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Abstract

In the literature, when dealing with equilibrium problems and the existence of their solution
most used assumptions are the convexity of the domain and the generalized convexity and mo
ity, together with some weak continuity assumptions, of the function. In this paper, we foc
conditions that do not involve any convexity concept, neither for the domain nor for the fun
involved. Starting from the well-known Ekeland’s theorem for minimization problems, we fi
suitable set of conditions on the functionf that lead to an Ekeland’s variational principle for eq
librium problems. Via the existence ofε-solutions, we are able to show existence of equilibria
general closed sets for equilibrium problems and systems of equilibrium problems.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

By an equilibrium problem we understand the problem of finding

x̄ ∈ D such thatf (x̄, y) � 0, ∀y ∈ D, (EP)

whereD is a given set, andf :D × D → R is a given function.
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This problem was considered in the past with the aim of extending results conce
particular problems like optimization problems, complementarity problems, fixed
problems and variational inequalities (see [6] for a survey).

More recently, inspired by the study of systems of vector variational inequalities, A
et al. [1] introduced and investigated systems of equilibrium problems.

Let m be a positive integer. By a system of equilibrium problems we understan
problem of findingx̄ = (x̄1, . . . , x̄m) ∈ D such that

fi(x̄, yi) � 0, ∀i ∈ I, ∀yi ∈ Di, (SEP)

wherefi :D × Di → R, D = ∏m
1 Di, andDi is a given set.

In literature, the convexity and closure of the setD and the generalized convexity an
monotonicity, together with some weak continuity assumptions onf , were the most use
assumptions in dealing with equilibrium problems (see, for instance, [3,5]). Simila
sumptions can be found in the study of solutions of systems of equilibrium problems

More recently a few authors have looked for methods aimed at finding approxima
lutions; most of the algorithms developed for solving (EP) can be derived from equiv
formulations of the equilibrium problem itself. Along this line, Cohen [7] developed s
methods for solving VI and optimization problems, and Mastroeni [10] generalized
focusing the attention on fixed-point formulations of (EP).

In this paper, we show the existence of approximated equilibria for (EP) and (
on both compact and noncompact sets. Starting from the well-known Ekeland’s th
for minimization problems, we find a suitable set of conditions on the functions th
not involve convexity and lead to an Ekeland’s variational principle for equilibrium
system of equilibrium problems. Via the existence of approximate solutions, we are a
show the existence of equilibria on general closed sets. Our setting is an Euclidean
even though the results could be extended in reflexive Banach spaces, by adap
assumptions in a standard way.

2. Ekeland’s principle for equilibrium problems

The Ekeland’s variational principle has been widely used in nonlinear analysis si
entails the existence of approximate solutions of a minimization problem for lower s
continuous functions on a complete metric space (see, for instance, [2]). Since min
tion problems are particular cases of equilibrium problems, wheref (x, y) = g(y) − g(x),
one is interested in extending Ekeland’s theorem to the setting of an equilibrium pro
We start with formulating this general result, involving a bifunctionf .

Let D ⊆ X be a closed set, whereX is an Euclidean space, andf :D × D → R.

Theorem 2.1.Assume that the following assumptions are satisfied:

(i) f (x, ·) is lower bounded and lower semicontinuous, for everyx ∈ D;
(ii) f (t, t) = 0, for everyt ∈ D;
(iii) f (z, x) � f (z, y) + f (y, x), for everyx, y, z ∈ D.
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Then, for everyε > 0 and for everyx0 ∈ D, there exists̄x ∈ D such that{
f (x0, x̄) + ε‖x0 − x̄‖ � 0,

f (x̄, x) + ε‖x̄ − x‖ > 0, ∀x ∈ D, x �= x̄.
(2.1)

Proof. Without loss of generality, we can restrict the proof to the caseε = 1. Denote by
F(x) the set

F(x) := {
y ∈ D: f (x, y) + ‖y − x‖ � 0

}
.

By (i), F(x) is closed, for everyx ∈ D; by (ii), x ∈ F(x), henceF(x) is nonempty for
every x ∈ D. Assumey ∈ F(x), i.e., f (x, y) + ‖y − x‖ � 0, and let z ∈ F(y) (i.e.,
f (y, z) + ‖y − z‖ � 0). Adding both sides of the inequalities, we get, by (iii),

0� f (x, y) + ‖y − x‖ + f (y, z) + ‖y − z‖ � f (x, z) + ‖z − x‖,
that is,z ∈ F(x). Thereforey ∈ F(x) impliesF(y) ⊆ F(x).

Define

v(x) := inf
z∈F(x)

f (x, z).

For everyz ∈ F(x),

‖x − z‖ � −f (x, z) � sup
z∈F(x)

(−f (x, z)
) = − inf

z∈F(x)
f (x, z) = −v(x),

that is,

‖x − z‖ � −v(x), ∀z ∈ F(x).

In particular, ifx1, x2 ∈ F(x),

‖x1 − x2‖ � ‖x − x1‖ + ‖x − x2‖ � −v(x) − v(x) = −2v(x),

implying that

diam
(
F(x)

)
� −2v(x), ∀x ∈ D.

Fix x0 ∈ D; x1 ∈ F(x0) exists such that

f (x0, x1) � v(x0) + 2−1.

Denote byx2 any point inF(x1) such that

f (x1, x2) � v(x1) + 2−2.

Proceeding in this way, we define a sequence{xn} of points ofD such thatxn+1 ∈ F(xn)

and

f (xn, xn+1) � v(xn) + 2−(n+1).

Notice that

v(xn+1) = inf
y∈F(xn+1)

f (xn+1, y) � inf
y∈F(xn)

f (xn+1, y)

� inf
y∈F(xn)

(
f (xn, y) − f (xn, xn+1)

)(
inf

y∈F(xn)
f (xn, y)

)
− f (xn, xn+1)
= v(xn) − f (xn, xn+1).



M. Bianchi et al. / J. Math. Anal. Appl. 305 (2005) 502–512 505

r
nce,

lities
Therefore,

v(xn+1) � v(xn) − f (xn, xn+1),

and

−v(xn) � −f (xn, xn+1) + 2−(n+1) �
(
v(xn+1) − v(xn)

) + 2−(n+1),

that entails

0� v(xn+1) + 2−(n+1).

It follows that

diam
(
F(xn)

)
� −2v(xn) � 2 · 2−n → 0, n → ∞.

The sets{F(xn)} being closed andF(xn+1) ⊆ F(xn), we have that⋂
n

F (xn) = {x̄}.

Sincex̄ ∈ F(x0), then

f (x0, x̄) + ‖x̄ − x0‖ � 0.

Moreover,x̄ belongs to allF(xn), and, sinceF(x̄) ⊆ F(xn), for everyn, we get that

F(x̄) = {x̄}.
It follows thatx /∈ F(x̄) wheneverx �= x̄, implying that

f (x̄, x) + ‖x − x̄‖ > 0.

This completes the proof.�
Remark 2.1.Any functionf (x, y) = g(y)−g(x) trivially satisfies (iii), but there are othe
functions, not of this form, that fall into the framework of Theorem 2.1. Take, for insta
the function

f (x, y) =
{

e−‖x−y‖ + 1+ g(y) − g(x), x �= y,

0, x = y,

whereg is a lower bounded and lower semicontinuous function.

Remark 2.2.Condition (iii) of Theorem 2.1 implies the cyclic monotonicity of−f , that
extends a similar definition given for mappings in the framework of variational inequa
(see [11]): for everyx1, x2, . . . , xn ∈ D we have

n∑
i=1

f (xi, xi+1) � 0, (2.2)

wherexn+1 = x1. Indeed, takingx = z in (iii), by (ii) we get f (x, y) + f (y, x) � 0, and
(2.2) holds forn = 2. By induction, assuming that (2.2) holds forn, from (iii) the following

inequalities hold:
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ce
n+1∑
i=1

f (xi, xi+1) =
n−1∑
i=1

f (xi, xi+1) + f (xn, xn+1) + f (xn+1, x1)

�
n−1∑
i=1

f (xi, xi+1) + f (xn, x1) � 0.

In particular, the cyclic monotonicity of−f implies the monotonicity of−f.

Let nowm be a positive integer, andI = {1,2, . . . ,m}. Consider the functionsfi :D ×
Di → R, i ∈ I , whereD = ∏

i∈I Di, andDi ⊂ Xi is a closed subset of the Euclide
spaceXi. An element of the setDi = ∏

j �=i Di will be represented byxi; therefore,x ∈ D

can be written asx = (xi, xi) ∈ Di × Di. If x ∈ ∏
Xi, the symbol�x� will denote the

Chebyshev norm ofx, i.e.,�x� = maxi ‖xi‖i and we shall consider the Euclidean spa∏
Xi endowed with this norm.
The following result is an extension of Theorem 2.1.

Theorem 2.2.Assume that

(i) fi(x, ·): Di → R is lower bounded and lower semicontinuous for everyi ∈ I ;
(ii) fi(x, xi) = 0 for everyi ∈ I and everyx = (x1, . . . , xm) ∈ D;

(iii) fi(z, xi) � fi(z, yi) + fi(y, xi), for everyx, y, z ∈ D, wherey = (yi, yi), and for
everyi ∈ I.

Then for everyε > 0 and for everyx0 = (x0
1, . . . , x0

m) ∈ D there exists̄x = (x̄1, . . . , x̄m)

∈ D such that for eachi ∈ I one has

fi(x
0, x̄i) + ε

∥∥x0
i − x̄i

∥∥
i
� 0 (2.3)

and

fi(x̄, xi) + ε‖x̄i − xi‖i > 0, ∀xi ∈ Di, xi �= x̄i . (2.4)

Proof. As before, we restrict the proof to the caseε = 1. Let i ∈ I be arbitrarily fixed.
Denote for everyx ∈ D,

Fi(x) := {
yi ∈ Di : fi(x, yi) + ‖xi − yi‖i � 0

}
.

These sets are closed and nonempty (for everyx = (x1, . . . , xm) ∈ D we havexi ∈ Fi(x)).
Define for eachx ∈ D,

vi(x) := inf
zi∈Fi(x)

fi(x, zi).

In a similar way as in the proof of Theorem 2.1 one can show that diam(Fi(x)) � −2vi(x)

for everyx ∈ D andi ∈ I .
Fix nowx0 ∈ D and select for eachi ∈ I an elementx1

i ∈ Fi(x
0) such that

( )

fi x0, x1

i � vi(x
0) + 2−1.
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aling
Putx1 := (x1
1, . . . , x1

m) ∈ D and select for eachi ∈ I an elementx2
i ∈ Fi(x

1) such that

fi

(
x1, x2

i

)
� vi(x

1) + 2−2.

Putx2 := (x2
1, . . . , x2

m) ∈ D. Continuing this process we define a sequence{xn} in D such
thatxn+1

i ∈ Fi(x
n) for eachi ∈ I andn ∈ N and

fi

(
xn, xn+1

i

)
� vi(x

n) + 2−(n+1).

Using the same argument as in the proof of Theorem 2.1, one can show that

diam
(
Fi(x

n)
)
� −2vi(x

n) � 2 · 2−n → 0, n → ∞,

for eachi ∈ I .
Now define for eachx ∈ D the sets

F(x) := F1(x) × · · · × Fm(x) ⊆ D.

The setsF(x) are closed and using (iii) it is immediate to check that for eachy ∈ F(x)

it follows that F(y) ⊆ F(x). Therefore, we also haveF(xn+1) ⊆ F(xn) for eachn =
0,1, . . . . On the other hand, for eachy, z ∈ F(xn) we have

�y − z� = max
i∈I

‖yi − zi‖i � max
i∈I

diam
(
Fi(x

n)
) → 0,

thus, diam(F (xn)) → 0 asn → ∞. In conclusion we have
∞⋂

n=0

F(xn) = {x̄}, x̄ ∈ D.

Sincex̄ ∈ F(x0), i.e., x̄i ∈ Fi(x
0) (i ∈ I ) we obtain

fi(x
0, x̄i) + ∥∥x0

i − x̄i

∥∥
i
� 0, ∀i ∈ I,

and so, (2.3) holds. Moreover,x̄ ∈ F(xn) impliesF(x̄) ⊆ F(xn) for all n = 0,1, . . . , there-
fore,

F(x̄) = {x̄}
implying

Fi(x̄) = {x̄i}, ∀i ∈ I.

Now for everyxi ∈ Di with xi �= x̄i we have by the previous relation thatxi /∈ Fi(x̄) and
so

fi(x̄, xi) + ‖x̄i − xi‖i > 0.

Thus (2.4) holds too, and this completes the proof.�

3. New existence results for equilibria on compact sets

In literature, the condition of proper quasimonotonicity is frequently used when de

with (EP) on convex sets. Recall that a functionf :D ×D → R is properly quasimonotone
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on D × D if, for every finite setA of the convex setD, and for everyx ∈ co(A), the
following inequality is satisfied:

max
y∈A

f (x, y) � 0.

The following result provides a sufficient condition to solve (EP) on compact, co
sets.

Proposition 3.1 (see, for instance, [3]). Let D be a compact, convex set, and letf :D ×
D → R be a properly quasimonotone and upper semicontinuous function in its first
able. Then the solution set of(EP) is nonempty.

The next result shows that under suitable assumptions onf , proper quasimonotonicit
is necessary and sufficient for solvability of (EP). Indeed, the following result holds.

Theorem 3.1(see [3]). LetD be a compact, convex set, and letf :D×D → R be an upper
semicontinuous and quasiconvex function in its first variable; then the following condition
are equivalent:

(i) f is properly quasimonotone;
(ii) for any finite setA ⊆ D there exists̄x ∈ co(A) such thatx̄ is a solution of(EP);

(iii) (EP) has a solution on every compact convex subset ofD.

In this section, using Theorems 2.1 and 2.2, we are able to show the nonemptin
the solution set of (EP) and (SEP), without any convexity requirement. To this pur
we introduce a definition of approximate equilibrium point, for both cases (see [9]
definition of approximate equilibrium for functions defined on product spaces). We
our analysis with (EP).

Definition 3.1. Givenf :D × D → R, andε > 0, x̄ is said to be anε-equilibrium point
of f if

f (x̄, y) � −ε‖x̄ − y‖, ∀y ∈ D. (3.1)

Theε-equilibrium point is strict, if in (3.1) the inequality is strict for ally �= x̄.

Notice that the second relation of (2.1) gives the existence of a strictε-equilibrium point,
for everyε > 0. Moreover, by (ii) and (iii) of Theorem 2.1 it follows by the first relati
of (2.1) that

f (x̄, x0) � ε‖x̄ − x0‖,
“localizing,” in a certain sense, the position of thex̄.

We will show, using Theorem 2.1, that a set of conditions different and not compa
to Proposition 3.1, can be considered to ensure the nonemptiness of the solution set

Proposition 3.2. Let D be a compact(not necessarily convex) subset of an Euclidea

space, andf :D × D → R be a function satisfying the assumptions:
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(i) f (x, ·) is lower semicontinuous, for everyx ∈ D;
(ii) f (t, t) = 0, for everyt ∈ D;
(iii) f (z, x) � f (z, y) + f (y, x), for everyx, y, z ∈ D;
(iv) f (·, y) is upper semicontinuous, for everyy ∈ D.

Then, the set of solutions of(EP) is nonempty.

Proof. For eachn ∈ N, let xn ∈ D a 1/n-equilibrium point (such point exists by The
rem 2.1), i.e.,

f (xn, y) � −1

n
‖xn − y‖, ∀y ∈ D.

SinceD is compact, we can choose a subsequence{xnk
} of {xn} such thatxnk

→ x̄ as
n → ∞. Then, by (iv),

f (x̄, y) � lim sup
k→∞

(
f (xnk

, y) + 1

nk

‖xnk
− y‖

)
, ∀y ∈ D,

thereby proving that̄x is a solution of (EP). �
Remark 3.1. Although Propositions 3.1 and 3.2 provide sufficient conditions for the
istence of solutions of (EP), they are not comparable, i.e., none of them can be de
from the other. While condition (iv) of Proposition 3.2 appears explicitly among the
sumptions of Proposition 3.1 as well, in Proposition 3.2 no convexity of the set is req
However, lower semicontinuity with respect to the second variable off is assumed only
in Proposition 3.2. Observe also that a slightly weaker form of condition (ii) of Prop
tion 3.2 holds implicitly at Proposition 3.1: taking the setA := {x} for arbitraryx ∈ D,
by proper quasimonotonicity off is immediate thatf (x, x) � 0. What is interesting to
remark is the difference between the main assumptions of these propositions: prop
simonotonicity in case of Proposition 3.1, and condition (iii) in case of Proposition
As the following two simple examples show, these assumptions are not related. The
tion f : [−1,1] × [−1,1] → R defined asf (x, y) = x2 − y2 satisfies the assumptions
Proposition 3.2, but is not properly quasimonotone (take, for instance,A = {−1,1} and
x = 0). On the other hand, the functionf :R × R → R, defined asf (x, y) = xy − x2,

is quasiconvex in its second variable andf (t, t) = 0, therefore is properly quasimonoto
(see [3, Proposition 1.1]), but it does not satisfy condition (iii) of Proposition 3.2.

Another fact which can be observed is the difference between the proofs of thes
propositions. While proving Proposition 3.1 one needs to apply “heavy” results of
tional analysis like Ky Fan’s lemma [8], whose proof is based on the Brouwer’s fixed
theorem, the proof of Proposition 3.2 has been performed using only elementary r
Indeed, the proof of Theorem 2.1 (similarly to the proof of Ekeland’s principle) uses
the simple fact that the intersection of a sequence of descending closed sets in a c
metric space is a singleton, provided the sequence of their diameters converges to z
the other hand, as seen, Proposition 3.2 is a simple consequence of Theorem 2.1.

In this way, by means of Proposition 3.2 we have provided an existence result co

ing (EP), whose proof is elementary.
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Let us now consider the following definition ofε-equilibrium point for systems of equ
librium problems.

Definition 3.2.Let Di, i ∈ I , be subsets of certain Euclidean spaces and putD = ∏
i∈I Di .

Given fi :D × Di → R, i ∈ I andε > 0, x̄ ∈ D is said to be anε-equilibrium point of
{f1, f2, . . . , fm} if

fi(x̄, yi) � −ε‖x̄i − yi‖i , ∀yi ∈ Di, ∀i ∈ I. (3.2)

The following result is an extension of Proposition 3.2, and it can be proved in a si
way.

Proposition 3.3.Assume that, for everyi ∈ I, Di is compact andfi :D × Di → R is a
function satisfying the assumptions:

(i) fi(x, ·) is lower semicontinuous, for everyx ∈ D;
(ii) fi(x, xi) = 0, for everyx = (xi, xi) ∈ D;
(iii) fi(z, xi) � fi(z, yi) + fi(y, xi), for everyx, y, z ∈ D, wherey = (yi, yi);
(iv) fi(·, yi) is upper semicontinuous, for everyyi ∈ Di.

Then, the set of solutions of(SEP)is nonempty.

4. Equilibria on noncompact sets

We consider now the case of a noncompact setD, first in the case of (EP), then fo
(SEP). The study of the existence of solutions of the equilibrium problems on unbo
domains usually involves the same sufficient assumptions as for bounded domains t
with a coercivity condition. Bianchi and Pini [4] found coercivity conditions as wea
possible, exploiting the generalized monotonicity properties of the functionf defining the
equilibrium problem.

Let D be a closed subset ofX, not necessarily convex, not necessarily compact,
f :D × D → R be a given function.

Consider the following coercivity condition (see [4]):

∃r > 0: ∀x ∈ D \ Kr, ∃y ∈ D, ‖y‖ < ‖x‖: f (x, y) � 0, (C1)

whereKr := {x ∈ D: ‖x‖ � r}.
We now show that within the framework of Proposition 3.2, condition (C1) guarantees

the existence of solutions of (EP) without supposing compactness ofD.

Theorem 4.1.Suppose that

(i) f (x, ·) is lower bounded and lower semicontinuous for everyx ∈ D;
(ii) f (t, t) = 0 for everyt ∈ D;
(iii) f (z, x) � f (z, y) + f (y, x) for everyx, y, z ∈ D;

(iv) f (·, y) is upper semicontinuous for everyy ∈ D.
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If (C1) holds, then(EP)has a solution.

Proof. We may suppose without loss of generality thatKr is nonempty. For eachx ∈ D

consider the nonempty set

S(x) := {
y ∈ D: ‖y‖ � ‖x‖: f (x, y) � 0

}
.

Observe that for everyx, y ∈ D, y ∈ S(x) impliesS(y) ⊆ S(x). Indeed, forz ∈ S(y) we
have‖z‖ � ‖y‖ � ‖x‖ and by (iii) f (x, z) � f (x, y) + f (y, z) � 0. On the other hand
sinceK‖x‖ is compact, by (i) we obtain thatS(x) ⊆ K‖x‖ is a compact set for everyx ∈ D.
Furthermore, by Proposition 3.2, there exists an elementxr ∈ Kr such that

f (xr , y) � 0, ∀y ∈ Kr. (4.1)

Suppose that there existsx ∈ D with f (xr , x) < 0 and put

a := min
y∈S(x)

‖y‖

(the minimum is achieved sinceS(x) is nonempty, compact and the norm is continuou
We distinguish two cases.

Case1: a � r . Let y0 ∈ S(x) such that‖y0‖ = a � r . Then we havef (x, y0) � 0. Since
f (xr , x) < 0, it follows by (iii) that

f (xr , y0) � f (xr , x) + f (x, y0) < 0,

contradicting (4.1).
Case2:a > r . Let againy0 ∈ S(x) such that‖y0‖ = a > r . Then, by(C1) we can choose

an elementy1 ∈ D with ‖y1‖ < ‖y0‖ = a such thatf (y0, y1) � 0. Thus,y1 ∈ S(y0) ⊆ S(x)

contradicting

‖y1‖ < a = min
y∈S(x)

‖y‖.

Therefore, there is nox ∈ D such thatf (xr , x) < 0, i.e.,xr is a solution of (EP) (onD).
This completes the proof.�

Next we consider (SEP) for noncompact setting. Let us consider the following coer
condition:

∃r > 0: ∀x ∈ D such that‖xi‖i > r for somei ∈ I,

∃yi ∈ Di, ‖yi‖i < ‖xi‖i andfi(x, yi) � 0. (CS1)

We have the following result.

Theorem 4.2.Suppose that, for everyi ∈ I,

(i) fi(x, ·) is lower bounded and lower semicontinuous for everyx ∈ D;
(ii) fi(x, xi) = 0 for everyx = (xi, xi) ∈ D;
(iii) fi(z, xi) � fi(z, yi) + fi(y, xi) for everyx, y, z ∈ D, wherey = (yi, yi);

(iv) fi(·, yi) is upper semicontinuous for everyyi ∈ Di .



512 M. Bianchi et al. / J. Math. Anal. Appl. 305 (2005) 502–512

at

Optim.

lobal

), in

heory

Stu-

988)

(2004)

ugeri
If (CS1) holds, then(SEP)has a solution.

Proof. For eachx ∈ D and everyi ∈ I consider the set

Si(x) := {
yi ∈ Di, ‖yi‖i � ‖xi‖i , fi(x, yi) � 0

}
.

Observe that, by (iii), for everyx andy = (yi, yi) ∈ D, yi ∈ Si(x) impliesSi(y) ⊆ Si(x).
On the other hand, since the set{yi ∈ Di : ‖yi‖i � r} = Ki(r) is a compact subset ofDi ,
by (i) we obtain thatSi(x) is a nonempty compact set for everyx ∈ D. Furthermore, by
Proposition 3.3, there exists an elementxr ∈ ∏

i Ki(r) (observe, we may suppose th
Ki(r) �= ∅ for all i ∈ I ) such that

fi(xr , yi) � 0, ∀yi ∈ Ki(r), ∀i ∈ I. (4.2)

Suppose thatxr is not a solution of (SEP). In this case, there existsj ∈ I andzj ∈ Dj with
fj (xr , zj ) < 0. Let zj ∈ Dj be arbitrary and putz = (zj , zj ) ∈ D. Define

aj := min
yj ∈Sj (z)

‖yj‖j .

We distinguish two cases.
Case 1: aj � r . Let ȳj (z) ∈ Sj (z) such that‖ȳj (z)‖j = aj � r . Then we have

fj (z, ȳj (z)) � 0. Sincefj (xr , zj ) < 0, it follows by (iii) that

fj

(
xr, ȳj (z)

)
� f (xr , zj ) + f

(
z, ȳj (z)

)
< 0,

contradicting (4.2).
Case2: aj > r . Let againȳj (z) ∈ Sj (z) such that‖ȳj (z)‖j = aj > r . Let ȳj ∈ Dj be ar-

bitrary and put̄y(z) = (ȳj , ȳj (z)) ∈ D. Then, by(CS1) we can choose an elementyj ∈ Dj

with ‖yj‖j < ‖ȳj (z)‖j = aj such thatfj (ȳ(z), yj ) � 0. Clearly,yj ∈ Sj (ȳ(z)) ⊆ Sj (z),
a contradiction sincēyj (z) has minimal norm inSj (z). This completes the proof.�
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