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This paper studies the risk minimization problem in semi-Markov decision processes with
denumerable states. The criterion to be optimized is the risk probability (or risk function)
that a first passage time to some target set doesn’t exceed a threshold value. We first
characterize such risk functions and the corresponding optimal value function, and prove
that the optimal value function satisfies the optimality equation by using a successive
approximation technique. Then, we present some properties of optimal policies, and further
give conditions for the existence of optimal policies. In addition, a value iteration algorithm
and a policy improvement method for obtaining respectively the optimal value function
and optimal policies are developed. Finally, two examples are given to illustrate the value
iteration procedure and essential characterization of the risk function.

Crown Copyright © 2009 Published by Elsevier Inc. All rights reserved.

1. Introduction

In the field of Markov decision processes (MDPs) researchers have considered the optimization problem supπ Pπ
i (τB > λ),

where i is an initial state, π is a policy, τB is a first passage time to a given target set B , and λ is a threshold value. Such
optimization problems arise from the background of reliability engineering and risk analysis, in which the target set B
usually corresponds to the set of failure states of a system, and the probability Pπ

i (τB > λ) assesses the reliability of the
system that the working life would be more than λ time units. According to the time parameter, the existing works on
this optimization problem can be roughly classed into two cases: the discrete-time MDPs (DTMDPs) and the continuous-
time MDPs (CTMDPs). For the DTMDPs, Liu and Huang [12] establish the optimality equation and present some properties
of several kinds of optimal policies. They also show existence results and algorithms for these optimal policies. For the
CTMDPs, Lin, Tomkins and Wang [10] consider the equivalent risk minimization problem infπ Pπ

i (τB � λ), and give some
necessary and sufficient conditions for the existence of optimal policies.

In this paper, we devote ourselves to the risk minimization problem infπ Pπ
i (τB � λ) in continuous-time semi-Markov

decision processes (SMDPs) with denumerable states. As is known, since in the SMDPs the time between decision epochs
may follow arbitrary distributions, the SMDPs [3,7,8] are a generalization of both CTMDPs [4,5,10] and DTMDPs [2,6,12].
Therefore, the model in this paper is more general than those in [10,12]; see Remark 3.5 and Example 6.2 for details.

As mentioned above, the risk minimization problem for the continuous-time case has been considered in [10]. However,
in [10] both the state and action spaces are assumed to be finite, the additional conditions for the existence of optimal
policies, which require that (finite or infinite) countably many intersections of certain policy sets are nonempty, are not
easy to verify, and moreover, the optimality equation has not been established yet. In addition, it is worth noting that the
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analytic methods for the discrete-time models in [12] may be invalid for the continuous-time ones. For instance, we can not
use the existence of ε-optimal policies to establish the optimality equation for the continuous-time models because these
ε-optimal policies may not exist in continuous-time models. All of these, which largely motivate this paper, may be due to
the fact that each policy in [10] is independent of threshold values λ.

In this paper, however, our analytic method used is different from those in [10,12]. In fact, our method is similar to those
in Ohtsubo and Toyonaga [13], Ohtsubo [14], and Wu and Lin [17] for another minimizing risk problem infπ Pπ

i (V � λ) in
DTMDPs, where V denotes a total discounted reward over an infinite horizon. In the spirit of the analytic technique in
[13,14,17], we introduce the class of policies which include not only the usual states and actions but also threshold values λ

for SMDPs, and then establish the optimality equation (Theorem 3.2) and the existence of optimal policies (Theorem 4.2)
under suitable conditions much weaker than those in [10].

More precisely, using a successive approximation technique, we prove that the optimal value function is nondecreasing
and right continuous of threshold values and satisfies the optimality equation, and thus establish the optimality equation.
Then, we further show that there exists an optimal stationary policy and any stationary policy realizing the minimum in
the optimality equation is optimal under some suitable conditions (see Assumptions 2.1 and 4.1). We also give sufficient
and necessary conditions for existence of optimal policies which are independent of threshold values (see Theorem 4.3).
Besides, our works still include: (1) some properties of optimal policies (see Theorem 4.1), (2) a value iteration algorithm
and a policy improvement method for computing respectively the optimal value function and optimal policies, and (3) two
examples used to illustrate the value iteration procedure and some essential characterization for our model. These results
are new for continuous-time models, which include SMDPs and CTMDPs.

The rest of this paper is as follows. In Section 2, we formulate our control model. In Section 3, basic properties of risk
functions and optimal value function are studied, and the optimality equation is established. In Section 4, some properties
of optimal policies and conditions for the existence of two kinds of optimal policies are discussed. After giving a policy
improvement method as well as a value iteration algorithm in Section 5, we illustrate the value iteration algorithm by two
examples in Section 6.

2. The control model

In this section we introduce the model of SMDPs{
S, B, A,

(
A(i), i ∈ S

)
, Q (t, j | i,a)

}
, (1)

where S is a state space and A is an action set, which are assumed to be denumerable, respectively; B ⊂ S is a given target
set; A(i) ⊂ A is a set of admissible actions at state i ∈ S , which is assume to be finite. Let K := {(i,a) | i ∈ S, a ∈ A(i)} be
the set of feasible state-action pairs, Bc := S − B , R+ := [0,+∞) and R := (−∞,+∞). The function Q (t, j | i,a) in (1) is
the semi-Markov decision kernel which satisfies:

1. Q (·, j | i,a), for any fixed j ∈ S , (i,a) ∈ K , is a nondecreasing, right continuous real function on R+ such that
Q (0, j | i,a) = 0;

2. Q (t, · | ·,·), for every t ∈ R+ , is a sub-stochastic kernel on S given K such that D(t | i,a) :=∑ j∈S Q (t, j | i,a) � 1 for all
(i,a) ∈ K ;

3. P (· | ·,·) := Q (∞, · | ·,·) is a stochastic kernel on S given K such that
∑

j∈S P ( j | i,a) = 1 for all (i,a) ∈ K .

Remark 2.1. Note that our model here is slightly different from the usual SMDPs because we have not considered a reward
or cost structure; see Lippman [11], Puterman [15] and Ross [16].

In the SMDPs, if the system occupies state i ∈ S at some decision epoch and the decision-maker chooses an action
a ∈ A(i), the following consequence occurs (regardless of the previous history of the system): the system state stays at i
within t units of time, then changes to some j ∈ S with probability Q (t, j | i,a), and the next decision epoch follows.

We now describe the evolution of a SMDP and how a decision-maker chooses his or her actions. At time t0, which is
the initial decision epoch, the system occupies state i0, and the decision-maker has a goal (threshold value) λ0 in mind,
that is, he should try to avoid the risk that the system state falls in the target set B within λ0 time units. Therefore, the
decision-maker chooses an action a0 according to the current state i0 and his goal λ0. As a consequence of this action
choice, the system remains in i0 until time t1, at which point the system state changes to i1 and the next decision epoch
occurs. At time t1, the decision-maker has a new goal (threshold value) λ1 := λ0 − (t1 − t0), that is, he now should try to
avoid the risk that the system state falls in the target set B within λ1 time units. According to the current state i1 and the
new goal λ1 as well as the previous state i0 and the previous goal λ0, the decision-maker chooses an action a1 and the
same sequence of events occur. The decision process evolves in this way and thus we obtain an admissible history hn of the
SMDP up to the nth decision epoch, i.e.,

hn = (t0, i0, λ0,a0, t1, i1, λ1,a1, . . . , tn−1, in−1, λn−1,an−1, tn, in, λn),

where tm+1 � tm � 0, (im,am) ∈ K , λ0 ∈ R , λm+1 := λm − (tm+1 − tm) for m = 0,1, . . . ,n −1, and in ∈ S . Let Hn denote the set
of all admissible histories hn of the system up to the nth decision epoch, where Hn is endowed with the Borel σ -algebra.
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Remark 2.2.

(1) The history hn here generalizes the one for the usual SMDPs (see Lippman [11], Puterman [15, p. 533]) by taking into
account the decision-maker’s goals (threshold values) λn as well as the decision epochs tn , the states in and actions an .

(2) Note that the goals (threshold values) λm may be negative for some m � 0, i.e., λm < 0. In this case, the controlled
system is thought to be risk-free on behalf of the decision-maker at the mth decision epoch.

Now we are in a position to introduce the concept of a policy.

Definition 2.1. A randomized history-dependent policy is a sequence π = {πn, n = 0,1, . . .} of stochastic kernels πn on A
given Hn satisfying

πn
(

A(in)
∣∣ hn
)= 1, ∀hn ∈ Hn, n � 0.

The set of all randomized history-dependent policies is denoted by Π .

Remark 2.3. Note that a policy here is similar to those in Ohtsubo and Toyonaga [13], Ohtsubo [14] and Wu and Lin [17] for
another criterion in DTMDPs, which include not only the usual states and actions but also the goals (threshold values) λn .
In fact, both the criterion in this paper and those in [13,14,17] are risk-sensitive, and so it is natural to consider the goals
(threshold values) λ for the decision-maker when making decisions.

Let Φ represent the set of all stochastic kernels ϕ on A given S × R such that ϕ(A(i) | i, λ) = 1 for all (i, λ) ∈ S × R , and F

denote the set of all measurable functions f : S × R → A such that f (i, λ) is in A(i) for each (i, λ) ∈ S × R . The functions
in F are called decision functions. A policy π = {πn} is said to be randomized Markov if there is a sequence {ϕn} of ϕn ∈ Φ

such that πn(· | hn) = ϕn(· | in, λn) for every hn ∈ Hn and n � 0. We write such policies as π = {ϕn}. A randomized Markov
policy π = {ϕn} is said to be randomized stationary if ϕn are independent of n. In this case, we write π = {ϕ,ϕ, . . .} as ϕ
for simplicity. Moreover, a randomized Markov policy π = {ϕn} is said to be deterministic Markov if there is a sequence { fn}
of fn ∈ F such that ϕn(· | i, λ) is the Dirac measure at fn(i, λ) for every (i, λ) ∈ S × R and n � 0. Similarly, we denote such
policies by π = { fn}. In particular, a deterministic Markov policy π = { fn} is said to be stationary if fn are independent
of n. For simplicity, we write π = { f , f , . . .} as f . We denote by ΠRM , ΠRS , ΠDM , and ΠDS the families of all randomized
Markov, randomized stationary, deterministic Markov, and stationary policies, respectively. Obviously, ΠRS ⊂ ΠRM ⊂ Π and
ΠDS ⊂ ΠDM ⊂ Π .

Let Π0 denote the set of all policies which are independent of threshold values. If a policy π = { fn} ∈ ΠDM ∩ Π0, then
fn(i, λ) ≡ fn(i) for all (i, λ) ∈ S × R and n � 0. Obviously, Π0 ⊂ Π . Moreover, for a policy π = {ϕ0,ϕ1, . . .} ∈ ΠRM and m � 1,
let (m)π := {ϕm,ϕm+1, . . .} denote the m-remainder policy of π .

For each (s, i, λ) ∈ R+ × S × R and π ∈ Π , by the well-known Tulcea’s theorem, there exist a unique probability measure
space (Ω,F , Pπ

(s,i,λ)
) and a stochastic process {Sn, Jn, λn, An, n � 0} such that, for each t ∈ R+ , j ∈ S , a ∈ A and n � 0,

Pπ
(s,i,λ)(S0 = s, J0 = i, λ0 = λ) = 1, (2)

Pπ
(s,i,λ)(An = a | hn) = πn(a | hn), (3)

Pπ
(s,i,λ)(Sn+1 − Sn � t, Jn+1 = j | hn,an) = Q (t, j | in,an), (4)

where Sn, Jn, λn := λn−1 − (Sn − Sn−1) and An denote the nth decision epoch, the state, the threshold value and the action
chosen at the nth decision epoch, respectively. The expectation operator with respect to Pπ

(s,i,λ)
is denoted by Eπ

(s,i,λ)
. For

simplicity, Pπ
(0,i,λ)

and Eπ
(0,i,λ)

is denoted by Pπ
(i,λ)

and Eπ
(i,λ)

. Without loss of generality, we always set the initial decision
epoch S0 = 0 and omit it.

Remark 2.4.

(1) The construction of the probability measure space (Ω,F , Pπ
(s,i,λ)

) and the above properties (2)–(4) of the stochastic
process {Sn, Jn, λn, An, n � 0} follow from those in Limnios and Oprisan [9, p. 33] and Puterman [15, pp. 534–535].

(2) Let X0 := 0, Xn := Sn − Sn−1 (n � 1) denote the sojourn times between two successive decision epochs. In this setting,
the stochastic process {Sn, Jn, λn, An, n � 0} may be equivalently rewritten as {Xn, Jn, λn, An, n � 0}, where λn :=
λn−1 − Xn .

In applications, it is natural to avoid the possibility of an infinite number of decision epochs within a finite amount of
time. To this end, we impose the following assumption throughout this paper.

Assumption 2.1. There exist δ > 0 and ε > 0 such that

D(δ | i,a) � 1 − ε, ∀(i,a) ∈ K .
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Remark 2.5.

(1) Assumption 2.1 asserts that (with probability one) only a finite number of decision epochs are made in a finite amount
of time, i.e.,

Pπ
(i,λ)

({
lim

n→∞ Sn = ∞
})

= 1, ∀(i, λ) ∈ S × R and π ∈ Π. (5)

(2) In fact, Assumption 2.1 is an extension of Assumption 11.1.1 in Puterman [15], Assumption 2 in Lippman [11] and
Condition 1 in Ross [16] to the case that the additional variables λn have been considered here.

Under Assumption 2.1, we define an underlying continuous-time state-action process {Z(t), A(t), t ∈ R+} corresponding
to the discrete-time process {Sn, Jn, An} by

Z(t) = Jn, A(t) = An, for Sn � t < Sn+1, t ∈ R+ and n � 0.

Definition 2.2. The stochastic process {Z(t), A(t), t � 0} is called a (continuous-time) semi-Markov decision process.

For the target set B ⊂ S , we introduce the random variable

τB := inf
{

t � 0
∣∣ Z(t) ∈ B

}
(with inf∅ := ∞)

which is the first passage time into the target set B of the process {Z(t), t � 0}. Obviously, τB = 0 when Z(0) ∈ B , and
τB � S1 when Z(0) ∈ Bc .

For every (i, λ) ∈ S × R and π ∈ Π , we define the risk probability (risk function) by

F π (i, λ) := Pπ
(i,λ)(τB � λ)

and the corresponding optimal value function by

F ∗(i, λ) := inf
π∈Π

F π (i, λ).

Definition 2.3. A policy π∗ ∈ Π is called optimal if

F π∗
(i, λ) = F ∗(i, λ), ∀(i, λ) ∈ S × R.

Remark 2.6.

(1) It is easy to see that F π (i, λ) is well defined. In Section 3, we will show that F π (i, λ) is measurable with respect
to threshold values λ, and F ∗(i, λ) is nondecreasing and right continuous in λ. However, F π (i, λ) may be neither
nondecreasing nor right continuous in λ, and thus F π (i, λ) may not be a distribution function of λ (see Example 6.1),
whereas F π (i, λ) are always distribution functions of λ in [10,12] because only the policy class Π0 is considered there.

(2) Let B represent the set of failure states of a system. Then τB denotes the working life of the system and F π (i, λ)

denotes the risk probability that the system eventually fails within λ time units when using policy π . Roughly, our aim
is to find an optimal policy which minimizes F π (i, λ) in the policy class Π . Hence, the background of our model is an
optimization problem in the field of risk analysis.

Note that, for every (i, λ) ∈ B × R and π ∈ Π , we have F π (i, λ) = 1[0,∞)(λ), where 1D is the indicator function on
a set D . To avoid this trivial case, in the following we restrict our arguments about F π (i, λ) to the case (i, λ) ∈ Bc × R .
Moreover, we limit ourselves to randomized Markov policies below, since, as shown in Theorem 11.1.1 in [15], we also have
F ∗(i, λ) = infπ∈ΠRM F π (i, λ).

3. On the optimal value function and optimality equation

In this section, we characterize the optimal value function F ∗ as well as the risk functions F π , and prove that F ∗ is
a solution to the optimality equation.

To characterize F π and F ∗ , we introduce some function sets and operators. Let Fm be the set of functions F : Bc × R →
[0,1] such that F (i, λ) = 0 if λ < 0 and F (i, ·) is Borel measurable on R for every i ∈ Bc ; and Fr the set of functions F ∈ Fm

such that F (i, ·) is monotone nondecreasing and right continuous on R for each i ∈ Bc .
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We define operators T a , T ϕ , T from Fm into Fm as follows: for F ∈ Fm , i ∈ Bc , a ∈ A(i) and ϕ ∈ Φ , if λ � 0,

T a F (i, λ) := Q (λ, B | i,a) +
∑
j∈Bc

λ∫
0

Q (dt, j | i,a)F ( j, λ − t), (6)

T ϕ F (i, λ) :=
∑

a∈A(i)

ϕ(a | i, λ)T a F (i, λ), (7)

T F (i, λ) := min
a∈A(i)

T a F (i, λ), (8)

where Q (λ, B | i,a) :=∑ j∈B Q (λ, j | i,a), and T a F (i, λ) = T ϕ F (i, λ) = T F (i, λ) := 0 for λ < 0.

Remark 3.1.

(1) It follows from the definition of Q and Fubini’s theorem that T a is a map from Fm into Fm . Moreover, by the definition
of ϕ and the finiteness of A(i), T ϕ and T are also maps from Fm into Fm .

(2) These operators T a , T ϕ and T are based on the characterization of our model in (1), and used to analyze the properties
of F π and F ∗; see Lemma 3.3 and Theorems 3.1 and 3.2.

We next give two lemmas about T a and T .

Lemma 3.1.

(a) If G ∈ Fr , then T aG and T G are both in Fr for any a ∈ A(·).
(b) If Gn ∈ Fr and Gn � Gn+1 for each n � 0, then limn→∞ Gn ∈ Fr .

Proof. (a) From the definitions of T a , T and G ∈ Fr , it is obvious that T aG(i, ·) and T G(i, ·) are nondecreasing on R . Fur-
thermore, since Q (·, j | i,a) and G(i, ·) are right continuous for each j ∈ S , i ∈ Bc and a ∈ A(i), the dominated convergence
theorem gives the right continuity of T aG(i, ·) and T G(i, ·).

(b) Note that Gn � Gn+1 � 0 for each n � 0, and so the limit G := limn→∞ Gn exists. We easily see that G(i, ·) is
nondecreasing on R . To prove G ∈ Fr , it remains to show that G(i, ·) is right continuous on R . Indeed, for every λ ∈ R
and any sequence {λk} in R such that λk ↓ λ, we have G(i, λk) � Gn(i, λk) for any n,k � 0. Hence, lim supλk↓λ G(i, λk) �
limλk↓λ Gn(i, λk) = Gn(i, λ) for any n � 0 and thus lim supλk↓λ G(i, λk) � G(i, λ). On the other hand, since G(i, λk) � G(i, λ),
we obtain lim infλk↓λ G(i, λk) � G(i, λ), which together with the previous inequality yields limλk↓λ G(i, λk) = G(i, λ). There-
fore, G ∈ Fr and the proof is completed. �
Lemma 3.2. For each F ∈ Fm, there exists a decision function f ∈ F such that T f F = T F .

Proof. By the finiteness of A(i) and the measurable selection theorem (see Bertsekas and Shreve [1, Proposition 7.33,
p. 153]), there exists a measurable mapping f from Bc × R to A such that f (i, λ) ∈ A(i) and T f F (i, λ) = T F (i, λ) for
each (i, λ) ∈ Bc × R . �

To guarantee that T a F π and T F π are well defined (for any π ∈ ΠRM), it is required that F π is in Fm , that is, F π (i, ·) is
measurable on R for each i ∈ Bc . To do this, we define some functions F π

n as below.
Note that for each (i, λ) ∈ Bc × R+ and π ∈ ΠRM , we have

F π (i, λ) = Pπ
(i,λ)(τB � λ)

= 1 − Pπ
(i,λ)(τB > λ)

= 1 − Pπ
(i,λ)

(
Z(t) ∈ Bc, ∀t ∈ [0, λ])

= 1 −
∞∑

m=0

Pπ
(i,λ)

(
Sm � λ < Sm+1, Jk ∈ Bc, k = 0,1, . . . ,m

)
= lim

n→∞

[
1 −

n∑
m=0

Pπ
(i,λ)

(
Sm � λ < Sm+1, Jk ∈ Bc, k = 0,1, . . . ,m

)]
, (9)

where the fourth equality follows from Assumption 2.1 and the others are obvious. Basing on (9), we define F π
−1(i, λ) :=

1[0,∞)(λ), and F π
n (i, λ) := 1 −∑n

m=0 Pπ
(i,λ)

(Sm � λ < Sm+1, Jk ∈ Bc, k = 0,1, . . . ,m) if λ � 0 and F π
n (i, λ) := 0 otherwise for

i ∈ Bc and n � 0. Clearly, limn→∞ F π
n (i, λ) = F π (i, λ), and F π

n (i, λ) � F π (i, λ) for every (i, λ) ∈ Bc × R and n � −1.
n+1
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Lemma 3.3. Let π = {ϕ0,ϕ1, . . .} ∈ ΠRM be arbitrary.

(a) For each n � −1, F π
n ∈ Fm and F π ∈ Fm.

(b) For each n � −1, F π
n+1 = T ϕ0 F

(1)π
n and F π = T ϕ0 F

(1)π , where (1)π = {ϕ1,ϕ2, . . .} ∈ ΠRM. In particular, F ϕ = T ϕ F ϕ when
π = ϕ ∈ ΠRS.

Proof. (a) To show that F π
n ∈ Fm , it suffices to prove that F π

n (i, ·) is measurable on R for each i ∈ Bc . We do this by
induction. When n = −1, it is obviously true. Now assume F π

n (i, ·) is measurable for some n and every π ∈ ΠRM . It then
follows from the property of T ϕ that for any π = {ϕ0,ϕ1, . . .} ∈ ΠRM ,

T ϕ0 F
(1)π
n (i, λ) =

∑
a∈A(i)

ϕ0(a | i, λ)

[
Q (λ, B | i,a) +

∑
j∈Bc

λ∫
0

Q (dt, j | i,a)F
(1)π
n ( j, λ − t)

]

is well defined and measurable in λ, where (1)π = {ϕ1,ϕ2, . . .} ∈ ΠRM . On the other hand, for λ < 0, it is clear that
F π

n+1(i, λ) = T ϕ0 F
(1)π
n (i, λ) = 0, and for λ � 0, we have

F π
n+1(i, λ) = 1 −

n+1∑
m=0

Pπ
(i,λ)

(
Sm � λ < Sm+1, Jk ∈ Bc, k = 0,1, . . . ,m

)
= 1 − Pπ

(i,λ)(S1 > λ) −
n+1∑
m=1

Pπ
(i,λ)

(
Sm � λ < Sm+1, Jk ∈ Bc, k = 0,1, . . . ,m

)
= Pπ

(i,λ)(S1 � λ) − Eπ
(i,λ)

[
n+1∑
m=1

Pπ
(i,λ)

(
Sm � λ < Sm+1, Jk ∈ Bc, k = 0,1, . . . ,m

∣∣ S0, J0, λ0,

A0, S1, J1, λ1 = λ0 − (S1 − S0)
)]

= Pπ
(i,λ)(S1 � λ) − Eπ

(i,λ)

[
n+1∑
m=1

1{ J0∈Bc , J1∈B} Pπ
(i,λ)

(
Sm � λ < Sm+1, Jk ∈ Bc, k = 2, . . . ,m

∣∣ S0, J0, λ0,

A0, S1, J1, λ1 = λ0 − (S1 − S0)
)]

= Pπ
(i,λ)(S1 � λ) −

∑
a∈A(i)

ϕ0(a | i, λ)
∑
j∈Bc

λ∫
0

Q (dt, j | i,a)

[
n+1∑
m=1

Pπ
(i,λ)

(
Sm � λ < Sm+1,

Jk ∈ Bc, k = 2, . . . ,m
∣∣ S0 = 0, J0 = i, λ0 = λ, A0 = a, S1 = t, J1 = j, λ1 = λ − t

)]

=
∑

a∈A(i)

ϕ0(a | i, λ)D(λ | i,a) −
∑

a∈A(i)

ϕ0(a | i, λ)
∑
j∈Bc

λ∫
0

Q (dt, j | i,a)

×
n∑

m=0

P
(1)π
( j,λ−t)

(
Sm � λ − t < Sm+1, J0 = j, Jk ∈ Bc, k = 1, . . . ,m

)

=
∑

a∈A(i)

ϕ0(a | i, λ)

[
D(λ | i,a) −

∑
j∈Bc

λ∫
0

Q (dt, j | i,a)

×
n∑

m=0

P
(1)π
( j,λ−t)

(
Sm � λ − t < Sm+1, Jk ∈ Bc, k = 0,1, . . . ,m

)]

=
∑

a∈A(i)

ϕ0(a | i, λ)

[
Q (λ, B | i,a) +

∑
j∈Bc

λ∫
Q (dt, j | i,a)
0
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×
[

1 −
n∑

m=0

P
(1)π
( j,λ−t)

(
Sm � λ − t < Sm+1, Jk ∈ Bc, k = 0,1, . . . ,m

)]]

=
∑

a∈A(i)

ϕ0(a | i, λ)

[
Q (λ, B | i,a) +

∑
j∈Bc

λ∫
0

Q (dt, j | i,a)F
(1)π
n ( j, λ − t)

]
,

where the fifth equality follows from the properties (2)–(4), the sixth equality is due to the Markov property of policy
π and also the properties (2)–(4), and the others are straightforward calculations. Hence, F π

n+1(i, λ) = T ϕ0 F
(1)π
n (i, λ) for

λ ∈ R and thus F π
n+1(i, ·) is measurable. Therefore, by induction, F π

n (i, ·) is measurable for every n � −1. Furthermore, since
a (pointwise) limit of measurable functions is still measurable, we have F π = limn→∞ F π

n ∈ Fm .

(b) From the proof of (a), we have F π
n+1 = T ϕ0 F

(1)π
n . Letting n → ∞, since A(i) is finite, we obtain F π = T ϕ0 F

(1)π by the
dominated convergence theorem. The last statement is obvious. �
Remark 3.2. Lemma 3.3 is mainly based on the characterization of SMDPs such as the properties (2)–(4) and Assumption 2.1.

Next result provides an approximation to F ∗ .

Theorem 3.1.

(a) For each (i, λ) ∈ Bc × R and n � −1, let F ∗
n (i, λ) := infπ∈ΠRM F π

n (i, λ), then F ∗
n ∈ Fr and {F ∗

n , n � −1} satisfy equations:

F ∗−1 = 1[0,∞), F ∗
n+1 = T F ∗

n , n � −1.

(b) For each n � −1, there exists a policy π ∈ ΠDM such that F ∗
n = F π

n .
(c) limn→∞ F ∗

n = F ∗ and F ∗ ∈ Fr .

Proof. We prove (a) and (b) together by induction. When n = −1, we see that F ∗−1 = 1[0,∞) = F π
−1 ∈ Fr for any policy

π ∈ ΠDM . Now assume that (a) and (b) are true for some k � −1. Thus, F ∗
k ∈ Fr and there exists a policy θ ∈ ΠDM such that

F ∗
k = F θ

k . Since F ∗
k ∈ Fr (hence F ∗

k is in Fm), it follows from Lemma 3.2 that there exists a decision function f ∈ F such that
T F ∗

k = T f F ∗
k . Therefore, for π = { f , θ} ∈ ΠDM , we have

F ∗
k+1 � F π

k+1 = T f F θ
k = T f F ∗

k = T F ∗
k , (10)

where the inequality is due to the definition of F ∗
k+1, and the first equality follows from Lemma 3.3(b) with (1)π = θ . On

the other hand, we see that for any η = {η0, η1, . . .} ∈ ΠRM ,

F η
k+1 = T η0 F

(1)η
k � T η0 F ∗

k � T F ∗
k , (11)

where the first equality follows from Lemma 3.3(b) with (1)η = {η1, η2, . . .}, and the first inequality is due to the defini-
tion of F ∗

k again. Since η is arbitrary, taking infimum over ΠRM in (11) yields F ∗
k+1 � T F ∗

k , which together with (10) and
Lemma 3.1(a) gives F ∗

k+1 = T F ∗
k = F π

k+1 ∈ Fr . By induction, the proof of (a) and (b) is achieved.
(c) For any π ∈ ΠRM , we have F π

n � F π
n+1 � F π , hence F ∗

n � F ∗
n+1 � F ∗ , and thus limn→∞ F ∗

n � F ∗ . On the other hand,
for arbitrary θ ∈ ΠRM , we have F θ = limn→∞ F θ

n � limn→∞ F ∗
n . Hence, by the arbitrariness of θ , F ∗ � limn→∞ F ∗

n . Therefore,
limn→∞ F ∗

n = F ∗ . Moreover, since F ∗
n ∈ Fr and F ∗

n � F ∗
n+1 for all n � −1, it follows from Lemma 3.1(b) that F ∗ ∈ Fr . �

Remark 3.3. Indeed, Theorem 3.1 gives a value iteration algorithm for computing the optimal value function F ∗ , i.e.,
F ∗(i, λ) = limn→∞ T n F ∗−1(i, λ) with F ∗−1(i, λ) = 1[0,∞)(λ) for every (i, λ) ∈ Bc × R .

We now state our main result in this section, which establishes the so-called optimality equation.

Theorem 3.2.

(a) F ∗ satisfies the optimality equation F ∗ = T F ∗ .
(b) There exists a decision function f ∈ F such that F ∗ = T f F ∗ .

Proof. (a) It follows from Lemma 3.3(b) that F π = T ϕ0 F
(1)π � T ϕ0 F ∗ � T F ∗ for any π = {ϕn} ∈ ΠRM . Since π is arbitrary,

we have F ∗ � T F ∗ .
It remains to show the reverse inequality. In fact, it follows from Theorem 3.1(a) that F ∗

n (i, λ) = T F ∗
n−1(i, λ) � T a F ∗

n−1(i, λ)

for every (i, λ) ∈ Bc × R and a ∈ A(i). By Theorem 3.1(c) and dominated convergence theorem, we have F ∗(i, λ) � T a F ∗(i, λ)

for any a ∈ A(i), and so F ∗(i, λ) � T F ∗(i, λ). Therefore we obtain F ∗ = T F ∗ .
(b) It is a straightforward result of (a) and Lemma 3.2. �
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Remark 3.4. In general, a policy f ∈ ΠDS satisfying F ∗ = T f F ∗ may not be optimal. However, a sufficient condition for such
a policy to be optimal is given in Theorem 4.2 below.

Remark 3.5. (1) Suppose P = {p( j | i,a), j ∈ S, (i,a) ∈ K } is a stochastic kernel on S given K . If the semi-Markov decision
kernel Q is of the form

Q (t, j | i,a) =
{

p( j | i,a), t � 1,

0, otherwise,

for every j ∈ S , (i,a) ∈ K , then Theorem 3.2 gives

F ∗(i, λ) = min
a∈A(i)

[∑
j∈B

p( j | i,a) +
∑
j∈Bc

p( j | i,a)F ∗( j, λ − 1)

]
, ∀λ � 1,

which coincides with the optimality equation for DTMDPs; see Theorem 2.2 in Liu and Huang [12]. In fact, as an extended
case, our results in this paper are all true for DTMDPs, and accord with those in [12] in some sense although their analytic
method is different.

(2) Suppose that Q̃ = {q( j | i,a), j ∈ S, (i,a) ∈ K } is a Q -matrix on S given K . We assume that Q̃ is conservative, i.e.,∑
j∈S q( j | i,a) = 0 for all (i,a) ∈ K ; and stale, i.e., supa∈A(i) qi(a) < ∞ for all i ∈ S , where qi(a) = −q(i | i,a) � 0 for each

(i,a) ∈ K . If the semi-Markov decision kernel Q is of the form

Q (t, j | i,a) =
{

(1 − e−qi(a)t)
q( j|i,a)

qi(a)
, j �= i, t � 0,

0, otherwise,

and sup(i,a)∈K qi(a) < ∞ (verifies Assumption 2.1), then for (i, λ) ∈ Bc × R+ and f ∈ ΠDS , Lemma 3.3(b) gives

F f (i, λ) =
∑
j∈B

q( j | i, f )

qi( f )

(
1 − e−qi( f )λ)+ ∑

j∈Bc , j �=i

q( j | i, f )

qi( f )

λ∫
0

F f ( j, λ − t)d
(
1 − e−qi( f )t),

which coincides with the one for CTMDPs; see Theorem 1 in Lin, Tomkins and Wang [10].
Note that the optimality equation hasn’t been established in Lin, Tomkins and Wang [10]. However, we do this in Theo-

rem 3.2 above and obtain a relation between the optimality equation and an optimal policy in Theorem 4.2. In fact, as an
extended case, our results in this paper are all valid for CTMDPs and more general than those in [10] because we consider
policies in Π much larger than Π0 in [10].

The following are some characterization of F ∗ with respect to T .

Theorem 3.3.

(a) F ∗ is the maximal fixed point of T in Fm.
(b) Let G ∈ Fm be a function such that G � F ∗ . Then limn→∞ T nG = F ∗ .

Proof. (a) Let G ∈ Fm be a fixed point of T . Then we have G � F ∗−1 = 1[0,∞) and G = T nG . Hence it follows from Theo-
rem 3.1(c) that

G = lim
n→∞ T nG � lim

n→∞ T n F ∗−1 = lim
n→∞ F ∗

n−1 = F ∗.

(b) If G is a function in Fm , then G � F ∗−1 and hence T nG � T n F ∗−1 = F ∗
n−1. Thus, we have lim supn T nG � limn F ∗

n = F ∗ .
On the other hand, since G � F ∗ , we have T nG � T n F ∗ = F ∗ , and so lim infn T nG � F ∗ , which together with the previous
inequality yields limn→∞ T nG = F ∗ . �
Corollary 3.1.

(a) For any policy π ∈ ΠRM, limn→∞ T n F π = F ∗ .
(b) F ∗ is the unique fixed point of T in the class of functions dominating F ∗; that is, if G = T G, G ∈ Fm and G � F ∗ , then G = F ∗ .
(c) If there exists a policy π ∈ ΠRM such that F π = T F π , then π is optimal.

Proof. Statement (a) is an immediate result of Theorem 3.3(b) since F π � F ∗ , statement (b) is due to Theorem 3.3(a), and
finally, statement (c) follows from statement (b). �
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4. Properties and existence of optimal policies

This section is devoted to properties and existence of optimal policies. More precisely, we show that there exists an
optimal stationary policy and any stationary policy realizing the minimum in the optimality equation is optimal under
suitable assumptions. Also, we give sufficient and necessary conditions for the existence of optimal policies which are
independent of threshold values.

To characterize optimal policies, for (i, λ) ∈ Bc × R , we define optimal action sets by

A∗(i, λ) := {a ∈ A(i)
∣∣ F ∗(i, λ) = T a F ∗(i, λ)

}
, A∗(i) :=

⋂
λ∈R

A∗(i, λ). (12)

Then by the finiteness of A(i) and Theorem 3.2(a), A∗(i, λ) �= ∅. However, A∗(i) may be empty.
We now state some properties of optimal policies.

Theorem 4.1. Let π = {ϕ0,ϕ1, . . .} ∈ ΠRM be optimal.

(a) For each (i, λ) ∈ Bc × R, Aϕ0(i, λ) ⊂ A∗(i, λ) and ϕ0(A∗(i, λ) | i, λ) = 1, where

Aϕ0(i, λ) = {a ∈ A(i)
∣∣ ϕ0(a | i, λ) > 0

}
.

(b) If a decision function f ∈ F satisfies f (i, λ) ∈ Aϕ0 (i, λ) for every (i, λ) ∈ Bc × R, then f (1)π := { f ,ϕ1,ϕ2, . . .} is optimal.
(c) If ϕ ∈ Φ is a stochastic kernel such that F ∗ = T ϕ F ∗ , then {ϕ,π} is optimal.

Proof. (a) Since π = {ϕ0,ϕ1, . . .} is optimal, it follows from Lemma 3.3(b) and Theorem 3.2(a) that for each (i, λ) ∈ Bc × R ,

F ∗(i, λ) = F π (i, λ) = T ϕ0 F
(1)π (i, λ) � T ϕ0 F ∗(i, λ) � T F ∗(i, λ) = F ∗(i, λ). (13)

This means that the terms in (13) are all equal, and thus T ϕ0 F ∗(i, λ) = F ∗(i, λ), that is∑
a∈A(i)

ϕ0(a | i, λ)
[
T a F ∗(i, λ) − F ∗(i, λ)

]= 0,

which together with T a F ∗(i, λ) � T F ∗(i, λ) = F ∗(i, λ) implies the desired results in (a).
(b) We show that F f (1)π (i, λ) = F ∗(i, λ) for all (i, λ) ∈ Bc × R . If this does not hold, then there exists some (i, λ) ∈

Bc × R such that F f (1)π (i, λ) > F ∗(i, λ). Since f (i, λ) ∈ Aϕ0 (i, λ) and F f (1)π (i, λ) > F ∗(i, λ), it follows from Lemma 3.3(b)
and Theorem 3.2(a) that

F π (i, λ) =
∑

a∈A(i)

ϕ0(a | i, λ)T a F
(1)π (i, λ)

= ϕ0
(

f (i, λ)
∣∣ i, λ

)
T f F

(1)π (i, λ) +
∑

a∈A(i)− f (i,λ)

ϕ0(a | i, λ)T a F
(1)π (i, λ)

= ϕ0
(

f (i, λ)
∣∣ i, λ

)
F f (1)π (i, λ) +

∑
a∈A(i)− f (i,λ)

ϕ0(a | i, λ)T a F
(1)π (i, λ)

> ϕ0
(

f (i, λ)
∣∣ i, λ

)
F ∗(i, λ) +

∑
a∈A(i)− f (i,λ)

ϕ0(a | i, λ)T a F ∗(i, λ)

� ϕ0
(

f (i, λ)
∣∣ i, λ

)
F ∗(i, λ) +

∑
a∈A(i)− f (i,λ)

ϕ0(a | i, λ)T F ∗(i, λ)

= ϕ0
(

f (i, λ)
∣∣ i, λ

)
F ∗(i, λ) +

∑
a∈A(i)− f (i,λ)

ϕ0(a | i, λ)F ∗(i, λ)

=
∑

a∈A(i)

ϕ0(a | i, λ)F ∗(i, λ)

= F ∗(i, λ),

which contradicts the optimality of π , and therefore F f (1)π (i, λ) = F ∗(i, λ) for all (i, λ) ∈ Bc × R , i.e., f (1)π is optimal.
(c) By Lemma 3.3(b) and the optimality of π , we obtain F {ϕ,π } = T ϕ F π = T ϕ F ∗ = F ∗ and so {ϕ,π} is optimal. �
In the following, we discuss the existence of optimal policies. To ensures the existence of optimal policies, we need

Assumption 4.1 below.
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Assumption 4.1. For every (i, λ) ∈ Bc × R and f ∈ ΠDS, P f
(i,λ)

(τB < ∞) = 1.

Remark 4.1. (1) Assumption 4.1 implies that no matter what the initial state is, what the goal for the decision-maker is, and
what the stationary policy used is, the controlled system will eventually fail within a finite horizon, that is, the working life
of the controlled system is finite. In this setting, Assumption 4.1 is reasonable and mild.

(2) For each (i, λ) ∈ Bc × R , f ∈ ΠDS and t ∈ R+ , it follows from the proof of Theorem 3.3 in Limnios and Oprisan [9]
that

P f
(i,λ)

(τB � t) =
∞∑

n=1

P f
(i,λ)

(
Jk ∈ Bc, 1 � k � n − 1, Jn ∈ B, Sn � t

)
,

which leads to

P f
(i,λ)

(τB < ∞) =
∞∑

n=1

P f
(i,λ)

(
Jk ∈ Bc, 1 � k � n − 1, Jn ∈ B

)= P f
(i,λ)

( ∞⋃
k=1

{ Jk ∈ B}
)

. (14)

Hence, Assumption 4.1 is equivalent to the following form:

P f
(i,λ)

( ∞⋃
k=1

{ Jk ∈ B}
)

= 1, or P f
(i,λ)

( ∞⋂
k=1

{
Jk ∈ Bc})= 0, for every (i, λ) ∈ Bc × R and f ∈ ΠDS.

(3) The equality (14) brings the SMDPs {Z(t), A(t)} into relation with the discrete-time decision processes { Jn, An},
where the transition probabilities are given by P ( j | i,a) := Q (∞, j | i,a). This implies that we can impose some sufficient
conditions on the processes { Jn, An} to verify Assumption 4.1. Indeed, using Corollary 3.2 in Liu and Huang [12] for DTMDPs,
we may have the following: if there exists a real number α > 0 such that

P (B | i,a) :=
∑
j∈B

P ( j | i,a) � α, for all i ∈ Bc, a ∈ A(i), (15)

then P f
(i,λ)

(
⋃∞

k=1{ Jk ∈ B}) = 1, and so Assumption 4.1 holds.

(4) Note that we cannot conclude from Assumption 4.1 that limλ→∞ P f
(i,λ)

(τB < λ) = 1 since these policies defined in
this paper depend on threshold values.

We now give a lemma which is key to the existence of optimal policies. To begin with, we first introduce some notations.
Let F̂m be the set of functions F : Bc × R → [−1,1] such that F (i, λ) = 0 if λ < 0 and F (i, ·) is Borel measurable on R for
every i ∈ Bc ; and T̂ f an operator from F̂m into F̂m as follows: for each f ∈ F, F ∈ F̂m and (i, λ) ∈ Bc × R , if λ � 0,

T̂ f F (i, λ) :=
∑
j∈Bc

λ∫
0

Q
(
dt, j

∣∣ i, f (i, λ)
)

F ( j, λ − t),

and T̂ f F (i, λ) := 0 for λ < 0.

Lemma 4.1. Suppose that Assumption 4.1 holds and f ∈ ΠDS.

(a) Let F , G ∈ Fm. If F − G � T̂ f (F − G), then F � G.
(b) F f is the unique solution in Fm to equation F = T f F .

Proof. (a) For each (i, λ) ∈ Bc × R , using the properties (2)–(4) and the fact that F − G � 1, we see that

T̂ f (F − G)(i, λ) =
∑
j∈Bc

λ∫
0

Q
(
dt, j

∣∣ i, f (i, λ)
)
(F − G)( j, λ − t)

�
∑
j∈Bc

λ∫
0

Q
(
dt, j

∣∣ i, f (i, λ)
)

= Q
(
λ, Bc

∣∣ i, f (i, λ)
)

= P f
(i,λ)

(
S1 � λ, J1 ∈ Bc)

� P f (
J1 ∈ Bc).
(i,λ)



414 Y. Huang, X. Guo / J. Math. Anal. Appl. 359 (2009) 404–420
Now assume that (T̂ f )n(F − G)(i, λ) � P f
(i,λ)

(
⋂n

k=1{ Jk ∈ Bc}) for any (i, λ) ∈ Bc × R and some n � 1. Then we have(
T̂ f )n+1

(F − G)(i, λ) = T̂ f ( T̂ f )n(F − G)(i, λ)

=
∑
j∈Bc

λ∫
0

Q
(
dt, j

∣∣ i, f (i, λ)
)(

T̂ f )n(F − G)( j, λ − t)

�
∑
j∈Bc

λ∫
0

Q
(
dt, j

∣∣ i, f (i, λ)
)

P f
( j,λ−t)

(
n⋂

k=1

{
Jk ∈ Bc})

= P f
(i,λ)

(
n+1⋂
k=1

{
Jk ∈ Bc}),

where the last equality follows from the properties (2)–(4). By induction, we obtain

(F − G)(i, λ) �
(

T̂ f )n(F − G)(i, λ) � P f
(i,λ)

(
n⋂

k=1

{
Jk ∈ Bc}), for every (i, λ) ∈ Bc × R and all n � 1. (16)

Note that Assumption 4.1 implies that Pπ
(i,λ)

(
⋂∞

k=1{ Jk ∈ Bc}) = 0. Letting n → ∞ in inequality (16), we obtain (F − G)(i, λ) �
0 for every (i, λ) ∈ Bc × R , which completes the proof of (a).

(b) Let F ∈ Fm be a solution to F = T f F . Since F f satisfies F f = T f F f (by Lemma 3.3(b)), we have F − F f = T̂ f (F − F f ),
and so statement (a) implies that F = F f . �
Remark 4.2. Note that Lemma 4.1 is slightly similar to Lemma 3.4 in Ohtsubo [14] for another criterion in DTMDPs. However,
our method is mainly based on the characterization of SMDPs such as properties (2)–(4).

Now we present another main result in this paper, which shows that any stationary policy realizing the minimum in the
optimality equation is optimal and there exists an optimal stationary policy.

Theorem 4.2. Suppose that Assumption 4.1 holds. Then

(a) Any policy f ∈ ΠDS such that F ∗ = T f F ∗ is optimal.
(b) There exists an optimal stationary policy.

Proof. (a) Since Assumption 4.1 holds and F ∗ = T f F ∗ , it follows from Lemma 4.1(b) that F f = F ∗ and thus f is optimal.
(b) It is an immediate result of Theorem 3.2(b) and statement (a). �
We next give sufficient and necessary conditions for the existence of optimal policies which are in Π0. First, we need

the lemma below.

Lemma 4.2. For any fixed policy f ∈ ΠDS ∩ Π0 , if supi∈Bc Q (t, Bc | i, f (i)) < 1 for some t > 0, then F f is the unique solution in Fm

to equation F = T f F .

Proof. It immediately follows from Lemma 3.3(b) that F f satisfies F f = T f F f . Suppose that F ∈ Fm is another solution to
equation F = T f F . Then we have F f − F = T̂ f (F f − F ). To prove the uniqueness, we need only to show that G = T̂ f G , for
G ∈ Fm , implies G = 0. We do this as below.

For (i, t) ∈ Bc × R+ , taking the Laplace transform in G(i, t) = T̂ f G(i, t) with respect to t yields

G̃(i, λ) =
∑
j∈Bc

Q̃
(
λ, j

∣∣ i, f (i)
)
G̃( j, λ), (17)

where G̃(i, λ) := ∫∞
0 e−λt G(i, t)dt , and Q̃ (λ, j | i, f (i)) := ∫∞

0 e−λt Q (dt, j | i, f (i)). Iterating (17) n times, we obtain

G̃(i, λ) =
∑

j1∈Bc

Q̃
(
λ, j1

∣∣ i, f (i)
) ∑

j2∈Bc

Q̃
(
λ, j2

∣∣ j1, f ( j1)
)
. . .
∑
jn∈Bc

Q̃
(
λ, jn

∣∣ jn−1, f ( jn−1)
)
G̃( jn, λ). (18)

On the other hand, suppose that Q (δ, Bc | i, f (i)) = 1 − ε < 1 for any i ∈ Bc and some δ > 0. Then, taking the Laplace
transform, for any λ > 0,
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Q̃
(
λ, Bc

∣∣ i, f (i)
)=

∞∫
0

e−λt Q
(
dt, Bc

∣∣ i, f (i)
)

= e−λt Q
(
t, Bc

∣∣ i, f (i)
)∣∣∣∞

0
+

∞∫
0

λe−λt Q
(
t, Bc

∣∣ i, f (i)
)

dt

=
δ∫

0

λe−λt Q
(
t, Bc

∣∣ i, f (i)
)

dt +
∞∫
δ

λe−λt Q
(
t, Bc

∣∣ i, f (i)
)

dt

� (1 − ε)

δ∫
0

λe−λt dt +
∞∫
δ

λe−λt dt

= 1 − ε
(
1 − e−λδ

)
= 1 − βλ, (19)

where βλ := ε(1 − e−λδ).
Now let λ > 0 be fixed. It follows from (18) and (19) that G̃(i, λ) � (1 − βλ)

nλ−1. Note that (1 − βλ) < 1 and thus
G̃(i, λ) � limn→∞(1 − βλ)

nλ−1 = 0, that is,

G̃(i, λ) =
∞∫

0

e−λt G(i, t)dt � 0, for all i ∈ Bc. (20)

For each i ∈ Bc , since G(i, t) � 0 for all t ∈ R+ , it follows from (20) that

G(i, t) = 0, a.e. for t ∈ R+,

which together with G(i, t) = T̂ f G(i, t) implies G(i, t) = 0 for all t ∈ R+ . Therefore, we have G(i, t) = 0 for all (i, t) ∈ Bc × R ,
and the proof is achieved. �
Theorem 4.3. Suppose that supi∈Bc supa∈A(i) Q (t, Bc | i,a) < 1 for some t > 0. Then there exists an optimal policy π ∈ Π0 if and
only if A∗(i) �= ∅ for all i ∈ Bc .

Proof. ⇒. Let π = {ϕ0,ϕ1, . . .} ∈ Π0 be optimal. By Theorem 4.1(a), Aϕ0(i) ≡ Aϕ0 (i, λ) ⊂ A∗(i, λ) for all (i, λ) ∈ Bc × R , from
which it follows that Aϕ0(i) ⊂⋂λ∈R A∗(i, λ) = A∗(i). Since Aϕ0(i) �= ∅, and so A∗(i) �= ∅ for all i ∈ Bc .

⇐. Let A∗(i) �= ∅ for all i ∈ Bc . Then the measurable selection theorem (see Bertsekas and Shreve [1, Proposition 7.33,
p. 153]) gives the existence of f : Bc × R → A such that f (i, λ) ≡ f (i) ∈ A∗(i) for all (i, λ) ∈ Bc × R . Therefore, f ∈ Π0 and
F ∗ = T f F ∗ . By Lemma 4.2 we have F f = F ∗ , and hence f is optimal. �
5. Value iteration and policy improvement methods

In this section we present a value iteration and a policy improvement methods, which are used to compute the optimal
value function and optimal policies, respectively.

From Theorem 3.1 we see that a value iteration is given by F ∗(i, λ) = limn→∞ T n F ∗−1(i, λ), where F ∗−1(i, λ) = 1[0,∞)(λ)

for each (i, λ) ∈ Bc × R . We illustrate this iteration by some examples in Section 6.
Next we consider a policy improvement method under Assumption 4.1. The policy improvement procedure is as below:

(1) Take n = 0 and an initial policy fn ∈ ΠDS .
(2) At step n, solve the equation F = T fn F to obtain a function F fn ∈ Fm .
(3) If T fn F fn = T F fn , stop. If T fn F fn �= T F fn , go to the next step.
(4) Choose a new policy fn+1 ∈ ΠDS such that T fn+1 F fn = T F fn .
(5) Return to step (2) by replacing n with n + 1.

From Lemma 4.1(b) we can uniquely solve the equations in Fm at step (2). The following is the convergence theorem for
this policy improvement procedure.

Theorem 5.1.

(a) The sequence {F fn } is nonincreasing and converges to F ∗ .
(b) If T fn F fn = T F fn , then F fn is the optimal value function and fn is an optimal policy.
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Proof. (a) From the policy improvement procedure above, we have

F fn+1 − F fn = T fn+1 F fn+1 − T fn F fn � T fn+1 F fn+1 − T fn+1 F fn = T̂ fn+1
(

F fn+1 − F fn
)
,

which together with Lemma 4.1(a) gives F fn+1 � F fn . Hence {F fn } is nonincreasing and converges to some function F̃ ∈ Fm .
We now show that F ∗ = F̃ . On the one hand, since F ∗ � F fn for all n, we have F ∗ � F̃ . On the other hand, it follows that
for each n � 2,

F fn = T fn F fn � T fn F fn−1 = T F fn−1 .

Similarly, we have F fn−1 � T F fn−2 and so F fn � T 2 F fn−2 . By induction, we obtain that F fn � T n F f0 . Hence, F̃ � F fn � T n F f0

for all n � 0. From Corollary 3.1(a), it follows that

F̃ � lim
n→∞ T n F f0 = F ∗.

Therefore, we have F ∗ = F̃ .
(b) If T fn F fn = T F fn , we see that f k = f n for every k � n. Hence it follows from (a) that F fn = F̃ = F ∗ , which shows fn

is an optimal policy. �
Remark 5.1. Note that the policy improvement procedure and Theorem 5.1 are slightly similar to those in Ohtsubo [14] for
another criterion in DTMDPs.

6. Examples

In this section, we give two examples. One is for the characterization of the risk function, and another is to show how
to obtain both the optimal value function and an optimal stationary policy.

The first example shows that there exists a policy π ∈ ΠDS such that F π /∈ Fr .

Example 6.1. Let S = {1,2} be a state space and B = {2} a target set. Let A(1) = {a11,a12}, A(2) = {a21}, and A = A(1)∪ A(2).
Suppose that the semi-Markov decision kernel Q (t, j | i,a) is given by

Q (t, j | 1,a11) =
{

1/2, if t � 1, j = 1,2,

0, otherwise; Q (t, j | 1,a12) =
{

1, if t � 2, j = 2,

0, otherwise;
Q (t, j | 2,a21) =

{
1 − e−2t, if t � 0, j = 2,

0, otherwise.

Note that Assumptions 2.1 holds with η = 1/2 and ε = e−1 in this example. We now define a policy d as follows:

d(1, λ) =
{

a12, λ � 2,

a11, λ > 2.

Then for n � −1, it follows from Lemma 3.3(b) that

F d
−1(1, λ) = 1[0,∞)(λ),

F d
n+1(1, λ) = Q

(
λ,2

∣∣ 1,d(1, λ)
)+ λ∫

0

Q
(
dt,1

∣∣ 1,d(1, λ)
)

F d
n(1, λ − t)

for λ � 0, and F d
n+1(1, λ) = 0 otherwise. For all n � 0, we find that F d

n (1, λ) = 0 if λ < 2, and F d
n (1, λ) = 1 when λ = 2.

Moreover, if 2 < λ < 3, we have

F d
n+1(1, λ) = Q (λ,2 | 1,a11) +

λ∫
0

Q (dt,1 | 1,a11)F d
n(1, λ − t)

= 1

2
+ 1

2
× F d

n(1, λ − 1),

where F d
n (1, λ − 1) = 0 for all n � 0 since 1 < λ − 1 < 2, and thus F d

n+1(1, λ) = 1
2 for all n � 0. Then, using the fact that

F d(1, λ) = limn→∞ F d
n (1, λ) yields

F d(1, λ) =
{0, λ < 2,

1, λ = 2,

1/2, 2 < λ < 3,

which shows that F d(1, λ) is neither nondecreasing nor right continuous in λ, and hence F d /∈ Fr .
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Example 6.2. Let S = {1,2,3} be a state space and B = {3} a target set, where states 1, 2 and 3 represent the good state,
the medium and the failure ones of a controlled system, respectively. Let A(1) = {a11,a12}, A(2) = {a21,a22}, A(3) = {a31},
and A = A(1) ∪ A(2) ∪ A(3). The semi-Markov decision kernel Q is of the form: Q (t, j | i,a) = H(t | i,a)p( j | i,a) for every
t ∈ R+ , j ∈ S , (i,a) ∈ K , in which H(t | i,a) and p( j | i,a) denote the distribution functions of the sojourn time and the
transition probabilities, respectively. Suppose that the distribution functions H(t | i,a) are given by

H(t | 1,a11) =
{

1/25, t ∈ [0,25],
1, t > 25; H(t | 1,a12) = 1 − e−0.08t, t ∈ R+;

H(t | 2,a21) =
{

1/20, t ∈ [0,20],
1, t > 20; H(t | 2,a22) = 1 − e−0.15t, t ∈ R+;

H(t | 3,a31) = 1 − e−0.2t, t ∈ R+;
and the transition probabilities p( j | i,a) are given by

p(1 | 1,a11) = 0, p(2 | 1,a11) = 9

20
, p(3 | 1,a11) = 11

20
;

p(1 | 1,a12) = 0, p(2 | 1,a12) = 1

2
, p(3 | 1,a12) = 1

2
;

p(1 | 2,a21) = 1

5
, p(2 | 2,a21) = 0, p(3 | 2,a21) = 4

5
;

p(1 | 2,a22) = 1

4
, p(2 | 2,a22) = 0, p(3 | 2,a22) = 3

4
; p(3 | 3,a31) = 1.

First of all, in this example Assumption 2.1 holds with η = 1 and ε = e−0.2. Moreover, condition (15) in Remark 4.1(3)
holds with α = 1/2, and thus Assumption 4.1 is also fulfilled.

We now compute the optimal value function F ∗(i, λ) by the value iteration (see Theorem 3.1): F ∗−1(i, λ) = 1[0,∞)(λ),
F ∗

n+1(i, λ) = T F ∗
n (i, λ) for i = 1,2, λ ∈ R and n � −1. The detailed computation procedure is as below, in which, without

loss of generality, a finite interval [0,80] for λ is considered instead of R .

Value Iteration Procedure (VI-Procedure).

Step 1 (Initialization). Let n = −1, and F ∗
n (i, λ) = 1[0,∞)(λ) for i = 1,2 and λ ∈ [0,80].

Step 2 (Iteration). Compute these functions T a F ∗
n (i, λ) and F ∗

n+1(i, λ) for a ∈ A(i), i = 1,2 and λ ∈ [0,80]. For i = 1,

T a11 F ∗
n (1, λ) = 11

20
× λ

25
+ 9

20
× 1

25
×

λ∫
0

F ∗
n (2, λ − t)dt, λ ∈ [0,25];

T a11 F ∗
n (1, λ) = 11

20
+ 9

20
× 1

25
×

25∫
0

F ∗
n (2, λ − t)dt, λ ∈ (25,80];

T a12 F ∗
n (1, λ) = 1

2
× (1 − e−0.08λ

)+ 1

2
× 0.08 ×

λ∫
0

e−0.08t F ∗
n (2, λ − t)dt, λ ∈ [0,80];

F ∗
n+1(1, λ) = min

{
T a11 F ∗

n (1, λ), T a12 F ∗
n (1, λ)

}
, λ ∈ [0,80].

For i = 2,

T a21 F ∗
n (2, λ) = 4

5
× λ

20
+ 1

5
× 1

20
×

λ∫
0

F ∗
n (1, λ − t)dt, λ ∈ [0,20];

T a21 F ∗
n (2, λ) = 4

5
+ 1

5
× 1

20
×

20∫
0

F ∗
n (1, λ − t)dt, λ ∈ (20,80];

T a22 F ∗
n (2, λ) = 3

4
× (1 − e−0.15λ

)+ 1

4
× 0.15 ×

λ∫
0

e−0.15t F ∗
n (1, λ − t)dt, λ ∈ [0,80];

F ∗ (2, λ) = min
{

T a21 F ∗
n (2, λ), T a22 F ∗

n (2, λ)
}
, λ ∈ [0,80].
n+1
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Fig. 6.1. The functions T a F ∗(i, λ).

Fig. 6.2. The optimal value function F ∗(i, λ).

Step 3 (Accuracy control). If F ∗
n (i, λ) − F ∗

n+1(i, λ) � 10−12 for i = 1,2 and λ ∈ [0,80], go to Step 4; otherwise, go to Step 2
by replacing n with n + 1.

Step 4 (Plotting). Plot out the graphs of these functions T a11 F ∗
n (1, λ), T a12 F ∗

n (1, λ), T a21 F ∗
n (2, λ), T a22 F ∗

n (2, λ), F ∗
n+1(1, λ) and

F ∗
n+1(2, λ) for λ ∈ [0,80]; see Figs. 6.1 and 6.2 above.

Remark 6.1.

(1) Note that we have not computed the optimal value function F ∗(3, λ) because it is clear that F ∗(3, λ) = 1[0,∞)(λ) for
each λ ∈ R .

(2) This procedure is implemented in Matlab, which stops if the condition “F ∗
n − F ∗

n+1 � 10−12” is satisfied. Indeed, F ∗
n and

F ∗
n+1 are thought to be identical, and both equal to F ∗ when there is some n (sufficiently large) such that F ∗

n − F ∗
n+1 �

10−12. This together with the iteration method F ∗
n+1 = T F ∗

n shows that F ∗ satisfies the optimality equation F ∗ = T F ∗ .

From Figs. 6.1 and 6.2 and the VI-procedure, we have the following.

(a) In Fig. 6.1, T a11 F ∗(1,80) = T a12 F ∗(1,80) = 1. Using the fact that (by Lemma 3.1(a)) T a F ∗(1, λ) is nondecreasing in λ

yields that T a11 F ∗(1, λ) = T a12 F ∗(1, λ) = 1 for all λ > 80. Obviously, T a11 F ∗(1, λ) = T a12 F ∗(1, λ) = 0 for any λ < 0.
Similar conclusions can be obtained for the functions T a21 F ∗(2, λ) and T a22 F ∗(2, λ).
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(b) In Fig. 6.1, T a11 F ∗(1, λ) is below T a12 F ∗(1, λ) for every λ ∈ (0,21.36), but T a11 F ∗(1, λ) is above T a12 F ∗(1, λ) for λ ∈
(21.36,80). This implies that action a11 is with lower risk than action a12 when λ ∈ (0,21.36), and a12 is with lower
risk than a11 if λ ∈ (21.36,80), which means that what action is optimal depends on the threshold value λ. Similarly,
we have the same conclusion for the functions T a21 F ∗(2, λ) and T a22 F ∗(2, λ).

(c) In fact, Fig. 6.2 is obtained from Fig. 6.1 by using the optimality equation F ∗(i, λ) = mina∈A(i){T a F ∗(i, λ)}. More clearly,
we have

F ∗(1, λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T a11 F ∗(1, λ) = T a12 F ∗(1, λ) = 0, λ � 0,

T a11 F ∗(1, λ), 0 < λ < 21.36,

T a11 F ∗(1, λ) = T a12 F ∗(1, λ), λ = 21.36,

T a12 F ∗(1, λ), 21.36 < λ < 80,

T a11 F ∗(1, λ) = T a12 F ∗(1, λ) = 1, λ � 80,

(21)

F ∗(2, λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T a21 F ∗(2, λ) = T a22 F ∗(2, λ) = 0, λ � 0,

T a21 F ∗(2, λ), 0 < λ < 18.96,

T a21 F ∗(2, λ) = T a22 F ∗(2, λ), λ = 18.96,

T a22 F ∗(2, λ), 18.96 < λ < 80,

T a21 F ∗(2, λ) = T a22 F ∗(2, λ) = 1, λ � 80.

(22)

(d) In Fig. 6.2, both F ∗(1, λ) and F ∗(2, λ) are monotone nondecreasing and continuous in λ, that is, F ∗ ∈ Fr . Moreover,
F ∗(1, λ) is below F ∗(2, λ) for every λ > 0, which means that the controlled system occupying state 1 is less likely to
fail. This fact may be due to that state 1 is a good state whereas state 2 is a medium one.

(e) Optimal policies can be derived from (21) and (22) above. More precisely, if a policy f ∗ is defined by

f ∗(1, λ) =

⎧⎪⎪⎨⎪⎪⎩
a12, λ � 0,

a11, 0 < λ � 21.36,

a12, 21.36 < λ � 80,

a11, λ > 80,

f ∗(2, λ) =

⎧⎪⎪⎨⎪⎪⎩
a22, λ � 0,

a21, 0 < λ � 18.96,

a22, 18.96 < λ � 80,

a21, λ > 80,

it then follows from (21) and (22) that F ∗(i, λ) = T f ∗
F ∗(i, λ) for i = 1,2 and all λ ∈ R , and therefore (by Theorem 4.2(a))

f ∗ is an optimal stationary policy.

In addition, by the definition of A∗(i, λ) in (12), we see that

A∗(1, λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{a11,a12}, λ � 0,

{a11}, 0 < λ < 21.36,

{a11,a12}, λ = 21.36,

{a12}, 21.36 < λ < 80,

{a11,a12}, λ � 80,

A∗(2, λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{a21,a22}, λ � 0,

{a21}, 0 < λ < 18.96,

{a21,a22}, λ = 18.96,

{a22}, 18.96 < λ < 80,

{a21,a22}, λ � 80,

and so A∗(1) =⋂λ∈R A∗(1, λ) = ∅, and A∗(2) =⋂λ∈R A∗(2, λ) = ∅, which shows that (by Theorem 4.3) there is no optimal
policy in Π0.

Remark 6.2. Example 6.2 shows that we can not always find an optimal policy in Π0, which are independent of threshold
values. In fact, since a risk minimizing criterion is risk-sensitive, it is natural and necessary for the decision-makers to
consider the threshold values as well as the states when making decisions. Hence, optimal policies usually depends on
threshold values, whereas a policy independent of threshold values cannot be optimal in many applications.
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