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Abstract

We first introduce the notion of positive linear Volterra integral equations. Then, we offer a criterion
for positive equations in terms of the resolvent. In particular, equations with nonnegative kernels are pos-
itive. Next, we obtain a variant of the Paley—Wiener theorem for equations of this class and its extension
to perturbed equations. Furthermore, we get a Perron—Frobenius type theorem for linear Volterra integral
equations with nonnegative kernels. Finally, we give a criterion for positivity of the initial function semi-
group of linear Volterra integral equations and provide a necessary and sufficient condition for exponential
stability of the semigroups.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Generally speaking, a dynamical system is called positive if an input of the system is nonneg-
ative, then the corresponding output of the system is also nonnegative. In particular, a dynamical
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system with state space R" is positive if any trajectory of the system starting at an initial state in
the positive orthant R, remains forever in R} . Positive dynamical systems play an important role
in the modelling of dynamical phenomena whose variables are restricted to be nonnegative. They
are often encountered in applications, for example, networks of reservoirs, industrial processes
involving chemical reactors, heat exchangers, distillation columns, storage systems, hierarchical
systems, compartmental systems used for modelling transport and accumulation phenomena of
substances, see e.g. [3,4,15]. Concrete examples of positive systems are such as an electrical
circuit consisting of resistors, capacitors and voltage sources or an electrically heated oven.

The mathematical theory of positive systems is based on the theory of nonnegative matrices
founded by Perron and Frobenius. As references we mention [3,4]. Positive systems are objects
for many interesting problems in Mathematics, Physics, Economics, Biology, ... Moreover, ob-
tained results of problems for a class of positive systems are often very interesting, see e.g.
[3,4,6-11,14,15,18,21-29,33,34]. In recent time, problems of positive systems have attracted a
lot of attention from many researchers, see e.g. [2,6—11,21-29,33,34].

In the literature, there are some criteria for familiar positive linear systems such as positive
linear invariant-time differential (difference) system, positive linear time delay system of retarded
type. For example, it is well known that a linear time-delay system of the form x () = Agx(¢) +
A1x(t —h),t >0, is positive if and only if Ag is a Metzler matrix and A is a nonnegative matrix
and a linear discrete system of the form x(k+1) = Agx (k) + A1x(k—h), k € N, k > h, is positive
if and only if Ag, A are nonnegative matrices, see e.g. [21,22,33]. In the recent paper [19], we
showed that a linear Volterra integro-differential equation of the convolution type

t
)'c(t):Ax(t)—i—/B(t—s)x(s)ds, x®)eR", t>0, (1
0

is positive if and only if A is a Metzler matrix and B(¢) is a nonnegative matrix for every ¢ > 0.
Furthermore, stability and robust stability of the system (1) have been explored in the paper.

In the present paper, we first introduce the notion of positive linear Volterra integral equations.
Then, we offer a criterion for positive equations in terms of the resolvent. As a direct conse-
quence of this result, equations with nonnegative kernels are positive. Next, we obtain a variant
of the Paley—Wiener theorem for equations of this class and its extension to perturbed equations.
Moreover, we get a Perron—Frobenius type theorem for linear Volterra integral equations with
nonnegative kernels. Finally, we give a criterion for positivity of the initial function semigroup
of linear Volterra integral equations and offer a simple necessary and sufficient condition for
exponential stability of the semigroups.

2. Preliminaries

In this section we shall define some notations and recall some well-known results which will
be used in the subsequent sections. Let K = C or R where C and R denote the sets of all com-
plex and all real numbers, respectively. For integers [, g > 1, K! denotes the I-dimensional vector
space over K, (KH* is its dual and K!*7 stands for the set of all (I x g)-matrices with en-
tries in K. Inequalities between real matrices or vectors will be understood componentwise,
i.e. for two real matrices A = (a;;) and B = (b;;) in R/*4 | we write A > B if and only if
ajj =z bjjfori=1,...,1, j=1,...,q. Inparticular, if a¢;; > b;; fori =1,...,1, j=1,...,q,
then we write A > B instead of A > B. We denote by leq the set of all nonnegative ma-
trices A > 0. Similar notations are adopted for vectors. For x € K" and P € K!*4 we define
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|x| = (|x;]) and |P| = (|p;;|). For any matrix A € K"*" the spectral radius and spectral ab-
scissa of A are denoted by p(A) = max{|A|; A € 0(A)} and u(A) = max{ReAi; X € o(A)},
where o (A) := {s € C; det(sI, — A) = 0} is the spectrum of A.

A norm || - || on K" is said to be monotonic if ||x|| < |y|| whenever |x| < |y, x,y € K".
Every p-norm on K", 1 < p < 00, is monotonic. Throughout the paper, if otherwise not stated,
the norm of a matrix P € K'*9 is understood as its operator norm associated with a given pair
of monotonic vector norms on K/ and K¢, that is || P|| = max{||Py||; |||l = 1}. We note that
the operator norm is in general not monotonic norm on K/*4 even if K/, K¢ are provided with
monotonic norms. However, such monotonicity holds for nonnegative matrices. Moreover, we
have (see, e.g. [12,32])

l
Pk, QeRY, [Pl<Q = |PI<|IPI|<IQI. @

The following theorem summarizes some existing results on properties of nonnegative matrices
which will be used in the sequel (see, e.g. [32]).

Theorem 2.1. Suppose that A € R"*" is a nonnegative matrix. Then

(1) (Perron—Frobenius) p(A) is an eigenvalue of A and there exists a nonnegative eigenvector
x >0, x #0 such that Ax = p(A)x.
(i) Given o € Ry, there exists a nonzero vector x = 0 such that Ax > ax if and only if
p(A) = a.
(i) (t1, — A)~! exists and is nonnegative if and only if t > p(A).
(iv) Given B e RY*", C € C"*". Then

ICI<SB = p(A+C)<p(A+B). (3)

To make a presentation self-contained, we present here some basic facts on vector functions
of bounded variation and relative knowledge. A matrix function n(-): [«, 8] — R!*4 is called
an increasing matrix function, if

n(62) =n1) fora <O <O <P.

A matrix function n(-) : [a, 8] = K™*" is said to be of bounded variation if

var(; @, )= sup ]Znn(ek) — (1) < +oo, )
*Pl i

where the supremum is taken over the set of all finite partitions of the interval [«, 8]. The set
BV ([«, B], K™*™) of all matrix functions 7 (-) of bounded variation on [«, 8] satisfying n(e) =0
is a Banach space endowed with the norm ||n|| = Var(n; «, B).

Given n(-) € BV([a, 8], K™*") then for any continuous functions y € C([«, ], K) and ¢ €
C([a, B1, K™), the integrals

B B
f y©@)d[n®)] and f d[n(®)]6®)

exist and are defined respectively as the limits of S;(P) := Zle ¥ (&k)(n(Bx) — n(6x—1)) and
S2(P) :=Y0_ (n(6k) — n(Ok=1))$(Lk) as d(P) := maxy |6 — 6k—1| — 0, where P = {0 =
a <6 <+ <6, =B} is any finite partition of the interval [o, B] and & € [6k—1, 6k]. Let K"
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be endowed with a vector norm || - || and C([«, 8], K") be a Banach space of all continuous
functions on [«, 8] with values in K" normed by the maximum norm ||¢ || = maxge(q, g7 |9 (9) |l

Let L:C([a, B], K*) — K" be a linear bounded operator. Then, by the Riesz representation
theorem, there exists a unique matrix function 7 = (7;;(-)) € BV([«, 8], K"*") which is contin-
uous from the left (or briefly c.f.1.) on (o, 8) such that

B
L¢=/dhwﬂwm,V¢edMﬁLKW )

Let J be an interval of R. For a function ¢ : J — R/*9, we say that ¢ is nonnegative and write
¢=>0if p(2) € leq almost everywhere on J. Let X be a subspace of C([«, 8]; R"). Then the
operator L is called positive on X if Lp > 0 forevery ¢ € X, ¢ > 0.

In the subsequent sections the following subspace of BV ([«, 8], K"*") will be used:

NBV ([a, B, K"*") := {n € BV([o, B1, K™*"); n(e) =0, nis c.f.1. on [e, B1}. (6)

It is clear that NBV ([, B8], K™*") is closed in BV ([«, 8], K™*") and thus it is a Banach space
with the norm ||§|| = Var(3; «, B).

3. Positive linear Volterra integral equations

Consider a linear Volterra integral equation of the convolution type

t

M0=ﬂ0+/KU—ﬂan,t>Q )

0

where f:R; — R" and K :R; — R™*" are given (vector) matrix functions. We say that K is
the kernel and that f is the forcing function and we assume that these functions are (at least)
locally integrable. Thatis, f € L] (R}, R") and K € L] (R4, R™").

It is important to note that a comprehensive theory of linear Volterra integral equations can
be found in [5]. In particular, to prove that Eq. (7) has a solution in Llloc(R+, R™) whenever
KeLl (Riy,R™)and f € L} (Ry,R"), one first shows that it has a fundamental solution R.

Let a, b be matrix functions defined on an interval [0, T'), 0 < T < +o00. The convolution of a

and b on the interval [0, T') is, by definition, the function
t
(axb)(t) = f a(t —s)b(s)ds, (8)
0

which is defined for all those ¢ € [0, T') for which the integral exists. Here the integrals are
interpreted in the sense of Lebesgue.

Theorem 3.1. (See [5].) Let K € LI (R4, R"™™) be given. Then there is a solution R €

loc
Ll Ry, R™™) of the two equations

R=K+R*xK=K+ K *R. 9

This solution R is unique and depends continuously on K in the topology of L (R, R,

loc
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The matrix function R given in Theorem 3.1 is called the resolvent of K. Then, existence and
uniqueness of the solution of Eq. (7) is given in the following.

Theorem 3.2. (See [5].) Let K € LIIOC(R+, R" ™), Then, for every f € LIIOC(R+, R™), there exists
a unique solution x(-, f) € LllOC(R+, R™) of Eq. (7). This solution is given by the variation of

constants formula
x(t, f)=fO)+Rx* @), =0, (10)

where R is the resolvent of K.

1

ioc (R4, R") being nonnegative,

Definition 3.3. Equation (7) is called positive if for every f € L
the corresponding solution x (-, f) is also nonnegative.

The following theorem provides a criterion for positive equations of the form (7).
Theorem 3.4. Equation (7) is positive if and only if R is nonnegative.
To prove the above theorem, we need the following technical lemma.

Lemma 3.5. Let T > 0 and Co([0, T],R") :={¢ € C([0, T], R"): ¢(T) = 0}. Suppose that the
linear operator L is defined by

T
L:Co([0, T, R") > R"; ¢+ L¢=/d[n(0)]¢>(0),
0

where n € NBV([0, T],R"*") is given. Then L is a positive operator if and only if n is an
increasing matrix function.

Proof. Let 1 be an increasing matrix function then by the definition of Riemann—Stieltjes inte-
grals, we have

P
Lop= 1 k) — n(Gr— >0,
¢‘ﬁgé;mw n(O-1))$ (L)
for every ¢ € Co([0, T],R"), ¢ > 0. It means that L is positive.
Conversely, assume that L is positive on Co([0, T'],R"). Let n(-) = (n;;(-)). We show that
nij(-) € NBV([0, T], R) is an increasing scalar function for every i, j € {1,2,...,n}. Since L is
positive, it is easy to see that the operator

T
LwQWHlM»R;¢Hum:f¢@ﬂmwm
0
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is also positive for every i,j € {1,2,...,n}. Fix 01,6, € (0,T), 0 <6, and k € N, k >
max{g1 92 92 } consider the continuous function ¢ defined by

0 if0 €[0,0; — 1.
kO +1—ko; if0e® — 1,01,

Gr(0) =1 1 if0 € (61,6, — 11, an
—kO +k0,  if6 € (02— 1,02l
0 if0 € (62, T1.

Since ¢y is a continuous on [0, T'], it follows from a standard property of Riemann—Stieltjes
integrals that

% (%) T

7 /+ +/>¢k(e)d[m,-(e>],

17E
/¢k(9>d 0 ()] = (/
0

see e.g. [30]. This gives

1
/¢k(9)d 77,,(9)]+m,(92—z>—m/(91)+ / P (0)d[n:j0)] >0,

01—+

?v-\

for every k € N large enough. Taking into account that 7;; is continuous from the left at 0, 6> and
letting k — +o00, we have n;;(62) > n;;(01) for every 61,6, € (0,T), 62 > 0;. In case of 0; =
0 <6, < T, by asimilar way, we also get 1;;(62) = n;;(01). Finally, since »;; is continuous from
the left at 7', we have n;;(T') > 1;;(6) for 6 € [0, T']. This completes our proof. O

Remark 3.6. Actually, from the proof of Lemma 3.5, it is easy to see that the conclusion of
the lemma holds true for Co([e, 8], R"), with arbitrary interval [, 8]. Moreover, the following
statements are equivalent:

(1) L is a positive operator on Co([e, 8], R");
(i) L is a positive operator on C ([, 8], R");
(iii) 7 is an increasing matrix function on [«, 8].

Proof of Theorem 3.4. The part “if” of the theorem follows from the variation of constants
formula (10). We now prove that if Eq. (7) is positive then R is nonnegative. To do so, we fix
k € N and consider an arbitrary function ¢ € Co([0, k], R™). Let us define

1) ifre]0,k],
f@) = {¢( ) .
0 ift > k.
Let R be the resolvent of K. From f € C([0,k 4+ 1],R") and R € LY([0, k + 1], R™), it follows
that R x f is continuous on [0, k + 1]. By the variation of constants formula (10), so is the
solution x (-, f). Assume that ¢ > 0 and we thus get f > 0. Since Eq. (7) is positive, it follows
that
k k
Kk )= 1@+ [ RG=5) 7 0)ds = [ RG= 918051 ds >0,

0 0
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by the variation of constants formula. Thus, the linear operator defined by
k
L:Co([0,k],R") > R"; ¢+ Lp:= f Rk — )¢ (s)ds,
0

is a positive operator. Applying Lemma 3.5 to the positive operator L, we conclude that the
function
t

n(t):/R(k—s)ds, t €0, k],
0

is an increasing matrix function. From R € L! ([0, k], R™), it follows that R(¢) > 0 almost every-
where on [0, k]. Since k € N is arbitrary, it follows that R(¢) > 0 almost everywhere on R.. This
completes our proof. O

Corollary 3.7. If K is nonnegative, then Eq. (7) is positive.

Proof. It is sufficient to show that the resolvent R of K is nonnegative, provided K is nonnega-
tive. The argument below is based on that of the proof of Theorem 3.1 of [5, p. 43].

Suppose for a moment that fOT IK(s)]|ds < 1 for some T > 0. Consider the sequence
defined by Ry := K K* ke N, where K*' is the (i — 1)-fold convolution of K by it-
self. Since [|K*"'[[1(j0.77.rn) < ||K||’L,([0 TLR™’ it follows that (Ry)j is a Cauchy sequence in
L0, 11, R™). Thus, (R)x converges to Rr in L! ([0, T], R™). Moreover, each Ry, k > 2, sat-
isfies

Rr=K+Kx*xRy_ 1=K+ Ry_1xK.

Letting k — +o00, we get Rt = K + K * R = K + Rr % K. By the uniqueness, Rt = R
on [0, T']. Furthermore, there exists a subsequence of (Ry); such that it converges pointwise
to R almost everywhere on [0, T']. Since Rj is nonnegative almost everywhere on [0, T'] for
every k € N, sois R. Now let 7 > 0 be arbitrary. Choosing o > 0 large enough, we can assume
that K () = e °'K(t),t € [0, T] satisfies that fOT IK1(s)||ds < 1. Let Ry be the solution of
the equations Ry = K; + Ry * K| = K| + K1 = Ry in L'([0, T],R"). Then R(t) = e°'R;(t),
t € [0, T, is the solution of the equations R = K + R % K = K + K * R. From the result of the
above, we conclude that R is nonnegative almost everywhere on [0, T']. So is R. The conclusion
of the corollary easily follows from this fact. O

Remark 3.8. It is worth noticing that the converse of the above corollary is not true. To see this,
let us consider the function K (¢) := e~ 'sint, t € Ry. Then, it is easy to check that the resolvent
of K is given by R(t) =re™ ', t € Ry. Since R is nonnegative, Eq. (7) is positive. However, K is
not nonnegative.

4. Paley—Wiener theorem revised for linear Volterra integral equations with nonnegative
kernels

We now deal with asymptotic behavior of the solution of Eq. (7). It is well known that un-
der the hypothesis, K € L' (R, R"*"), the asymptotic behavior of the solution of Eq. (7) is
determined by the kernel K through a famous theorem of the Paley—Wiener.
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Let #: Ry — R. Then the Laplace transform of # is formally defined to be
+00
h(s):= / e h(t)dt.

0

If BeRand f0+oo e P|h(1)|dt < 400, then fz(s) exists for s € C, Ns > B. Furthermore, fz(s) is
an analytic function in the domain {s € C: s > g}. If D(¢) = (d;;(¢)) is a matrix function then
we define

A

D:=d;.

Theorem 4.1. (See [5].) Let K € L'(R+,R™ ") and let V be one of the following spaces:
LP(R4,R"), p €[l,+x]; BCR4+,R"); BUC(R4,R"); BV(Ry,R"). Then, the following
statements are equivalent:

(i) the resolvent R of K belongs to L' (R, R"");
(i) det(I, — K(2)) #0, forall z € C, Rz > 0;
(iii) for every f €V, the solution x(-, f) of (7) belongs to V and x depends continuously on f
in the norm of V.

Remark 4.2. Actually, the space V stated in the above theorem can be taken in a large class of
normed spaces. For further information, see Theorem 4.5 of [5, p. 47].

Combining Theorems 2.1 and 4.1, we get a variant of the Paley—Wiener theorem for linear
Volterra integral equations with nonnegative kernels.

Theorem 4.3. Let K € L' (R, R"*™) and let V be one of the spaces stated in Theorem 4.1. If
K > 0, then the following statements are equivalent:

@) the,}:esolvent R of K belongs to L' (R, R"*™);
(i) p(K(0)) <1;
(iii) for every f €V, the solution x(-, f) of (7) belongs to V and x depends continuously on f
in the norm of V;
@iv) for any vector b € R", b >> O, the solution of the equation x = b + K * x satisfies

lim x(¢) =:x* > 0;
t—+00
(v) for some vector b € R", b > 0, the solution of the equation x = b + K * x satisfies

lim x() =:x*>0.

t—+o0
Proof. To prove (i) < (ii) < (iii), it is sufficient to show that
det(1, — Il(\(z)) #0, forallzeC, Rz >0,

if and only if ,o(I’(\(/O\)) < 1. Assume that det(l,, — I?(z)) =0, for some z € C, Rz > 0. This
implies that 1 < p(K(2)). From K > 0, it follows that |e7** K (s)| < K (s) almost everywhere
on [0, +00). Using Theorem 2.1(iv), we get 1 < p(K(2)) < p(K(0)). Conversely, suppose that
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det(I — K(z)) # 0, forall z € C, iz > 0. We show that ,o(K(O)) < 1. Assume contrary that
(K (0)) > 1. Consider the following real function:

+00

g):=1- p(I?(t)) =1- ,0( / eBK(s) ds), t €0, +00). (12)

0

By K € LI(R+, R™ ™), the function g is well defined in [0, +00). Moreover, since the spec-
tral radius is continuous in the matrix space and K is continuous in  on [0, +00), it follows
that g is continuous in ¢ on [0, +00). Moreover, by the assumption, we have g(0) < 0 and
llm,_>+oog(t) = 1. It implies that g(#p) = 0, for some 9 = 0. This gives 1 = p(E(to)) Since
K (tp) is a nonnegative matrix, we get det(l,, — K (to)) = 0, by Theorem 2.1(i). However, this
conflicts with our assumption.

We now prove that (i) = (iv). By the variation of constants formula, we have x(1) = b +
fé R(t — s)bds. Thus, lim;_, oo x(t) = b + (f0+°° R(t)dt)b =: x*. Since K > 0, it implies that
R(t) > 0, by Corollary 3.7. This results that x* > 0.

To complete the proof, we show that (v) = (i). Let R(t) = (R;;j(¢)) € R*™", t > 0, and

= (b1, by, ..., by). Since lim,_, oo x () = x*, it follows that lim;_, 1 fot R(s)bds =x* —b.
Taking into account that R;; > 0, and b; > 0, Vi, j € {1,2,...,n}, it implies that

t

lim Rij(s)bjds < 400,

t—+00

0
forevery i, j € {1,2,...,n}. We thus get

+00 t
/ Rl‘j(S) ds = t—lginoo/ Rij(s) ds < +o00,
0 0

for every i, j € {1,2,...,n}. This means that R € L' (R, R"*"). O
Furthermore, we give here an extension of Theorem 4.3 to perturbed equations.

Theorem 4.4. Let K € L' (R, R"™"). Suppose that K > 0 and p(I?(O)) < 1. Then, for every
A e L' (R, R"™™) satisfying,

Al < T Tie—1n’
(T — KON~ I

the resolvent of K + A still belongs to L' (R, R"™").
Proof. Assume that the resolvent of K + A does not belong to L'(R,,R"*") for some

A€ Ll(R+, R™™). By Theorem 4.1, there exist a complex number zg, Rzp > 0, and a vector
xo0 € C*, xo9 # 0, such that

(I, — K (z0) — A(z0))x0 =0. (13)

Since K > 0 and p(f (0)) < 1, Theorems 4.1 and 4.3 show that I,, — K (z) is invertible for every
z € C, Mz > 0. Hence, it follows from (13) that

(I — I?(zo))f1 A(z0)x0 = xo.
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This implies || (1, — I/(\(z()))_1 [I ||Z(zg)|| > 1. From 9zg > 0, it is clear that

+0o0 +o0
|AGo)| = / e U A®s) ds| < / A ds =14l
0 0

We thus get || (1, — I/('\(z()))_1 [ll1A]l = 1, or equivalently,
1

(7, — K o)1l

To end the proof, it is sufficient to show that

| (1 — K zo) ™' < [ (1 — K@) 7. (14)

In fact, from 9izg > 0 and K > 0, it follows that |I?(zg)| < I?(O). By Theorem 2.1(iv), we have
p(K(z0)) < p(K(0)) < 1. So, we can rewrite (I, — K (z0)) ! as

Al =

(I — K(z0)) ™~ Z K (z0)*.
Therefore,
(I = KGo) 7| < ZK(O) (I — K@)~
By the property of operator norm (2), this results (14) which ends our proof. 0O

Remark 4.5. By using an argument used in many our papers on stability radius of positive

systems (see e.g., [11,24,25]), we can show that yp := m is the largest number of

positive numbers y such that the resolvent of K + A belongs to L!(R+, R"*") for all A €
L' (R4, R"™") satisfying || Al < y.

5. A Perron-Frobenius type theorem for linear Volterra integral equations with
nonnegative kernels

It is well known that the classical Perron—Frobenius theorem and its extensions are principal
tools for analysis of stability and robust stability of positive linear time-invariant systems, see e.g.
[3,4,6-11,23-29,33,34]. To our knowledge, there is a large number of extensions of the classical
Perron—Frobenius theorem, see e.g. [1,13,23,26,27,31] and references therein. Recently, we gave
some extensions of the classical Perron—Frobenius theorem to positive linear time-delay systems
(see [23,27]), to positive linear functional equations (see [26,28]) and to positive linear Volterra
equations (see [19,20]). Furthermore, the obtained results are used to analyze stability and robust
stability of the corresponding systems.

In this section, we give a Perron—Frobenius type theorem for linear Volterra integral equations
with nonnegative kernels. The obtained results are used to study the asymptotic behavior of
solutions of linear integral Volterra equations in Sections 3 and 6.

Let us define

0@2) = (I, - K@),
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for appropriate z € C. Set
400
w(K) = sup{iﬁz: zeC, f e K (1) dt <400, detQ(z) =07}, (15)
0

where we define u(K) = —occ if det Q(z) # 0, forevery z € C with [, e™"|| K (1)|| dt < +oc.
Then, u(K) is called spectral abscissa of Eq. (7).

Theorem 5.1. Let K > 0 and suppose that

+oo
ﬂ::inf{y eR: /e"””K(f)Hdt<+oo}<+oo
0
and a € [B, +00). If u(K) > —o0, then

(i) (Perron—Frobenius theorem for linear Volterra integral equations with nonnegative kernels)
w(K) is a root of the characteristic equation, that is det Q(u(K)) = 0. Moreover, there
exists a nonzero vector x € R", x > 0, such that

E(M(K))x =x.

(i1) There exists a nonzero vector x € R™, x >0, such that I/(\(a)x > x ifand only if w(K) 2 «.
Here, we assume El\mt K () exists if o = B.
(iii) Qo)™ ' = (I, — K ()~ ! exists and is nonnegative if and only if & > u(K).

Proof. First, we show that u(K) < +o00o. In fact, if det Q(z) = 0, for some z € C, then
1< ;o(f0+(>o e K (t)dt). Since K > 0, using Theorem 2.1(iv), we get ,o(fOJrOO e UK (t)dt) <
p(JoF e K (1) dt) = p(K (Rz)), for z € C, Rz > max{0, }. On the other hand, it follows
from e~ B+ K (s) € LI(R, R"™ ") that I?(S)‘iz) — 0 as Rz — +oo. By the continuity of the
spectral radius in matrix space, we have ,o(I? Nz)) < 1, for z € C, Rz > 0 large enough. There-
fore, det Q(z) # 0, for z € C, Rz > 0 large enough.

Next, by the assumption, there exists zg € C such that det Q(zp) = 0. This implies that 8 <
Nzo < n(K). If fzp = n(K) then taking into account K > 0, Theorem 2.1(iv) gives

+o00 “+00 —+00
1< p( / e YK (s) ds) < ,o( f e NS K (5) ds) = p( / e HES K () ds).

0 0 0

If B < Mzo < u(K), then there exists a sequence of complex numbers (zix)x such that
det Q(zx) =0, B <MNzr < u(K),k € Nand RNz — w(K) as k — +oo. By Theorem 2.1(iv)

+00 —+00
lgp(/e_z“l((s)ds> ép(/‘e_mz"‘vl((s)ds). (16)

0 0

Letting k — 400 in (16), we get 1 < ,o(fOJroo e MK K (s)ds). Therefore, we always have
1< ,o(fo+OO e HK)s K (s)ds). Consider again the real function g defined by (12), where t €
[8, +00) if f0+°° e P|K (s)| ds < 400, otherwise ¢ € (B, +00). Then, from the above result,
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we have g(u(K)) < 0. Assume that g(u(K)) < 0. Since, clearly, lim;_, y 5, g(¢) = 1, it implies
that g (7o) = 0, for some 79 > w(K). This gives 1 = p(f0+°° e 5K (s)ds). By Theorem 2.1(i),
det(Z,, — 0+°° e~ K (s)ds) = 0. However, this conflicts with the definition of ©(K). Thus
g(u(K)) =0, or equivalently, 1 = ,o(fo+C>O e~ H(K)s K (s)ds). Then, (i) now follows from Theo-
rem 2.1(1).

Furthermore, by Theorem 2.1(iv), ,o(foJroo e 25K (s)ds) < ,o(fo+Oo e K (s)ds), B <
HnH<n (B<y<n,if f0+°° e Ps |K (s)||ds < 400). Therefore, g is increasing. Moreover, from
the above arguments, it must be g(¢) > 0, for every > ;£ (K). Now, it is easy to see that (ii), (iii)
follow from (i) and Theorem 2.1(ii), (i) and Theorem 2.1(iii), respectively. O

Remark 5.2. (i) Let K € L' (R, R"") and K > 0. It follows from Theorems 4.3 and 5.1
that the resolvent R of K belongs to L'(R,,R"*") if and only if u(K) < 0. Since K €
L' (R, R™"), it follows that 8 < 0. Then, we consider separately two cases as follows:

(@) B=0.

If w(K) = —oo then ,o(I’(\(O)) < 1. I£ u(K) > —oo then u(K) > 0 = 8. From the proof
of Theorem 5.1, we showed that p(K (u(K))) = 1. Using Theorem 2.1(iv) again, we get
1=p(K(u(K))) < p(K(0)). Hence, we have

1w(K)=—oo ifandonlyif p(K(0))<1.
(b) p<0.
By a similar argument, we get

n(K) <0 ifandonlyif p(K(0)<I.

Hence, we get back Theorem 4.3. Furthermore, it is worth noticing that if 8 < 0, then there exists
a positive number « such that

+00
/ e |R(t)| dt < +oc. (17)
0

Conversely, (17) implies § < 0, provided 0 < K € LRy, R™") with p(I/(\ (0)) < 1. In fact,
B < 0 implies that f0+°o eV'||K(t)||dt < 400, for some y > 0. Moreover, since p(I?(O)) <1
it follows that p(I?l (0)) < 1, where K(t) := K (¢)e*’, for some 0 < a < y. By Theorem 4.3,
the resolvent R; of K; belongs to LI(R+, R ™). Since R is the resolvent of K, it is easy to
see that R; = e*' R. We thus get (17). Conversely, if 0 < K € L! R4, Ry with p(I?(O)) <1
and (17) is valid then by an argument as in the proof of Theorem 2 of [16], we can show that
0+°° eV'|K (t)|| dt < +o0, for some y > 0. That means 8 < 0. We omit the details here.

(i) Let K (1) = A e RU*", t >0, and assume that p(A) > 0. Then by a simple computation,
it is easy to see that Theorem 5.1 comes back the classical Perron—-Frobenius Theorem 2.1.
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6. A criterion for positivity of the initial function semigroup of linear Volterra integral
equations

Consider the initial value problem of a homogeneous linear Volterra integral equation of the
form

o

x(t)=fK(s)x(t—s)ds, t >0, (18)
0
x()=vy@) e Lz((—o, 0),]R”), —o <t <0. (19)

Here 0 < o < +oo and K € L1((0, o), R"*") are given. It is important to note that if we define
K(t)=0,Vt > o, then (18)—(19) can be rewritten in the form of (7) where f is defined by
[T K@Y —s)ds ifrel0,0),

0 ift >o.

Let x be the solution of (18)—(19). Fix A > 0 and define x;(¢) = x(¢t + h), t > —o. The following
theorem shows that the mappings ¥ — xj, produce a strongly continuous semigroup.

f)= { (20)

Theorem 6.1. (See [5].) Let K € L'((0, o), R™™). For each ¥ (t) € L*((—0,0), R"), let x be
the solution of (18)—(19) and define

(TWY) (@) :==x4(1), 1€ (=0,0), 21

for h > 0. Then T is a strongly continuous semigroup on L*((—ao, 0), R"). Moreover, the infini-
tesimal generator A of the semigroup is given by

Ay = d—w, ¥ € D(A), (22)
ds
where
D(A) = {w e W'2([—0, 01, R"): ¥ (0) — / K ()Y (—s) =0}. (23)

0

Definition 6.2. (See [5].) The semigroup (7' (h)); >0 described in Theorem 6.1 is called the initial
function semigroup determined by K on (0, o).

Recall that a semigroup (7 (h))>0 is positive, by definition, if 7' (h) is a positive operator
for every h > 0. We are now interested in the problem of finding conditions under which the

semigroup (7' (h)), >0 is positive. The following theorem gives us the solution of this problem.

Theorem 6.3. Let K € L'((0,0), R"*"). The semigroup (T (W)n>o is positive if and only if
K >0.

To prove the above theorem, we need the following.

Lemma 6.4. For z € C satisfying det(I,, — K (2)) #0, we have
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0 0
I —A7'¢0) = (I, - K(2) ™ ( / K(—s)</e1<”>¢(r)dr> ds)
0 “ A
+ / g(s)ds, te[—o,0], (24)

t

for every ¢ € L*>((—0,0), R").

Proof. Assume that (zI — A)~'¢ (1) =y where ¢ € L>((—a,0), R") and ¢ € D(A). By (22),
we have

day
Z(t) —z¥(t) = —¢(t), ae.on(—o,0).

It follows that
0

V() = Y (0) + / g (s)ds, 1 e[—a,0].

t

By ¥ € D(A), ¥ (0) = [y K()¥(—s)ds = ffg K (—s)¥(s)ds. Then we get
0 0 0

¢(0)=/e”K(—s)dslﬁ(O)-l-fK(—s)(er(s_T)qb(r)dr) ds.
This is equivalent to
0 0 0
(1 — R@)w(0) = <1n -/ e“K(—s)ds>w<0> -/ K(—s)< / eZ“—%(r)dr) ds.

From the above argument, it is easy to see that the operator (zI — .A)~! exists for each z € C,
satisfying det(I,, — K (2)) # 0. Moreover, if it is the case then

0 0
Y (0) = (I, — 1?(z))‘1 / K(—s)</ez<f—f>¢(r)dr> ds.
This gives
0 0 0
V(1) =e”(l,, — I/(\(z))_1 ( / K(—s)(/ez“—’)¢(f) dt) ds) +/ez(f—3)¢(S)ds,
—0 N t
t €[—o,0],

which ends our proof. O

Proof of Theorem 6.3. (<) By a standard property of a Cp-semigroup,

k [k k
T(h)¢=k£Tw[ER<E’A>] ¢, h>0,
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for every ¢ € L?>((—o,0), R"), see e.g. [17]. Thus, we only have to show that R(s, A) >0, for
s > 0 large enough. In view of (24), it is sy\fﬁcient to show that (I, — K(s))"! >0 for s > 0
large enough. Since K > 0 it follows that K (s) > 0, for every s € R. Taking into account that

limg—s 400 K (s) = 0, by the continuity of the spectral radius in the matrix space, we have
p(f(s)) <1, Vs=>sy,

for some s; > 0. Finally, it follows from Theorem 2.1(iii) that (I, — K (s))"!' >0, for every
s > S1.

(=) Assume that the semigroup (7 (h))n>0 is positive, we show that K > 0. Let ¢ €
C([—o,0], R™). It follows that the function f defined by (20) is bounded continuous on R.
Since the resolvent R of K is locally integrable, it follows from the variation of constants for-
mula that the solution x of Eq. (7) where f is given by (20) (therefore, it is also the solution of
(18)—(19)) is continuous on [0, o). In particular, x is continuous from the right at zero. Suppose
Y 2> 0. Since the semigroup (T (h)),>0 is positive, it follows that x(0) = fOJ K(s)x(—s)ds =
foa K(s)Y¥(—s)ds > 0. Using Lemma 3.5, itis easy to see that K > 0. O

Finally, we give a criterion for exponential stability of the semigroup (7' (h))n>0.

Theorem 6.5. Let K € L' ((0, o), R"*") and K > 0. Then the semigroup (T (h))h>0 is exponen-
tially stable if and only if,o(fotr K(s)ds) < 1.

Proof. Since (T (h));>0 is a positive semigroup on L2((—0,0), R"), the spectral mapping the-
orem holds true, see e.g. [17, Theorem 1.1, p. 334]. That is, s (A) = w(A), where s(A), w(A), is
the spectral abscissa and growth bound of the semigroup, respectively. Therefore, the semigroup
is exponentially stable if and only if s (A) < 0. On the other hand, the spectrum of the generator .A
is the pure point spectrum and it is defined by {z € C: det(Z,, — I?(z)) =0}, see [5, Theorem 2.7,
p- 213] (we also see that from the proof of Lemma 6.4). We thus get, s(A) = u(K) where u(K)
is given by (15). Furthermore, takin/g\ Remark 5.2 into account, it follows from Theorem 5.1 that
s(A) = u(K) < 0if and only if p(K (0)) = ,o(foa K (s)ds) < 1. This completes our proof. O

Remark 6.6. It is important to know that if o = +o0 then the semigroup (7 (%)) >0 is still exist-
ing. However, in this case, the definition of the generator of the semigroup is quite complicated.
Moreover, the spectrum of 4 contains the half plane {z € C: Rz > 0}, see [5, p. 213]. Thus, the
semigroup (7 (h)),>0 is not exponentially stable.
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