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We consider the extrinsic geometry of surfaces in simply isotropic space, a three-
dimensional space equipped with a rank 2 metric of index zero. Since the metric 
is degenerate, a surface normal cannot be unequivocally defined based on metric 
properties only. To understand the contrast between distinct choices of an isotropic 
Gauss map, here we study surfaces with a Gauss map whose coordinates are 
eigenfunctions of the surface Laplace-Beltrami operator. We take into account two 
choices, the so-called minimal and parabolic normals, and show that when applied 
to simply isotropic invariant surfaces the condition that the coordinates of the 
corresponding Gauss map are eigenfunctions leads to planes, certain cylinders, or 
surfaces with constant isotropic mean curvature. Finally, we also investigate (non-
necessarily invariant) surfaces with harmonic Gauss map and show this characterizes 
constant mean curvature surfaces.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Let Mn be a connected n-dimensional submanifold in the m-dimensional Euclidean space Em. We say 
that M is of k-type if its position vector x can be expressed as a sum of eigenvectors of the Laplace-Beltrami 
operator, Δ, corresponding to k distinct eigenvalues, i.e., x = x0 + x1 + · · · + xk, for a constant vector x0

and smooth non-constant functions xk, (i = 1, . . . , k) such that Δxi = λixi, λi ∈ R, [12]. Several results 
concerning this subject can be found, e.g., in [3,13,17,23,25]. (See [14,15] for a survey in Em.)

In [42], Takahashi proved that a submanifold Mn in Em is of 1-type, i.e., −Δx = λx, if and only if it 
is either a minimal submanifold of Em (λ = 0) or a minimal submanifold of the hypersphere Sm−1 ⊂ Em

(λ �= 0). As a generalization, in [26], Garay proved that if a hypersurface Mn of En+1 satisfies

−Δx = Ax, (1)
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where A is a diagonal matrix A = diag(λ1, . . . , λn+1), i.e., the coordinate functions of Mn are eigenfunctions 
of Δ with possibly distinct eigenvalues, then it is a minimal hypersurface or an open piece of either round 
spheres or generalized right spherical cylinders. If an immersion satisfies Eq. (1), the submanifold is said 
to be of coordinate finite-type [28]. Very recently, Senoussi and Bekkar studied helicoidal surfaces in E3

of coordinate finite-type [39]. Furthermore, coordinate finite-type submanifolds in pseudo-Euclidean spaces 
have been studied in [1,8,27].

On the other hand, coordinate finite-type submanifolds in Cayley-Klein spaces equipped with a degenerate 
metric have taken attention of many geometers. For example, in Galilean and simply isotropic spaces, see 
[44,45] and [4,9–11,30–33], respectively. In particular, we mention the classification of revolution [31] and 
helicoidal [32] surfaces in isotropic 3-space.

The notion of finite-type submanifolds were generalized by studying the so-called submanifolds with 
finite-type Gauss map in [16,17]. In particular, a submanifold of (pseudo-)Euclidean space has 1-type Gauss 
map if and only if its Gauss map G satisfies −ΔG = λG for λ ∈ R. In Euclidean 3-space, a surface with 
1-type Gauss map must necessarily be a plane, a circular cylinder, or a sphere [16,29]. As a generalization 
of this condition, Dillen et al. [24], Baikoussis and Blair [6], and Baikoussis and Verstraelen [7] respectively 
studied revolution, ruled, and helicoidal surfaces in Euclidean space which satisfy

−ΔG = AG, (2)

where A = diag(λ1, λ2, λ3). The surface is then said to have coordinate finite-type Gauss map. The theory 
of Gauss map of finite-type was also extended to Lorentzian [2,18,19] and (pseudo-) Galilean spaces [45,46].

Our goal is to investigate surfaces with coordinate finite-type Gauss map in simply isotropic space I3. 
However, unlike surfaces in E3, an isotropic surface normal cannot be unequivocally defined based on metric 
properties only. Indeed, the most natural choice would be to define the normal with respect to the ambient 
degenerate metric, which leads to the constant vector field N = (0, 0, 1) pointing in the isotropic direction. 
Instead, we shall consider two alternatives, either by mimicking the Euclidean approach in defining a normal 
Nm using a cross-like product or by imposing that the normal G takes values on a unit sphere of parabolic 
type, see Eqs. (8) and (11), respectively. Here, we characterize simply isotropic invariant surfaces with 
coordinate finite-type parabolic G and minimal Nm Gauss maps.

The remaining of this work is divided as follows. After preliminaries results on isotropic geometry, Sect. 2, 
and on isotropic invariant surfaces, Sect. 3, we characterize helicoidal and parabolic revolution surfaces with 
coordinate finite-type Gauss maps in Sects. 4 and 5, respectively. In Sect. 6, we address the problem of 
characterizing (non-necessarily invariant) isotropic surfaces with harmonic Gauss maps. Finally, in the last 
section, we present our concluding remarks along with suggestions for further lines of investigation.

2. Preliminaries: differential geometry in simply isotropic space

First, we would like to give a brief summary of basic definitions, facts, and equations in the theory of 
surfaces in simply isotropic 3-space (see for detail Sach’s book [37]).

The simply isotropic 3-space I3 arises as a Cayley-Klein geometry whose absolute figure in the 3-
dimensional real projective space P 3(R) is given by {ω, d1, d2, F}. Here, homogeneous coordinates [x0 :
x1 : x2 : x3] are introduced such that ω : x0 = 0 is a plane in P 3(R), d1 : x0 = 0 = x1 + ix2 and 
d2 : x0 = 0 = x1 − ix2 are two complex-conjugate straight lines in ω, and F = [0 : 0 : 0 : 1] is a point in the 
intersection d1 ∩ d2.

The group of rigid motions of I3 comes from the projectivies of P 3(R) that leave the absolute figure 
invariant. Introducing affine coordinates, it is given by a six-parameter group B6 of affine transformations 
(x, y, z) �→ (x̄, ȳ, ̄z) in R3 given by

x̄ = a + x cosφ− y sinφ,
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ȳ = b + x sinφ + y cosφ, (3)

z̄ = c + c1x + c2y + z,

where φ, a, b, c, c1, c2 ∈ R. Regarding this group of isotropic motions, they appear as Euclidean motions 
onto the xy-plane. The projection of a point P (x, y, z) on the xy-plane, P̃ (x, y, 0), is called the top-view 
projection of P . Let X = (x1, x2, x3) be a vector in I3. If x1 = x2 = 0, then X is said to be isotropic, 
otherwise it is non-isotropic. A line with an isotropic director is an isotropic line and a plane containing an 
isotropic line is an isotropic plane.

Given two vectors X = (x1, x2, x3) and Y = (y1, y2, y3), the isotropic inner product is calculated by

〈X,Y〉 = x1y1 + x2y2. (4)

The isotropic distance between two points Pi = (xi, yi, zi) with i ∈ {1, 2} is defined by d(P1, P2) =√
(x2 − x1)2 + (y2 − y1)2. If two points have the same top views, then they are said to be parallel. The 

isotropic inner product between parallel points vanishes identically. In this case, we introduce the isotropic 
co-distance cd((a, b, x3), (a, b, y3)) = |y3 − x3|.

When dealing with surfaces M2 in isotropic geometry we must distinguish between two cases depending 
on whether the induced metric is degenerate or not. We say that M2 is an admissible surface when the 
metric in M2 induced by the isotropic scalar product has rank 2. If M2 is parameterized by a C2 map 
x(u1, u2) =

(
x1(u1, u2), x2(u1, u2), x3(u1, u2)

)
, then it is admissible if and only if X12 = x1

1x
2
2 − x1

2x
2
1 �= 0, 

where xi
k = ∂xi/∂uk and

Xij = det
(
xi

1 xj
1

xi
2 xj

2

)
. (5)

As a consequence, every admissible C2 surface M2 can be locally parameterized as x(u1, u2) =(
u1, u2, f(u1, u2)

)
: we say that M is in its normal form.

The isotropic first fundamental form I and the coefficients of the isotropic metric tensor gij are given by

I = gijduiduj and gij = 〈xi,xj〉, (6)

where we are adopting the convention of summing on repeated indexes. In the normal form, the first 
fundamental form becomes I = (du1)2 + (du2)2.

2.1. Extrinsic geometry in simply isotropic space

Unlike surfaces in Euclidean space, where we may define curvatures through the behavior of the Gauss 
map defined as the unit normal of the surface, in simply isotropic space this is not possible since the normal 
with respect to the isotropic metric is the constant vector field N = (0, 0, 1). However, the concept of 
Christoffel symbols Γk

ij and the second fundamental form II = hijduiduj are still meaningful. Indeed, for 
an admissible surface it is valid det(x1, x2, N) �= 0 and then, we write

xij = Γk
ijxk + hijN . (7)

To write the coefficients hij in terms of an inner product, we may take two paths. On the one hand, we may 
use the Euclidean inner · and vector × products and write

hij = xij · Nm, where Nm = x1 × x2 = (X23
,
X31

, 1). (8)

X12 X12 X12
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We shall call Nm the minimal normal since the trace of the Weingarten-like operator −dNm vanishes 
identically. Indeed, introducing ai = xi ×N , Nm satisfies the Weingarten-like equation (as given in [37], p. 
160),

∂Nm

∂ui
= hi2√

g
a1 −

h1i√
g
a2, (9)

where g = det(gij). It is easy to see that tr(−dNm) = 0. (Its determinant, however, is non-trivial and gives 
the Gaussian curvature to be defined below.)

On the other hand, we may impose that the isotropic Gauss map should take values on a unit sphere of 
parabolic type. More precisely, we first take

Σ2 = {(x, y, z) ∈ I3 : z = 1
2 − x2 + y2

2 } (10)

as the reference sphere. (In simply isotropic space, we may have spheres of parabolic and cylindrical types 
[21,37], but only spheres of parabolic type are admissible.) Then, we define the isotropic Gauss map as [20]

G(u1, u2) =
(
X23

X12
,
X31

X12
,
1
2 − 1

2

[(X23

X12

)2
+

(X31

X12

)2])
, (11)

from which we also define an isotropic shape operator S = −dG [20]. We shall also refer to G as the parabolic 
normal. Finally, the coefficients of the first and second fundamental forms can be written as

gij = 〈xi, xj〉 and hij = II(xi, xj) = I(S(xi),xj). (12)

The isotropic Gaussian and mean curvatures, K and H, are respectively defined as the determinant and 
trace of the shape operator −(dG)ij = gikhkj :

K = h11h22 − h2
12

g11g22 − g2
12

and H = 1
2
g11h22 − 2g12h12 + g22h11

g11g22 − g2
12

. (13)

In order to understand the contrast between different choices of an isotropic Gauss map and to build 
some intuition, here we will study surfaces with coordinate finite-type Gauss map using both G and Nm, 
i.e., surfaces whose coordinates of the corresponding Gauss map are eigenfunctions of the Laplace operator. 
In terms of a local coordinate system, the Laplacian Δ is defined as usual by

Δ =
∂i

(√
g gij∂j

)
√
g

= 1
√
g

[
∂1

(g22∂1 − g12∂2√
g

)
+ ∂2

(g11∂2 − g12∂1√
g

)]
, (14)

where ∂i = ∂/∂ui and gij is the inverse of the metric, i.e., gikgkj = δij .

Remark 2.1. The construction of the isotropic Gauss map employed above may be properly understood 
in the framework of the affine differential geometry. Indeed, many properties usually associated with the 
behavior of the unit normal of surfaces in Euclidean space can be extended to other contexts with the help 
of the notion of relative normal [35,40]. Such construction requires the introduction of a vector field ξ along 
a surface M2 which is both (i) transversal to M2, i.e., ξ is not tangent, and (ii) equiaffine, i.e., dξ is tangent. 
The parabolic Gauss map G is a relative normal, but the same is not true for the minimal normal Nm

since it is not equiaffine. In this latter case, we may see the introduction of the vector fields ai = xi ×N as 
an attempt to remedy this since Nm is transversal and equiaffine with respect to the distribution of planes 
span{a1, a2}.
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3. Simply isotropic invariant surfaces

In this work, we will be mainly interested in invariant surfaces. Here, geometric quantities, such as the 
Gaussian and mean curvatures, only depend on their values assumed along the generating curve. In addition, 
the study of surfaces with coordinate finite-type Gauss map reduces to the analysis of ordinary differential 
equations. (The interested reader is referred to [22] for more details on isotropic invariant surfaces.)

A 1-parameter subgroupH of the group B6 of isotropic isometries is given by a surjective continuous group 
homomorphism ψ : (R, +) → (B6, ◦), i.e., ψ(0) = Id is the identity rigid motion and ψ(s + t) = ψ(s) ◦ ψ(t). 
(It is common to denote ψt = ψ(t) and, despite that ψ is not unique, we may identify H with ψ since 
ψ(R) = H .) A surface M2 is said to be invariant if there exists a 1-parameter subgroup H such that 
M = ψt(M) for all t ∈ R. By intersecting an invariant surface with a plane, usually the xz- or the xy-plane, 
we obtain a curve α, the generating curve of M , and we can then see M2 as the result of continuously 
moving α under the action of ψt. In addition, we may parameterize M2 as x(u, t) = ψt(α(u)).

For simply isotropic rigid motions what happens in the top view plane is independent from what happens 
in the isotropic z-direction. Then, we may classify the 1-parameter subgroups based on their action on the 
top view plane and on the isotropic direction separately [22,37]. The 1-parameter subgroups of simply 
isotropic isometries can be distributed along 7 types, which are divided into two main categories:

(a) helicoidal motions, which in the isotropic direction act either as a pure translation or as the identity 
map:

t ∈ R �→ ψt(x) =

⎛⎜⎝ cos(tφ) − sin(tφ) 0
sin(tφ) cos(tφ) 0

0 0 1

⎞⎟⎠
⎛⎜⎝ x1

x2
x3

⎞⎟⎠ +

⎛⎜⎝ 0
0
c t

⎞⎟⎠ ; (15)

(b) limit motions (Grenzbewegungen [37]), which in the top view plane act either as a pure translation 
or as the identity map:

t ∈ R �→ ψt(x) =

⎛⎜⎜⎝
1 0 0

0 1 0

c1t c2t 1

⎞⎟⎟⎠
⎛⎜⎝ x1

x2
x3

⎞⎟⎠ +

⎛⎜⎝ a t

b t

c t + (ac1 + bc2) t
2

2

⎞⎟⎠ . (16)

The constants φ, a, b, c, c1, and c2 are the same as those appearing in Eq. (3).
Invariant surfaces obtained from helicoidal motions will be called helicoidal surfaces while those obtained 

from limit motions will be called parabolic revolution surfaces. Notice that helicoidal surfaces are foliated by 
helices while parabolic revolution surfaces are foliated by isotropic circles, i.e., parabolas whose symmetry 
axis is an isotropic line. In addition, we shall restrict ourselves to invariant surfaces of i-type [22], i.e., the 
generating curve α comes from an intersection of the surface with the isotropic xz-plane.

3.1. Helicoidal surfaces

Let the generating curve α be parameterized by arc-length, α(u) = (u, 0, z(u)). A helicoidal surface M2
c

is then parameterized as

M2
c : R(u, t) = (u cos t, u sin t, z(u) + ct), u > 0, (17)

where for simplicity we set φ = 1. The first and second fundamental forms of a helicoidal surface are given 
by [22]
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I = du2 + u2dt2 and II = z′′du2 − 2cdudt
u

+ uz′dt2, (18)

from which follows that the Gaussian and mean curvatures are

K = z′z′′

u
− c2

u4 and H = z′ + uz′′

2u . (19)

When c = 0, we say that M2
0 is a revolution surface.

In addition, the minimal normal is

Nm = ( c
u

sin t− z′ cos t,− c

u
cos t− z′ sin t, 1), (20)

while the parabolic normal is

G = ( c
u

sin t− z′ cos t,− c

u
cos t− z′ sin t,

1
2

(
1 − c2

u2 − z′
2
)
). (21)

Finally, the Laplace-Beltrami operator of a helicoidal surface is given by

Δ = 1
u

∂

∂u
+ ∂2

∂u2 + 1
u2

∂2

∂t2
. (22)

In particular, the Laplacian is the same for all helicoidal surfaces.

3.2. Parabolic revolution surfaces

Let the generating curve α be parameterized by arc-length, α(u) = (u, 0, z(u)). A parabolic revolution 
surface M2

(a,b,c,c1,c2) is parameterized as

M2
(a,b,c,c1,c2) : P(u, t) = (at + u, bt, ct + ac1 + bc2

2 t2 + c1ut + z(u)), u, b > 0. (23)

The corresponding first and second fundamental forms are given by [22]

I = du2 + 2adudt + (a2 + b2)dt2 and II = z′′du2 + 2c1dudt + (ac1 + bc2)dt2, (24)

from which it follows that the Gaussian and mean curvatures are

K = (ac1 + bc2)z′′

b2
− c21

b2
and H = bc2 − ac1

2b2 + (a2 + b2)z′′

2b2 . (25)

When c = ac1 + bc2 = 0, but (a, b), (c1, c2) �= (0, 0), we say that M2
(a,b,0,c1,c2) is a warped translation surface. 

Moreover, when c = c1 = c2 = 0, but (a, b) �= (0, 0), we say that M2
(a,b,0,0,0) is a translation surface.

In addition, the minimal normal of a parabolic revolution surface is

Nm = (−c1t− z′,
az′ − c− bc2t− c1u

b
, 1), (26)

while the parabolic normal is

G = (−bc1t + bz′

b
,
az′ − c− bc2t− c1u

b
,G3), (27)

where
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G3 = 1
2 − (c + c1u)2

2b2 + a(c + c1u)
b2

z′ − a2 + b2

2b2 z′ 2 + t

b

[
(ac2 − bc1)z′ − c2(c + c1u)

]
− t2

2
(
c21 + c22

)
. (28)

Finally, the Laplace-Beltrami operator of a parabolic revolution surface is given by

Δ = a2 + b2

b2
∂2

∂u2 − 2a
b2

∂2

∂u∂t
+ 1

b2
∂2

∂t2
. (29)

4. Helicoidal surfaces with coordinate finite-type Gauss map

Since the top view projection of both parabolic and minimal Gauss maps coincide, we may start investi-
gating the eigenvalue problem for the first two coordinates of the minimal Gauss map Nm. Since N3

m = 1, 
the eigenvalue problem associated with the third coordinate of Nm is trivial. On the other hand, this is not 
the case for the last coordinate of the parabolic normal G. Thus, after characterizing the surfaces whose 
minimal normal is of coordinate finite-type, we will also know the solutions for the first two coordinates of 
the parabolic Gauss map G. After that, the strategy to complete the study of G will consist in checking 
the compatibility of the eigensolutions of the first coordinates {G1, G2} with the eigenvalue problem for the 
last coordinate G3.

4.1. Helicoidal surfaces with coordinate finite-type minimal normal

The Laplacian of the minimal Gauss map Nm of a helicoidal surface is

ΔNm =
(
z′ − u2z′′′ − uz′′

u2 cos t, z
′ − u2z′′′ − uz′′

u2 sin t, 0
)
. (30)

Now, we would like to classify helicoidal surfaces given by Eq. (17) in I3 satisfying the coordinate finite-
type equation (2):

−Δ(N1
m, N2

m, N3
m) = (λ1N

1
m, λ2N

2
m, 0). (31)

The corresponding eigenvalue problems become

cos t
(u2z′′′ + uz′′ − z′

u2

)
= λ1(

c

u
sin t− z′ cos t)

and

sin t
(u2z′′′ + uz′′ − z′

u2

)
= λ2(−

c

u
cos t− z′ sin t).

Now, using that {cos t, sin t} is a set of linearly independent functions, we have the following equations for 
λ1 and λ2: {

λic = 0

u2z′′′ + uz′′ − (1 − λiu
2)z′ = 0

, i = 1, 2. (32)

Analyzing all possibilities, we have the following classification of helicoidal surfaces whose minimal normal 
Nm is of coordinate finite-type.

Theorem 4.1. Let M2
c be a helicoidal surface with coordinate finite-type minimal Gauss map Nm. Then, M2

c

belongs to one of the following families:
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Fig. 1. Helicoidal surfaces with harmonic minimal Gauss map Nm according to Theorem 4.1. These surfaces have constant mean 
curvature. (Left) Plot of z(u) = z0 + z1u

2 + z2 lnu; (Right) Plot of the corresponding helicoidal surface. (In the figure, u ∈ (0, 32 ), 
t ∈ (0, 4π), c = 1, z0 = 0, z1 = 1, and z2 = 1

4 .)

Fig. 2. Curves leading to revolution surfaces with coordinate finite-type minimal normal Nm according to Theorem 4.1. (Left) Zero 
order Bessel functions of the first and second type, J0 and Y0, respectively, whose corresponding revolution surfaces have λ > 0; 
(Right) Zero order Bessel functions of the third and fourth type, I0 and K0, respectively, whose corresponding revolution surfaces 
have λ < 0.

(1) If c �= 0, then λ1 = λ2 = 0 and

z(u) = z0 + z1u
2 + z2 ln u, (33)

where zi is a constant (i = 0, 1, 2). (See Fig. 1.)
(2) If c = 0, we have one of the following three cases below

(a) If λ1 = λ2 = 0, then

z(u) = z0 + z1u
2 + z2 ln u, (34)

where zi is a constant (i = 0, 1, 2).
(b) If λ1 = λ2 = λ �= 0, then

z(u) =
{

z0 + z1J0(
√
λu) + z2Y0(

√
λu) if λ > 0

z0 + z1I0(
√
−λu) + z2K0(

√
−λu) if λ < 0

, (35)

where zi is a constant (i = 0, 1, 2) and J0, Y0, I0, and K0 are the zero order Bessel functions of the 
first, second, third, and fourth type, respectively. (See Fig. 2.)

(c) If λ1 �= λ2, then z(u) is a constant function.

Proof. Case (1): From Eq. (32), it is immediate to see that if c �= 0, then λ1 = λ2 = 0. Therefore, the 
corresponding solution for z is
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z(u) = z0 + z1u
2 + z2 ln u (36)

for some constants z0, z1, z2. (See Fig. 1.)
Now, let us assume that c = 0. We have to consider the three possibilities for the values of λ1 and λ2 as 

follows:
Case (2.a): If λ1 = λ2 = 0, then the solution is the same as in case (1).
Case (2.b): If λ1, λ2 = λ �= 0, then the eigenvalue problems become

u2z′′′ + uz′′ − (1 − λu2)z′ = 0. (37)

Now, by defining f = z′, the above equation turns into the following ODE

u2f ′′ + uf ′ − (1 − λu2)f = 0. (38)

Now, to solve this equation we consider on two cases according to the sign of λ as follows:

• First case, let λ > 0. Then, by taking v(u) =
√
λu in Eq. (38), we are led to the Bessel ODE of first 

order

v2f ′′(v) + vf ′(v) − (1 − v2)f(v) = 0,

whose solution is [36]

f(v) = c1J1(v) + c2Y1(v). (39)

By integrating the first and the second kind Bessel functions of order 1 and by also considering v(u) =√
λu and z′ = f , we get the solution of Eq. (37) as

z(u) = z0 + z1J0(
√
λu) + z2Y0(

√
λu),

where zi = constant.
• Now, let λ < 0. As in the previous case, by taking v(u) =

√
−λu in (38), we are led to the modified 

Bessel ODE of first order

v2f ′′(v) + vf ′(v) − (1 + v2)f(v) = 0,

whose solution is [36]

f(v) = c1I1(v) + c2K1(v).

By considering f = z′, v(u) =
√
−λu and the Bessel functions, we get the solution of Eq. (37) as 

z(u) = z0 + z1I0(
√
−λu) + z2K0(

√
−λu), where zi = constant.

Case (2.c): If λ1 �= λ2, then subtracting u2z′′′+uz′′−(1 −λ1u
2)z′ = 0 from u2z′′′+uz′′−(1 −λ2u

2)z′ = 0
gives

(λ1 − λ2)u2z′ = 0. (40)

Hence, since λ1 − λ2 �= 0, we get z(u) = z0 constant. �
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4.2. Helicoidal surfaces with coordinate finite-type minimal normal with prescribed boundary conditions

Notice that if the minimal normal is harmonic, ΔNm = 0, then it follows from Eq. (19) that the 
corresponding helicoidal surface has constant mean curvature H = 2z1, while the Gaussian curvature is 
K = 4z2

1− 1
u4 (c2+z2

2). Then, by approaching the screw axis, i.e., u → 0, we have K ∼ − 1
u4 → −∞ while away 

from it, i.e., u � 1, K ∼ 4z2
1 . Asymptotically, we have H2 −K ∼ 0 for u � 1 and consequently, M2

c should 
behave as a totally umbilical surface: as a plane if M2

c is minimal, i.e., if z1 = 0, or as a sphere of parabolic 
type if otherwise. In fact, in terms of the position vector R(u, t) = (u cos t, u sin t, z0 + z1u

2 + z2 ln u + ct),

u � 1, t ∈ (0, 2π) ⇒ M2
c ∼ {(x, y, z) : z = 1

2p (x2 + y2)}, where p = 1
H

.

On the other hand, assuming λ1 = λ2 = λ �= 0, i.e., Nm is not harmonic, we must have c = 0 and we 
may use the known expressions for the asymptotic behavior of Bessel functions [36] to deduce that near the 
revolution axis, 0 < u � 1, we have z(u) ∼ w0 + w1 ln(

√
|λ|u) for some constants w0, w1: w1 = 2z2/π if 

λ > 0 and w1 = −z2 if λ < 0. Finally, far from the revolution axis, u � 1, we have (see Fig. 2)

z(u) ∼

⎧⎪⎨⎪⎩
z0 + z1

√
2

π
√
λu

cos(
√
λu− π

4 ) + z2

√
2

π
√
λu

sin(
√
λu− π

4 ) if λ > 0

z0 + z1
1√

2π
√
−λu

e
√
−λu + z2

√
π

2
√
−λu

e−
√
−λu if λ < 0

.

From the expressions above, we conclude that

Proposition 4.1. Let M2
c be a helicoidal surface with coordinate finite-type minimal Gauss map Nm. Assume 

that M2
c is not a plane. We have

(1) If M2
c is bounded near the screw axis, 0 < u � 1, then λ1 = λ2 = λ and

z(u) =

⎧⎪⎨⎪⎩
z0 + z1J0(

√
λu) if λ > 0

z0 + z1u
2 if λ = 0

z0 + z1I0(
√
−λu) if λ < 0

, (41)

where zi is a constant (i = 0, 1) and J0 and I0 are the zero order Bessel functions of the first and third 
type, respectively. (If λ �= 0, then c = 0.)

(2) If M2
c is bounded at infinity, u � 1, then λ1 = λ2 = λ and

z(u) =
{

z0 + z1J0(
√
λu) + z2Y0(

√
λu) if λ > 0

z0 + z2K0(
√
−λu) if λ < 0

, (42)

where zi is a constant (i = 0, 1, 2) and J0, Y0, and K0 are the zero order Bessel functions of the first, 
second, and fourth type, respectively.

(3) If M2
c is bounded near the axis and at infinity, then λ1 = λ2 = λ > 0 and

z(u) = z0 + z1J0(
√
λu), (43)

where zi is a constant (i = 0, 1) and J0 is the zero order Bessel function of the first type.

Other common boundary conditions to impose are homogeneous or periodic conditions, i.e., z(a) = 0 =
z(a + L) or z(a) = z(a + nL), ∀ n ∈ N, for given parameters a ≥ 0 and L > 0, respectively. We are not 
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going to exactly solve these boundary conditions problems here, but notice that from the general solutions 
in terms of {1, u2, ln u} when λ = 0 or in terms of Bessel functions J0, Y0, I0, and K0, when λ �= 0, we can 
see that in order for z(u) to satisfy the given boundary conditions mentioned above we should necessarily 
have λ > 0. This also implies that c = 0 and, consequently, the associated surface is a surface of (Euclidean) 
revolution around the z-axis.

To finish the analysis of helicoidal surfaces with coordinate finite-type minimal normal, let us impose 
mixed boundary conditions.

Proposition 4.2. Let M2
c be a helicoidal surface with coordinate finite-type minimal Gauss map Nm and 

generating curve α(u) = (u, 0, z(u)). Assume that M2
c is not a plane. If M2

c is bounded near the screw axis, 
0 < u � 1, and z(L) = 0 for a given L > 0, then up to translations along the z-direction

z(u) = z1J0(
√

λn u), λn = u2
n

L2 , (44)

where z1 is a constant, J0 is the zero order Bessel function of the first kind, and 0 = u0 < u1 < · · · < un
n→ ∞

are the zeros of J0.

Proof. Since we are demanding the solution z(u) to be bounded near u = 0, the function z(u) has the 
form given in Eq. (41). For simplicity, we may set z0 = 0 and, therefore, we should also assume that 
z1 �= 0. (Geometrically, z0 is associated with a translation of M2

c along the z-direction.) Since we should 
have z(L) = 0, we see that λ > 0. Finally, this boundary condition leads to

z(L) = z1J0(
√
λL) = 0 ⇔

√
λL = un, (45)

where 0 = u0 < u1 < · · · < un
n→ ∞ are the zeros of J0, see [36]. �

4.3. Helicoidal surfaces with coordinate finite-type parabolic Gauss map

On Theorem 4.1, we investigated the eigenvalue problem for Nm. The problem for the third coordinate 
of Nm is trivial, but the solutions for the first two coordinates can be applied to the parabolic Gauss map 
G. The strategy now consists in checking the compatibility of the solution for the first two coordinates G1

and G2 with the last one G3.
The Laplacian of a helicoidal surface given in Eq. (22), when applied to G3, in the last coordinate in 

Eq. (21), gives

ΔgG
3 = −2c2

u4 − z′z′′

u
− (z′z′′)′. (46)

Notice that for λ1 = 0 or λ2 = 0, but not λ1 = λ2 = 0, from (32) we necessarily have c = 0 and z(u) = z0

constant. Then, the parabolic Gauss map (21) is G = (0, 0, 12 ) and it follows that in order to satisfy 
−Δ(G1, G2, G3) = (λ1G

1, λ2G
2, λ3G

3) we must have λ3 = 0. (Here, the arbitrariness of λ1 or λ2 comes 
from the fact that the corresponding coordinates of G vanish identically.) In the following theorem we shall 
only consider the cases where λ1 = λ2.

Theorem 4.2. Let M2
c be a helicoidal surface given by Eq. (17) whose top-view projection of the parabolic 

Gauss map G is of coordinate finite-type as described in Theorem 4.1 with λ1 = λ2. In addition, if the third 
coordinate of G is an eigenfunction of the Laplacian, −ΔgG

3 = λ3G
3, then M2

c is a piece of a plane.
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Proof. Now, notice that from (46), we have

−ΔG3 = z′z′′

u
+ (z′′)2 + z′z′′′ + 2c2

u4 = z′z′′ + uz′′ 2 + uz′z′′′

u
+ 2c2

u4

= (uz′z′′)′

u
+ 2c2

u4 = 1
2u [u(z′ 2)′]′ + 2c2

u4 . (47)

By considering this in (21), the eigenvalue problem for G3, i.e., −ΔG3 = λ3G
3, can be rewritten in a more 

convenient form as follows

1
2u [u(z′ 2)′]′ + 2c2

u4 = λ3

2

(
1 − c2

u2 − z′
2
)
. (48)

Now, defining g = 1
2 (z′ 2 − 1), we can rewrite this eigenvalue problem as

ug′′ + g′

u
+ 2c2

u4 = −λ3g − λ3
c2

2u2 ⇒ −ug′′ − g′ − λ3ug = λ3c
2

2u + 2c2

u3 . (49)

We now divide the proof in two main cases: (1) when λ = λ1 = λ2 = 0; and (2) λ = λ1 = λ2 �= 0.
Case (1): If λ1 = λ2 = 0, then the solution of the second equation in Eq. (32) is z(u) = z0 +z1u

2 +z2 ln u. 
By considering this solution and g = 1

2 (z′ 2 − 1) in Eq. (49) yields

ug′′ + g′ + uλ3g = 2λ3u
3z2

1 − u

(
λ3

2 − 8z2
1 − 2λ3z1z2

)
+ λ3z

2
2

2u + 2z2
2

u3 . (50)

Comparison with the right-hand side of Eq. (49) leads to⎧⎪⎨⎪⎩
λ3z

2
1 = 0

λ3
2 − 8z2

1 − 2λ3z1z2 = 0
c2 + z2

2 = 0
. (51)

From the last expression, we deduce that we must have z2 = c = 0. Using this in the first and second 
expressions leads to λ3z

2
1 = 0 = λ3 − 16z2

1 , from which we conclude that λ3 = z1 = 0. In conclusion, the 
eigenproblems for G1 and G2 described in Cases (1) and (2.a) of Theorem 4.1 put together with the problem 
G3 lead to λ3 = 0 and z(u) = z0.

Case (2): If λ1 = λ2 = λ �= 0, then from (32) we have c = 0. By considering this result in (49), we get

ug′′ + g′ + λ3ug = 0. (52)

If λ3 = 0, then we must have ug′′+g′ = (ug′)′ = 0 whose solution is g = a2 ln u +a1. This solution, however, 
is only compatible with a general solution in terms of Bessel functions as in Case (2.b) of Theorem 4.1 if 
z1 = z2 = 0 and a1 = a2 = 0. In other words, z(u) = z0.

Now, if λ3 �= 0, we must solve Eq. (52), where g = 1
2(z′ 2 − 1), and compare the corresponding solution 

for z(u) with that of Case (2.b) of Theorem 4.1. Adopting the coordinate change v = v(u) =
√
|λ3|u, the 

differential equation for g = g(v) is

v2g′′(v) + vg′(v) ± v2g(v) = 0. (53)

Therefore, g is a combination of the Bessel functions {J0(
√
λ3 u), Y0(

√
λ3 u)} if λ3 > 0 or {I0(

√
−λ3 u),

K0(
√
−λ3 u)} if λ3 < 0. Notice, in addition, that λ = λ1 = λ2 and λ3 should have the same sign, otherwise 

we would have solutions for z(u) involving functions of distinct types.
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First, let us assume that λ, λ3 > 0. From the solution for z(u) given in (35) in terms of λ > 0, we deduce

z′ 2 = z2
1λJ

2
1 (
√
λu) + 2z1z2λJ1(

√
λu)Y1(

√
λu) + z2

2λY
2
1 (

√
λu). (54)

If there were values for λ and λ3 leading to compatible solutions, then we would be able to write the 
above expression in terms of the Bessel functions J0 and Y0 since we need that g = (z′ 2 − 1)/2. However, 
this is not possible. For example, J2

1 necessarily involves Bessel functions of other orders in addition to 
J0. Indeed, from 1 = J2

0 (u) + 2 
∑∞

n=1 J
2
n(u) and J0(2u) = J2

0 (u) + 2 
∑∞

n=1(−1)nJ2
n(u) [36], we can write 

J2
1 (u) = 1

4 − 1
4J0(2u) −

∑∞
n=1 J

2
2n+1(u). (The corresponding expressions for Y1(u)J1(u) and Y 2

1 (u) involve 
products Jn Yn of higher order Bessel functions in addition to J0 and Y0.) An alternative way to establish the 

incompatibility of solutions is by investigating their asymptotic behavior: from J1(u) ∼
√

2
πu cos(u − π

2 − π
4 )

and Y1(u) ∼
√

2
πu sin(u − π

2 − π
4 ), we conclude that Eq. (54) decays to zero as 1/u, while the expression for 

z′ 2 from the solution for the equation in g decays as 1/
√
u.

Finally, a similar reasoning also applies for the case where λ, λ3 < 0 by using the corresponding identities 
and properties for In and Kn. �
5. Parabolic revolution surfaces with coordinate finite-type Gauss map

Since the top view projections of the parabolic and minimal Gauss maps given in Sect. 3.2 are the same, 
we will proceed as in the study of helicoidal surfaces. In other words, we first investigate the eigenvalue 
problem for the minimal normal. Later, these solutions can be used to fix the first two coordinates of the 
parabolic normal. Finally, it remains to analyze the last coordinate of G. The strategy then consists in 
checking the compatibility of the known solutions for the first and second coordinates with the eigenvalue 
problem of the last one.

5.1. Parabolic revolution surfaces with coordinate finite-type minimal normal

Since the Laplacian of the minimal normal from (26) and (29) is

ΔgNm = a2 + b2

b2
(−z′′′,

a

b
z′′′, 0), (55)

the corresponding eigenvalue problems, −ΔgN
i
m = λiN

i
m, become

−a2 + b2

b2
z′′′ = λ1(c1t + z′) and − a(a2 + b2)

b3
z′′′ = λ2(

az′ − c− c1u

b
− c2t). (56)

Now, using that {1, t} is a set of linearly independent functions, we have the following sets of equations for 
λ1 and λ2: {

λ1c1 = 0
(a2 + b2)z′′′ + λ1b

2z′ = 0
(57)

and {
λ2c2 = 0

a(a2 + b2)z′′′ + λ2b
2(az′ − c− c1u) = 0

. (58)

Analyzing all possibilities, we have the following classification of parabolic revolution surfaces whose minimal 
normal Nm is of coordinate finite type.
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Fig. 3. Parabolic revolution surfaces with harmonic minimal Gauss map Nm according to Theorem 5.1. These surfaces have constant 
mean curvature and have an implicit equation z+z0 = z2x

2 +2αxy+βy2 +z1x +γy, where α = (c1−2az2)/2b, β = (2a2z2−ac1 +
bc2)/2b2, and γ = (c − az1)/b. The surfaces are (Left) Elliptic paraboloids if z2β > α2; (Center) Parabolic cylinders if z2β = α2; 
and (Right) Hyperbolic paraboloids if z2β < α2.

Theorem 5.1. Let M2
(a,b,c,c1,c2) be a parabolic revolution surface with generating curve α(u) = (u, 0, z(u))

and such that the minimal normal Nm is of coordinate finite-type, −ΔgNm = (λ1N
1
m, λ2N

2
m, 0). Then, 

M2
(a,b,c,c1,c2) belongs to one of the following families:

(1) If λ1 = λ2 = 0, then z(u) = z2u
2 +z1u +z0, where zi is constant and (a, b, c, c1, c2) ∈ {c1 �= 0 or z(u) �=

const.} ∩ {2az2 �= c1 or az1 �= c}. (See Fig. 3.)
(2) If λ1 = 0 and λ2 �= 0, then either

(a) (a, b, c, c1, c2) = (0, b, 0, 0, 0) and z(u) = z2u
2 + z1u + z0, or

(b) (a, b, c, c1, c2) = (a �= 0, b, c, c1, 0) and z(u) = c1
2au

2 + c
au + z0.

(3) If λ1 �= 0 and λ2 = 0, then (a, b, c, c1, c2) = (a, b, c, 0, c2) and z(u) = z0.
(4) If λ1, λ2 �= 0, then either

(a) (a, b, c, c1, c2) = (0, b, 0, 0, 0) and

z(u) =
{

z0 + z1 cos(
√
λ1 u) + z2 sin(

√
λ1 u), if λ1 > 0

z0 + z1 cosh(
√
−λ1 u) + z2 sinh(

√
−λ1 u), if λ1 < 0

, (59)

or
(b) (a, b, c, c1, c2) = (a �= 0, b, 0, 0, 0), λ1 = λ2 = λ, and

z(u) =
{

z0 + z1 cos(
√

Λu) + z2 sin(
√

Λu), if λ > 0
z0 + z1 cosh(

√
−Λu) + z2 sinh(

√
−Λu), if λ < 0

, (60)

where Λ = λb2

a2+b2 .

Proof. Case (1): If λ1 = λ2 = 0, then Eqs. (57) and (58) lead to the same solution for z:

z(u) = z0 + z1u + z2u
2. (61)

In order to avoid a trivial coordinate eigenfunction, i.e., N i
m ≡ 0 (otherwise, λi could be arbitrary), we have 

to impose c1 �= 0 or z′(u) �= 0, for the first coordinate, and 2az2 �= c1 or az1 �= c, for the second coordinate.
Case (2): If λ1 = 0 but λ2 �= 0, then from the first expression of Eq. (58), we have c2 = 0 and from 

the second expression of Eq. (57), we have z(u) = z0 + z1u + z2u
2. Using this information in the second 

expression of Eq. (58) gives
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(2az2 − c1)u + (az1 − c) = 0. (62)

If a = 0, then c = c1 = 0 ({1, u} is linearly independent) and z(u) can be any quadratic polynomial. On 
the other hand, if a �= 0, then

z(u) = z0 + c

a
u + c1

2au
2. (63)

Case (3): If λ2 = 0 but λ1 �= 0, then from the first expression of Eq. (57), we have c1 = 0 and from the 
second expression of Eq. (58), we have z(u) = z0 + z1u + z2u

2. Using this information in Eq. (57) gives 
z′ = 0 ⇒ z(u) = z0.

Case (4): If λ1, λ2 �= 0, then from the first expressions in both Eqs. (57) and (58), we have c1 = c2 = 0. 
The eigenvalue problems become {

z′′′ + λ1
b2

a2+b2 z
′ = 0

az′′′ + λ2
b2

a2+b2 (az′ − c) = 0
. (64)

Now, we have 2 sub-cases to be analyzed: a = 0 or a �= 0. If a = 0, then λ2c = 0 and, therefore, c = 0. 
Finally, the equation for λ1 gives

z′′′ + λ1z
′ = 0 ⇒ z(u) =

{
z0 + z1 cos(

√
λ1 u) + z2 sin(

√
λ1 u), λ1 > 0

z0 + z1 cosh(
√
−λ1 u) + z2 sinh(

√
−λ1 u), λ1 < 0

.

On the other hand, if a �= 0, then from the first expression of Eq. (64),

z(u) =
{

z0 + z1 cos(
√

Λ1 u) + z2 sin(
√

Λ1 u), if λ1 > 0
z0 + z1 cosh(

√
−Λ1 u) + z2 sinh(

√
−Λ1 u), if λ1 < 0

, (65)

where Λ1 = λ1
b2

a2+b2 . Using this in the second expression of Eq. (64), we have

(λ2 − λ1)z′ = c

a
λ2. (66)

If it were λ1 �= λ2, then we would have z(u) linear, what contradicts the expression for z(u) as a linear 
combination of (hyperbolic) trigonometric functions. Therefore, we conclude that λ1 = λ2, from which it 
follows from the expression above that c = 0. �
Corollary 5.1. Let M2

(a,b,c,c1,c2) be a parabolic revolution surface such that the minimal Gauss map Nm is of 
coordinate finite-type with eigenvalues λ1, λ2. If Nm is not harmonic, then M2

(a,b,c,c1,c2) is a non-isotropic 
cylinder generated by

(1) a parabola if λ1 = 0 or λ2 = 0, but not both; or
(2) a linear combination of (hyperbolic) sine and cosine functions if λ1λ2 �= 0.

Proof. All the surfaces from the cases (2.a), (4.a), and (4.b) in Theorem 5.1 are clearly cylinders parame-
terized as

P(u, t) = (u, 0, z(u)) + t(a, b, 0), (67)

where z(u) is either quadratic or a linear combination of (hyperbolic) trigonometric functions. In case (2.b), 
after employing the coordinate change (v, t) = (u +at, t), the corresponding surface is the parabolic cylinder
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P(v, t) = (v, 0, z0 + c

a
v + c1

2av
2) + t(0, b, 0). (68)

Finally, for the remaining case (3), the corresponding surface is a parabolic cylinder

P(u, t) = β(t) + u(1, 0, 0), (69)

where the generating curve is the parabola β(t) = t(a, b, c) + [ bc22 t2 + z0](0, 0, 1). �
5.2. Parabolic revolution surfaces with coordinate finite-type minimal normal with prescribed boundary 
conditions

Notice that the spectra are continuous for all the surfaces obtained in Theorem 5.1. In fact, it is possible 
to find surfaces for any given value of (λ1, λ2) ∈ R2. (Notice that in cases (2.a), (2.b), (3), and (4.a) the 
solutions do not depend on one of the eigenvalues, what is explained by the fact that the corresponding 
coordinate of the normal field vanishes identically.) To obtain a discrete spectrum, it is necessary to impose 
some sort of boundary conditions on the generating curve α(u) = (u, 0, z(u)).

Proposition 5.1. Let M2
(a,b,0,0,0) be a parabolic revolution surface with generating curve α(u) = (u, 0, z(u))

and with coordinate finite-type minimal Gauss map Nm with λ1 = λ2. Let a, L > 0 be constant, it follows 
that, up to translations along the isotropic direction,

(1) if we assume homogeneous boundary conditions, z(a) = 0 = z(a + L), then⎧⎨⎩
z(u) = ζ0 sin

(√
Λn(u− a)

)
Λn = λnb

2

a2 + b2
= π2n2

L2 , n ∈ {1, 2, 3, . . . }
, (70)

where ζ0 is a constant.
(2) if we assume periodic boundary conditions, ∀k ∈ Z, z(a) = z(a + kL), then⎧⎨⎩

z(u) = z1 cos(
√

Λnu) + z2 sin(
√

Λnu)

Λn = λnb
2

a2 + b2
= 4π2n2

L2 , n ∈ {0, 1, 2, . . . }
. (71)

Proof. Without loss of generality, we may set z0 = 0 in the general solutions from Theorem 5.1. (Geomet-
rically, z0 is associated with a translation of the corresponding surface along the isotropic direction.)

Case (1): From Theorem 5.1 we can see that we should have λ > 0 and, therefore, z(u) = z1 cos(
√

Λu) +
z2 sin(

√
Λu). Now, applying the boundary conditions, we are led to the following equations{

z1ca + z2sa = 0
(cacL − sasL)z1 + (sacL + casL)z2 = 0

, (72)

where cx = cos(
√

Λx) and sx = sin(
√

Λx). Since (z1, z2) �= (0, 0), the above system of equations is degen-
erate and, then, the following determinant vanishes∣∣∣∣∣ ca sa

(cacL − sasL) (sacL + casL)

∣∣∣∣∣ = 0 ⇒ sL = 0. (73)

Finally, since z(u) is a non-trivial solution, it follows that sin(
√

ΛL) = 0 and that 
√

ΛL must assume the 
discrete values 

√
Λn L = nπ for n = 1, 2, . . . . Now, writing (z1, z2) = (ζ sinφ, ζ cosφ), ζ �= 0, we have



A. Kelleci, L.C.B. da Silva / J. Math. Anal. Appl. 495 (2021) 124673 17
0 = z(a) = ζ sin(
√

Λna + φ) ⇒ φ = kπ −
√

Λna, k ∈ Z. (74)

Finally, we can rewrite the general solution as

z(u) = ζ sin(
√

Λnu + φk) = ζ sin(
√

Λn(u− a) + kπ) = ζ0 sin(
√

Λn(u− a)), (75)

where ζ0 = (−1)kζ.
Case (2): As in the previous case, here the eigenvalues should be also positive. Working with the solution 

in its complex form, z(u) = c0ei
√

Λu, and applying the boundary conditions implies

ei
√

Λ a = ei
√

Λ (a+L) ⇒ ei
√

ΛL = 1. (76)

Then, 
√

ΛL must assume the discrete values 
√

ΛnL = 2nπ, ∀ n = 0, 1, 2, . . . . �
5.3. Parabolic revolution surfaces with parabolic Gauss map of coordinate finite-type

On Theorem 5.1, we investigated the eigenvalue problem for Nm. The problem for the third coordinate 
of Nm is trivial, but the solutions for the first two coordinates can be applied to the parabolic Gauss map. 
The strategy now consists in checking the compatibility of the solution for the first coordinates G1 and G2

with the last one G3.
The Laplacian of a parabolic revolution surface, Eq. (29), when applied to G3, Eq. (28), gives

ΔG3 = −
(
a2 + b2

)2
b4

(z′′ 2 + z′z′′′) +
a
(
a2 + b2

)
(c + c1u)

b4
z′′′ +

+ 2a[2b2c1 + a(ac1 − bc2)]
b4

z′′ − (ac1 − bc2)2 + 2b2c21
b4

+ t

b3
(
a2 + b2

)
(ac2 − bc1) z′′′. (77)

The analysis now will be divided into two instances. The first theorem below refers to λ1 = λ2 = 0
while the second refers to λ1 = λ2 �= 0. Notice we must assume that λ1 = λ2 in order to avoid trivial 
eigenproblems, i.e., G1 or G2 identically zero.

Theorem 5.2. Let M2
(a,b,c,c1,c2) be a parabolic revolution surface with generating curve α(u) = (u, 0, z(u))

and whose top-view projection of the parabolic Gauss map G is of finite-type, as described in Theorem 5.1, 
with λ1 = λ2 = 0. In addition, if the third coordinate of G is a non-zero eigenfunction, then λ3 = 0, 
(a, b, c, c1, c2) = (a, b, c, 0, 0), and z(u) = z0 + z1u.

Proof. Since λ1 and λ2 vanishes, we must have z(u) = z0 +z1u +z2u
2, which gives z′ = z1 +2z2u, z′′ = 2z2, 

and z′′′ = 0. Noticing that the eigenvalue problem −ΔG3 = λ3G
3 can be written as a polynomial of degree 

2 in t, we are led to three equations. The equations associated with t2 and t are{
λ3
2 (c21 + c22) = 0

λ3
b [(ac2 − bc1)(z1 + 2z2u) − c2(c + c1u)] = 0

, (78)

respectively. We have two sub-cases to consider, either λ3 = 0 or λ3 �= 0. We are going to show that λ3
must vanish.

If it were λ3 �= 0, then from the first expression in Eq. (78), we would have c1 = c2 = 0 (the second 
expression would be trivially satisfied). Finally, the part of −ΔgG

3 = λ3G
3 depending on t0 = 1 leads to 

the equation
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4(a2 + b2)2

b4
z2
2 = λ3

2

(
1 − c2

b2
+ 2ac

b2
z1 −

a2 + b2

b2
z2
1

)
+ 2λ3z2(

ac

b2
− a2 + b2

b2
z1)u− 2λ3

a2 + b2

b2
z2
2u

2. (79)

From the coefficient in u2, we deduce that z2 = 0 or a2 + b2 = 0. Since b �= 0, we conclude z2 = 0 and, in 
addition, it follows that the coefficient in u vanishes identically. In short, if it were λ3 �= 0, we would have 
c1 = c2 = 0, z(u) = z0 + z1u, and the parabolic normal would be

G = (−z1,
az1 − c

b
,
1
2 − c2

2b2 + acz1

b2
− (a2 + b2)z2

1
2b2 ), (80)

which is a constant vector and, consequently, it is not compatible with λ3 �= 0.
Now, let us assume that λ3 = 0. We have to analyze the equation

ΔG3 = 4az2[2b2c1 + a(ac1 − bc2)]
b4

− 4z2
2(a2 + b2)2

b4
− (ac1 − bc2)2 + 2b2c21

b4
= 0.

Seeing it as a degree 2 polynomial in c1, the corresponding discriminant D1 is

D1 = − 8
b4

[
c22 + 2(a2 + 2b2)z2

2
]
≤ 0.

To guarantee c1 ∈ R, we then have D1 = 0 and, consequently, (a2 + 2b2)z2
2 = 0 and c22 = 0. Since b �= 0, we 

conclude that c2 = z2 = 0. Consequently, ΔG3 becomes

ΔG3 = −a2c21 + 2b2c21
b4

= 0.

Thus, a2c21 = 0 and b2c21 = 0 and, since b �= 0, we conclude in addition that c1 = 0. In short, λ1 = λ2 = 0
and λ3 = 0 implies (a, b, c, c1, c2) = (a, b, c, 0, 0) and z(u) = z1u + z0. �
Theorem 5.3. Let M2

(a,b,c,c1,c2) be a parabolic revolution surface with generating curve α(u) = (u, 0, z(u))
and whose top-view projection of the parabolic Gauss map G is of coordinate finite-type, as described in 
Theorem 5.1, with λ = λ1 = λ2 �= 0. In addition, if the third coordinate of G is a non-zero eigenfunction, 
then M2

(a,b,c,c1,c2) = M2
(a,b,0,0,0) belongs to one of the following families:

(1) If λ3 = 0, then z(u) = z0.
(2) If λ3 �= 0, then λ3 = 4λ and

z(u) =

⎧⎪⎨⎪⎩
z0 +

√
2
Λ sin(

√
Λu + φ0), if λ > 0

z0 +
√

− 2
Λ sinh(

√
−Λu + φ0), if λ < 0

, (81)

where z0 and φ0 are constant and Λ = λb2/(a2 + b2).

Proof. Since (a, b, c, c1, c2) = (a, b, 0, 0, 0), the eigenvalue problem −ΔgG
3 = λ3G

3 becomes

(
a2 + b2

b2

)2

(z′′ 2 + z′z′′′) = λ3

2 (1 − a2 + b2

b2
z′ 2). (82)

Case (1): If λ3 = 0, then 1
2(z′ 2)′′ = (z′z′′)′ = (z′′ 2 + z′z′′′) = 0, whose general solution has the form 

z(u) = ± 2
3u0

(u0 u + u1)3/2 + u2. Unless z(u) = z0, this contradicts the expression of z(u) as a linear 
combination of (hyperbolic) trigonometric functions.
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Case (2): If λ3 �= 0, we have the equation

1
2

(
a2 + b2

b2

)2

(z′ 2)′′ = λ3

2 (1 − a2 + b2

b2
z′ 2) ⇒ w′′ = − λ3b

2

a2 + b2
w,

where w = a2+b2

b2 z′ 2 − 1. Then, defining Λ3 = b2λ3
a2+b2 , we have

z′ 2 =
{

b2

a2+b2

[
1 + w1 cos(

√
Λ3 u) + w2 sin(

√
Λ3 u)

]
, if λ3 > 0

b2

a2+b2

[
1 + w1 cosh(

√
−Λ3 u) + w2 sinh(

√
−Λ3 u)

]
, if λ3 < 0

. (83)

As a first consequence, λ3 should have the same sign as λ since the signs of λ and λ3 determine whether 
the solution involves {cos, sin} or {cosh, sinh}. Let us first assume that λ > 0. Then, we can write

z(u) = z0 + z1 cos(
√

Λu) + z2 sin(
√

Λu) (84)

and

z′(u) = −z1
√

Λ sin(
√

Λu) + z2
√

Λcos(
√

Λu). (85)

Using the identities cos2 x = 1
2 + 1

2 cos 2x and sin2 x = 1
2 − 1

2 cos 2x, we have

z′ 2 = Λz2
1 sin2(

√
Λu) + Λz2

2 cos2(
√

Λu) + 2z1z2Λ sin(
√

Λu) cos(
√

Λu)

= z2
1 + z2

2
2 Λ + z2

2 − z2
1

2 Λ cos(2
√

Λu) + z1z2Λ sin(2
√

Λu).

Compatibility of the solutions demands the following relations between the parameters {wi, λ3} and {zi, λ},

λ3 = 4λ and 2 = λ(z2
1 + z2

2), (86)

respectively. Finally, writing z2 = ζ cosφ0 and z1 = ζ sinφ0, we deduce from the second equation that ζ2 =
2/λ, while φ0 is an arbitrary constant. The expression for z(u) follows from sin(x +y) = sin x cos y+cosx sin y.

For the case λ < 0, we can write

z(u) = z0 + z1 cosh(
√
−Λu) + z2 sinh(

√
−Λu) (87)

and

z′(u) = z1
√
−Λ sinh(

√
−Λu) + z2

√
−Λcosh(

√
−Λu). (88)

Using that cosh2 x = 1
2 + 1

2 cosh 2x and sinh2 x = −1
2 + 1

2 cosh 2x, we have

z′ 2 = −Λz2
1 sinh2(

√
−Λu) − Λz2

2 cosh2(
√
−Λu) − 2z1z2Λ sinh(

√
−Λu) cosh(

√
−Λu)

= −Λz2
2 − z2

1
2 − Λz2

2 + z2
1

2 cosh(2
√
−Λu) − z1z2Λ sinh(2

√
−Λu).

Compatibility of the solutions demands the following relations between the set of parameters {wi, λ3} and 
{zi, λ},

λ3 = 4λ and 2 = λ(z2
1 − z2

2), (89)
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respectively. Finally, writing z2 = ζ coshφ0 and z1 = ζ sinhφ0, we deduce from the second equation that 
ζ2 = −2/λ, while φ0 is an arbitrary constant. The expression for z(u) follows from the identity sinh(x +y) =
sinh x cosh y + cosh x sinh y. �
6. Simply isotropic surfaces with harmonic Gauss map

From Theorems 4.1 and 5.1 we can deduce that those surfaces with harmonic minimal normal, ΔNm = 0, 
have constant isotropic mean curvature, see Figs. 1 and 3. (See [22] for the characterization of invariant 
surfaces with constant isotropic mean curvature.) In this final section we show that this is valid in general. 
More precisely, now we address the problem of characterization those surfaces with harmonic minimal or 
parabolic Gauss map without the assumption that they are invariant.

Any admissible surface can be parameterized in normal form as the graph of a smooth function f :

x(u1, u2) = (u1, u2, f(u1, u2)). (90)

Then, the vectors spanning the tangent planes are x1 = (1, 0, f1) and x2 = (0, 1, f2), where fi = ∂f/∂ui. 
The minimal and parabolic normals are

Nm = (−f1,−f2, 1) and G = (−f1,−f2,
1
2 − 1

2(f2
1 + f2

2 )), (91)

respectively. Finally, the first and second fundamental forms are

I = (du1)2 + (du2)2 and II = fijduiduj , (92)

from which we compute the shape operator, mean and Gaussian curvatures as

S(p) = Hesspf, H = Δf

2 , and K = f11f22 − f2
12, (93)

where fij = ∂2f/∂ui∂uj .

Proposition 6.1. The Laplacian of the minimal and parabolic normal vector fields are given by

ΔNm = (−2H1,−2H2, 0) and ΔG = −2∇H − tr(S2)N , (94)

where Hi = ∂H/∂ui, ∇H = H1x1 + H2x2, tr(S2) = 4H2 − 2K, and N = (0, 0, 1) is the metric isotropic 
normal.

Proof. Since the metric in normal form is the identity, the Laplace-Beltrami operator of M2 is just the 
usual plane Laplacian operator Δ = ∂2

1 + ∂2
2 . Then,

ΔNm = (−Δf1,−Δf2, 0) = (−f111 − f122,−f211 − f222, 0)

= (−∂1Δf,−∂2Δf, 0) = (−2H1,−2H2, 0). (95)

On the other hand, for the parabolic normal

ΔG = (−Δf1,−Δf2,Δ(1
2 − f2

1 + f2
2

2 ))

= −(∂1Δf, ∂2Δf, f1∂1Δf + f2∂2Δf + (f11 + f22)2 − 2f11f22 + 2f2
12)
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= −(∂1 Δf)x1 − (∂2 Δf)x2 − [(trS)2 − 2 detS]N

= −2∇H − tr(S2)N , (96)

where we used that tr(S2) = (trS)2 − 2 detS = 4H2 − 2K. �
In Euclidean space, the Laplacian of the surface normal Neucl is

ΔgNeucl = −2∇H − tr(S2)Neucl. (97)

Thus, the Laplacian of the parabolic normal can be seen as the isotropic analog of this expression, but in 
I3 we have to mix together two types of normal vector fields, G and N . (As a matter of fact, the isotropic 
analog of the known expression for the position vector of a surface in E3, namely Δgx = 2HNeucl, is given 
by Δgx = 2HN [38].) On the other hand, the minimal normal allows us to characterize constant mean 
curvature isotropic surfaces.

Theorem 6.1. Let M2 ⊂ I3 be an admissible surface, then

(1) The minimal normal Nm is harmonic, ΔNm = 0, if and only if M2 has constant isotropic mean 
curvature;

(2) The parabolic normal G is harmonic, ΔG = 0, if and only if M2 is a piece of a plane.

Proof. Case (1): notice that ΔNm = 0 ⇔ H1 = 0 and H2 = 0.
Case (2): here ΔG = 0 ⇔ ∇H = 0 and tr(S2) = 0. Since tr(S2) = (f11)2 + 2(f12)2 + (f22)2, then 

tr(S2) = 0 if and only if fij = 0. This last condition is equivalent to f(x, y) = Ax + By + C, for some 
constants A, B, C. �
7. Concluding remarks

In this work, we pointed to the fact that in I3 there are more than one meaningful way to define a Gauss 
map. To better understand this issue, we studied invariant surfaces with coordinate finite-type Gauss map 
by choosing either the minimal Nm or the parabolic G normal, Eqs. (8) and (11). For Nm, this generically 
led us to (at least 4-parameters) families of invariant surfaces in Theorems 4.1 and 5.1. On the other hand, 
for G, the same condition is much more restrictive: we only have planes and certain trigonometric cylinders 
in Theorems 4.2, 5.2, and 5.3. It is worth comparing these results with their Euclidean counterparts. When 
applied to invariant surfaces in E3, the coordinate finite-type condition leads to circular cylinder and spheres 
[6,7,24] only, in contrast to what happens in isotropic space where we may have very distinct classes of 
solutions depending on the choice of the Gauss map.

It remains to attack the same problem without the hypothesis of invariance. In this respect, it would be 
interesting to look for examples in other classes of surfaces, such as translation [4,8–10,41] and factorable 
[5] surfaces. Here, we were only able to characterize non-necessarily invariant surfaces with harmonic Gauss 
map. This led us to constant mean curvature surfaces for Nm and planes for G, Theorem 6.1. It is worth 
mentioning that it is also possible to characterize constant mean curvature surfaces in E3 by using their 
Gauss map by relaxing the eigenvalue equation in allowing it to be satisfied pointwisely [34,43], see Eq. 
(97). Thus, we may naturally ask how much can we enlarge the class of solutions by studying surfaces with 
pointwise finite-type Gauss map in I3.
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