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Abstract

In the literature, when dealing with equilibrium problems and the existence of their solutions, the
most used assumptions are the convexity of the domain and the generalized convexity and monotonic-
ity, together with some weak continuity assumptions, of the function. In this paper, we focus on
conditions that do not involve any convexity concept, neither for the domain nor for the function
involved. Starting from the well-known Ekeland’s theorem for minimization problems, we find a
suitable set of conditions on the functighthat lead to an Ekeland’s variational principle for equi-
librium problems. Via the existence efsolutions, we are able to show existence of equilibria on
general closed sets for equilibrium problems and systems of equilibrium problems.

0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

By an equilibrium problem we understand the problem of finding
xe D suchthatf(x,y) >0, Vye D, (EP)
whereD is a given set, and' : D x D — R is a given function.
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This problem was considered in the past with the aim of extending results concerning
particular problems like optimization problems, complementarity problems, fixed point
problems and variational inequalities (see [6] for a survey).

More recently, inspired by the study of systems of vector variational inequalities, Ansari
et al. [1] introduced and investigated systems of equilibrium problems.

Let m be a positive integer. By a system of equilibrium problems we understand the
problem of findingx = (x1, ..., X,;) € D such that

fi(x,yi) =0, Viel, Vy; €D, (SEP)

wheref;: D x D — R, D =[][7 D;, andD; is a given set.

In literature, the convexity and closure of the getind the generalized convexity and
monotonicity, together with some weak continuity assumptiong owere the most used
assumptions in dealing with equilibrium problems (see, for instance, [3,5]). Similar as-
sumptions can be found in the study of solutions of systems of equilibrium problems.

More recently a few authors have looked for methods aimed at finding approximate so-
lutions; most of the algorithms developed for solving (EP) can be derived from equivalent
formulations of the equilibrium problem itself. Along this line, Cohen [7] developed such
methods for solving VI and optimization problems, and Mastroeni [10] generalized them
focusing the attention on fixed-point formulations of (EP).

In this paper, we show the existence of approximated equilibria for (EP) and (SEP)
on both compact and noncompact sets. Starting from the well-known Ekeland’s theorem
for minimization problems, we find a suitable set of conditions on the functions that do
not involve convexity and lead to an Ekeland’s variational principle for equilibrium and
system of equilibrium problems. Via the existence of approximate solutions, we are able to
show the existence of equilibria on general closed sets. Our setting is an Euclidean space,
even though the results could be extended in reflexive Banach spaces, by adapting the
assumptions in a standard way.

2. Ekeland’s principle for equilibrium problems

The Ekeland’s variational principle has been widely used in nonlinear analysis since it
entails the existence of approximate solutions of a minimization problem for lower semi-
continuous functions on a complete metric space (see, for instance, [2]). Since minimiza-
tion problems are particular cases of equilibrium problems, wiérey) = g(y) — g(x),
one is interested in extending Ekeland’s theorem to the setting of an equilibrium problem.
We start with formulating this general result, involving a bifunctjpn

Let D C X be a closed set, whepé is an Euclidean space, anfd D x D — R.

Theorem 2.1.Assume that the following assumptions are satisfied

() f(x,-)islower bounded and lower semicontinuous, for eweeyD;
(i) f(t,1)=0,for everyr € D;
(i) f(z,x) < f(z,y)+ f(y,x), foreveryx,y,z e D.
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Then, for every > 0 and for everyxg € D, there exists € D such that
{ S (x0, %) +€llxo — x|l <O,

2.1
fx,x)+e€llx—x||>0, VxeD, x#X. (2.1)

Proof. Without loss of generality, we can restrict the proof to the easel. Denote by
F(x) the set

F(x):={yeD: f(x,y)+ Iy — x| <0}.

By (i), F(x) is closed, for every € D; by (ii), x € F(x), henceF(x) is nonempty for
everyx € D. Assumey € F(x), i.e., f(x,y) + |ly — x|l <0, and letz € F(y) (i.e.,
F(,2) + Iy — zll < 0). Adding both sides of the inequalities, we get, by (iii),

0= fe,+lly—xl+ /D +Illy—zl = fx,2) + llz —xIl,

thatis,z € F(x). Thereforey € F(x) implies F(y) C F(x).
Define

v(x) = Zeip(‘x)f(x, 2).

For everyz € F(x),

lx =zl < —f(x,2) < sup (—f(x.2))=— inf f(x,2)=—v(x),
Z€F (x) zeF(x)

that is,
lx —zl| < —v(x), Vze F(x).
In particular, ifxy, x2 € F(x),
llx1 — x2fl < flx = xall + [lx — x2]l < —v(x) —v(x) = —2v(x),
implying that
diam(F(x)) <—2v(x), VxeD.
Fix xg € D; x1 € F(xg) exists such that
f(xo, x1) < v(xg) +27%
Denote byx, any point inF (x1) such that
fx1,x2) vlxy) +272

Proceeding in this way, we define a sequefgg of points of D such thaty, 11 € F(x,)
and

f(xny Xp+1) < v(x,) + 27(n+l).
Notice that

v(x = inf Xp+1,y) = inf X1,
(Xn+1) yeF(x,Hl)f( 41, ) yGF(x,,)f( 41, Y)

\%

inf )(f(xn, y) — f(xn, xn+1))<yeip(fxn) S (xn, y)) — [ (X, Xp41)

yEF(xn

=v(xy) — f (X, Xnt1).
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Therefore,
V(Xnt1) Z v(Xn) — f (Xn, Xut1),
and
—v(n) < = f G Xng1) + 27D < (v(ragn) — v () + 27D,
that entails
0<v(xpt1) + 2~ (n+Dh)
It follows that
diam(F(xy)) < —2v(x,) <2:27" -0, n— oo.

The setq F(x,)} being closed and ' (x,+1) € F(x,), we have that

[ F ) = (x}.

Sincex € F(xp), then
f(x0,%) + [lx — xoll <O.
Moreover,x belongs to allF'(x,), and, sinceF (x) C F(x,), for everyn, we get that
F(x) = {x}.
It follows thatx ¢ F(x) whenever # x, implying that
F,x)+lx — x|l >0.
This completes the proof.O
Remark 2.1.Any function f (x, y) = g(y) — g(x) trivially satisfies (iii), but there are other

functions, not of this form, that fall into the framework of Theorem 2.1. Take, for instance,
the function
e 14 0(y) —g(x), x#y,
f&x,y)=
0, xX=y,

whereg is a lower bounded and lower semicontinuous function.

Remark 2.2. Condition (iii) of Theorem 2.1 implies the cyclic monotonicity eff, that
extends a similar definition given for mappings in the framework of variational inequalities
(see [11]): for everyy, x2, ..., x, € D we have

Z f(xiyxip1) 20, (2.2)
i=1
wherex,+1 = x1. Indeed, takingc = z in (iii), by (ii) we get f(x,y) + f(y,x) >0, and
(2.2) holds fom = 2. By induction, assuming that (2.2) holds fgrfrom (jii) the following
inequalities hold:
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n+1 n—1
Do fGixie) = ) G xig) + f G X)) + f (gt 6)
i=1 i=1

n—1

>3 f (i, xiq) + f(xn, x1) > 0.

i=1

In particular, the cyclic monotonicity of f implies the monotonicity of- f.

Let nowm be a positive integer, anbd= {1, 2, ..., m}. Consider the functiong; : D x
D; — R,i eI, whereD =]];,.; D;, and D; C X; is a closed subset of the Euclidean
spaceX;. An element of the seb’ = ]’[#i D; will be represented by’ ; thereforex € D
can be written as = (x', x;) € D' x D;. If x € [ X;, the symbol|||x||| will denote the
Chebyshev norm af, i.e., |||x||| = max ||lx;||; and we shall consider the Euclidean space
[1X: endowed with this norm.

The following result is an extension of Theorem 2.1.

Theorem 2.2.Assume that

() fi(x,): D; — R s lower bounded and lower semicontinuous for evesy/ ;
(i) fi(x,x;) =0foreveryi € I and everyx = (x1,...,x,) € D;
(”I) fi(Zaxi) < fi(Zs Yz) + fl(yv Xi)s for Eeveryx,y,z € D, Wherey = (yiv }’i), and for
everyi € I.

Then for every > 0 and for everyx® = (x?,...,x%) € D there existst = (¥1, ..., %)
€ D such that for each € I one has

£ %) +e|x? - 5|, <0 (2.3)
and

fiGe, xi) +ellxi —xilli >0, Vx; € D;, x; #X;. (2.4)

Proof. As before, we restrict the proof to the case- 1. Leti € I be arbitrarily fixed.
Denote for every € D,

Fi(x):=={yi € Di: fi(x,y)+ llxi — yill: <0}

These sets are closed and nonempty (for evegy(x1, ..., x,) € D we havex; € F;(x)).
Define for eachx € D,

vi(x) = inf )ﬁ(x,Zi).

zieF;(x

In a similar way as in the proof of Theorem 2.1 one can show that@digm)) < —2v; (x)
foreveryx e Dandi e 1.
Fix nowx® e D and select for eache I an element? € F;(x%) such that

(% x) v +27L
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Putx!:= (x1,...,x1) € D and select for eache I an element? € F; (x?) such that
ﬁ(xl, xlz) <v; (xl) +2°2,

Putx?:= (x2,...,x2) € D. Continuing this process we define a sequeiég in D such

thatxl.'l+l € F;(x™) for eachi € I andn € N and
fi(x", 2 (e 427 04D,

Using the same argument as in the proof of Theorem 2.1, one can show that
diam(F,-(x")) <—2v;,(x")<2-27"=0, n— oo,

for eachi € I.
Now define for eaclr € D the sets

F(x):=Fi(x) x--- X Fp(x) € D.

The setsF(x) are closed and using (iii) it is immediate to check that for epaehF (x)
it follows that F(y) € F(x). Therefore, we also hav&(x"t1) € F(x") for eachn =
0,1,.... Onthe other hand, for eagh z € F(x") we have

Iy — z|ll = max|ly; — zill; < maxdiam(F;(x")) — O,
iel iel

thus, dianiF (x")) — 0 asn — oo. In conclusion we have
o0
(F&" ={s}. ¥eD.
n=0

Sincex € F(x9), i.e.,x; € F;(x%) (i € I) we obtain
£i60 5 + [« - x|, <0, Viel

and so, (2.3) holds. Moreover e F(x") impliesF(x) € F(x")foralln =0, 1, ..., there-
fore,

F(x) = {x}
implying
Fi(x)={x;}, Viel.

Now for everyx; € D; with x; # x; we have by the previous relation that¢ F;(x) and
o)

fi(x, x;) + 1% — xi|l; > O.
Thus (2.4) holds too, and this completes the proaf.

3. New existence results for equilibria on compact sets

In literature, the condition of proper quasimonotonicity is frequently used when dealing
with (EP) on convex sets. Recall that a functipnD x D — R is properly quasimonotone
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on D x D if, for every finite setA of the convex seD, and for everyx € co(A), the
following inequality is satisfied:

maxf(x,y) = 0.
yeA

The following result provides a sufficient condition to solve (EP) on compact, convex
sets.

Proposition 3.1(see, for instance, [3]Let D be a compact, convex set, and JetD x
D — R be a properly quasimonotone and upper semicontinuous function in its first vari-
able. Then the solution set ¢EP)is nonempty.

The next result shows that under suitable assumptions, @moper quasimonotonicity
is necessary and sulfficient for solvability of (EP). Indeed, the following result holds.

Theorem 3.1(see [3]) Let D be a compact, convex set, and fetD x D — R be an upper
semicontinuous and quasiconvex function in its first variahlen the following conditions
are equivalent

(i) f is properly quasimonotone
(ii) for any finite setdA C D there exists € co(A) such thatr is a solution of(EP);
(iii) (EP) has a solution on every compact convex subsél.of

In this section, using Theorems 2.1 and 2.2, we are able to show the nonemptiness of
the solution set of (EP) and (SEP), without any convexity requirement. To this purpose,
we introduce a definition of approximate equilibrium point, for both cases (see [9] for a
definition of approximate equilibrium for functions defined on product spaces). We start
our analysis with (EP).

Definition 3.1. Given f: D x D — R, ande > 0, x is said to be ar-equilibrium point
of f if
fG&,y) = —€llx—yll, VyeD. (3.1)
Thee-equilibrium point is strict, if in (3.1) the inequality is strict for gll£ x.
Notice that the second relation of (2.1) gives the existence of astequilibrium point,

for everye > 0. Moreover, by (ii) and (iii) of Theorem 2.1 it follows by the first relation
of (2.1) that

J (¥, x0) = €[lx — xoll,

“localizing,” in a certain sense, the position of the
We will show, using Theorem 2.1, that a set of conditions different and not comparable
to Proposition 3.1, can be considered to ensure the nonemptiness of the solution set of (EP).

Proposition 3.2.Let D be a compac{not necessarily convixsubset of an Euclidean
space, andf : D x D — R be a function satisfying the assumptions
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() f(x,-) islower semicontinuous, for everye D;
(iiy f(,1)=0,foreveryt € D;
(i) f(z,x) < f(z,y)+ f(y,x), foreveryx, y,z € D;
(iv) f(-,y) is upper semicontinuous, for every D.

Then, the set of solutions ¢EP)is nonempty.

Proof. For eachm € N, let x, € D a 1/n-equilibrium point (such point exists by Theo-
rem2.1),i.e.,

1
f(xn7)’)>_;||xn_)’||7 VyeD

Since D is compact, we can choose a subsequdngg of {x,} such thatx,, — x as
n — oo. Then, by (iv),

- . 1
f(x,y)=lim SUP(f(xnk, )+ allxnk - yll), VyeD,

k—o00

thereby proving that is a solution of (EP). O

Remark 3.1. Although Propositions 3.1 and 3.2 provide sufficient conditions for the ex-
istence of solutions of (EP), they are not comparable, i.e., none of them can be deduced
from the other. While condition (iv) of Proposition 3.2 appears explicity among the as-
sumptions of Proposition 3.1 as well, in Proposition 3.2 no convexity of the set is required.
However, lower semicontinuity with respect to the second variablg f assumed only

in Proposition 3.2. Observe also that a slightly weaker form of condition (ii) of Proposi-
tion 3.2 holds implicitly at Proposition 3.1: taking the set= {x} for arbitraryx € D,

by proper quasimonotonicity of is immediate thatf (x, x) > 0. What is interesting to
remark is the difference between the main assumptions of these propositions: proper qua-
simonotonicity in case of Proposition 3.1, and condition (iii) in case of Proposition 3.2.
As the following two simple examples show, these assumptions are not related. The func-
tion f:[—1,1] x [-1, 1] — R defined asf (x, y) = x? — y? satisfies the assumptions of
Proposition 3.2, but is not properly quasimonotone (take, for instatnee{—1, 1} and

x = 0). On the other hand, the functiofi: R x R — R, defined asf (x, y) = xy — x2,

is quasiconvex in its second variable afi@d, r) = 0, therefore is properly quasimonotone
(see [3, Proposition 1.1]), but it does not satisfy condition (iii) of Proposition 3.2.

Another fact which can be observed is the difference between the proofs of these two
propositions. While proving Proposition 3.1 one needs to apply “heavy” results of func-
tional analysis like Ky Fan’s lemma [8], whose proof is based on the Brouwer’s fixed point
theorem, the proof of Proposition 3.2 has been performed using only elementary results.
Indeed, the proof of Theorem 2.1 (similarly to the proof of Ekeland’s principle) uses only
the simple fact that the intersection of a sequence of descending closed sets in a complete
metric space is a singleton, provided the sequence of their diameters converges to zero. On
the other hand, as seen, Proposition 3.2 is a simple consequence of Theorem 2.1.

In this way, by means of Proposition 3.2 we have provided an existence result concern-
ing (EP), whose proof is elementary.
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Let us now consider the following definition efequilibrium point for systems of equi-
librium problems.

Definition 3.2.Let D;, i € 1, be subsets of certain Euclidean spaces andpst] [;.; D;.
Given f;:D x D; > R, i € I ande > 0, x € D is said to be ar-equilibrium point of

{f1, f2, vy S} Of
fi(x, yi) > —€llxi — yill;, VYyieD;, Viel. 3.2)

The following result is an extension of Proposition 3.2, and it can be proved in a similar
way.

Proposition 3.3.Assume that, for everye I, D; is compact andf; : D x D; - Ris a
function satisfying the assumptions

(i) fi(x,-) islower semicontinuous, for everye D;

(i) fi(x,x;) =0, foreveryx = (x', x;) € D;
(i) fi(z.xi) < fi(z. yi) + fi(y. xi), for everyx, y, z € D, wherey = (', y;);
(iv) fi(-, y;) is upper semicontinuous, for eveyye D;.

Then, the set of solutions ¢SEP)is nonempty.

4. Equilibria on noncompact sets

We consider now the case of a noncompact3efirst in the case of (EP), then for
(SEP). The study of the existence of solutions of the equilibrium problems on unbounded
domains usually involves the same sufficient assumptions as for bounded domains together
with a coercivity condition. Bianchi and Pini [4] found coercivity conditions as weak as
possible, exploiting the generalized monotonicity properties of the fungtidefining the
equilibrium problem.

Let D be a closed subset of, not necessarily convex, not necessarily compact, and
f:D x D — R be a given function.

Consider the following coercivity condition (see [4]):

Ir>0:Vxe D\ K,, Aye D, |yl < xll: f(x,y) <0, (C1)

whereK, :={x e D: ||x| <r}.
We now show that within the framework of Proposition 3.2, conditiop) (@Liarantees
the existence of solutions of (EP) without supposing compactneds of

Theorem 4.1.Suppose that

(i) f(x,-)islower bounded and lower semicontinuous for evegyD;
(i) f(t,1)=0foreveryt € D;
(i) f(z,x) < f(z,y)+ f(y,x) foreveryx, y,z € D;
(iv) f(,y)is upper semicontinuous for eveyye D.



M. Bianchi et al. / J. Math. Anal. Appl. 305 (2005) 502-512 511

If (C1) holds, then([EP)has a solution.

Proof. We may suppose without loss of generality tikgtis nonempty. For each € D
consider the nonempty set
S():={yeD: [yl <llxl: f(x,y) <0}

Observe that for every, y € D, y € S(x) implies S(y) C S(x). Indeed, forz € S(y) we
have|z|| < [yl < [lx]l and by (i) f(x,2) < f(x,y) + f(y,2z) <0. On the other hand,
sinceK x| is compact, by (i) we obtain th&t(x) € K| is a compact set for evenye D.
Furthermore, by Proposition 3.2, there exists an elemeatk, such that

f(xrs )’) > 07 Vy e Kr- (41)
Suppose that there exists D with f(x,, x) < 0 and put

a:= min
mn Iyl

(the minimum is achieved sinc®(x) is nonempty, compact and the norm is continuous).
We distinguish two cases.

Casel:a <r.Letyg e S(x) suchthat|ygl| = a < r. Then we havef (x, yo) < 0. Since
f(xr, x) <0, it follows by (iii) that

FOr,y0) < flxr,x)+ f(x, y0) <0,

contradicting (4.1).

Case2:a > r. Letagainyg € S(x) suchthat|yg|| = @ > r. Then, by(C1) we can choose
an elemenyy € D with ||y1]| < ||yoll = a such thatf (yo, y1) < 0. Thus,y1 € S(yp) € S(x)
contradicting

<a= min .
lyall Jmn Iyl

Therefore, there is n® € D such thatf (x,, x) <0, i.e.,x, is a solution of (EP) (orD).
This completes the proof.O

Next we consider (SEP) for noncompact setting. Let us consider the following coercivity
condition:

3r > 0: Vx € D such that|x;||; > r for somei € I,
Ayi € D, Nlyilli < llxill; and f; (x, y;) <O. (CS)

We have the following result.
Theorem 4.2.Suppose that, for eveiye 1,

(i) fi(x,-) islower bounded and lower semicontinuous for evegyD;

(i) fi(x,x;) =0foreveryx = (x', x;) € D;
(iii) fi(z.xi) < fi(z. yi) + fi(y. x;) for everyx, y, z € D, wherey = (y', yi);
(iv) fi(-, y;) is upper semicontinuous for eveyye D;.
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If (CSp) holds, ther(SEP)has a solution.

Proof. For eachx € D and everyi € I consider the set
Si(x) :={yi € Dy, Ilyilli <llxilli, fi(x,yi) <0}

Observe that, by (iii), for every andy = (y', y;) € D, y; € S;(x) implies S;(y) C S; (x).
On the other hand, since the et € D;: |ly;ill; <r}= K;(r) is a compact subset db;,

by (i) we obtain thatS; (x) is a nonempty compact set for everye D. Furthermore, by
Proposition 3.3, there exists an elemente [[; K;(r) (observe, we may suppose that
K;(r) # @ foralli e I') such that

fitxr, ) =0, Vy €K;i(r), Viel (4.2)

Suppose that, is not a solution of (SEP). In this case, there exjsts/ andz; € D; with
fj(xr,zj) < 0. Letz/ € D/ be arbitrary and put = (z/, z;) € D. Define

aj:= min |y;|;.
Iy e Y

We distinguish two cases.
Casel: a; <r. Let y;(z) € Sj(z) such that||y;(z)|l; = a; < r. Then we have
fi(z,¥j(z)) <0. Sincef;(x,, z;) <0, it follows by (iii) that

[i(xr, 9j@) < fxr.2)) + f(2.5j(2)) <O,
contradicting (4.2).

Case2:a; > r.Letagainy;(z) € Sj(z) suchthal|y;(z)||; = a; > r.Lety’/ € D’ be ar-
bitrary and puti(z) = (3/, y;(z)) € D. Then, by(CS) we can choose an elemefte D;
with [ly;ll; < [1¥;(@)l; = a; such thatf;(y(z), y;) <O0. Clearly,y; € S;(3(z)) € S;(2),
a contradiction sincg; (z) has minimal norm ir§; (z). This completes the proof. O
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