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In this paper, we consider the backward stochastic differential equation (BSDE) 
with generator f(y)|z|2, where the function f is defined on an open interval D and 
locally integrable. The existence and uniqueness of bounded solutions and Lp(p ≥ 1)
solutions of such BSDEs are obtained. Some comparison theorems and a converse 
comparison theorem of such BSDEs are established. As an application, we give a 
probabilistic interpretation of viscosity solution of quadratic PDEs.
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1. Introduction

Nonlinear backward stochastic differential equations (BSDEs) were firstly introduced by the seminal 
paper of Pardoux and Peng [16]. Since then, many works have been done to weaken the existence conditions 
of solutions. An important case is the study of quadratic BSDEs, i.e., the generators have a quadratic growth 
in control variable z. Quadratic BSDEs have a wide range of applications in stochastic control and finance 
(see El Karoui and Rouge [10], Hu, Imkeller and Müller [12] and El Karoui, Hamadène and Matoussi 
[11]). Using an exponential transform and monotone stability, Kobylanski [14] derived the existence and 
uniqueness of solutions of quadratic BSDEs with bounded terminal variables. A similar result was obtained 
by Briand and Elie [1] using a different method based on Malliavin calculus. Using a localization method, 
Briand and Hu [6], [7] obtained the existence and uniqueness of solutions for exponential integrable terminal 
variables. Recently, Bahlali et al. [3] obtained the existence and uniqueness of solutions for L2 integrable 
terminal variables, but the quadratic term takes the form f(y)|z|2, where f is globally integrable on R. Yang 
[18] further considered the Lp (p ≥ 1) solutions of such quadratic BSDEs, where f is globally integrable on 
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R and bounded on any compact subset of R. A one to one transformation uf based on f and Itô-Krylov’s 
formula play a crucial role in the works of [3] and [18]. Then the following problems arise naturally:

• does the BSDE with generator f(y)|z|2 have a solution? when f is defined on an open interval D and 
locally integrable. If this BSDE has a solution, which space does the solution belong to?

The paper is devoted to exploring the above problems. Recently, the usual case that D = R was considered 
by Bahlali [2] by a domination method, and a canonical singular case that f(y) = 1

y was considered by Bahlali 
and Tangpi [4]. In this paper, the function f is defined on an open interval D and locally integrable. As a 
result, the corresponding BSDEs can be used to deal with some cases that are not covered by [2] and [4]. 
Some instances are given in Example 2.1. Following [3], we also use a one to one transformation uf based 
on f and Itô-Krylov’s formula. To deal with our problems, our transformation uf is defined on an open 
interval D, while the uf in [2], [3] and [18] are defined on R with uf (0) = 0. The main results of this paper 
can be considered as a complementary to the corresponding results in [2], [3], [4] and [18]. For example,

• The bounded solutions of BSDE(f(y)|z|2, ξ) are discussed (see Theorem 3.2(i)(ii)). For example, if 
f(y) = −1

(y−1)(y−6) , y ∈ (1, 6), then for any variable 1 < ξ < 6, such that uf (ξ) ∈ L1(FT ), 
BSDE(f(y)|z|2, ξ) will have a solution (Yt, Zt) such that 1 < Yt < 6. Moreover if 2 ≤ ξ ≤ 3, then 
2 ≤ Yt ≤ 3.

• Some sufficient conditions are given to guarantee that BSDE(f(y)|z|2, ξ) will have Lp(p ≥ 1) solutions 
(see Theorem 3.2(iii)(iv)(vi)(vii)). For example, if f(y) = 1

y2 + 1, y ∈ (0, ∞), then for any positive 
variable ξ such that uf (ξ) ∈ L1(FT ), BSDE(f(y)|z|2, ξ) will have a solution (Yt, Zt) ∈ Sp×H2p, (p > 1). 
If f(y) = | ln y|

y , y ∈ (0, ∞), then for any positive variable ξ such that uf (ξ) ∈ Lp(FT ), BSDE(f(y)|z|2, ξ)
will have a solution such that Yt ∈ Sp, (p > 1).

• Some (strict) comparison theorems are established for BSDE(f(y)|z|2, ξ) (see Proposition 4.1 and Propo-
sition 4.3). As an application, we obtain a converse comparison theorem, which shows that the generators 
can be compared through comparing the solutions of BSDE(f(y)|z|2, ξ) (see Proposition 4.5).

• BSDE(f(y)|z|2, ξ) is used to give a probabilistic interpretation of viscosity solution of a quadratic PDE, 
which contains a coefficient f locally integrable on D (see Theorem 5.1).

This paper is organized as follows. In section 2, we will present some assumptions and lemmas. In 
Section 3, we will study the existence and uniqueness of bounded solutions and Lp(p ≥ 1) solutions. In 
Section 4, we will establish some comparison theorems and a converse comparison theorem. In Section 5, 
we will give a probabilistic interpretation of viscosity solution of singular quadratic PDEs.

2. Preliminaries

Let (Ω, F , P) be a complete probability space, (Bt)t≥0 be a d-dimensional standard Brownian motion on 
(Ω, F , P). Let (Ft)t≥0 denote the natural filtration generated by (Bt)t≥0, augmented by the P-null sets of 
F . Let |z| denote its Euclidean norm, for z ∈ Rd. Let T > 0 be a given real number and T0,T be the set 
of all stopping times τ satisfying 0 ≤ τ ≤ T . Let D ⊂ R be an open interval which may take one of the 
following forms

(a, b), (a,+∞), (−∞, b), or (−∞,+∞),

where a and b are two real numbers such that a < b. We define the following usual spaces

L1,loc(D) = {f : f : D → R, is measurable and locally integrable};
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LD(FT ) = {ξ : FT -measurable random variable whose range is included in D};
Lp(FT ) = {ξ : FT -measurable R-valued random variable and E [|ξ|p] < ∞}, p ≥ 1;
L∞(FT ) = {ξ : FT -measurable R-valued random variable such that esssupω∈Ω|ξ| < ∞};
S = {ψ: R-valued continuous predictable process};
Sp = {ψ: process in S such that E

[
sup0≤t≤T |ψt|p

]
< ∞}, p > 0;

S∞ = {ψ: process in S and ‖ψ‖∞ = esssup(ω,t)∈Ω×[0,T ]|ψt| < ∞};
Hp = {ψ: Rd-valued predictable process such that 

∫ T

0 |ψt|pdt < ∞}, p ≥ 1;

Hp = {ψ: Rd-valued predictable process such that E
[(∫ T

0 |ψt|2dt
) p

2
]
< ∞}, p > 0;

H2
BMO = {ψ: process in H2 such that supτ∈T0,T

E
[∫ T

τ
|ψt|2dt|Fτ

]
< ∞};

W 2
1,loc(D) = {f : f : D → R, such that f and its generalized derivation f ′ and f ′′ are all locally 

integrable measurable functions}.

For f ∈ L1,loc(D), we will define a transformation uα
f (x), which plays an important role in this paper. 

For α ∈ D, we define

uα
f (x) :=

x∫
α

exp

⎛
⎝2

y∫
α

f(z)dz

⎞
⎠ dy, x ∈ D.

Remark 2.1. For α, β ∈ D, we have

uα
f (x) =

x∫
β

exp

⎛
⎝2

y∫
α

f(z)dz

⎞
⎠ dy +

β∫
α

exp

⎛
⎝2

y∫
α

f(z)dz

⎞
⎠ dy

=
x∫

β

exp

⎛
⎜⎝2

y∫
β

f(z)dz + 2
β∫

α

f(z)dz

⎞
⎟⎠ dy +

β∫
α

exp

⎛
⎝2

y∫
α

f(z)dz

⎞
⎠ dy

= exp

⎛
⎝2

β∫
α

f(z)dz

⎞
⎠ x∫

β

exp

⎛
⎜⎝2

y∫
β

f(z)dz

⎞
⎟⎠ dy +

β∫
α

exp

⎛
⎝2

y∫
α

f(z)dz

⎞
⎠ dy,

which means that for α, β ∈ D, there exist two constants a > 0 and b such that

uα
f (x) = auβ

f (x) + b, x ∈ D.

By Remark 2.1, we will find that the different choices of α ∈ D in the definition of uα
f (x) do not change 

the solution of BSDE(f(y)|z|2, ξ) (see Remark 3.1(i)). Thus, in the following, let α ∈ D be given and uα
f (x)

be denoted by uf (x). Let V := {y : y = uf (x), x ∈ D}. The following Lemma 2.1 contains some important 
properties of uf (x).

Lemma 2.1. For f ∈ L1,loc(D), the following properties of uf (x) hold true.
(i) uf (x) ∈ W 2

1,loc(D), in particular, uf (x) ∈ C1(D);
(ii) uf (x) is strictly increasing;
(iii) u′′

f (x) − 2f(x)u′
f (x) = 0, a.e. on D;

(iv) If g ∈ L1,loc(D) and g(x) ≤ f(x), a.e. on D, then for every x ∈ D, ug(x) ≤ uf (x) and for every 
x ∈ [α, ∞), 0 < u′

g(x) ≤ u′
f (x);
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(v) V is an open interval and u−1
f (x) ∈ W 2

1,loc(V ), in particular, u−1
f (x) ∈ C1(V ) and is strictly increas-

ing.

Proof. (i), (iii) and (v) can be derived from Lemma A.1 in [3], where the case that D = R is considered. (ii) 
is clear. Now we prove (iv). Since g(x) ≤ f(x), a.e. on D, by the monotonicity of integral and exponential 
function, we can complete this proof. �

For f ∈ L1,loc(D) and ξ ∈ LD(FT ), this paper considers the following one-dimensional BSDE

Yt = ξ +
T∫
t

f(Ys)|Zs|2ds−
T∫
t

ZsdBs, t ∈ [0, T ], (1)

where ξ is the terminal variable and T is the terminal time. (1) is denoted by BSDE(f(y)|z|2, ξ), has been 
studied by [3] and [18] in the case that f is globally integrable on R, and by [2] in the case that f is locally 
integrable on R. In this note, f is assumed to be locally integrable on the open interval D.

Definition 2.1. For f ∈ L1,loc(D) and ξ ∈ LD(FT ), the solution of BSDE(f(y)|z|2, ξ) is a pair (Yt, Zt) ∈
S ×H2 satisfying (1) and 

∫ T

0 |f(Ys)||Zs|2ds < ∞, and the range of Yt is included in D.

The following Example 2.1 shows some common cases contained in our setting, not covered by [2], [3]
and [18].

Example 2.1. (i) f(y) = | ln(y)|
y , y ∈ D = (0, ∞);

(ii) f(y) = −1
(y−1)(y−6) , y ∈ D = (1, 6);

(iii) f(y) = 1
y2 + 1, y ∈ D = (0, ∞).

Using a probabilistic method, the Proposition 2.1 in [3] established the Krylov’s estimate for the solution 
of BSDE(f(y)|z|2, ξ), where f ∈ L1,loc(R). By a slightly modified proof, we obtain the following Krylov’s 
estimate for the case that f ∈ L1,loc(D).

Lemma 2.2. For f ∈ L1,loc(D) and ξ ∈ LD(FT ), let (Yt, Zt) be a solution of BSDE(f(y)|z|2, ξ), and K > 0
be a constant such that [Y0 −K, Y0 + K] ⊂ D. Then there exists a positive constant γ depending on K and ∫ Y0+K

Y0−K
|f(x)|dx such that for any nonnegative measurable function ψ ∈ L1,loc(D),

E

T∧τK∫
0

ψ(Ys)|Zs|2ds ≤ γ

Y0+K∫
Y0−K

ψ(x)dx,

where τK := inf{t ≥ 0, Yt /∈ (Y0 −K, Y0 + K)}.

Proof. In fact, if we replace the stopping time τR in the Proposition 2.1 in [3] by

τK := inf{t ≥ 0, Yt /∈ (Y0 −K,Y0 + K)},

then by the same method, we can complete this proof. �
Using Lemma 2.2 and the same method of Theorem 2.1 in [3], we obtain the following Itô-Krylov’s 

formula, which is an extension of Itô’s formula and can be used to deal with BSDE(f(y)|z|2, ξ), where f is 
measurable.
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Lemma 2.3. For f ∈ L1,loc(D) and ξ ∈ LD(FT ), let (Yt, Zt) be a solution of BSDE(f(y)|z|2, ξ). Then for 
any u ∈ W 2

1,loc(D), we have

u(Yt) = u(Y0) +
t∫

0

u′(Ys)dYs + 1
2

t∫
0

u′′(Ys)|Zs|2ds, t ∈ [0, T ].

Proof. Let K > 0 be a constant such that [Y0 −K, Y0 + K] ⊂ D. If we replace the stopping time τR and 
the interval [−R, R] in the proof of Theorem 2.1 in [3] by

τK := inf{t ≥ 0, Yt /∈ (Y0 −K,Y0 + K)}

and [Y0 −K, Y0 + K], respectively, then by the same method, we can complete this proof. �
3. Existence and uniqueness of BSDE(f(y)|z|2, ξ)

In this section, we will explore the bounded solutions and Lp(p ≥ 1) solutions of BSDE(f(y)|z|2, ξ), 
where f is defined on an open interval D and locally integrable. For convenience, we note that all the 
closed subintervals of D or V mentioned in the following will be finite intervals. We firstly give a necessary 
condition.

Proposition 3.1. Let f ∈ L1,loc(D) and ξ ∈ LD(FT ). If BSDE(f(y)|z|2, ξ) has a solution (Yt, Zt) and there 
exists a constant β such that for every x ∈ D, uf (x) ≥ β or for every x ∈ D, uf (x) ≤ β, then we have 
uf (ξ) ∈ L1(FT ).

Proof. Applying Lemma 2.3 to uf (Yt), and then by Lemma 2.1(iii), we have

uf (Yt) = uf (ξ) +
T∫
t

u′
f (Ys)ZsdBs, t ∈ [0, T ]. (2)

For n ≥ 1, we define the following stopping time

τn = inf

⎧⎨
⎩t ≥ 0,

t∫
0

|u′
f (Ys)|2|Zs|2ds ≥ n

⎫⎬
⎭ ∧ T,

which implies that 
∫ τn∧t

0 u′
f (Ys)ZsdBs is a martingale. Then by (2), we have

uf (Y0) = E[uf (Yτn)]. (3)

Since τn → T , as n → ∞, by the continuity of Yt and uf (see Lemma 2.1(i)), we have

lim
n→∞

uf (Yτn) = uf (ξ). (4)

If there exists a constant β such that for every x ∈ D, uf (x) ≥ β, then by (4), Fatou’s lemma and (3), 
we deduce

0 ≤ E[uf (ξ) − β] = E[lim inf(uf (Yτn) − β)] ≤ lim inf E[uf (Yτn) − β] = uf (Y0) − β,

n→∞ n→∞
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which implies uf (ξ) ∈ L1(FT ).
Similarly, if there exists a constant β such that for every x ∈ D, uf (x) ≤ β, then by (4), Fatou’s lemma 

and (3), we have

0 ≤ E[β − uf (ξ)] = E[lim inf
n→∞

(β − uf (Yτn))] ≤ lim inf
n→∞

E[β − uf (Yτn)] = β − uf (Y0),

which implies uf (ξ) ∈ L1(FT ). �
By the definition of uf and Lemma 2.1(iv), it is not hard to check that the following examples satisfy 

the conditions in Proposition 3.1.

Example 3.1. Let β > 0 be a constant. We have
(i) if f(y) ≥ β, a.e. on R, then for every x ∈ R,

uf (x) ≥ uβ = 1
2β (exp(2β(x− α)) − 1) > − 1

2β ;

(ii) if f(y) ≤ −β, a.e. on R, then for every x ∈ R,

uf (x) ≤ u−β = − 1
2β (exp(−2β(x− α)) − 1) ≤ 1

2β ;

(iii) if f(y) = β
2y , a.e. on (0, ∞), then for every x ∈ (0, ∞),

uf (x) = α

1 + β

((x
α

)β+1
− 1

)
≥ − α

1 + β
.

The following Theorem 3.2 is the main result of this section.

Theorem 3.2. Let f ∈ L1,loc(D) and ξ ∈ LD(FT ). If uf (ξ) ∈ L1(FT ), then BSDE(f(y)|z|2, ξ) has a unique 
solution (Yt, Zt) such that uf (Yt) = E[uf (ξ)|Ft]. Moreover, we have

(i) If D is bounded, then Yt ∈ S∞;
(ii) If the range of ξ is included in a closed interval [a, b] ⊂ D, then (Yt, Zt) ∈ S∞×H2

BMO and the range 
of Y is included in [a, b];

(iii) If ξ ∈ L1(FT ), ξ− ∈ Lp(FT ) and there exists a constant β > 0 such that f ≥ β, a.e. on D, then 
(Yt, Zt) ∈ Sp ×H2p, when p > 1, and (Yt, Zt) ∈ Sr ×H2, r ∈ (0, 1), when p = 1;

(iv) If ξ ∈ L1(FT ), ξ+ ∈ Lp(FT ) and there exists a constant β > 0 such that f ≤ −β, a.e. on D, then 
(Yt, Zt) ∈ Sp ×H2p, when p > 1, and (Yt, Zt) ∈ Sr ×H2, r ∈ (0, 1), when p = 1;

(v) If uf (ξ) ∈ Lp(FT ), then (uf (Yt), u′
f (Yt)Zt) ∈ Sp × Hp, when p > 1, and (uf (Yt), u′

f (Yt)Zt) ∈
Sr ×Hr, r ∈ (0, 1), when p = 1;

(vi) If ξ ∈ L1(FT ), ξ− ∈ Lp(FT ), uf (ξ) ∈ Lp(FT ) and f ≥ 0, a.e. on D, then Yt ∈ Sp, when p > 1, and 
Yt ∈ Sr, r ∈ (0, 1), when p = 1;

(vii) If ξ ∈ L1(FT ), ξ+ ∈ Lp(FT ), uf (ξ) ∈ Lp(FT ) and f ≤ 0, a.e. on D, then Yt ∈ Sp, when p > 1, and 
Yt ∈ Sr, r ∈ (0, 1), when p = 1.

Proof. By Proposition 1.1(i) in [2], we get that the BSDE(0, uf (ξ)) has a unique solution (yt, zt) such that 
yt = E[uf (ξ)|Ft]. This result can be proved by a general martingale representation theorem (see Corollary 
3 in Protter [17], page 189) and a localization method. It follows that the range of yt is included in V . Thus 
by Lemma 2.1(v), we can apply Lemma 2.3 to u−1(yt), and then, by setting
f
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(Yt, Zt) :=
(
u−1
f (yt),

zt

u′
f (u−1

f (yt))

)
, (5)

and Lemma 2.1(iii), we get that the BSDE(f(y)|z|2, ξ) has a solution (Yt, Zt) such that uf (Yt) = E[uf (ξ)|Ft]. 
Conversely, for a solution (Yt, Zt) of BSDE(f(y)|z|2, ξ) such that uf (Yt) = E[uf (ξ)|Ft], by Lemma 2.1(i), 
we can apply Lemma 2.3 to uf (Yt), and then by Lemma 2.1(iii), we have

uf (Yt) = uf (ξ) +
T∫
t

u′
f (Ys)Z ′

sdBs, t ∈ [0, T ],

which means that (uf (Yt), u′
f (Yt)Zt) is a solution of BSDE(0, uf (ξ)) such that uf (Yt) = E[uf (ξ)|Ft]. Then 

the uniqueness of such solution of BSDE(f(y)|z|2, ξ) can be obtained from the uniqueness of the solution 
to BSDE(0, uf (ξ)) and Lemma 2.1(ii).

Proof of (i). Since D is bounded and the range of Yt is included in D, we have Yt ∈ S∞.

Proof of (ii). If the range of ξ is included in a closed interval [a, b] ⊂ D, then by the fact yt = E[uf (ξ)|Ft] and 
Lemma 2.1(ii), we get that the range of yt is included in [uf (a), uf (b)] ⊂ V . This together with Proposition 
2.1 in [1] implies zt ∈ H2

BMO. Then by (5) and Lemma 2.1(v)(i), we get that (Yt, Zt) ∈ S∞ ×H2
BMO and 

the range of Y is included in [a, b].

Proof of (iii). Since f > 0, a.e. on D, by the definition of uf , we get that u′
f is nondecreasing. In view 

of (u−1
f )′(x) = 1

u′
f (u−1

f (x)) and u−1
f (x) is strictly increasing (see Lemma 2.1(v)), we get that (u−1

f )′ is not 

increasing. This together with the fact D is a convex set implies that u−1
f is concave. Then by (5), the 

concavity of u−1
f and Jensen’s inequality, we have

Yt = u−1
f (yt) = u−1

f (E[uf (ξ)|Ft]) ≥ E[u−1
f (uf (ξ))|Ft] = E[ξ|Ft] ≥ −E[ξ−|Ft]. (6)

Since ξ− ∈ Lp(FT ) and p ≥ 1, Mt := −E[ξ−|Ft] is a continuous martingale. By Doob’s optional sampling 
theorem and Jensen’s inequality, for τ ∈ T0,T , we have for p ≥ 1,

E[|Mτ |p] = E[|E[ξ−|Fτ ]|p] ≤ E[E[|ξ−|p|Fτ ]] = E[|ξ−|p]. (7)

For n ≥ 1, we define the following stopping time

τn = inf

⎧⎨
⎩t ≥ 0,

t∫
0

f(Ys)|Zs|2ds ≥ n

⎫⎬
⎭ ∧ T.

By the assumption f ≥ β, a.e. on D, (1) and (6), we have

β

τn∫
0

|Zs|2ds ≤
τn∫
0

f(Ys)|Zs|2ds ≤ Y0 −Mτn +
τn∫
0

ZsdBs.

Then by Jensen’s inequality, (7) and BDG inequality, we deduce

βp

⎛
⎜⎝E

⎡
⎢⎣
⎛
⎝ τn∫

|Zs|2ds

⎞
⎠

p
2
⎤
⎥⎦
⎞
⎟⎠

2

≤ E

⎡
⎣
⎛
⎝β

τn∫
|Zs|2ds

⎞
⎠

p⎤
⎦

0 0
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≤ 3p−1

⎛
⎝|Y0|p + E[|Mτn |p] + E

⎛
⎝
∣∣∣∣∣∣
τn∫
0

ZsdBs

∣∣∣∣∣∣
p⎞
⎠
⎞
⎠

≤ Cp

⎛
⎜⎝|Y0|p + E[|ξ−|p] + E

⎡
⎢⎣
⎛
⎝ τn∫

0

|Zs|2ds

⎞
⎠

p
2
⎤
⎥⎦
⎞
⎟⎠ , (8)

where Cp > 0 is a constant depending only on p. By solving the quadratic inequality (8) with 
E[(

∫ τn
0 |Zs|2ds)

p
2 ] as the unknown variable, we deduce that there exists a constant K > 0 dependent only 

on E[|ξ−|p], Y0, p and β, such that E
[(∫ τn

0 |Zs|2ds
) p

2
]
≤ K. Plugging this inequality into (8), we get that 

there exists a constant K1 > 0 dependent only on E[|ξ−|p], Y0, p and β, such that

E

⎡
⎣
⎛
⎝ τn∫

0

|Zs|2ds

⎞
⎠

p⎤
⎦ ≤ K1. (9)

Since τn → T , as n → ∞, by (9) and Fatou’s lemma, we have

E

⎡
⎣
⎛
⎝ T∫

0

|Zs|2ds

⎞
⎠

p⎤
⎦ = E

⎡
⎣lim inf

n→∞

⎛
⎝ τn∫

0

|Zs|2ds

⎞
⎠

p⎤
⎦ ≤ lim inf

n→∞
E

⎡
⎣
⎛
⎝ τn∫

0

|Zs|2ds

⎞
⎠

p⎤
⎦ ≤ K1. (10)

By (1), (6) and the assumption f ≥ β, a.e., D, we have

Mt ≤ Yt ≤ Y0 −
t∫

0

β|Zs|2ds +
t∫

0

ZsdBs. (11)

Clearly, |Mt| is a submartingale. Then by Doob’s maximal inequality (see Karatzas and Shreve [13], page 
14), we have for p > 1,

E

[
sup

t∈[0,T ]
[|Mt|p]

]
≤
(

p

p− 1

)
E[|ξ−|p]. (12)

Then by (11), (12), BDG inequality and (10), we deduce that, when p > 1,

E

[
sup

t∈[0,T ]
|Yt|p

]
≤ E sup

t∈[0,T ]

⎡
⎣4p−1

⎛
⎝|Mt|p + |Y0|p +

∣∣∣∣∣∣
t∫

0

β|Zs|2ds

∣∣∣∣∣∣
p

+

∣∣∣∣∣∣
t∫

0

ZsdBs

∣∣∣∣∣∣
p⎞
⎠
⎤
⎦

≤ 4p−1

⎛
⎝E

[
sup

t∈[0,T ]
[|Mt|p]

]
+ |Y0|p + E

⎡
⎣
⎛
⎝β

T∫
0

|Zs|2ds

⎞
⎠

p⎤
⎦+ E

⎡
⎣ sup
t∈[0,T ]

∣∣∣∣∣∣
t∫

0

ZsdBs

∣∣∣∣∣∣
p⎤
⎦
⎞
⎠

≤ K2

⎛
⎜⎝E[|ξ−|p] + |Y0|p + E

⎡
⎣
⎛
⎝ T∫

0

|Zs|2ds

⎞
⎠

p⎤
⎦+ E

⎡
⎢⎣
⎛
⎝ T∫

0

|Zs|2ds

⎞
⎠

p
2
⎤
⎥⎦
⎞
⎟⎠

< ∞, (13)

where K2 > 0 is a constant dependent only on p and β. Then by (10) and (13), we have (Yt, Zt) ∈ Sp×H2p, 
when p > 1.
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Now, we consider the case: p = 1. By Lemma 6.1 in Briand et al. [5], we have for r ∈ (0, 1),

E

[
sup

t∈[0,T ]
|Mt|r

]
≤ 1

1 − r
[E|ξ−|]r. (14)

When p = 1, by (11), (14), BDG inequality and (10), we deduce for r ∈ (0, 1),

E

[
sup

t∈[0,T ]
|Yt|r

]
≤ E sup

t∈[0,T ]

⎡
⎣
⎛
⎝|Mt|r + |Y0|r +

∣∣∣∣∣∣
t∫

0

β|Zs|2ds

∣∣∣∣∣∣
r

+

∣∣∣∣∣∣
t∫

0

ZsdBs

∣∣∣∣∣∣
r⎞
⎠
⎤
⎦

≤ E

[
sup

t∈[0,T ]
|Mt|r

]
+ |Y0|r + E

⎡
⎣
⎛
⎝ T∫

0

β|Zs|2ds

⎞
⎠

r⎤
⎦+ E

⎛
⎝ sup

t∈[0,T ]

∣∣∣∣∣∣
t∫

0

ZsdBs

∣∣∣∣∣∣
r⎞
⎠

≤ K3

⎛
⎜⎝[E|ξ−|]r + |Y0|r + E

⎡
⎣
⎛
⎝ T∫

0

|Zs|2ds

⎞
⎠

r⎤
⎦+ E

⎡
⎢⎣
⎛
⎝ T∫

0

|Zs|2ds

⎞
⎠

r
2
⎤
⎥⎦
⎞
⎟⎠

< ∞, (15)

where K3 > 0 is a constant depending only on r and β. Then by (10) and (15), we have (Yt, Zt) ∈ Sr×H2, r ∈
(0, 1), when p = 1.

Proof of (iv). The proof is similar as (iii). Since f < 0, a.e. on D, by the definition of uf , we get that u′
f

is not increasing. In view of (u−1
f )′(x) = 1

u′
f (u−1

f (x)) and u−1
f (x) is strictly increasing, we get that (u−1

f )′ is 

not decreasing. This together with the fact D is a convex set implies that u−1
f is convex. Then by (5), the 

convexity of u−1
f and Jensen’s inequality, we have

Yt = u−1
f (yt) = u−1

f (E[uf (ξ)|Ft]) ≤ E[u−1
f (uf (ξ))|Ft] = E[ξ|Ft] ≤ E[ξ+|Ft]. (16)

Since ξ+ ∈ Lp(FT ) and p ≥ 1, we get that Nt := E[ξ+|Ft] is a continuous martingale. Then by Doob’s 
optional sampling theorem and Jensen’s inequality, for τ ∈ T0,T , we have for p ≥ 1

E[|Nτ |p] = E[|E[ξ+|Fτ ]|p] ≤ E[E[|ξ+|p|Fτ ]] = E[|ξ+|p]. (17)

For n ≥ 1, we define the following stopping time

τn = inf

⎧⎨
⎩t ≥ 0,

t∫
0

−f(Ys)|Zs|2ds ≥ n

⎫⎬
⎭ ∧ T.

By the assumption f ≤ −β, a.e. on D, (1) and (16), we have

−β

τn∫
0

|Zs|2ds ≥
τn∫
0

f(Ys)|Zs|2ds ≥ Y0 −Nτn +
τn∫
0

ZsdBs.

Then by Jensen’s inequality, (17) and BDG inequality, we deduce
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βp

⎛
⎜⎝E

⎡
⎢⎣
⎛
⎝ τn∫

0

|Zs|2ds

⎞
⎠

p
2
⎤
⎥⎦
⎞
⎟⎠

2

≤ E

⎡
⎣
⎛
⎝β

τn∫
0

|Zs|2ds

⎞
⎠

p⎤
⎦

≤ 3p−1

⎛
⎝|Y0|p + E[|Nτn |p] + E

⎛
⎝
∣∣∣∣∣∣
τn∫
0

ZsdBs

∣∣∣∣∣∣
p⎞
⎠
⎞
⎠

≤ cp

⎛
⎜⎝|Y0|p + E[|ξ+|p] + E

⎡
⎢⎣
⎛
⎝ τn∫

0

|Zs|2ds

⎞
⎠

p
2
⎤
⎥⎦
⎞
⎟⎠ , (18)

where cp > 0 is a constant depending only on p. Then by solving the quadratic inequality (18) with 
E[(

∫ τn
0 |Zs|2ds)

p
2 ] as the unknown variable, we deduce that there exists a constant K4 > 0 dependent only 

on E[|ξ+|p], Y0, p and β, such that E[(
∫ τn
0 |Zs|2ds)

p
2 ] ≤ K4. Then by a similar argument as (10), we deduce

E

⎡
⎣
⎛
⎝ T∫

0

|Zs|2ds

⎞
⎠

p⎤
⎦ < ∞. (19)

By the assumption f ≤ −β, a.e. on D, (1) and (16), we have

Nt ≥ Yt ≥ Y0 +
t∫

0

β|Zs|2ds +
t∫

0

ZsdBs. (20)

In view of (16)–(20), then by similar arguments as (13) and (15), we can complete this proof.

Proof of (v). By Theorem 4.2 and Theorem 6.3 in [5], we have (yt, zt) ∈ Sp × Hp, when p > 1 and 
(yt, zt) ∈ Sr ×Hr, r ∈ (0, 1), when p = 1. Then by (5), we can complete this proof.

Proof of (vi). Since f ≥ 0, a.e. on D, then by a similar argument as (6), we have

Yt ≥ −E[ξ−|Ft]. (21)

By Lemma 2.1(iv), we have uf (x) ≥ u0(x) = x − α. In view of uf (x) and u0(x) are both increasing in x, 
we have u−1

f (x) ≤ u−1
0 (x) = x + α. This together with (5) implies

Yt = u−1
f (yt) ≤ yt + α. (22)

Since ξ− ∈ Lp(FT ), by (12) and (14), we get −E[ξ−|Ft] ∈ Sp, when p > 1 and −E[ξ−|Ft] ∈ Sr, r ∈ (0, 1), 
when p = 1. On the other hand, from the proof of (v), we get (yt, zt) ∈ Sp × Hp, when p > 1 and 
(yt, zt) ∈ Sr ×Hr, r ∈ (0, 1), when p = 1. Then by (21) and (22), we obtain (vi).

Proof of (vii). The proof is similar as (vi). Since f ≤ 0, a.e. on D, then by a similar argument as (16), we 
have

Yt ≤ E[ξ+|Ft]. (23)

By Lemma 2.1(iv), we have uf (x) ≤ u0(x) = x − α. In view of uf (x) and u0(x) are both increasing in x, 
we have u−1(x) ≥ u−1

0 (x) = x + α. This together with (5) implies
f
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Yt = u−1
f (yt) ≥ yt + α. (24)

Then by (23), (24), and similar arguments as (vi), we obtain (vii). �
Remark 3.1.

• (i) In Theorem 3.2, in view of the fact that uf (Yt) = E[uf (ξ)|Ft] and Remark 2.1, we can check that 
the solution (Yt, Zt) will not change for a different choice of α ∈ D in the definition of uf (x).

• (ii) In Theorem 3.2, if uf (ξ) ∈ L∞(FT ), does Yt ∈ S∞? In fact, the result is not always true. For 
example, let D = R, f = 1

2 and ξ be an unbounded negative random variable. We choose α = 0. 
Clearly, uf (ξ) = exp(ξ) − 1 is bounded. But if Yt ∈ S∞, then ξ will be bounded. This induces a 
contradiction.

• (iii) In Theorem 3.2(ii), if the range of ξ is included in [a, b] ∪ [c, d] ⊂ D, where d > c > b > a, 
does the range of Y is included in [a, b] ∪ [c, d]? In fact, the result is not always true. For example, let 
f(y) = 1

2y , y ∈ (0, 10), a = 1, b = 3, c = 4, d = 6, and P (ξ = 2) = P (ξ = 5) = 1
2 . We choose α = 1, 

then uf (x) = x2

2 − 1
2 . Clearly, the BSDE(0, uf (ξ)) has a unique solution (yt, zt) ∈ S∞ × H2

BMO such 
that y0 = E[uf (ξ)] = 27

4 . But if the range of Y is included in [1, 3] ∪ [4, 6], then by (5), we will have 
y0 = uf (Y0) ∈ [0, 4] ∪ [ 152 , 352 ]. This induces a contradiction.

• (iv) In Theorem 3.2(iii), if f(x) = 0, x ∈ D, then uf (x) = x −α, and the corresponding BSDE(f(y)|z|2, ξ)
becomes

Yt = ξ −
T∫
t

ZsdBs

with ξ ∈ L1(FT ) and ξ− ∈ Lp(FT ). Clearly, if ξ /∈ Lp(FT ), then we will not have Yt ∈ Sp. Similarly, 
in Theorem 3.2(iv), if f(x) = 0, x ∈ D, then we will also not always have Yt ∈ Sp. As a result, we 
must assume β > 0 in Theorem 3.2(iii)(iv). This strengthens the integrability of terminal variables. 
By Example 3.1(i), in Theorem 3.2(iii), we have uf (x) ≥ 1

2β (exp(2β(x − α)) − 1), which implies that 
the integrability of ξ is not weaker than E[exp(2βξ)] < ∞. By Example 3.1(ii), in Theorem 3.2(iv), we 
have uf (x) ≤ − 1

2β (exp(−2β(x − α)) − 1), which implies that the integrability of ξ is not weaker than 
E[exp(−2βξ)] < ∞.

• (v) Comparing with 3.2(iii)-(vii), Theorem 4 in [18] considered Lp-solutions when ξ ∈ Lp(FT ) and f is 
integrable on R. Proposition 2.2 in [2] gave a condition which guarantees Zt ∈ H2, when uf (ξ) ∈ L1(FT )
and f is locally integrable on R. Proposition 3.2 in [2] gave a condition which guarantees uf (Yt) ∈ Sp

and Zt ∈ H2, when uf (ξ) ∈ Lp(FT ) and f is locally integrable on R. Proposition 3.4 in [4] gave a 
condition which guarantees (Yt, Zt) ∈ S2 ×H2, when ξ ∈ L2δ+1(FT ) and f(y) = δ

y , δ �= 1
2 .

In the following Proposition 3.3, we consider a slight generalization of BSDE(f(y)|z|2, ξ).

Proposition 3.3. Let f ∈ L1,loc(D) and K ∈ R. If ξ ∈ LD(FT ) and uf (ξ) ∈ Lp(FT ), p > 1, then the 
BSDE(f(y)|z|2 + K|z|, ξ) has a unique solution (Yt, Zt) such that (uf (Yt), u′

f (Yt)Zt) ∈ Sp ×Hp. Moreover, 
if the range of ξ is included in a closed interval [a, b] ⊂ D, then (Yt, Zt) is unique in S∞ ×H2

BMO, and the 
range of Y is included in [a, b].

Proof. Since uf (ξ) ∈ Lp(FT ), p > 1, by Theorem 4.2 in [5], we get that the following BSDE

yt = uf (ξ) +
T∫
K|zs|ds−

T∫
zsdBs, t ∈ [0, T ], (25)
t t
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has a unique solution (yt, zt) ∈ Sp×Hp. Set θs := K
|zs|zs1{|zs|>0}, s ∈ [0, T ]. Then BSDE(25) can be rewritten 

as

yt = ξ +
T∫
t

θszsds−
T∫
t

zsdBs, t ∈ [0, T ].

Since |θt| ≤ K, by Theorem 4.2 in [5] again, we get that (yt, zt) is the unique Lp solution of the above linear 
BSDE. By Theorem 4.4 on page 61 and Lemma 2.3 on page 93 in Mao [15], we get that the following linear 
SDE

Xt = 1 +
t∫

0

θsXsdBs, t ∈ [0, T ],

has a unique solution Xt ∈ S
p

p−1 with

Xt = exp

⎧⎨
⎩

t∫
0

θsdBs −
1
2

t∫
0

|θs|2ds

⎫⎬
⎭ , s ∈ [t, T ]. (26)

Applying Itô’s formula to Xtyt, we can show that Xtyt is a local martingale. Since yt ∈ Sp and Xt ∈ S
p

p−1 , 
by Hölder’s inequality, we have E[supt∈[0,T ] |Xtyt|] < ∞, which implies that Xtyt is a uniformly integrable 
martingale. Then for t ∈ [0, T ], we have

Xtyt = E[XTuf (ξ)|Ft].

Then by (26) and Girsanov’s theorem, we get

yt = E

[
XT

Xt
uf (ξ)|Ft

]
= EQ[uf (ξ)|Ft], (27)

where Q is the probability measure satisfying dQdP = XT . By (27), we get that the range of yt is included in 
V . Thus by Lemma 2.1(v), we can apply Lemma 2.3 to u−1

f (yt), then by setting

(Yt, Zt) :=
(
u−1
f (yt),

zt

u′
f (u−1

f (yt))

)
, (28)

and Lemma 2.1(iii), we have

Yt = ξ +
T∫
t

(f(Ys)|Zs|2 + K|Zs|)ds−
T∫
t

ZsdBs, t ∈ [0, T ],

which means that BSDE(f(y)|z|2 +K|z|, ξ) has a solution (Yt, Zt) such that (uf (Yt), u′
f (Yt)Zt) ∈ Sp ×Hp. 

Conversely, for a solution (Yt, Zt) of BSDE(f(y)|z|2 + K|z|, ξ) such that (uf (Yt), u′
f (Yt)Zt) ∈ Sp ×Hp, by 

Lemma 2.1(i), we can apply Lemma 2.3 to uf (Yt), and then by Lemma 2.1(iii), we get that (uf (Yt), u′
f (Yt)Zt)

is a solution of BSDE(K|z|, uf (ξ)). Then the uniqueness of solution of BSDE(f(y)|z|2 + K|z|, ξ) can be 
obtained from the uniqueness of solution of BSDE(K|z|, uf (ξ)) and Lemma 2.1(ii).

Moreover, if the range of ξ is included in a closed interval [a, b] ⊂ D, then by Lemma 2.1(ii), we get that 
the range of uf (ξ) is included in [uf (a), uf (b)]. Then by Theorem 2.1 and Proposition 2.1 in [1], we have 
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(yt, zt) ∈ S∞ ×H2
BMO. Moreover, by (27), we get that the range of yt is included in [uf (a), uf (b)]. Then by 

(28) and Lemma 2.1(v), we get that the range of Y is included in [a, b]. �
4. Comparison and converse comparison of BSDE(f(y)|z|2, ξ)

In this section, we will study the comparison and converse comparison theorems for BSDEs of type 
BSDE(f(y)|z|2, ξ), and give some applications. The following Proposition 4.1 is a (strict) comparison theo-
rem, whose proof follows the method of Proposition 3.2 in [3].

Proposition 4.1. Let f1 ∈ L1,loc(D), K ≥ 0, g(t) ∈ H1, ξi ∈ LD(FT ) and uf1(ξi) ∈ L1(FT ), i = 1, 2. 
If ξ1 ≤ ξ2, and BSDE(f1(y)|z|2 − K|z|, ξ1) and BSDE(g(t), ξ2) have the solutions (Y 1

t , Z
1
t ) and (Y 2

t , Z
2
t ), 

respectively, such that (
∫ t

0 u′
f1

(Y i
s )Zi

sdBs)t∈[0,T ] is a martingale, and for each t ∈ [0, T ], uf1(Y i
t ) ∈ L1(FT )

and f1(Y 2
t )|Z2

t |2 ≤ g(t), i = 1, 2, then for each t ∈ [0, T ], we have Y 1
t ≤ Y 2

t . Moreover, if P (ξ1 < ξ2) > 0, 
then for each t ∈ [0, T ], we have P (Y 1

t < Y 2
t ) > 0, or if λ ⊗ P

(
f1(Y 2

t )|Z2
t |2 < g(t)

)
> 0,1 then we have 

Y 1
0 < Y 2

0 .

Proof. Applying Lemma 2.3 to uf1(Y 1
t ), and then by Lemma 2.1(iii), we have

uf1(Y 1
t ) = uf1(ξ1) −

T∫
t

K|Z1
s |ds−

T∫
t

u′
f1

(Y 1
s )Z1

sdBs. (29)

Applying Lemma 2.3 to uf1(Y 2
t ), and by the assumption f1(Y 2

t )|Z2
t | ≤ g(t) and Lemma 2.1(iii), we have

uf1(Y 2
t ) = uf1(ξ2) +

T∫
t

u′
f1

(Y 2
s )g(s)ds−

T∫
t

1
2u

′′
f1

(Y 2
s )|Z2

s |2ds−
T∫
t

u′
f1

(Y 2
s )Z2

sdBs

≥ uf1(ξ2) +
T∫
t

f1(Y 2
s )u′

f1
(Y 2

s )|Z2
s |2ds−

T∫
t

1
2u

′′
f1

(Y 2
s )|Z2

s |2ds−
T∫
t

u′
f1

(Y 2
s )Z2

sdBs

= uf1(ξ2) −
T∫
t

u′
f1

(Y 2
s )Z2

sdBs. (30)

By the assumptions of the proposition, (29), (30) and Lemma 2.1(ii), we get for each t ∈ [0, T ],

uf1(Y 2
t ) ≥ E[uf1(ξ2)|Ft] ≥ E[uf1(ξ1)|Ft] ≥ uf1(Y 1

t ). (31)

Taking the inverse transformation u−1
f1

to (31), we have Y 1
t ≤ Y 2

t . Moveover, if P (ξ1 < ξ2) > 0, then by (31)
and the fact that uf1 and u−1

f1
are both strictly increasing, we have for each t ∈ [0, T ], P (Y 1

t < Y 2
t ) > 0. If 

λ ⊗ P
(
f1(Y 2

t )|Z2
t | < g(t)

)
> 0, then by (30) and Lemma 2.1(ii), we get that uf1(Y 2

0 ) > E[uf1(ξ2)]. By this 
inequality and (31), we have uf1(Y 2

0 ) > uf1(Y 1
0 ). Hence, by the fact that u−1

f1
is strictly increasing, we have 

Y 1
0 < Y 2

0 . �
By a similar argument, we have

1 λ is the Lebesgue measure and λ ⊗ P is the product measure of λ and P .
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Corollary 4.2. Let f2 ∈ L1,loc(D), K ≥ 0, g(t) ∈ H1, ξi ∈ LD(FT ) and uf2(ξi) ∈ L1(FT ), i = 1, 2. If 
ξ1 ≤ ξ2, and BSDE(g(t), ξ1) and BSDE(f2(y)|z|2 + K|z|, ξ2) have the solutions (Y 1

t , Z
1
t ) and (Y 2

t , Z
2
t ), 

respectively, such that (
∫ t

0 u′
f2

(Y i
s )Zi

sdBs)t∈[0,T ] is a martingale, and for each t ∈ [0, T ], uf2(Y i
t ) ∈ L1(FT )

and g(t) ≤ f2(Y 1
t )|Z1

t |2, i = 1, 2, then for each t ∈ [0, T ], we have Y 1
t ≤ Y 2

t . Moreover, if P (ξ1 < ξ2) > 0, 
then for each t ∈ [0, T ], we have P (Y 1

t < Y 2
t ) > 0, or if λ ⊗ P

(
g(t) < f2(Y 1

t )|Z1
t |2
)
> 0, then we have 

Y 1
0 < Y 2

0 .

Proposition 4.3. Let fi ∈ L1,loc(D), ξi ∈ LD(FT ) and ufi(ξi) ∈ Lp(FT ), p > 1, i = 1, 2. Let (Y i
t , Z

i
t) be the 

solution of BSDE(fi(y)|z|2, ξi), such that ufi(Y i
t ) = E[ufi(ξi)|Ft], i = 1, 2. If ξ1 ≤ ξ2, f1 ≤ f2, and one of 

the following two conditions holds
(a1) there exists a constant ζ ∈ D such that ξ2 ≥ ζ,
(a2) there exists a constant β such that uf1(x) ≥ β,

then for each t ∈ [0, T ], we have Y 1
t ≤ Y 2

t . Moreover, if P (ξ1 < ξ2) > 0, then for each t ∈ [0, T ], we have 
P (Y 1

t < Y 2
t ) > 0. In particular, Y 1

0 < Y 2
0 .

Proof. We only consider the case that D = (a, ∞). The arguments of the other cases are similar. For n ≥ 1, 
let an = a + 1

n and ufi,n(·) be the transformation ufi(·) defined with ufi(an) = 0, i = 1, 2. By Theorem 3.2(v) 
and Remark 3.1(i), we have (ufi,n(Y i

t ), u′
fi,n

(Y i
t )Zi

t) ∈ Sp ×Hp.
(a1) By Proposition 4.1, it is enough to prove that (

∫ t

0 u′
f1,n

(Y 2
s )Z2

sdBs)t∈[0,T ] is a martingale and 
uf1,n(Y 2

t ) ∈ Sp. In fact, if there exists a constant ζ ∈ D such that ξ2 ≥ ζ, then by Lemma 2.1(ii)(v), 
we have

Y 2
t = u−1

f2
(E[uf2(ξ2)|Ft]) ≥ u−1

f2
(E[uf2(ζ)|Ft]) = ζ.

Thus, there exists a constant K > 0 such that for any n > K, Y 2
t ≥ an. Let n > K. By Lemma 2.1(iv), we 

have

T∫
0

|u′
f1,n

(Y 2
s )|2|Z2

s |2ds ≤
T∫

0

|u′
f2,n

(Y 2
s )|2|Z2

s |2ds,

which, together with the fact u′
f2,n

(Y 2
t )Z2

t ∈ Hp, implies that (
∫ t

0 u′
f1,n

(Y 2
s )Z2

sdBs)t∈[0,T ] is a uniformly 
integrable martingale. By Lemma 2.1(iv), we have uf1,n(ζ) ≤ uf1,n(Y 2

t ) ≤ uf2,n(Y 2
t ), which together with 

the fact uf2,n(Y 2
t ) ∈ Sp implies uf1,n(Y 2

t ) ∈ Sp. The proof is complete.
(a2) We define the following stopping time

τn = inf{t ≥ 0, Y 2
t ≤ an} ∧ T.

Then there exists a constant K > 0 such that for any n > K, we have τn > 0. Let n > K. By Lemma 2.1(iv), 
we have

τn∫
0

|u′
f1,n

(Y 2
s )|2|Z2

s |2ds ≤
τn∫
0

|u′
f2,n

(Y 2
s )|2|Z2

s |2ds,

which, together with the fact u′
f2,n

(Y 2
t )Z2

t ∈ Hp, implies that (
∫ τn∧t

0 u′
f1,n

(Y 2
s )Z2

sdBs)t∈[0,T ] is a martingale. 
Since uf1(x) ≥ β, x ∈ D, we have β ≤ uf1,n(Y 2

t ) ≤ uf2,n(Y 2
t ), which together with the fact uf2,n(Y 2

t ) ∈ Sp

implies uf1,n(Y 2
t ) ∈ Sp. Then by a similar argument as (30) (replace uf1 and g(t) in (30) by uf1,n(·) and 

f2(Y 2
t )|Z2

t |2, respectively), we deduce



S. Zheng et al. / J. Math. Anal. Appl. 500 (2021) 125102 15
uf1,n(Y 2
τn∧t) ≥ E[uf1,n(Y 2

τn)|Ft].

Thanks to Remark 2.1, we have

uf1(Y 2
τn∧t) ≥ E[uf1(Y 2

τn)|Ft].

Since τn → T , as n → ∞, passing to the limit in the inequality above, we have

uf1(Y 2
t ) ≥ lim inf

n→∞
E[uf1(Y 2

τn)|Ft].

Since uf1(x) ≥ β, x ∈ D, then by Fatou’s Lemma, we deduce

uf1(Y 2
t ) − β ≥ lim inf

n→∞
E[uf1(Y 2

τn) − β|Ft] ≥ E[uf1(ξ2) − β|Ft] ≥ E[uf1(ξ1) − β|Ft] = uf1(Y 1
t ) − β,

which means that

uf1(Y 2
t ) ≥ E[uf1(ξ2)|Ft] ≥ E[uf1(ξ1)|Ft] = uf1(Y 1

t ).

Then by similar arguments as in the proof of Proposition 4.1 above, we can complete this proof. �
Now, we will present two applications of comparison theorems. One is Proposition 4.4 which is an existence 

result of bounded solutions, the other is Proposition 4.5 which is a converse comparison theorem.

Assumption (A). (i) FD(s, ω, y, z) : [0, T ] ×Ω ×D×Rd 
→ R, is continuous in (y, z) for any (s, ω) ∈ [0, T ] ×Ω;
(ii) There exist a positive, locally bounded f ∈ L1,loc(D) and a constant K > 0, such that for any 

(s, y, z) ∈ [0, T ] ×D ×Rd, |FD(s, y, z)| ≤ f(y)|z|2 + K|z|.

Proposition 4.4. Let FD(s, y, z) satisfy Assumption (A). If ξ ∈ LD(FT ) and the range of ξ is included in 
a closed interval [a, b] ⊂ D, then the BSDE(FD(s, y, z), ξ) has a solution (Yt, Zt) ∈ S∞ × H2

BMO, and the 
range of Y is included in [a, b].

Proof. Given δ ∈ D. Let ξ1 = ξ1{ξ<δ} + δ1{ξ≥δ} and ξ2 = ξ1{ξ≥δ} + δ1{ξ<δ}. By Proposition 3.3, 
BSDE(−f(y)|z|2 −K|z|, ξ1) and BSDE(f(y)|z|2 + K|z|, ξ2) have unique solutions (Y 1, Z1) ∈ S∞ ×H2

BMO

and (Y 2, Z2) ∈ S∞ ×H2
BMO, respectively, such that the range of Y i is included in [a, b], i = 1, 2. Clearly, 

we have ξ1 ≤ δ ≤ ξ2. Since the BSDE(0, δ) has a unique solution (δ, 0), by comparison theorems (see Propo-
sition 4.1 and Corollary 4.2), we get Y 1 ≤ δ ≤ Y 2. Then by the method of Theorem 4.1 in [3], we can 
prove that the BSDE(FD(s, y, z), ξ) has at least one solution (Yt, Zt) ∈ S × H2 such that Y 1 ≤ Y ≤ Y 2, 
which implies that the range of Y is included in [a, b]. We sketch this proof. Firstly, one can show that 
the reflected BSDE(FD(s, y, z), ξ) with lower obstacle Y 1 and upper obstacle Y 2 has at least one solution 
(Yt, Zt, K

+
t , K−

t ) such that (Yt, Zt) ∈ S ×H2. Then we can further show K+
t = K−

t = 0, which completes 
this proof.

Now we prove Zt ∈ H2
BMO. We define

ūf (x) :=
x∫

α

exp

⎛
⎝2

y∫
α

f(z)dz

⎞
⎠
⎛
⎝ y∫

α

exp

⎛
⎝−2

z∫
α

f(s)ds

⎞
⎠ dz

⎞
⎠ dy, x ∈ D.

By Lemma A.1(II) in [3], we get that ūf (x) belong to W 2
1,loc(D) ∩ C1(D) and

1
ū′′
f (x) − f(x)ū′

f (x) = 1
, a.e. x ∈ D. (32)
2 2
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For n ≥ 1, we define the stopping time

τn = inf

⎧⎨
⎩t ≥ 0,

t∫
0

|Zs|2ds ≥ n

⎫⎬
⎭ ∧ T.

For τ ∈ T0,T , applying Lemma 2.3 to ūf (Yt) on [τ, τ ∨ τn] and by Assumption (A), we have

ūf (Yτ ) = ūf (Yτ∨τn) +
τ∨τn∫
τ

(ū′
f (Ys)FD(s, Ys, Zs) −

1
2 ū

′′
f (Ys)|Zs|2)ds−

τ∨τn∫
τ

ū′
f (Ys)ZsdBs

≤ ūf (Yτ∨τn) +
τ∨τn∫
τ

(ū′
f (Ys)(K|Zs| + f(Ys)|Zs|2) −

1
2 ū

′′
f (Ys)|Zs|2)ds

−
τ∨τn∫
τ

ū′
f (Ys)ZsdBs

≤ ūf (Yτ∨τn) +
τ∨τn∫
τ

(K2|ū′
f (Ys)|2 + 1

4 |Zs|2)ds

+
τ∨τn∫
τ

(ū′
f (Ys)f(Ys) −

1
2 ū

′′
f (Ys))|Zs|2)ds−

τ∨τn∫
τ

ū′
f (Ys)ZsdBs,

which together with (32) gives

E

⎡
⎣ τ∨τn∫

τ

|Zs|2ds|Fτ

⎤
⎦ ≤ 4E

⎡
⎣ūf (Yτ∨τn) +

τ∨τn∫
τ

K2|ū′
f (Ys)|2ds− ūf (Yτ )|Fτ

⎤
⎦ .

Since Y is bounded and ūf (x) ∈ C1(D), by Fatou’s lemma, we have

E

⎡
⎣ T∫

τ

|Zs|2ds|Fτ

⎤
⎦ ≤ lim inf

n→∞
E

⎡
⎣ τ∨τn∫

τ

|Zs|2ds|Fτ

⎤
⎦ < K̄,

where K̄ is a constant independent of τ . Thus, Zt ∈ H2
BMO. The proof is complete. �

Proposition 4.5. Let f1, f2 ∈ L1,loc(D), and let both be local Lipschitz continuous and satisfy a linear growth 
condition. For ξ ∈ LD(FT ) whose range is included in a closed subset of D, let (Y ξ,i

t , Zξ,i
t ) ∈ S∞ ×H2

BMO

be the solution of BSDE(fi(y)|z|2, ξ), i = 1, 2. If for all such ξ and each t ∈ [0, T ], we have Y ξ,1
t ≥ Y ξ,2

t , 
then for each a ∈ D, we have f1(a) ≥ f2(a).

Proof. For each m ≥ 1, set

Θm := {a ∈ D : f1(a) < f2(a) −
1
m
}.

Since f1 and f2 are both continuous, if f1 ≥ f2 does not hold true, then we will get that there exists a 
integer n ≥ 1, such that λ(Θn) > 0, where λ is the Lebesgue measure. For a ∈ Θn and δ ∈ Rd (δ �= 0), we 
consider the following two SDEs
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Y i
t = a−

t∫
0

fi(Y i
s )|δ|2ds +

t∫
0

δdBs, i = 1, 2. (33)

Since f1 and f2 both are local Lipschitz continuous and satisfy a linear growth condition, the SDEs in (33)
both have unique solutions Y 1

t ∈ S2 and Y 2
t ∈ S2, respectively. Clearly, Θn is an open set, which means 

that there exists a constant K > 0 such that [a −K, a + K] ⊂ Θn. We define the stopping times

τ i := inf
{
t ≥ 0 : Y i

t /∈ (a−K, a + K)
}
∧ T, i = 1, 2;

τ3 := inf
{
t ≥ 0 : f1(Y 1

t ) ≥ f2(Y 2
t ) − 1

2n

}
∧ T ;

τ := τ1 ∧ τ2 ∧ τ3.

Then we have a −K ≤ Y i
τ ≤ a + K, i = 1, 2, P (τ > 0) = 1 and f2(Y 2

s ) − f1(Y 1
s ) ≥ 1

2n , s ∈ [0, τ ]. Thus by 
(33), we have

Y 1
τ − Y 2

τ =
τ∫

0

(f2(Y 2
s ) − f1(Y 1

s ))|δ|2ds ≥ 1
2n |δ|

2τ > 0. (34)

Set

yit :=
{

Y i
t , t ∈ [0, τ ]

Y i
τ , t ∈ (τ, T ]

, zit :=
{

δ, t ∈ [0, τ ]
0, t ∈ (τ, T ]

i = 1, 2.

We can find that BSDE(fi(y)|z|2, Y i
τ ) has a solution (yit, zit) ∈ S∞ ×H2

BMO and the range of yit is included 
in [a − K, a + K], i = 1, 2. Let (y3

t , z
3
t ) ∈ S∞ × H2

BMO be the solution of BSDE(f2(y)|z|2, Y 1
τ ) such 

that the range of y3
t is included in [a − K, a + K]. Then by Lemma 2.1(i), it is not hard to check that 

(
∫ t

0 u′
f2

(yis)zisdBs)t∈[0,T ] is a martingale and uf2(yit) ∈ Sp, i = 2, 3. Then by (34) and the strict comparison 
theorem in Proposition 4.1, we have

a = y2
0 < y3

0 .

By the assumptions of the proposition, for any ξ ∈ LD(FT ) whose range is included in a closed subset of 
D, we have Y ξ,1

t ≥ Y ξ,2
t . Thus we have y3

0 ≤ y1
0 = a, which together with the above inequality induces a 

contradiction. The proof is complete. �
5. Application of BSDE(f(y)|z|2, ξ) to PDEs

In this section, we will give an application to the following quadratic PDE

{
∂tv(t, x) + Lv(t, x) + f(v(t, x))|σ∗∇xv(t, x)|2 = 0, (t, x) ∈ [0, T ) ×Rd,

v(T, x) = g(x), x ∈ Rd,
(35)

where f ∈ L1,loc(D), g(x) : Rd 
→ D, and L is the infinitesimal generator of the solution Xt,x
s of SDE

Xt,x
s = x +

s∫
b(r,Xt,x

r )dr +
s∫
σ(r,Xt,x

r )dBr, x ∈ Rd, s ∈ [t, T ],

t t
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where b : [0, T ] ×Rd 
→ Rd, σ : [0, T ] ×Rd 
→ Rd×d. L is a second order differential generator given by

L := 1
2

d∑
i,j=1

(σσ∗)i,j(s, x) ∂2

∂xi
∂xj

+
d∑

i=1
bi(s, x) ∂

∂xi

.

Assumption (B). (i) f(·) is continuous and nonnegative, and g(·) is measurable;
(ii) uf (g(·)) is continuous and has a polynomial growth;
(iii) b(t, ·) and σ(t, ·) are uniformly Lipschitz continuous and have linear growth.

Let Assumption (B) hold. By Theorem 4.4 on page 61 in [15], we have for each p ≥ 1, Xt,x
T ∈ Lp(FT ), 

which implies for each p ≥ 1, uf (g(Xt,x
T )) ∈ Lp(FT ). Then by Theorem 3.2, the following Markovian BSDE

Y t,x
s = g(Xt,x

T ) +
T∫
s

f(Y t,x
r )|Zt,x

r |2dr −
T∫
s

Zt,x
r dBr, s ∈ [t, T ], (36)

has a unique solution (Y t,x
s , Zt,x

s ) ∈ S × H2 such that uf (Y t,x
s ) = E[uf (g(Xt,x

T ))|Fs]. Set v(t, x) := Y t,x
t . 

Then we have the following Theorem 5.1.

Theorem 5.1. Under Assumption (B), v(t, x) is a viscosity solution of PDE(35).

Proof. By Assumption (B), (36) and Theorem 3.2(v), we get that the Markovian BSDE(0, uf (g(Xt,x
T ))) has a 

unique solution (yt,xs , zt,xs ) = (uf (Y t,x
s ), u′

f (Y t,x
s )Zt,x

s ) ∈ Sp ×Hp, p > 1. Since uf (v(t, x)) = uf (Y t,x
t ) = yt,xt , 

by Theorem 3.2 in [11], we get that uf (v(t, x)) is continuous in (t, x) and grows at most polynomially at 
infinity. Using the uniqueness of the solution to the Markovian BSDE(0, uf (g(Xt,x

T ))), we have

uf (Y t,x
s ) = yt,xs = y

s,Xt,x
s

s = uf (v(s,Xt,x
s )), s ∈ [t, T ].

Then by Lemma 2.1(v), we get that v(t, x) is continuous in (t, x) and for s ∈ [t, T ],

Y t,x
s = v(s,Xt,x

s ). (37)

We will show that v(t, x) is a viscosity subsolution of PDE(35). Let φ(t, x) ∈ C1,2([0, T ] ×Rd) and (t, x) be 
a local maximum point of v − φ. Without loss of generality, we assume v(t, x) = φ(t, x). If

∂φ

∂t
(t, x) + Lφ(t, x) + f(v(t, x))|σ∗∇xφ(t, x)|2 < 0,

then by continuity, there exist β ∈ (0, T−t], c > 0 and K > 0, such that for s ∈ [t, t +β] and y ∈ [x −c, x +c], 
we have

v(s, y) ≤ φ(s, y), and ∂φ

∂t
(s, y) + Lφ(s, y) + f(v(s, y))|σ∗∇xφ(s, y)|2 ≤ −K. (38)

We define a stopping time τ = inf{s ≥ t; |Xt,x
s − x| ≥ c} ∧ (t + β), then t < τ ≤ t + β and x − c ≤ Xt,x

s∧τ ≤
x + c, s ∈ [t, t + β]. By (36) and (37), we deduce that the following BSDE

Ȳs = v(τ,Xt,x
τ ) +

t+β∫
1{r≤τ}f(v(r,Xt,x

r ))|Z̄r|2dr −
t+β∫

Z̄rBr, s ∈ [t, t + β], (39)

s s
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has a solution (Ȳs, Z̄s) = (Y t,x
s∧τ , 1{s≤τ}Z

t,x
s ) ∈ S∞ × H2. Applying Itô’s formula to φ(s, Xt,x

s ) on s ∈
[t, (t + β) ∧ τ ], we deduce that the following BSDE

Ỹs = φ(τ,Xt,x
τ ) +

t+β∫
t

−1{r≤τ}

(
∂φ

∂t
(r,Xt,x

r ) + Lφ(r,Xt,x
r )

)
dr −

t+β∫
t

Z̃rBr, s ∈ [t, t + β], (40)

has a solution (Ỹs, Z̃s) = (φ(s ∧ τ , Xt,x
s∧τ ), 1{s≤τ}σ

∗∇xφ(s, Xt,x
s )) ∈ S∞ ×H2. By (38), we have v(τ, Xt,x

τ ) ≤
φ(τ, Xt,x

τ ) and

t+β∫
t

1{r≤τ}

(
−∂φ

∂t
(s,Xt,x

r ) − Lφ(s,Xt,x
r ) − f(v(r,Xt,x

r ))|σ∗∇xφ(r,Xt,x
r )|2)

)
dr ≥ K(τ − t) > 0.

By Assumption (B)(i), we get that γr := 1{r≤τ}f(v(r, Xt,x
r )) is nonnegative and bounded in [t, t + β]. 

Thus (39) is indeed a BSDE with generator γr|z|2, which is convex in z. Then by (39), (40) and the strict 
comparison theorem (see Theorem 5 in [7]), we have v(t, x) = Ȳt < Ỹt = φ(t, x). This induces a contradiction. 
Thus v(t, x) is a viscosity subsolution of PDE(35). Similarly, we can also show that v(t, x) is a viscosity 
supersolution of PDE(35). The proof is complete. �
Remark 5.1.

• The viscosity solution of PDE(35) with f(y) = 1
y was considered using an approximating method in 

Theorem 4.5 in [4]. The corresponding weak solution problems can be found in [8], where the initial 
condition corresponding to the terminal condition g(x) in PDE(35), is assumed to be bounded. It is not 
hard to find that if the range of g(x) is included in a closed subset of D, then Theorem 5.1 will hold 
true for any continuous nonnegative function f ∈ L1,loc(D).

• In Theorem 5.1, f(x) is assumed to be nonnegative in order to use the convexity in the strict compar-
ison theorem (see Theorem 5 in [7]). Correspondingly, when f(x) is nonpositive, the concavity will be 
obtained. Then by the strict comparison theorem, Theorem 5.1 will also hold true.

• In Theorem 5.1, we only obtain the existence of a viscosity solution. The uniqueness of viscosity solutions 
to PDEs is usually obtained by using a comparison theorem (see [9] and [14], etc), but we still cannot 
establish a comparison result in our case. A uniqueness result for quadratic PDEs can be found in [9] or 
the Remark on page 566 in [7]. In some cases, the viscosity solution in Theorem 5.1 has a polynomial 
growth. We show an example. Let D = [a, ∞), a ∈ R. Since f ≥ 0, by Lemma 2.1(vi), we have 
uf (x) ≥ x − α, which together with Lemma 2.1(ii) gives u−1

f (x) ≤ x + α. Since uf (v(t, x)) = yt,xt , by 
Theorem 3.2 in [11], we have |uf (v(t, x))| ≤ K(1 + |x|p), for some p > 1. Then by the fact that u−1

f is 
strictly increasing, we deduce

a ≤ v(t, x) ≤ K(1 + |x|p) + α,

which implies that v(t, x) has a polynomial growth.
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