previous work [3] we answered a question by B. de Pagter and A. W. Wickstead by showing that 
c0 is not a projective Banach lattice. In Section 2 we exploit some of the ideas of that paper further, so that 
we are able to show that projective Banach lattices enjoy the following property:

Theorem 1.2. Let (ui)i∈N be a bounded sequence of vectors in an ∞-projective Banach lattice X. Suppose 
that there exists a Banach lattice homomorphism T : X −→ c0 such that T (ui) = ei for every i ∈ N, where 
(ei)i∈N is the canonical basis of c0. Then there is a subsequence (uik)k∈N equivalent to the canonical basis 
of �1.

From this theorem we can deduce for example that no Banach lattice �p is λ-projective, for any λ > 0 or 
p 
= 1. The prototype of 1+-projective Banach lattice is FBL(A) = FBL[�1(A)] (see [4, Corollary 2.8] and 
[10, Proposition 10.2]), so it would be natural to wonder whether FBL[E] might be 1+-projective as well 
for other Banach spaces E. We show that, for this to happen, the structure of E must be very close to that 
of �1(A):
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Theorem 1.3. Let E be a Banach space. If FBL[E] is ∞-projective, then E has the Schur property (i.e. 
every weakly convergent sequence in E converges in norm).

Moreover, at the end of Section 2 we provide a counterexample which shows that, in the category of 
nonseparable Banach spaces, the converse of this result does not hold. We still do not know if there exists 
a separable Banach space E which has the Schur property and such that FBL[E] is not ∞-projective.

Section 3 is devoted to the study of projectivity on Banach lattices of the form C(K) of continuous 
functions on a compact space with the supremum norm. It was shown by de B. Pagter and A. W. Wickstead 
[10] that if C(K) is 1+-projective then K is an absolute neighbourhood retract, and the converse holds true 
if K is a compact subset of Rn. They asked whether the converse holds for general K [10, Question 12.12]. 
We solve their problem in the positive:

Theorem 1.4. If K is a compact Hausdorff topological space, then C(K) is 1+-projective if, and only if, K
is an absolute neighbourhood retract.

2. Schur property in Banach spaces with projective free Banach lattice

As a preparation towards Theorem 1.2 we provide a criterion to obtain �1-subsequences in the free Banach 
lattice FBL(L). We denote the index set L instead of A for convenience in latter application.

Lemma 2.1. Let L be an infinite set, (x∗
n)n∈N a sequence in [−1, 1]L and (fn)n∈N a sequence in FBL(L)

with the following properties:

(1) (fn)n∈N converges pointwise to 0, i.e. limn→∞ fn(x∗) = 0 for every x∗ ∈ [−1, 1]L;
(2) fn(x∗

n) = 1 for every n ∈ N;
(3) For every finite set F ⊂ L there is a natural number n such that x∗

n|F = 0, i.e. the restriction of x∗
n to 

F is null.

Then, for every ε > 0 there is a subsequence (fnk
)k∈N such that for every l ∈ N and for every λ1, . . . , λl ∈ R,

∥∥∥∥∥
l∑

k=1

λkfnk

∥∥∥∥∥ ≥ (1 − ε)
l∑

k=1

|λk|.

Proof. Fix ε > 0 and (εij)∞i,j=1 a family of positive real numbers such that ε =
∑∞

i,j=1 εij and εij = εji for 
every i, j.

We are going to define a subsequence (fmk
)k∈N of (fn)n∈N as follows:

Let m1 := 1. Since the elements of FBL(L) are continuous with respect to the product topology, there 
is a neighbourhood Um1 of x∗

m1
such that fm1(x∗) ∈ [1 − ε11, 1 + ε11] whenever x∗ ∈ Um1 . In particular, 

there is a finite set Fm1 ⊂ L such that fm1(x∗) ∈ [1 − ε11, 1 + ε11] whenever x∗|Fm1
= x∗

m1
|Fm1

.
By property (3), there exists m2 ∈ N such that x∗

m2
|Fm1

= 0. Since fm2 is continuous, there exists a 
finite set Fm2 ⊃ Fm1 such that fm2(x∗) ∈ [1 − ε22, 1 + ε22] whenever x∗|Fm2

= x∗
m2

|Fm2
.

Suppose that we have fm1 , . . . , fmk−1 for some k ≥ 2, and Fm1 , . . . , Fmk−1 finite subsets of L such that 
Fm1 ⊂ · · · ⊂ Fmk−1 , x∗

mi
|Fmi−1

= 0 for every i = 2, . . . , k − 1 and fmi
(x∗) ∈ [1 − εii, 1 + εii] whenever 

x∗|Fmi
= x∗

mi
|Fmi

.
Property (3) guarantees the existence of a number mk ∈ N such that x∗

mk
|Fmk−1

= 0. It follows from 
property (2) that there is a finite set Fmk

⊂ L, with Fmk−1 ⊂ Fmk
, such that fmk

(x∗) ∈ [1 − εkk, 1 + εkk]
whenever x∗|Fmk

= x∗
mk

|Fmk
.

For each k ∈ N define y∗mk
: L −→ [−1, 1] such that y∗mk

|Fmk
= x∗

mk
|Fmk

and y∗mk
(x) = 0 whenever 

x ∈ L \Fmk
. Notice that fmk

(y∗m ) ∈ [1 − εkk, 1 + εkk] for every k ∈ N. On the other hand, if mk < mk′ and 

k
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y∗mk
(x) 
= 0 then x ∈ Fmk

(by the definition of y∗mk
) and therefore x∗

mk′ (x) = 0, so y∗mk′ (x) = 0. It follows 
that y∗mk

and y∗mk′ have disjoint supports. In particular,

sup
x∈L

l∑
k=1

∣∣y∗mk
(x)

∣∣ ≤ 1.

Let ν1 := m1 = 1. Combining property (1) with the fact that the functions fn are continuous in [−1, 1]L
and the functions y∗mn

converge to 0 in the product topology, we have that there exists ν2 ∈ N such that

|fmn
(y∗mν1

)| ≤ ε12 and |fmν1
(y∗mn

)| ≤ ε21 = ε12 for every n ≥ ν2.

Again, using the above, there exists a natural number ν3 ≥ ν2 such that

|fmn
(y∗mν1

)| ≤ ε13, |fmν1
(y∗mn

)| ≤ ε31 = ε13

and

|fmn
(y∗mν2

)| ≤ ε23, |fmν2
(y∗mn

)| ≤ ε32 = ε23

for every n ≥ ν3.
Suppose that we have ν1 ≤ ν2 ≤ · · · ≤ νp ∈ N such that

|fmn
(y∗mνj

)| ≤ εjp and |fmνj
(y∗mn

)| ≤ εpj = εjp for every j < p and every n ≥ νp.

Then, there exists a natural number νp+1 ≥ νp such that

|fmn
(y∗mνj

)| ≤ εj(p+1) and |fmνj
(y∗mn

)| ≤ ε(p+1)j = εj(p+1) for every j < p + 1

and every n ≥ νp+1.
Since fmνi

(y∗mνi
) ∈ [1 −ενiνi

, 1 +ενiνi
] for every i, we can write fmνi

(y∗mνi
) = 1 +ηνiνi

with |ηνiνi
| ≤ ενiνi

.
On the other hand, if k 
= i, we have that fmνk

(y∗mνi
) ∈ [−εik, εik], and we will write fmνk

(y∗mνi
) = ηνiνk

with |ηνiνk
| ≤ εik.

We take the subsequence fnk
:= fmνk

for every k ∈ N.
Now, let λ1, . . . , λl ∈ R. We have that

∥∥∥∥∥
l∑

k=1

λkfnk

∥∥∥∥∥ = sup
{

q∑
i=1

∣∣∣∣∣
l∑

k=1

λkfnk
(z∗i )

∣∣∣∣∣ : q ∈ N, z∗i ∈ [−1, 1]L, sup
x∈L

q∑
i=1

|z∗i (x)| ≤ 1
}

≥
l∑

i=1

∣∣∣∣∣
l∑

k=1

λkfmνk
(y∗mνi

)

∣∣∣∣∣ =
l∑

i=1

∣∣∣∣∣∣λifmνi
(y∗mνi

) +
∑
k �=i

λkfmνk
(y∗mνi

)

∣∣∣∣∣∣
=

l∑
i=1

∣∣∣∣∣∣λi(1 + ηνiνi
) +

∑
k �=i

λkηνiνk

∣∣∣∣∣∣ =
l∑

i=1

∣∣∣∣∣λi +
l∑

k=1

λkηνiνk

∣∣∣∣∣
≥

l∑
i=1

|λi| −
l∑

i=1

l∑
k=1

|λk| |ηνiνk
| =

l∑
i=1

|λi| −
l∑

k=1

|λk|
(

l∑
i=1

|ηνiνk
|
)

≥
l∑

|λi| −
l∑

|λk|

⎛
⎝ενkνk

+
∑

εik

⎞
⎠ ≥ (1 − ε)

l∑
|λk| . �
i=1 k=1 i�=k k=1
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We are ready to prove Theorem 1.2 from the introduction:

Proof of Theorem 1.2. Suppose that there is no subsequence equivalent to the canonical basis of �1. Then, 
by Rosenthal’s �1-theorem [1, Theorem 10.2.1], the sequence (ui)i∈N has a weakly Cauchy subsequence 
(uik)k∈N . Thus, the sequence (yn)n∈N , with yn = ui2n+1 −ui2n for every n ∈ N, is weakly null and bounded.

Let us denote T (x) = (T (x)j)j∈N ∈ c0 for x ∈ X. Let T̃ : X −→ c0 be the map given by T̃ (x) =
(T (x)i2k+1)k∈N .

Let L = Pfin(ω) \{∅} be the set of the finite parts of ω without the empty set, and let Φ: FBL(L) −→ c0
be the map given by

Φ(f) =
(
f
(
(χA({1}))A∈L

)
, f

(
(χA({2}))A∈L

)
, . . .

)
=

(
f
(
(χA({n}))A∈L

) )
n∈N

for every f : [−1, 1]L −→ R ∈ FBL(L), where for A ∈ L, χA : L −→ [−1, 1] is the map given by χA(B) = 1
if B ⊂ A and χA(B) = 0 if B 
⊂ A.

By [3, Lemma 2.2], Φ is a surjective Banach lattice homomorphism. Since X is ∞-projective, there exists 
a bounded Banach lattice homomorphism T̈ : X −→ FBL(L) such that Φ ◦ T̈ = T̃ . We are going to find 
now fn and x∗

n for the application of Lemma 2.1.
Let fn := T̈ (yn) for every n ∈ N. The sequence (fn)n∈N converges pointwise to 0, since (yn)n∈N is weakly 

null. It follows from the equality Φ(fn) = (Φ ◦ T̈ )(yn) = T̃ (yn) = en and the definition of Φ that

fn
(
(χA({n}))A∈L

)
= Φ(fn)n = en(n) = 1

for every n ∈ N. Set x∗
n = (χA({n}))A∈L ∈ [−1, 1]L for every n ∈ N. Notice that if F ⊂ L is finite, then 

x∗
n(S) = 0 whenever n /∈

⋃
S∈F S, so condition (3) of Lemma 2.1 is also satisfied.

We can now apply Lemma 2.1, so for every ε > 0 there is a subsequence (fnk
)k∈N such that for every 

l ∈ N and for every λ1, . . . , λl ∈ R,

∥∥∥∥∥
l∑

k=1

λkfnk

∥∥∥∥∥ ≥ (1 − ε)
l∑

k=1

|λk|.

On the other hand, since T̈ and (yn)n∈N are bounded, there are two constants C, M > 0 such that

∥∥∥∥∥
l∑

k=1

λkfnk

∥∥∥∥∥ =

∥∥∥∥∥T̈
(

l∑
k=1

λkynk

)∥∥∥∥∥ ≤ C

∥∥∥∥∥
l∑

k=1

λkynk

∥∥∥∥∥ ≤ CM

l∑
k=1

|λk|.

Thus,

(1 − ε)
l∑

k=1

|λk| ≤
∥∥∥∥∥

l∑
k=1

λkfnk

∥∥∥∥∥ ≤ CM
l∑

k=1

|λk|,

so that (fnk
)k∈N is equivalent to the canonical basis of �1, and in consequence, (ynk

)k∈N is also equivalent 
to the canonical basis of �1, which is a contradiction. �
Corollary 2.2. The Banach lattices c0 and lp (for 2 ≤ p < ∞) are not ∞-projective.

Proof. On the one hand, the canonical basis (ui)i∈N of c0 does not have subsequences equivalent to the 
canonical basis of �1, and the identity map T = idc0 is a Banach lattice homomorphism such that T (ui) = ei
for every i ∈ N, where (ei)i∈N is the canonical basis of c0. On the other hand, the canonical basis (ui)i∈N of 
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lp does not have subsequences equivalent to the canonical basis of �1, and the formal inclusion T of lp into 
c0 is a Banach lattice homomorphism such that T (ui) = ei for every i ∈ N, where (ei)i∈N is the canonical 
basis of c0. �

As we mentioned, the fact that c0 is not ∞-projective was already proved in [3, Theorem 2.4]. The 
following is a corollary of Theorem 1.2 in the context of free Banach lattices FBL[E]:

Lemma 2.3. Let E be a Banach space such that FBL[E] is ∞-projective, and let (ui)i∈N be a bounded 
sequence of vectors in E. Suppose that there exists an operator S : E −→ c0 such that S(ui) = ei for every 
i ∈ N, where (ei)i∈N is the canonical basis of c0. Then there is a subsequence (uik)k∈N equivalent to the 
canonical basis of �1.

Proof. Let φ : E −→ FBL[E] be the inclusion of E into FBL[E], and let T : FBL[E] −→ c0 be the 
Banach lattice homomorphism given by the universal property of the free Banach lattice which extends the 
operator S.

The sequence (φ(ui))i∈N is bounded in FBL[E] and T (φ(ui)) = S(ui) = ei for every i ∈ N, so that 
applying Theorem 1.2 we have that (φ(ui))i∈N has a subsequence (φ(uik))k∈N equivalent to the canonical 
basis of �1, which implies that (uik)k∈N is a subsequence of (ui)i∈N equivalent to the canonical basis of �1. �

We pass now to the proof of Theorem 1.3, which states that E has the Schur property when FBL[E] is 
∞-projective. Lemmas 2.4, 2.5 and 2.6 are necessary only to deal with the case when E is nonseparable. The 
reader interested in the separable case may skip those lemmas and just apply Sobczyk’s extension theorem 
[1, Theorem 2.5.8] where appropriate.

Lemma 2.4. Let E be a Banach space. If FBL[E] is ∞-projective, then E is isomorphic to a subspace of 
C([−1, 1]Γ) for some set Γ.

Proof. Let Γ be a dense subset of the unit ball BE of E. Let BE∗ be the closed unit ball of the 
dual space E∗, endowed with the weak∗ topology. We have a surjective Banach lattice homomorphism 
P : C([−1, 1]Γ) −→ C(BE∗) given by P (f)(x∗) = f((x∗(x))x∈Γ). This is just the composition operator with 
the continuous injection x∗ 	→ (x∗(x))x∈Γ from BE∗ into [−1, 1]Γ. Let ι : E −→ C(BE∗) be the canonical 
inclusion ι(x)(x∗) = x∗(x), and let ι̂ : FBL[E] −→ C(BE∗) be the Banach lattice homomorphism given by 
the universal property of the free Banach lattice. Since FBL[E] is supposed to be ∞-projective, there exists 
T̂ : FBL[E] −→ C([−1, 1]Γ) such that P ◦ T̂ = ι̂. We take the restriction T := T̂ |E : E −→ C([−1, 1]Γ). 
Notice that PTx = ιx, and therefore

‖Tx‖ ≥ ‖PTx‖ = ‖ιx‖ = ‖x‖

for every x ∈ E. This implies that T gives an isomorphism of E onto a subspace of C([−1, 1]Γ). �
The following fact is well known in the context of a more general theory about Valdivia compacta, 

Plichko spaces and projectional skeletons (cf. for instance [9]), but we provide a short proof for the reader’s 
convenience:

Lemma 2.5. For every set Γ, the Banach space C([−1, 1]Γ) has the separable complementation property. 
That is, for every separable subspace G ⊂ C([−1, 1]Γ) there exists a separable complemented subspace G0 of 
C([−1, 1]Γ) such that G ⊂ G0.

Proof. Let S be a countable dense subset of G. By Mibu’s theorem [2, page 80, Theorem 4], for every f ∈ S

there exists a countable subset Γf ⊂ Γ such that f(x) = f(y) whenever x|Γf
= y|Γf

. The set A =
⋃

Γf is 
f∈S



A. Avilés et al. / J. Math. Anal. Appl. 489 (2020) 124129 7
a countable set such that f(x) = f(y) whenever x|A = y|A and f ∈ G. The desired separable complemented 
subspace is

G0 =
{
f ∈ C([−1, 1]Γ) : x|A = y|A ⇒ f(x) = f(y)

} ∼= C([−1, 1]A).

The projection P : C([−1, 1]Γ) −→ G0 is given by P (f)(x) = f(x̃) where x̃i = xi if i ∈ A and x̃i = 0 if 
i /∈ A. �
Lemma 2.6. Let E be a Banach space such that FBL[E] is ∞-projective, and let F ⊂ E be a separable 
subspace. Every operator S0 : F −→ c0 can be extended to an operator S : E −→ c0.

Proof. By Lemma 2.4, there is an operator T : E −→ C([−1, 1]Γ) that is an isomorphism onto its range, so 
that G = T (F ) is a separable subspace of C([−1, 1]Γ). By Lemma 2.5, we can find a complemented separable 
subspace G0 of C([−1, 1]Γ) with G ⊂ G0. Let P : C([−1, 1]Γ) −→ G0 be the projection. If S′

0 : G0 −→ c0
is the extension of S0 given by the Sobczyk’s theorem, then S := S′

0 ◦ P ◦ T : E −→ c0 is the desired 
operator. �

Theorem 1.3 follows from the previous results:

Proof of Theorem 1.3. If E does not have the Schur property, then there is a weakly null sequence (ui)i∈N
that does not converge to 0 in norm. By passing to a subsequence we may assume that 0 is not in the norm 
closure of {ui}i∈N . By the theorem of Kadets and Pełczyński [1, Theorem 1.5.6], by passing to a further 
subsequence, we can suppose that (ui)i∈N is a basic sequence. We are going to see that there exists an 
operator S : E −→ c0 such that S(ui) = ei for every i ∈ N, where (ei)i∈N is the canonical basis of c0, and 
then by Lemma 2.3, this will mean that (ui)i∈N has a subsequence equivalent to the canonical basis of �1, 
a contradiction with the fact that it is weakly null.

Let F = span {ui : i ∈ N} ⊂ E. For every n ∈ N let u∗
n : F −→ R be the n-th coordinate functional, 

given by u∗
n(
∑∞

i=1 αiui) = αn, and let S0 : F −→ �∞ be the map given by S0(x) = (u∗
n(x))n∈N for every 

x ∈ F . Since the sequence (u∗
n)n∈N is weak∗-null, we have that S0(F ) ⊂ c0. On the other hand, S0(ui) = ei

for every i ∈ N. Now, since F is separable and FBL[E] is ∞-projective, applying Lemma 2.6 we can extend 
S0 to an operator S : E −→ c0 such that S(ui) = ei for every i ∈ N. �

As a remark, along the first lines of the proof we justify that the Schur property is characterized by the 
property that every basic sequence contains a subsequence equivalent to the canonical basis of �1. We may 
refer to [8] for a study of this kind of fact in a more general context.

Finally, let us see that, in the category of nonseparable Banach spaces, the converse does not hold. By 
[7, Theorem 1, e) and f)], there exist a separable Banach space F and a bounded set Λ in F ∗ such that 
E := span(Λ) is nonseparable, has the Schur property and does not contain any copy of �1(ω1). Now, since 
for every set Γ the space [−1, 1]Γ is a continuous image of {0, 1}m for some infinite cardinal number m, by 
[6, Corollary 3] we have that E is not isomorphic to any subspace of C([−1, 1]Γ) for any set Γ, and then, 
by Lemma 2.4, we have that FBL[E] cannot be ∞-projective.

3. Projectivity of C(K)

In [10, Theorem 11.4] it is proved that for a compact subset K of Rn, C(K), with the supremum norm, is 
a 1+-projective Banach lattice if, and only if, K is an absolute neighbourhood retract of Rn. In this section 
we prove a similar result for K being a compact Hausdorff topological space not necessarily inside Rn. We 
first recall some basic definitions and facts.



8 A. Avilés et al. / J. Math. Anal. Appl. 489 (2020) 124129
Definition 3.1. We say that a compact space K is an absolute neighbourhood retract (ANR) if whenever 
i : K −→ X is a homeomorphism between K and a subspace of the compact space X, there exist an open 
set U and a continuous function φ : U −→ K such that i(K) ⊂ U ⊂ X and φ(i(k)) = k for all k ∈ K.

Lemma 3.2. In the situation of Definition 3.1, there exist a continuous function u : X −→ [0, 1] and a 
continuous function ϕ : X \ u−1(0) −→ K such that u(i(k)) = 1 and ϕ(i(k)) = k for every k ∈ K.

Proof. By the Urysohn’s lemma, we can find a continuous function u : X −→ [0, 1] such that u(i(k)) = 1 for 
every k ∈ K, u(x) = 0 for every x ∈ X\U , and u(x) ∈ (0, 1) for every x ∈ U \K. Notice that X\u−1(0) ⊂ U , 
so the statement of the Lemma is satisfied. �
Proposition 3.3. [5, Proposition 2.1] Let P be a 1+-projective Banach lattice, I an ideal of P and T : P −→
P/I the quotient map. The quotient P/I is 1+-projective if, and only if, for every ε > 0 there exists a 
Banach lattice homomorphism Sε : P/I −→ P such that T ◦ Sε = idP/I and ‖Sε‖ ≤ 1 + ε.

Lemma 3.4. Let A be a set, f : [−1, 1]A −→ R a function, and a ∈ A. Then, the FBL(A)-norm of the 
pointwise product f · |δa| is less than or equal to the supremum norm ‖f‖∞.

Proof.
‖f · |δa|‖ := sup

{
m∑

k=1

|f · |δa|(x∗
k)| : m ∈ N, x∗

k ∈ [−1, 1]A, sup
x∈A

m∑
k=1

|x∗
k(x)| ≤ 1

}

= sup
{

m∑
k=1

|f(x∗
k)| · |δa(x∗

k)| : m ∈ N, x∗
k ∈ [−1, 1]A, sup

x∈A

m∑
k=1

|x∗
k(x)| ≤ 1

}

≤ sup
{

m∑
k=1

|f(x∗
k)| · |x∗

k(a)| : m ∈ N, x∗
k ∈ [−1, 1]A,

m∑
k=1

|x∗
k(a)| ≤ 1

}

≤ sup
{

max {|f(x∗
k)| : k = 1, . . . ,m} : m ∈ N, x∗

k ∈ [−1, 1]A,
m∑

k=1

|x∗
k(a)| ≤ 1

}

≤ ‖f‖∞. �
Proof of Theorem 1.4. In [10, Proposition 11.7] it is proved that if C(K) is 1+-projective, then K is an 
ANR.

For the converse, let X := [−1, 1]BC(K) , where BC(K) = {f ∈ C(K) : ‖f‖∞ ≤ 1} is the closed unit ball of 
the space of continuous functions. The map i : K −→ X given by i(k) = (γ(k))γ∈BC(K) is an homeomorphism 
between K and i(K). By Lemma 3.2 there exist a continuous function u : X −→ [0, 1] and a continuous 
function ϕ : X \ u−1(0) −→ K such that u(i(k)) = 1 and ϕ(i(k)) = k for every k ∈ K.

By the universal property of the free Banach lattice, there is a Banach lattice homomorphism 
T : FBL(BC(K)) −→ C(K) that extends the inclusion BC(K) ↪→ C(K). This is clearly a quotient map 
and its action is given by Tf(k) = f(i(k)) for every f ∈ FBL(BC(K)), k ∈ K.

Since FBL(BC(K)) is 1+-projective ([10, Proposition 10.2]), by Proposition 3.3, it is enough to prove 
that there exists a Banach lattice homomorphism S : C(K) −→ FBL(BC(K)) such that T ◦S = idC(K) and 
‖S‖ ≤ 1.

Let 1̄ ∈ BC(K) be the constant function equal to 1, and let v : {x ∈ X : x1̄ 
= 0} −→ X be the map given 
by v(x) = (v(x)γ)γ∈BC(K) , where

v(x)γ =

⎧⎪⎨
⎪⎩

−1 if xγ

x1̄
< −1,

xγ

x1̄
if xγ

x1̄
∈ [−1, 1],

1 if xγ > 1,
x1̄
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for every x = (xγ)γ∈BC(K) ∈ X with x1̄ 
= 0.
For a given h ∈ C(K), define f : X −→ R by

f(x) :=
{

(h ◦ ϕ ◦ v) · (u ◦ v)(x) if x1̄ 
= 0 and u(v(x)) 
= 0,
0 otherwise.

Formally, we should call the function fh as it depends on h. But we omit the subindex for a more friendly 
notation (in fact the subindex would always be “h” along the proof). Notice also that x1̄ 
= 0 is required for 
x to be in the domain of v and u(v(x)) 
= 0 is required for v(x) to be in the domain of ϕ.

The desired S : C(K) −→ FBL(BC(K)) will be the map given by Sh(x) = (f ·|δ1̄|)(x) for every h ∈ C(K), 
x ∈ X. The function Sh is a real-valued function on X = [−1, 1]BC(K) , and we will need to prove that, 
in fact, Sh ∈ FBL(BC(K)). Once that is proved, the rest of properties required for S are relatively easy 
to check: It is clear that S is a linear map, and it preserves the lattice operations ∧ and ∨. The fact that 
‖S‖ ≤ 1 comes from Lemma 3.4:

‖Sh‖ = ‖f · |δ1̄|‖ ≤ ‖f‖∞ = ‖(h ◦ ϕ ◦ v)(u ◦ v))‖∞ ≤ ‖h‖∞ .

To see that T ◦ S = idC(K), take h ∈ C(K) and k ∈ K. Remember that u(i(k)) = 1 and ϕ(i(k)) = k and 
notice that i(k)1̄ = 1 and v(i(k)) = i(k) for every k ∈ K, so

TSh(k) = Sh(i(k)) = (f · |δ1̄|)(i(k)) = h(ϕ(i(k))) · u(i(k)) = h(k).

So we turn now to the remaining more delicate question whether Sh ∈ FBL(BC(K)) for every h ∈
C(K). Functions in the free Banach lattice must be continuous (in the product topology) and positively 
homogeneous (commute with multiplication by positive scalars). We check first that Sh has these two 
properties. Clearly, Sh is continuous on the open set {x ∈ X : x1̄ 
= 0, u(v(x)) 
= 0} because Sh is expressed 
there by the formula (h ◦ϕ ◦v) · (u ◦v) · |δ1̄|. If x1̄ = 0, then for every ε > 0 there is a neighbourhood W such 
that |f(y)| ·|y1̄| ≤ ‖h‖∞ ·ε for all y ∈ W , so Sh is also continuous at those x. If x1̄ 
= 0 but u(v(x)) = 0, again, 
given ε > 0, we can find a neighbourhood W of x where y1̄ 
= 0 and |f(y)| · |y1̄| ≤ ‖h‖∞ ·ε for all y ∈ W . For 
positive homogeneity, on the one hand, if x1̄ 
= 0, then v(λx) = v(x) for every 0 < λ ≤ 1 and x ∈ X, while 
|δ1̄| is positively homogeneous. If x1̄ = 0, then for every 0 < λ ≤ 1 we have that Sh(λx) = 0 = λSh(x).

Being continuous and positively homogeneous is a sufficient condition to belong to FBL(A) in the case 
when A is finite [10]. What we can deduce from this in the infinite case is that a function g : [−1, 1]A −→ R

belongs to FBL(A) provided that is continuous, positively homogeneous and depends on finitely many 
coordinates [3, Lemma 3.1]. Depending on finitely many coordinates means that there is a finite subset 
A0 ⊂ A such that g(x) = g(y) whenever x|A0 = y|A0 . We will prove that Sh can be obtained as the limit, in 
the FBL(BC(K))-norm, of a sequence of continuous and positively homogeneous functions that only depend 
on a finite number of coordinates from [−1, 1]BC(K) . This proves that Sh ∈ FBL(BC(K)) since it is a closed 
space.

Consider L = {x ∈ X : x1̄ = 1} ⊂ X. Since the restriction f |L is a continuous function on the compact 
space L, by the Stone-Weierstrass’ theorem, for every n ∈ N we can find a continuous function f+

n ∈ C(L)
that depends only on finitely many coordinates of the cube [−1, 1]BC(K) such that

∥∥f |L − f+
n

∥∥
∞ <

1
n
.

Define fn : X −→ R by

fn(x) :=
{
f+
n (v(x)) if x1̄ 
= 0,

0 otherwise.
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It is clear that fn(λx) = fn(x) for all 0 < λ ≤ 1 and x ∈ X, since v(λx) = v(x). Moreover, fn depends on 
finitely many coordinates because f+

n does so, and each coordinate of v depends on two coordinates (v(x)γ
only depends on xγ and x1̄). On the other hand, fn · |δ1̄| is continuous in X. This is because fn · |δ1̄| is 
continuous in {x ∈ X : x1̄ 
= 0} clearly, and, if x1̄ = 0, then for every ε > 0 there is a neighbourhood W
such that |fn(y)| · |y1̄| ≤ ‖f+

n ‖∞ · ε for all y ∈ W . Thus, the functions fn · |δ1̄| are all continuous, positively 
homogeneous and depend on finitely many coordinates. It follows from the aforementioned fact [3, Lemma 
3.1] that fn · |δ1̄| ∈ FBL(BC(K)) for every n ∈ N. It only remains to prove that ‖Sh− fn · |δ1̄|‖ → 0 when 
n → ∞. For this, first notice that v(v(x)) = v(x) for all x ∈ X with x1̄ 
= 0. This is just because v(x)1̄ = 1. 
From this, it follows that f(x) = f(v(x)) for all x with x1̄ 
= 0. This together with Lemma 3.4 gives:

‖Sh− fn · |δ1̄|‖ = ‖f · |δ1̄| − fn · |δ1̄|‖ = ‖(f − fn) · |δ1̄|‖

≤ ‖f − fn‖∞
= sup {|f(x) − fn(x)| : x ∈ X}

= sup {|f(x) − fn(x)| : x ∈ X,x1̄ 
= 0}

= sup
{
|f(x) − f+

n (v(x))| : x ∈ X,x1̄ 
= 0
}

= sup
{
|f(v(x)) − f+

n (v(x))| : x ∈ X,x1̄ 
= 0
}

≤ sup
{
|f(y) − f+

n (y)| : y ∈ L
}

= ‖f |L − f+
n ‖∞ <

1
n
. �

4. Problems

Concerning the different variations of projectivity, it was already observed in [10] that if a Banach lattice P
has the property that every homomorphism into a quotient T : P −→ X/J can be lifted to a homomorphism 
T̂ : P −→ X, then P is λ-projective for some λ. It is obvious that the class of ∞-projective Banach lattices 
is closed under renorming but the 1+-projective class is not. It was asked in [10] whether every ∞-projective 
Banach lattice is the renorming of a 1+-projective Banach lattice. But, in fact, we do not know a single 
example that separates these two classes, even by renorming.

Problem 1. Find an equivalent norm on a 1+-projective Banach lattice that makes it ∞-projective but not 
1+-projective.

A natural candidate would be FBL[E] with E a suitable Banach space renorming of �1.
Theorems 1.2 and 1.3 suggest a large presence of the Banach space �1 inside projective Banach lattices. 

This does not exclude other subspaces (C[0, 1] is 1+-projective and contains isometric copies of any separable 
Banach space) but we may at least ask:

Problem 2. If X is ∞-projective and infinite-dimensional, must X contain a Banach subspace isomorphic 
to �1?

We proved that E has the Schur property if FBL[E] is ∞-projective. But the only positive case that we 
know is that FBL[�1(A)] = FBL(A) is 1+-projective.

Problem 3. Is there a Banach space E with the Schur property, not isometric to �1(A), for which FBL[E]
is 1+-projective? Is there a Banach space E with the Schur property, not isomorphic to �1(A), for which 
FBL[E] is ∞-projective?
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For a more complete picture, let us mention that other Banach lattices proved by B. de Pagter and A. W. 
Wickstead to be 1+-projective include all finite-dimensional Banach lattices ([10, Theorem 11.1]), �1 and 
any countable �1-sum of separable 1+-projective Banach lattices ([10, Theorem 11.11]).
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