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Abstract

Let L and M be vector lattices with M Dedekind complete, and let Lr (L,M) be the vector lattice of all
regular operators from L into M . We introduce the notion of maximal order ideals of disjointness preserving
operators in Lr (L,M) (briefly, maximal δ-ideals of Lr (L,M)) as a generalization of the classical concept
of orthomorphisms and we investigate some aspects of this ‘new’ structure. In this regard, various standard
facts on orthomorphisms are extended to maximal δ-ideals. For instance, surprisingly enough, we prove
that any maximal δ-ideal of Lr (L,M) is a vector lattice copy of M , when L, in addition, has an order unit.
Moreover, we pay a special attention to maximal δ-ideals on continuous function spaces. As an application,
we furnish a characterization of lattice bimorphisms on such spaces in terms of weigthed composition
operators.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Over the last decades the importance of disjointness preserving operators in the general the-
ory of vector lattices and spaces of real-valued continuous functions has steadily grown. Several
aspects of these operators provoked interest in the literature. In this regard, special attention has
been paid to multiplicative characterizations [1,8,11,15,17], polar decompositions [4,10,13,18],
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and criterions for invertibility [5,6,9,16]. In this paper, we look at disjointness preserving oper-
ators from a different ‘global’ point of view. Indeed, we focus on the lattice structure of certain
spaces of operators preserving disjointness rather that the behavior of the disjointness preserving
operators themselves. To be more precise, let L and M be vector lattices with M Dedekind com-
plete, and let Lr (L,M) be the Dedekind complete vector lattice of all regular operators from L

into M . We call an order ideal I of Lr (L,M) a δ-ideal if all the elements of I are disjointness
preserving operators. The δ-ideal I of Lr (L,M) is said to be maximal if I is a maximal ele-
ment with respect to the inclusion in the set of all δ-ideals of Lr (L,M). Though the concept of
maximal δ-ideals may seem a little far-fetched, we believe that such a structure offer an interest-
ing prospect, in part because it generalizes the standard notion of orthomorphisms on Dedekind
complete vector lattices (see Proposition 2.1 below). In fact, this amazing observation is the stim-
ulus of our investigation. Indeed, it seems to be natural to ask what results on orthomorphisms
can be extended to maximal δ-ideals. In this paper we are interested, among other facts, in the
next classical result on orthomorphisms, essentially due to Zaanen in [22] (see also [2]). If the
Dedekind complete vector lattice M has an order unit then M is lattice isomorphic to the order
ideal Z(M) of central operators on M . In this paper we generalize the Zaanen’s theorem in the
following way. We prove that, when L additionally has an order unit, Lr (L,M) has a unique (up
to a lattice isomorphism) maximal δ-ideal which is a vector lattice copy of M . In spite of that,
a systematic study of maximal δ-ideals is provided with a special attention to maximal δ-ideals
on continuous functions spaces. As an application, we extend the standard characterization of
lattice homomorphisms on continuous functions spaces as weigthed composition operators to
lattice bimorphisms on such spaces.

For notations, terminology, and concepts not explained in this paper the reader can con-
sult the remarkable new book [2] by Abramovich and Aliprantis, the important memoirs [5]
of Abramovich and Kitover, and the standard monograph [7] by Aliprantis and Burkinshaw.

2. Some preliminaries

In this paper, all operators are linear and all vector lattices (also called Riesz spaces) are
nontrivial and Archimedean.

Throughout this work, L and M are vector lattices with M Dedekind complete. The Dedekind
complete vector lattice of all regular operators from L into M is denoted by Lr (L,M), as usual.

The first paragraph of this section is devoted to some preliminaries on disjointness preserving
operators. An operator T ∈ Lr (L,M) is said to be disjointness preserving (or separating) if
|T (f )| ∧ |T (g)| = 0 for all f,g ∈ L such that |f | ∧ |g| = 0. An operator T ∈ Lr (L,M) is
disjointness preserving if and only if f ∧g = 0 in L implies |T (f )|∧|T (g)| = 0 in M . A positive
disjointness preserving operator is called a lattice homomorphism. Hence, T ∈ Lr (L,M) is a
lattice homomorphism if and only if T (|f |) = |T (f )| for all f ∈ L. A lattice isomorphism is a
bijective lattice homomorphism. The inverse of a lattice isomorphism is a lattice isomorphism
as well. If T ∈ Lr (L,M) is disjointness preserving then its absolute value |T | in Lr (L,M) is a
lattice homomorphism given by

|T |(|f |) = ∣∣T (f )
∣∣ = ∣∣T

(|f |)∣∣, for all f ∈ L.

Conversely, if the absolute value |T | of T ∈ Lr (L,M) is a lattice homomorphism then T pre-
serves disjointness. More informations on disjointness preserving operators can be found in
[5,7,18].
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The next lines deal with the notion of orthomorphisms on Dedekind complete vector lattices.
An operator T on the Dedekind complete vector lattice M is refereed to as an orthomorphism
whenever |f | ∧ |g| = 0 implies |f | ∧ |T (g)| = 0. Clearly, orthomorphisms are disjointness pre-
serving operators. Let Lr (M) denote the Dedekind complete vector lattice of all regular operators
on M . An operator T ∈ Lr (M) is said to be central whenever |T | � aI for some real number a,
where I is the identity operator of M . Central operators are orthomorphisms. The set of all cen-
tral operators of M is denoted by Z(M). We point out that Z(M) is the principal order ideal
of Lr (M) generated by I , while the set Orth(M) of all orthomorphisms on M is the principal
band of Lr (M) generated by I . For more background on orthomorphisms the reader is referred
to [2,7].

At this point, we focus on order ideals of Lr (L,M), the elements of which preserve disjoint-
ness. For the sake of simplicity, we call an order ideal I of Lr (L,M) a δ-ideal if all operators
in I are disjointness preserving. Positive elements in a δ-ideal are lattice homomorphisms. We
define the δ-ideal I of Lr (L,M) to be maximal if I is a maximal element with respect to the
inclusion in the set of all δ-ideals of Lr (L,M). The Zorn lemma reveals easily that any δ-ideal is
contained in a maximal δ-ideal. The band of all orthomorphisms on M turns out to be a maximal
δ-ideal of Lr (M) as we can see next.

Proposition 2.1. Let M be a Dedekind complete vector lattice. Then Orth(M) is a maximal
δ-ideal of Lr (M).

Proof. Since Orth(M) is a band of Lr (M) and orthomorphisms on M are disjointness preserv-
ing, Orth(M) is a δ-ideal. We claim that Orth(M) is maximal as a δ-ideal of Lr (M). To this end,
let J be a δ-ideal of Lr (M) that contains Orth(M) and let T be a positive operator in J . As the
identity operator I of M is an orthomorphism, I ∈ J and then I + T is a positive operator in J .
Accordingly, I + T is a lattice homomorphism. From [3, Problem 3.3.1], it follows that T is an
orthomorphism on M and then Orth(M) = J . This means that Orth(M) is a maximal δ-ideal of
Lr (M), as required. �

In other words, the concept of maximal δ-ideals generalizes the notion of orthomorphisms.
Therefore, we expect certain properties of orthomorphisms to extend to the more general setting
of maximal δ-ideals. A first result in this direction is the following.

Proposition 2.2. Let L and M be vector lattices with M Dedekind complete. Then any maximal
δ-ideal of Lr (L,M) is a band.

Proof. Let I be a maximal δ-ideal of Lr (L,M) and Idd be the band of Lr (L,M) generated
by I . We claim that Idd is a δ-ideal of Lr (L,M). To this end, it suffices to show that any
positive operator T in Idd is a lattice homomorphism. By [2, Theorem 1.27], there exists a
directed upward set {Tλ: λ ∈ Λ} of positive operators in I such that sup{Tλ: λ ∈ Λ} = T . Since
I is a δ-ideal, Tλ is a lattice homomorphism for all λ ∈ Λ. It follows from [7, Theorem 1.14] that

T (f ) = sup
{
Tλ(f ): λ ∈ Λ

}
, for all positive f ∈ L.

Moreover, Tλ + Tμ is a lattice homomorphism for all λ,μ ∈ Λ, where we use again that I is a
δ-ideal. Hence if λ,μ ∈ Λ and f,g ∈ L with f ∧ g = 0 then

0 � Tλ(f ) ∧ Tμ(g) � (Tλ + Tμ)(f ) ∧ (Tλ + Tμ)(g) = 0.

This yields that T (f ) ∧ T (g) = 0 and the proposition follows. �
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In spite of the preceding result, the important fact on orthomorphisms we wish to extend to
maximal δ-ideals is that M and Orth(M) are lattice isomorphic, when M , in addition, has an
order unit. Notice that Orth(M) and Z(M) coincide in that situation. Such an extension will
arise from our next discussion.

3. Characterizations of maximal δ-ideals

Recall that L and M are vector lattices with M Dedekind complete and assume, from now
on, L to have an order unit u > 0. For an arbitrary order ideal I of Lr (L,M), we define the map
ΠI :I → M by

ΠI(T ) = T (u), for all T ∈ I.

It is readily verified that ΠI is a positive operator. This operator plays a key role in the context
of our investigation. In this direction, we get the following descriptions of δ-ideals of Lr (L,M).

Theorem 3.1. Let L be a vector lattice with an order unit u > 0, M be a Dedekind complete
vector lattice, and I be an order ideal of Lr (L,M). Then the following are equivalent:

(i) ΠI is a lattice homomorphism.
(ii) ΠI is injective.

(iii) I is a δ-ideal of Lr (L,M).

Proof. (i) ⇒ (ii). Assume ΠI to be a lattice homomorphism and let T be an element of the
kernel of ΠI . Then

|T |(u) = ΠI
(|T |) = ∣∣ΠI(T )

∣∣ = 0.

But then |T | = 0 because u is an order unit in L. This yields that T = 0 so ΠI is one-to-one.
(ii) ⇒ (iii). It suffices to show that T is a lattice homomorphism whenever 0 < T ∈ I . To do

this, denote Lru the relatively uniform completion of L (see [19, Definition 2.12]). Obviously,
u is again an order unit in Lru. Moreover, let T ru :Lru → M be the unique extension of T to Lru,
where we use [21, Theorem 3.3]. Hence T ru is a positive operator. Put v = T ru(u) = T (u) and
observe that v > 0 in M . It is clear that T ru maps Lru into the principal order ideal Mv of M

generated by v. Both Lru and Mv are relatively uniformly complete (uniformly closed in [14])
with order units u and v, respectively. It follows from [18, Proposition 1.2.13] that Lru and Mv are
Banach lattices with u and v as units, respectively. Pick two positive operators R,S : Lru → Mv

such that

R(u) = S(u) = v and T = aR + (1 − a)S

for some real number a ∈ (0,1). Of course R can be seen as an operator from Lru into M . Thus
we have 0 � R � a−1T in Lr (L

ru,M). Consider now the operator RL :L → M defined by the
restriction of R to L. Clearly, RL is positive, RL(u) = v, and the inequalities 0 � RL � a−1T

hold in Lr (L,M). We derive that RL ∈ I as I is an order ideal of Lr (L,M). Hence

ΠI(RL) = RL(u) = v = T (u) = ΠI(T ).

Since ΠI is one-to-one, we obtain RL = T . In other words, T ru(f ) = R(f ) for all f ∈ L. By
uniqueness of extensions to Lru, we obtain T ru = R = S. Consequently, T ru is an extremal point
in the convex set of all Markov operators from Lru into Mv (notice here that a Markov operator
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between the two Banach lattices Lru into Mv is a positive operator U :Lru → Mv such that
U(u) = v). So, by [20, Proposition 9.2], T ru is a lattice homomorphism from Lru into Mv and
then into M . It follows that T is again a lattice homomorphism.

(iii) ⇒ (i). If T is an operator in the δ-ideal I of Lr (L,M) then T is a disjointness preserving
operator. So,

∣
∣ΠI(T )

∣
∣ = ∣

∣T (u)
∣
∣ = |T |(u) = ΠI

(|T |).
This means that ΠI is a lattice homomorphism and the proof of the theorem is complete. �

In order to prove the central result of this paper, we need the next lemma, which deals with
the range Im(ΠI), when I is a maximal δ-ideal of Lr (L,M).

Lemma 3.2. Let L be a vector lattice with an order unit u > 0 and M be a Dedekind complete
vector lattice. If I is a maximal δ-ideal of Lr (L,M) then Im(ΠI) is a band of M .

Proof. Since I is a δ-ideal of Lr (L,M), Theorem 3.1 yields that ΠI is a lattice homomorphism.
Thus Im(ΠI) is a vector sublattice of M . On the other hand, let g ∈ M sand assume that the
inequalities

0 � g � ΠI(T ) = T (u)

hold in M for some positive operator T ∈ I . By [7, Theorem 8.15], there exists a positive operator
R ∈ Z(M) such that R(T (u)) = g. As 0 � RT � T and I is an order ideal of Lr (L,M), we get
RT ∈ I . Therefore,

g = R
(
T (u)

) = (RT )(u) = ΠI(RT ) ∈ Im(ΠI).

Consequently, Im(ΠI) is an order ideal of M .
At this point, let {gλ: λ ∈ Λ} be a directed upward set of positive elements in Im(ΠI) such

that the supremum sup{gλ: λ ∈ Λ} = g exists in M . Since u is an order unit in L, there exists a
directed upward set {Tλ: λ ∈ Λ} of positive operators in I such that Tλ(u) = gλ for all λ ∈ Λ. If
f ∈ L and a is a real number such that 0 � f � au then

0 � Tλ(f ) � aTλ(u) = agλ � g, for all λ ∈ Λ.

It follows from [7, Theorem 1.14] that sup{Tλ: λ ∈ Λ} = T exists in Lr (L,M) and satisfies the
equalities

g = sup
{
Tλ(u): λ ∈ Λ

} = T (u).

According to Proposition 2.2, I is a band of Lr (L,M) and so T ∈ I . This leads to

g = T (u) = ΠI(T ) ∈ Im(ΠI),

which implies that Im(ΠI) is a band of M and we are done. �
We have gathered now all the ingredients for the proof of the main theorem of this paper,

which describes maximal δ-ideals of Lr (L,M).

Theorem 3.3. Let L be a vector lattice with an order unit u > 0, M be a Dedekind complete
vector lattice, and I be an order ideal of Lr (L,M). Then the following are equivalent:
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(i) ΠI is a lattice isomorphism.
(ii) ΠI is bijective.

(iii) I is a maximal δ-ideal of Lr (L,M).

Proof. (i) ⇒ (ii). Trivial.
(ii) ⇒ (iii). By Theorem 3.1, I is a δ-ideal of Lr (L,M). Then we only have to prove that I is

maximal. To do this, let J be a δ-ideal of Lr (L,M) such that I ⊂ J and choose T ∈ J . Since
ΠI is surjective, there exists R ∈ I such that ΠI(R) = T (u). Therefore,

ΠJ (T ) = T (u) = ΠI(R) = R(u) = ΠJ (R).

Again by Theorem 3.1, ΠJ is one-to-one so T = R ∈ I . It follows that I = J . Consequently,
I is a maximal δ-ideal of Lr (L,M).

(iii) ⇒ (i). In view of Theorem 3.1, it suffices to show that ΠI is surjective. Hence, let P

denote the band projection of M on the disjoint complement (Im(ΠI))d of Im(ΠI) and let
0 � h ∈ M . We define the lattice homomorphism Th from the vector sublattice Ru of L generated
by u into M by putting Th(u) = h. Since u is an order unit of L, the vector sublattice Ru is
majorizing in L. By [7, Theorem 7.17], Th extends to a lattice homomorphism from L into M ,
denoted again by Th. Hence, the operator PTh is a lattice homomorphism and the inclusion

Im(PTh) ⊂ (
Im(ΠI)

)d (1)

holds. On the other hand, let T ∈ I and f ∈ L. Since |f | � au for some real number a, we get
∣
∣T (f )

∣
∣ = |T |(|f |) � |λT |(u) = ΠI

(|λT |).
By Lemma 3.2, Im(ΠI) is an order ideal of M . This implies that

∣∣T (f )
∣∣ ∈ Im(ΠI). (2)

Combining (1) and (2), we obtain
∣∣T (f )

∣∣ ∧ ∣∣(PTh)(g)
∣∣ = 0, for all f,g ∈ L and T ∈ I.

It follows that the subset A = I ∪ {PTh} of Lr (L,M) has the property that
(|f | ∧ |g| = 0

) ⇒ (∣∣R(f )
∣
∣ ∧ ∣

∣S(g)
∣
∣ = 0, for all R,S ∈A

)
. (3)

Consider at this point the order ideal IA of Lr (L,M) generated by A. We claim that IA is a
δ-ideal of Lr (L,M). To this end, let T be an operator in IA, T1, . . . , Tn be operators in A, and
a1, . . . , an be real numbers in (0,∞) such that

0 � T � R = a1|T1| + · · · + an|Tn|
(see [2, p. 20]). Let f,g ∈ L such that f ∧ g = 0 and observe that

|Ti |(f ) ∧ |Tj |(g) = ∣∣Ti(f )
∣∣ ∧ ∣∣Tj (g)

∣∣ = 0, for all i, j ∈ {1, . . . , n},
where we use (3). It follows that

0 � T (f ) ∧ T (g) � R(f ) ∧ R(g) = 0.

Therefore, T is a lattice homomorphism. We derive that IA is a δ-ideal of Lr (L,M), as required.
Since IA contains the maximal δ-ideal I of Lr (L,M), we get IA = I and then PTh ∈ I .
Accordingly,

P(h) = P
(
Th(u)

) = (PTh)(u) = ΠI(PTh) ∈ Im(ΠI).
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The latter equalities together with (1) lead to P(h) = 0. Hence, P = 0 so (Im(ΠI))d = 0. It
follows that (Im(ΠI))dd = M , where (Im(ΠI))dd denotes the band of M generated by Im(ΠI).
Whence, using Lemma 3.2, we obtain Im(ΠI) = M . In other words, ΠI is surjective, which is
the desired result. This completes the proof of the theorem. �

As a consequence, we get the following corollary.

Corollary 3.4. Let M be a Dedekind complete vector lattice. If L is a vector lattice with an
order unit, then Lr (L,M) has a unique (up to a lattice isomorphism) maximal δ-ideal, which is
a vector lattice copy of M .

Proof. Examining the proof of the arrow (iii) ⇒ (i) in Theorem 3.3, we see that there exists a
nontrivial lattice homomorphism T :L → M . It is easily seen that the principal order ideal IT of
Lr (L,M) generated by T is a δ-ideal. In other words, the collection of all δ-ideals of Lr (L,M)

is nonempty. A classical argument based on the Zorn lemma shows that Lr (L,M) has a maximal
δ-ideal I . If J is another maximal δ-ideal of Lr (L,M), then Theorem 3.3 yields that both I and
J are vector lattice copies of M . The uniqueness follows straightforwardly. �
4. Examples of maximal δ-ideals

In this section, we describe maximal δ-ideals on some continuous functions spaces. We start
with some useful notations and facts. Let X be a completely regular topological space. The
vector lattice of all continuous real-valued functions on X is denoted by C(X). By 1X we mean
the function in C(X) defined by 1X(x) = 1 for all x ∈ X. Therefore, the vector lattice C(X)

has 1X as an order unit if X, in addition, is compact. Recall also that the vector lattice C(X) is
Dedekind complete whenever X additionally is extremally disconnected, that is, every open set
has an open closure. The cozeroset of a function f in C(X) is denoted by coz(f ) and defined by

coz(f ) = {
x ∈ X: f (x) 
= 0

}
.

For more background on continuous functions spaces we refer to the classical book [12] by
Gillman and Jerison.

Let X and Y be completely regular topological spaces with X compact. In the next corollary
we characterize lattice homomorphisms from C(X) into an arbitrary vector sublattice F of C(Y ).
The proof is a slight modification of the proof of the standard Theorem 7.22 [7] (see also [12,
Theorem 10.8]).

Proposition 4.1. Let X and Y be a completely regular topological spaces with X compact. Let F

be a vector sublattice of C(Y ) and T :C(X) → F be a lattice homomorphism. Then there exist
a unique positive function w ∈ C(Y ) and a function τ :Y → X, which is continuous on coz(w),
such that

T (f )(y) = w(y)f
(
τ(y)

)
, for all f ∈ C(X), y ∈ Y.

Proof. The case where T is zero being obvious, we assume T to be nonzero. Let w = T (1X)

and y ∈ coz(w), and define δy to be the Dirac measure at y. Hence the linear functional δy ◦ T :
C(X) → R is a nonzero lattice homomorphism. By [7, Theorem 7.21], there exists a unique real
number wy ∈ (0,∞) and a unique point αy ∈ X such that

(δy ◦ T )(f ) = wyf (αy), for all f ∈ C(X).
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Observe that

wy = (δy ◦ T )(1X) = w(y).

Moreover, a function α : coz(w) → X can be defined by α(y) = αy for all y ∈ coz(w). We get

T (f )(y) = w(y)f
(
α(y)

)
, for all f ∈ C(X), y ∈ coz(w).

Now, let (yλ) be a net of elements of coz(w) and y ∈ coz(w) such that yλ → y. Since w is
continuous, w(yλ) → w(y). For the same reason, T (f )(yλ) → T (f )(y) for each f ∈ C(X). In
summary, f (α(yλ)) → f (α(y)) holds for all f ∈ C(X). It follows that α(yλ) → α(y) and thus
α is continuous on coz(w). Let τ be an arbitrary function from Y into X which extends α. Since
coz(w) is an open subset of Y , τ is continuous on coz(w). Besides, if w(y) = 0 for some y ∈ Y

then T (f )(y) = 0 for all f ∈ C(X). This follows straightforwardly from the inequality
∣∣T (f )(y)

∣∣ � Mw(y),

where M = sup{|f (x)|: x ∈ X}. Consequently,

T (f )(y) = w(y)f
(
α(y)

)
, for all f ∈ C(X), y ∈ Y.

On the other hand, the above formula implies quickly that w = T (1X), which yields the unique-
ness of w. This completes the proof of the proposition. �

Let A be a nonempty subset of C(Y ). A function f ∈ C(Y ) is said to be A-regular if fg = 0
and g ∈ A imply g = 0. In other words, the function f ∈ C(Y ) is A-regular if and only if

coz(f ) ∩ coz(g) 
= ∅, for all g ∈ A, g 
= 0.

This notion turns out to be necessary for the following main theorem of this section.

Theorem 4.2. Let X and Y be completely regular topological spaces with X compact. Let F

be a Dedekind complete vector sublattice of C(Y ) and assume that F contains an F -regular
function w0. The following are equivalent for a nonempty subset M of Lr (C(X),F ):

(i) M is a maximal δ-ideal of Lr (C(X),F ).
(ii) There exists a function τ :Y → X, which is continuous on coz(w0), such that T ∈ M if and

only if there is w ∈ F for which

T (f )(y) = w(y)f
(
τ(y)

)
, for all f ∈ C(X), y ∈ Y.

Proof. (ii) ⇒ (i). The condition (ii) implies directly that M is a vector sublattice of Lr (C(X),F )

and that all elements of M are disjointness preserving operators. We claim thatM is a δ-ideal of
Lr (C(X),F ). To this end, let R ∈ M with 0 � T � R. Hence, there exists w ∈ F+ such that

0 � T (f )(y) � w(y)f
(
τ(y)

)
, for all y ∈ Y, 0 � f ∈ C(X).

Thus

T (f )(y) = μ(y)w(y)f
(
τ(y)

)
, for all f ∈ C(X), y ∈ Y,

for some function μ :Y → R. Since μw = T (1X) ∈ F , we get T ∈ M. This shows that M is
a δ-ideal of Lr (C(X),F ), as required. Observe now that the operator ΠM :M → F defined
by ΠM(T ) = T (1X) for all T ∈ M is a lattice isomorphism. Consequently, the δ-ideal M of
Lr (C(X),F ) is maximal, where we use Theorem 3.3.
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(i) ⇒ (ii). Assume M to be a maximal δ-ideal of Lr (C(X),F ). By Theorem 3.3, the operator
ΠM :M → F defined by ΠM(T ) = T (1X) for all T ∈ M is a lattice isomorphism. Therefore,
there exists a unique positive operator T0 ∈ M such that T0(1X) = |w0|. But then T0 is a lattice
homomorphism from C(X) into F . Hence, in view of Proposition 4.1, there exists a function
τ :Y → X, which is continuous on coz(w0), such that

T0(f )(y) = ∣∣w0(y)
∣∣f

(
τ(y)

)
, for all f ∈ C(X), y ∈ Y.

Consider the set I of all operators T ∈ Lr (C(X),F ) for which there exists a function w ∈ F

such that

T (f )(y) = w(y)f
(
τ(y)

)
, for all f ∈ C(X), y ∈ Y.

In particular, T0 ∈ I . By the implication (ii) ⇒ (i), I is a maximal δ-ideal of Lr (C(X),F ).
Furthermore, pick T ∈ I such that T ∧ T0 = 0, that is, (T − T0)

+ = T . Since T − T0 preserves
disjointness, [18, Theorem 3.1.4] leads to

T (1X) = (T − T0)
+(1X) = (

T (1X) − T0(1X)
)+

.

Hence, if w ∈ F verifies

T (f )(y) = w(y)f
(
τ(y)

)
, for all f ∈ C(X), y ∈ Y,

then

w = T (1X) = (
T (1X) − T0(1X)

)+ = (w − w0)
+,

so that ww0 = 0. But then w = 0 because w0 is F -regular, which means that T = 0. Accordingly,
I ⊂ {T0}dd, where {T0}dd is the principal band of Lr (C(X),F ) generated by T0. It follows that
I ⊂ M as M is a band of Lr (C(X),F ) containing T0 (see Lemma 3.2). Since I is a maximal
δ-ideal of Lr (C(X),C(Y )) and M is a δ-ideal of Lr (C(X),C(Y )), we get I = M and we are
done. �

Since the function w0 = 1Y is C(Y )-regular and coz(w0) = Y , we immediately get the fol-
lowing corollary.

Corollary 4.3. Let X and Y be completely regular topological spaces with X compact
and Y extremally disconnected. The following are equivalent for a nonempty subset M of
Lr (C(X),C(Y )):

(i) M is a maximal δ-ideal of Lr (C(X),C(Y )).
(ii) There exists a continuous function τ :Y → X such that T ∈ M if and only if there is w ∈

C(Y ) for which

T (f )(y) = w(y)f
(
τ(y)

)
, for all f ∈ C(X), y ∈ Y.

Another particular setting seems to be of some independent interest. Let us denote the set
{1,2, . . .} of positive integers by N and let βN be the Stone–Čech compactification of N [12].
For any real number p ∈ (0,∞), define 	p to be the set of all real sequences (xn)

∞
1 such that

the series
∑ |xn|p converges. Clearly, 	p is a Dedekind complete vector sublattice of C(N) and

possesses 	p-regular elements (consider, for instance, (n−2/p)∞1 ). These observations together
with Theorem 4.2 lead to the following.
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Corollary 4.4. Let p ∈ (0,∞) an M be a nonempty subset of Lr (C(βN), 	p). The following are
equivalent:

(i) M is a maximal δ-ideal of Lr (C(βN), 	p).
(ii) There exists a sequence (τn)

∞
1 of elements of βN such that T ∈ M if and only if there is

(wn)
∞
1 ∈ 	p for which

T (f ) = (
wnf (τn)

)∞
1 , for all f ∈ C(βN).

The last result of this paper again is an application of Theorem 4.2 and more precisely of
Corollary 4.3. The result in question deals with lattice bimorphisms on continuous functions
spaces. Let X, Y and Z be completely regular topological spaces with X,Y compact and Z

extremally disconnected, and Φ :C(X) × C(Y ) → C(Z) be a bilinear map. We say that Φ is
a lattice bimorphism if, for any positive functions f0 ∈ C(X) and g0 ∈ C(Y ), the operators
Φ(f0, ·) :C(Y ) → C(Z) and Φ(·, g0) :C(X) → C(Z) defined by

Φ(f0, ·)(g) = Φ(f0, g), for all g ∈ C(Y ),

and

Φ(·, g0)(f ) = Φ(f,g0), for all f ∈ C(X),

are lattice homomorphisms. It is not hard to see that the bilinear map Φ :C(X) × C(Y ) → C(Z)

is a lattice bimorphism if and only if
∣∣Φ(f,g)

∣∣ = Φ
(|f |, |g|), for all f ∈ C(X), g ∈ C(Y ).

In particular, any lattice bimorphism Φ :C(X) × C(Y ) → C(Z) is positive, that is, Φ(f,g) is a
positive function in C(Z) whenever f and g are positive functions in C(X) and C(Y ), respec-
tively. We finish this work with the next ‘bilinear’ version of the standard Theorem 7.22 [7] (see
also [2, Theorem 4.25]).

Corollary 4.5. Let X, Y and Z be completely regular topological spaces with X,Y compact and
Z extremally disconnected. Let Φ :C(X)×C(Y ) → C(Z) be a bilinear map. Then Φ is a lattice
bimorphism if and only if there exists a positive function w ∈ C(Z), and continuous functions
σ :Z → X and τ :Z → Y such that

Φ(f,g)(z) = w(y)f
(
σ(z)

)
g
(
τ(z)

)

for all (f, g) ∈ C(X) × C(Y ), z ∈ Z.

Proof. Put A = {Ψ (f, .): 0 � f ∈ C(X)}. It is readily checked that the order ideal IA of
Lr (C(X),C(Z)) is a δ-ideal. By Zorn lemma, IA is contained in some maximal δ-ideal M
of Lr (C(X),C(Z)). From Corollary 4.3, it follows that there exists a continuous function
τ :Z → X such that, for any positive function f ∈ C(X), there is a positive function wf ∈ C(Z)

satisfying

Φ(f,g)(z) = wf (z)g
(
τ(z)

)
, for all g ∈ C(Y ), z ∈ Z.

In particular, wf = Φ(f,1Y ). On the other hand, Φ(·,1Y ) :C(X) → C(Z) is a lattice homo-
morphism. Accordingly, there exist a positive function w ∈ C(Z) and a continuous function
σ : Z → Y such that

Φ(f,1X)(z) = w(z)f
(
σ(z)

)
, for all f ∈ C(X), z ∈ Z
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(see Proposition 4.1). Consequently, if f is a positive function in C(X), g ∈ C(Y ), and z ∈ Z,
then

Φ(f,g)(z) = wf (z)g
(
τ(z)

) = Φ(f,1Y )(z)g
(
τ(z)

) = w(z)f
(
σ(z)

)
g
(
τ(z)

)
.

Since f = f + − f − for all f ∈ C(X), an easy argument based on bilinearity yields that

Φ(f,g)(z) = w(z)f
(
σ(z)

)
g
(
τ(z)

)
,

for all (f, g) ∈ C(X) × C(Y ) and z ∈ Z. This completes the proof of the corollary. �
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