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1. Introduction and main results

Consider the second-order Hamiltonian systems

−ü(t) + L(t)u(t) = ∇W
(
t, u(t)

) − f (t), (1)

where L : R → RN is a matrix valued function, W : R × RN → R is a C1-map and f : R → RN . As usual, we say that a
solution u(t) of problem (1) is nontrivial homoclinic (to 0) if u �= 0, u(t) → 0 and u̇(t) → 0 as t → ±∞. Subsequently,
∇W (t, x) denotes the gradient with respect to the x variable, (·,·) : RN × RN → R denotes the standard inner product in RN

and | · | is the induced norm.
Homoclinic orbits of dynamical systems are important in applications. Recently the existence and multiplicity of ho-

moclinic orbits for problem (1) have been studied in many papers via critical point theory. In particular, the second-order
systems were considered in [1,2,4–14] and that of the first-order in [3]. In 1990, Rabinowitz in [11] obtained the existence
of homoclinic orbits of problem (1) for the superquadratic case as the limit of the 2kT -periodic solutions of problem (1)
when f = 0, which is the following theorem.

Theorem A. (See [11].) Assume that f = 0 and the following conditions hold

(A1) L is a continuous T -periodic matrix valued function and W ∈ C1(R × RN , R) is T -periodic with respect to t, T > 0,
(A2) L(t) is positive definite symmetric for all t ∈ [0, T ],

✩ Supported by National Natural Science Foundation of China (No. 10771173).

* Corresponding author.
E-mail address: wuxp@swu.edu.cn (X.-P. Wu).
0022-247X/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2009.12.046

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:wuxp@swu.edu.cn
http://dx.doi.org/10.1016/j.jmaa.2009.12.046


D.-L. Wu et al. / J. Math. Anal. Appl. 367 (2010) 154–166 155
(A3) there is a constant θ > 2 such that

0 < θW (t, x) �
(
x,∇W (t, x)

)
(2)

for every t ∈ [0, T ] and x ∈ RN \ {0},
(A4) ∇W (t, x) = o(|x|) as |x| → 0 uniformly with respect to t.

Then system (1) possesses a nontrivial homoclinic solution.

When L(t) and W (t, x) are not periodic in t , the problem becomes much complicated, because of the lack of compactness
of the Sobolev’s embedding. Rabinowitz and Tanaka in [12] proved that problem (1) possesses a homoclinic orbit under
the condition that the smallest eigenvalue of L(t) tends to +∞ as |t| → ∞ without the periodicity assumptions, using a
variant of the Mountain Pass theorem without the Palais–Smale condition. In 1994, Korman and Lazer in [7] proved that
problem (1) possesses a nontrivial homoclinic solution on an even case still when f = 0 without periodicity conditions in
L(t) and W (t, x). They proved the following theorem.

Theorem B. (See [7].) Suppose (A3) holds uniformly in t ∈ R and L satisfies the following conditions

(B1) L ∈ C1(R, RN2
) is a positive definite matrix and L(−t) = L(t) for all t,

(B2) (L′(t)x, x) − Wt(t, x) � 0 for all x ∈ RN and t � 0.

Then problem (1) possesses an even nontrivial homoclinic orbits.

In 2007, for L = 0, f = 0 and W (t, x) even in t , Lv and Tang in [8] showed the existence of the even homoclinic orbits
for (1) as the limit of the solutions of nil-boundary-value problems, which are obtained by using the Mountain Pass theorem
and appropriate estimates for passing to a nontrivial limit, which is the following theorem.

Theorem C. (See [8].) Assume that L = 0, f = 0 and W ∈ C1(R × RN , R) satisfies

(C1) W (t,0) ≡ 0 and W (−t, x) = W (t, x) for all t ∈ R and x ∈ RN ,
(C2) Wt(t, x) � 0 for all t � 0 and x ∈ RN ,
(C3) there exist constants a1 > 0, q � 2 such that

W (t, x) � a1|x|q
for all (t, x) ∈ R × RN ,

(C4) ∇W (t, x) → 0 as |x| → 0 uniformly in t ∈ R,
(C5) there exist constants a2 > 0, τ > q − 2 and a function d ∈ L1(R, R+) such that(

x,∇W (t, x)
) − 2W (t, x) � a2|x|τ − d(t), ∀(t, x) ∈ R × RN ,

(C6) lim sup|x|→0
W (t,x)

|x|2 < 0 uniformly in t ∈ R,

(C7) there exists T0 > 0 such that

lim inf|x|→∞
W (t, x)

|x|2 >
2π2

T 2
0

uniformly in t ∈ [−T0, T0].

Then system (1) possesses one even homoclinic solution.

Motivated by these papers, in this paper, we will obtain the existence of homoclinic solution for problem (1)
when L(t) and W (t, x) are not periodic and W (t, x) is not even in t . Set A = inf{W (t, x): t ∈ R, |x| = 1}, B =
sup{W (t, x): t ∈ R, |x| = 1}, then we have the following theorems.

Theorem 1.1. Suppose 0 < A � B < +∞, (C4) and the following conditions hold

(L) L(t) is a positive definite symmetric matrix for all t ∈ R and satisfies

sup
t∈R

∣∣Li j(t)
∣∣ < ∞, (3)
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(W1) there is a constant λ > 2 such that

0 < λW (t, x) �
(
x,∇W (t, x)

)
(4)

for every t ∈ R and x ∈ RN \ {0},
(W2) for every M > 0 the following inequality holds

sup
t∈R, |x|�M

∣∣∇W (t, x)
∣∣ < ∞.

Then there is a constant δ > 0 such that, for any f �= 0 satisfying(∫
R

∣∣ f (t)
∣∣2

dt

)1/2

< δ, (5)

system (1) possesses at least one nontrivial homoclinic solution u ∈ W 1,2(R, RN ).

Theorem 1.2. Suppose L = 0, W satisfies (C4), (C6), (W2) and the following conditions

(W ′
1) W (t,0) ≡ 0 and there exist constants d1 > 0, β � 2 such that

W (t, x) � d1|x|β
for all (t, x) ∈ R × RN ,

(W ′
2) there is a constant T > 0 such that

lim inf|x|→∞
W (t, x)

|x|2 >
π2

2T 2

uniformly in t ∈ [−T , T ],
(W3) there are constants d2 > 0, μ > max{β − 2,1} and a function g ∈ L1(R, R+) such that(

x,∇W (t, x)
) − 2W (t, x) � d2|x|μ − g(t)

for all (t, x) ∈ R × RN ,
( f ) f �= 0 is a bounded function and

∫
R | f (t)|μ/(μ−1) dt < ∞.

Then there is a constant δ > 0 such that, for any f satisfying (5), system (1) possesses at least one nontrivial homoclinic solution
u ∈ W 1,2(R, RN ).

Corollary 1.1. Assume that W satisfies (C4), (C6), (W2), (W3), (W ′
1), ( f ) and the following conditions

(W ′′
2 ) lim inf|x|→∞ W (t,x)

|x|2 > 0 uniformly in t ∈ R.

Then there is a constant δ > 0 such that, for any f satisfying (5), system (1) possesses at least one nontrivial homoclinic solution
u ∈ W 1,2(R, RN ).

Remark 1. Compared with Theorem A, L(t) and W (t, x) are not periodic in t in Theorem 1.1. Moreover, conditions (L), (W2)

can be easily obtained from (A1) and (A2). And condition (C4) is weaker than (A4). Since W (t, x) is not periodic in t , we
assume that condition (A3) holds for all t ∈ R and x ∈ RN \ {0}, which is condition (W2).

Remark 2. In Theorem 1.2, W (t, x) is not supposed to be even in t , and we obtain the same result without condition (C2)

when f �= 0.

Similar to the method used by Lv and Tang in [8], we obtain the existence of the homoclinic solutions as the limit of the
solutions of nil-boundary-value problems. We consider a sequence of systems of differential equations{−ü(t) + L(t)u(t) = ∇W

(
t, u(t)

) − f (t) for t ∈ (−kT ,kT ),

u(−kT ) = u(kT ) = 0
(6)

for all k ∈ N , where T comes from (W ′
2) for convenience. We will prove the existence of at least one homoclinic solution

of (1) as the limit of the solutions of (6) as k → ∞.
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2. Proof of theorems

For each k ∈ N , p � 1, let

Lp
2kT

(
R, RN) = {

u : [−kT ,kT ] → RN
∣∣ ‖u‖L p

2kT (R,RN ) < ∞}
,

where

‖u‖L p
2kT (R,RN ) :=

( kT∫
−kT

∣∣u(t)
∣∣p

dt

)1/p

and L∞
2kT (R, RN ) be a space of essentially bounded and measurable functions from R into RN under the norm

‖u‖L∞
2kT (R,RN ) := ess sup

{∣∣u(t)
∣∣: t ∈ [−kT ,kT ]}.

For each k ∈ N , set

Ek = {
u : [−kT ,kT ] → RN

∣∣ u is absolutely continuous, u(−kT ) = u(kT ) = 0
}
,

with the norm

‖u‖Ek :=
( kT∫

−kT

∣∣u̇(t)
∣∣2

dt +
kT∫

−kT

∣∣u(t)
∣∣2

dt

)1/2

.

Let ηk : Ek → [0,+∞) be given by

ηk(u) =
( kT∫

−kT

(∣∣u̇(t)
∣∣2 + (

L(t)u, u
))

dt

)1/2

. (7)

By (L), there are constants b1,b2 > 0 such that

b1‖u‖2
Ek

� η2
k (u) � b2‖u‖2

Ek
. (8)

Moreover, let Ik : Ek → R be the corresponding functional of (6) defined by

Ik(u) =
kT∫

−kT

(
1

2

∣∣u̇(t)
∣∣2 + 1

2

(
L(t)u(t), u(t)

) − W
(
t, u(t)

) + (
f (t), u(t)

))
dt. (9)

Then one can easily check that Ik ∈ C ′(Ek, R) and

〈
I ′k(u), v

〉 =
kT∫

−kT

((
u̇(t), v̇(t)

) + (
L(t)u(t), v(t)

) − (∇W
(
t, u(t)

)
, v(t)

) + (
f (t), v(t)

))
dt.

It follows from (7) that

Ik(u) = 1

2
η2

k (u) −
kT∫

−kT

W
(
t, u(t)

) +
kT∫

−kT

(
f (t), u(t)

)
dt. (10)

Furthermore, the critical points of Ik are classical solutions of (6). From (4) we can obtain the following properties of the
function W (t, x).

Lemma 2.1. For every t ∈ R the following inequalities hold

W (t, x) � W

(
t,

x

|x|
)

|x|λ for 0 < |x| � 1 (11)

and

W (t, x) � W

(
t,

x

|x|
)

|x|λ for |x| � 1.
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From the condition (W1) we can obtain that s → W (t, s−1u)sλ is a nonincreasing function, which suffices to prove this
lemma.

Lemma 2.2. (See [5].) For every r ∈ R \ {0} and u ∈ Ek \ {0} the following inequality holds

kT∫
−kT

W
(
t, ru(t)

)
dt � A|r|λ

kT∫
−kT

∣∣u(t)
∣∣λ dt − 2kT A. (12)

By the Sobolev’s embedding theorem, H1(R) is continuous embedded into L∞(R). Then there is a constant C0 > 0 such
that

‖u‖L∞ � C0‖u‖H1

for all u ∈ H1(R). Since Ek ⊂ Ek+1 ⊂ H1 for all k ∈ N , when u ∈ Ek , we can extend it by zero in R \ [−kT ,kT ]. Then we have
the following lemma.

Lemma 2.3. There is a positive constant C > 0 which is independent of k such that the following inequality holds

‖u‖L∞
2kT (R,RN ) � C‖u‖Ek (13)

for each k ∈ N and u ∈ Ek.

The proof of Theorem 1.1 is divided into a sequence of lemmas. Firstly, we prove that Ik possesses at least one point via
the Mountain Pass theorem which is the classical solution of (6).

Lemma 2.4. Suppose the conditions of Theorem 1.1 hold, then there is a constant δ > 0 such that, for any f satisfying (5), system (6)
possesses one solution uk ∈ Ek for every k ∈ N.

Proof. It is known that a deformation lemma can be proved when the usual (PS) condition is replaced by condition (C)

which means the Mountain Pass theorem holds under condition (C). Then we apply the Mountain Pass theorem to obtain
the critical point of Ik under condition (C).

Our proof involves three steps.
Step 1: Ik satisfies condition (C). From (W1), we can see Ik(0) = 0. Then we show that Ik satisfies (C) condition. Suppose

that {u j} j∈N ⊂ Ek is a sequence such that {Ik(u j)} j∈N is bounded and ‖I ′k(u j)‖(1 +‖u j‖Ek ) → 0 as j → ∞. Then there exists
a constant Ck > 0 such that

Ik(u j) � Ck,
∥∥I ′k(u j)

∥∥(
1 + ‖u j‖Ek

)
� Ck. (14)

It follows from (14), (10), (8) and (W1) that

(λ + 1)Ck � λIk(u j) + ∥∥I ′k(u j)
∥∥(

1 + ‖u j‖Ek

)
� λIk(u j) − 〈

I ′k(u j), u j
〉

�
(

λ

2
− 1

)
η2

k (u j) + (λ − 1)

kT∫
−kT

(
f (t), u j(t)

)
dt

� b1

(
λ

2
− 1

)
‖u j‖2

Ek
− (λ − 1)‖ f ‖L2‖u j‖Ek .

Since λ > 2, then {u j} j∈N is bounded in Ek . By a standard argument, we see that {u j} j∈N has a convergent subsequence
in Ek . Hence Ik satisfies (C) condition.

Step 2: Now we show that there exist constants 	1,α1 > 0 independent of k such that Ik|∂ B	1 (0) � α1. We choose δ <

min{( b1
4C )2, ( b1

4B )
2

λ−2 ,1}, then set

	1 = C−1δ
1
2 , α1 = b1

4C
− δ

1
2 > 0.

It follows from (13) that 0 < ‖u‖L∞ < δ
1
2 < 1 if ‖u‖E = 	1. By (10), (11), (5), (8) and (13) we obtain
2kT k
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Ik(u) = 1

2
η2

k (u) −
kT∫

−kT

W
(
t, u(t)

)
dt +

kT∫
−kT

(
f (t), u(t)

)
dt

� b1

2
‖u‖2

Ek
−

kT∫
−kT

W

(
t,

u(t)

|u(t)|
)∣∣u(t)

∣∣λ dt +
kT∫

−kT

(
f (t), u(t)

)
dt

� b1

2
‖u‖2

Ek
− B

kT∫
−kT

∣∣u(t)
∣∣λ dt +

kT∫
−kT

(
f (t), u(t)

)
dt

� b1

2
‖u‖2

Ek
− B‖u‖λ−2

L∞
2kT

kT∫
−kT

∣∣u(t)
∣∣2

dt − δ‖u‖Ek

� b1

2
‖u‖2

Ek
− BCλ−2‖u‖λ

Ek
− δ‖u‖Ek

=
(

b1

4
‖u‖2

Ek
− BCλ−2‖u‖λ

Ek

)
+

(
b1

4
‖u‖2

Ek
− δ‖u‖Ek

)
. (15)

By the definition of 	1 and α1, (15) implies Ik|∂ B	1 (0) � α1.
Step 3: Now we only need to prove that for each k ∈ N there is ek ∈ Ek such that ‖ek‖Ek > 	1 and Ik(ek) � 0. By (12),

(10), (8) for every r ∈ R \ {0}, the following inequality holds

Ik(ru) = 1

2
η2

k (ru) −
kT∫

−kT

W
(
t, ru(t)

) +
kT∫

−kT

(
f (t), ru(t)

)
dt

� b2|r|2
2

‖u‖2
Ek

− A|r|λ
kT∫

−kT

∣∣u(t)
∣∣λ dt + |r|δ‖u‖Ek + 2kT A. (16)

Fix Q 1 ∈ C∞
0 (−T , T ) \ {0} ⊂ E1. Since A > 0 and λ > 2, then (16) implies that there exists r1 ∈ R \ {0} such that ‖r1 Q 1‖E1 >

	1 and I1(r1 Q 1) < 0. Set e1(t) = r1 Q 1(t) and ek(t) = e1(t). Then ek ∈ Ek , ‖ek‖Ek = ‖e1‖E1 > 	1 and Ik(ek) = I1(e1) < 0 for
each k ∈ N . By the Mountain Pass theorem, Ik possesses a critical value ck � α1 given by

ck = inf
g∈Γk

max
s∈[0,1] Ik

(
g(s)

)
, (17)

where

Γk = {
g ∈ C

([0,1], Ek
) ∣∣ g(0) = 0, g(1) = ek

}
.

Hence, for each k ∈ N , there exists uk ∈ Ek such that

Ik(uk) = ck, I ′k(uk) = 0. (18)

Then the function uk is a desired classical solution of system (6). �
Lemma 2.5. Let uk ∈ Ek be the solution of system (6) which satisfies (18) for all k ∈ N. Then there is a constant M1 > 0 independent
of k such that

‖uk‖Ek � M1 (19)

for all k ∈ N.

Proof. For each k ∈ N , let gk : [0,1] → Ek be a curve given by gk(s) = sek where ek is defined in Lemma 2.4. Then gk ∈ Γk
and Ik(gk(s)) = I1(g1(s)) for all k ∈ N and s ∈ [0,1]. Therefore, by (17) we have

ck � max
s∈[0,1] I1

(
g1(s)

) ≡ M0,

where M0 is independent of k ∈ N , then from (18) we obtain
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Ik(uk) � M0,
∥∥I ′k(uk)

∥∥(
1 + ‖uk‖Ek

) = 0.

The following proof is the same to Step 1 in Lemma 2.4; then we see that there exists M1 > 0 independent of k such that

‖uk‖Ek � M1

for all k ∈ N , which completes the proof. �
Lemma 2.6. Let uk ∈ Ek be the solution of system (6) which satisfies (18) for k ∈ N. Then there exists a subsequence {uk j } of {uk}k∈N

convergent to u0 in C1
loc(R, RN ).

Proof. By Lemma 2.5, we know that {uk}k∈N is uniformly bounded in Ek . Now we show that {u̇k}k∈N and {ü}k∈N are also
uniformly bounded sequences. By Lemma 2.3 and (19), we have

‖uk‖L∞
2kT

� C‖uk‖Ek � C M1. (20)

Since uk is a solution of system (6), it follows that

−ük(t) + L(t)uk(t) = ∇W
(
t, uk(t)

) − f (t)

for every t ∈ (−kT ,kT ). By (20) and the boundedness of f , we obtain∣∣ük(t)
∣∣ �

∣∣∇W
(
t, uk(t)

)∣∣ + ∣∣L(t)uk(t)
∣∣ + ∣∣ f (t)

∣∣
� sup

(t,x)∈[−kT ,kT ]×[−C M1,C M1]
∣∣∇W (t, x)

∣∣ + C M1 sup
t∈[−kT ,kT ]

∣∣Li j(t)
∣∣ + sup

t∈R

∣∣ f (t)
∣∣

for k ∈ N . It follows from (W2) and (3) that there is M2 > 0 independent of k such that

‖ük‖L∞
2kT

� M2. (21)

We can suppose that uk(t) = (uk1 (t), uk2 (t), . . . , ukN (t)) for each t ∈ R . By the Mean Value theorem, there exits tki ∈ [t −1, t],
for all t ∈ R , such that

u̇ki (tki ) =
t∫

t−1

u̇ki (s)ds = uki (t) − uki (t − 1)

for any i ∈ {1,2, . . . , N}. Then by (21) we have

∣∣u̇ki (t)
∣∣ =

∣∣∣∣∣
t∫

tki

üki (s)ds + u̇ki (tki )

∣∣∣∣∣

�
t∫

t−1

∣∣üki (s)
∣∣ds + ∣∣u̇ki (tki )

∣∣

�
t∫

t−1

∣∣ük(s)
∣∣ds + ∣∣uki (t) − uki (t − 1)

∣∣
� M2 + 2C M1 ≡ M3.

Consequently, there exists a constant M4 > 0 such that

‖u̇k‖L∞
2kT

� M4.

In order to finish the proof via the Arzelà–Ascoli theorem, we need to prove that {uk}k∈N and {u̇k}k∈N are equicontinuous.
Actually, by (21) we have

∣∣u̇k(t1) − u̇k(t2)
∣∣ �

∣∣∣∣∣
t1∫

t2

ük(s)ds

∣∣∣∣∣ �
t1∫

t2

∣∣ük(s)
∣∣ds � M2|t1 − t2|

for each k ∈ N and t1, t2 ∈ R , which shows that {u̇k}k∈N is equicontinuous, and {uk}k∈N remains in the same way. Then there
is a subsequence {uk j } j∈N convergent to u0 in C1

loc(R, RN ) by the Arzelà–Ascoli theorem. �
To prove that u0 is a desired solution of problem (1), we need to state an estimation made by Tang and Xiao in [13].
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Lemma 2.7. (See [13].) Let u : R → RN be a continuous mapping such that u̇ ∈ L2
loc(R, RN ). For every t ∈ R the following inequality

holds

∣∣u(t)
∣∣ �

√
2

( t+1/2∫
t−1/2

(∣∣u(s)
∣∣2 + ∣∣u̇(s)

∣∣2)
ds

)1/2

. (22)

Lemma 2.8. Let u0 : R → RN be a function determined by Lemma 2.6. Then u0 is a nontrivial homoclinic solution of problem (1).

Proof. Step 1: We will show that u0(t) satisfies (1) and u0(t) → 0 as t → ±∞. By Lemmas 2.4 and 2.6, we have uk j → u0

in C1
loc(R, RN ) as j → ∞, and

−ük j (t) + L(t)uk j (t) = ∇W
(
t, uk j (t)

) − f (t)

for each j ∈ N and t ∈ (−k j T ,k j T ). Take a,b ∈ R such that a < b. There exists j0 ∈ N such that

−ük j (t) + L(t)uk j (t) = ∇W
(
t, uk j (t)

) − f (t)

for all j > j0 and t ∈ [a,b]. Since, for j > j0, ük j (t) is continuous in [a,b] and ük j (t) → −∇W (t, u0(t)) + L(t)u0(t) + f (t)
uniformly on [a,b]. So it follows that ük j is a classical derivative of u̇k j in (a,b) for each j > j0. Moreover, since u̇k j → u̇0
uniformly on [a,b], we get

−ü0(t) + L(t)u0(t) = ∇W
(
t, u0(t)

) − f (t)

for all t ∈ [a,b]. Since a and b are arbitrary, we conclude that u0 satisfies (1).
Subsequently, we will show that u0(t) → 0 as t → ±∞. Then for every l ∈ N there exists j0 ∈ N such that

lT∫
−lT

(∣∣uk j (t)
∣∣2 + ∣∣u̇k j (t)

∣∣2)
dt � ‖uk j ‖2

Ek j
� M2

1

for any j � j0. From this and Lemma 2.6 it follows that

lT∫
−lT

(∣∣u0(t)
∣∣2 + ∣∣u̇0(t)

∣∣2)
dt � M2

1

for each l ∈ N . Letting l → +∞, we have

+∞∫
−∞

(∣∣u0(t)
∣∣2 + ∣∣u̇0(t)

∣∣2)
dt � M2

1,

then ∫
|t|�r

(∣∣u0(t)
∣∣2 + ∣∣u̇0(t)

∣∣2)
dt → 0 (23)

as r → +∞. Then by (22), we obtain u0(t) → 0 as t → ±∞.
Step 2: We will prove that u̇0(t) → 0 as t → ±∞. Observe that

∣∣u̇0(t)
∣∣2 � 2

t∫
t−1

(∣∣u̇0(s)
∣∣2 + ∣∣ü0(s)

∣∣2)
ds

for each t ∈ R . From (23), one has

t∫
t−1

∣∣u̇0(s)
∣∣2

ds → 0

as t → ±∞. And since u0 is a solution of problem (1), by Hölder inequality we have
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t∫
t−1

∣∣ü0(s)
∣∣2

ds =
t∫

t−1

∣∣−∇W
(
t, u0(t)

) + L(t)u0(t) + f (s)
∣∣2

ds

�
t∫

t−1

(∣∣−∇W
(
t, u0(t)

) + L(t)u0(t)
∣∣ + ∣∣ f (s)

∣∣)2
ds

� 2

t∫
t−1

(∣∣−∇W
(
t, u0(t)

) + L(t)u0(t)
∣∣2 + ∣∣ f (s)

∣∣2)
ds.

It follows from (C4) and (L) that for every ε > 0, there is a constant ρ > 0 such that∣∣−∇W (s, x) + L(s)x
∣∣ < ε

for all |x| < ρ and uniformly in s ∈ R . Since u0(s) → 0 as s → ±∞, there exists a constant p > 0 such that |u0(s)| < ρ for
|s| � p. Hence, when |t| � p + 1,

t∫
t−1

∣∣−∇W
(
s, u0(s)

) + L(s)u0(s)
∣∣2

ds < ε2.

It follows from
∫ t

t−1 | f (s)|2 ds → 0 as t → ±∞ that

t∫
t−1

∣∣ü0(s)
∣∣2

ds → 0,

then we obtain our conclusion.
Since f �= 0 and by (4), it can easily check that ∇W (t,0) = 0 uniformly in t ∈ R , we can conclude that u = 0 is not a

solution for system (1), hence u0 �= 0. The proof of Theorem 1.1 is completed. �
Proof of Theorem 1.2. It is standard to prove that Ik satisfies the geometric conditions of the Mountain Pass theorem. Some
details are different from Theorem 1.1.

It follows from (C6) that, there exist ε0 ∈ (0, 1
2 ] and σ > 0 such that

W (t, x) � −ε0|x|2 (24)

for all |x| � σ and t ∈ R .
Step 1: Ik satisfies condition (C). From (W ′

1), we can see Ik(0) = 0. Then we show that Ik satisfies (C) condition. Suppose
that {u j} j∈N ⊂ Ek is a sequence such that {Ik(u j)} j∈N is bounded and ‖I ′k(u j)‖(1 +‖u j‖Ek ) → 0 as j → ∞. Then there exists
a constant Ck > 0 such that

Ik(u j) � Ck,
∥∥I ′k(u j)

∥∥(
1 + ‖u j‖Ek

)
� Ck. (25)

By (25), (9), (W3) and ( f ) we have

3Ck � 2Ik(u j) + ∥∥I ′k(u j)
∥∥(

1 + ‖u j‖Ek

)
� 2Ik(u j) − 〈

I ′k(u j), u j
〉

�
kT∫

−kT

((∇W (t, u j), u j
) − 2W (t, u j)

)
dt +

kT∫
−kT

(
f (t), u j(t)

)
dt

� d2

kT∫
−kT

∣∣u j(t)
∣∣μ dt −

kT∫
−kT

g(t)dt −
( kT∫

−kT

∣∣ f (t)
∣∣μ/(μ−1)

dt

)(μ−1)/μ( kT∫
−kT

∣∣u j(t)
∣∣μ dt

)1/μ

,

which implies that

3Ck � d2

kT∫ ∣∣u j(t)
∣∣μ dt − ‖ f ‖Lμ/(μ−1)

( kT∫ ∣∣u j(t)
∣∣μ dt

)1/μ

− ‖g‖L1 .
−kT −kT
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Since μ > 1, there exists Dk > 0 such that

kT∫
−kT

∣∣u j(t)
∣∣μ dt � Dk. (26)

Moreover, from (W ′
1) and (W3) we can conclude β � μ, then from (9), (25), (W ′

1), (24), (26) and Lemma 2.3 we obtain

1

2
‖u̇ j‖2

L2
2kT

= Ik(u j) +
kT∫

−kT

W
(
t, u j(t)

)
dt −

kT∫
−kT

(
f (t), u j(t)

)
dt

� Ck + d1

∫
{t∈[−kT ,kT ]||u j |>σ }

∣∣u j(t)
∣∣β dt

− ε0

∫
{t∈[−kT ,kT ]||u j |�σ }

∣∣u j(t)
∣∣2

dt + ‖ f ‖Lμ/(μ−1)

( kT∫
−kT

∣∣u j(t)
∣∣μ dt

)1/μ

,

which implies that

ε0‖u j‖2
Ek

� d1

∫
{t∈[−kT ,kT ]||u j |>σ }

∣∣u j(t)
∣∣β dt + ε

∫
{t∈[−kT ,kT ]||u j |>σ }

∣∣u j(t)
∣∣2

dt + ‖ f ‖Lμ/(μ−1)

( kT∫
−kT

∣∣u j(t)
∣∣μ dt

)1/μ

+ Ck

�
(
d1 + εσ 2−β

) ∫
{t∈[−kT ,kT ]||u j |>σ }

∣∣u j(t)
∣∣β dt + ‖ f ‖Lμ/(μ−1)

( kT∫
−kT

∣∣u j(t)
∣∣μ dt

)1/μ

+ Ck

�
(
d1 + εσ 2−β

) kT∫
−kT

∣∣u j(t)
∣∣β dt + ‖ f ‖Lμ/(μ−1) D1/μ

k + Ck

�
(
d1 + εσ 2−β

)
DkCβ−μ‖u j‖β−μ

Ek
+ ‖ f ‖Lμ/(μ−1) D1/μ

k + Ck.

Since β − μ < 2, then {u j} j∈N is bounded in Ek . By a standard argument, we see that {u j} j∈N has a convergent subse-
quence in Ek . Hence Ik satisfies (C) condition.

Step 2: Now we choose δ > 0 such that

δ < ε0

(
σ

C

)
. (27)

With this, we prove that there exist constants 	2,α2 > 0 independent of k such that Ik|∂ B	2 (0) � α2. By (27), we can set

	2 = σ

C
, α2 = ε0

(
σ

C

)2

− δ

(
σ

C

)
> 0,

which implies 0 < ‖u‖L∞
2kT

� σ if ‖u‖Ek = 	2. Then it follows from (9), (24) and (5) that

Ik(u) = 1

2

kT∫
−kT

∣∣u̇(t)
∣∣2

dt −
kT∫

−kT

W
(
t, u(t)

)
dt +

kT∫
−kT

(
f (t), u(t)

)
dt

� 1

2

kT∫
−kT

∣∣u̇(t)
∣∣2

dt + ε0

kT∫
−kT

∣∣u j(t)
∣∣2

dt − δ‖u‖Ek

� ε0‖u‖2
Ek

− δ‖u‖Ek . (28)

By the definition of 	2 and α2, (28) implies Ik|∂ B	2 (0) � α2.
Step 3: Now we only need to prove that for each k ∈ N there is γk ∈ Ek such that ‖γk‖Ek > 	2 and Ik(γk) � 0. It follows

from (W ′ ) that there exist ξ > 0 and ε1 > 0 such that
2
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W (t, x) �
(

π2

2T 2
+ ε1

)
|x|2

for all t ∈ [−T , T ] and |x| > ξ . Set ζ = max{|W (t, x)| | t ∈ [−T , T ], |x| � ξ}, hence we have

W (t, x) �
(

π2

2T 2
+ ε1

)(|x|2 − ξ2) − ζ.

Set

Q 2(t) =
{

sin(ωt)e, t ∈ [−T , T ],
0 t ∈ [−kT ,kT ] \ [−T , T ]

where ω = π
T , e = (1,0, . . . ,0). It can easily check that ( π2

2T 2 + ε1)m > M , where

M = 1

2

T∫
−T

∣∣Q̇ 2(t)
∣∣2

dt, m =
T∫

−T

∣∣Q 2(t)
∣∣2

dt.

By (9), for every r ∈ R \ {0}, the following inequality holds

I1(r Q 2) = 1

2

T∫
−T

∣∣r Q̇ 2(t)
∣∣2

dt −
T∫

−T

W
(
t, r Q 2(t)

)
dt +

T∫
−T

(
f (t), r Q 2(t)

)
dt

� |r|2
2

T∫
−T

∣∣Q̇ 2(t)
∣∣2

dt −
(

π2

2T 2
+ ε1

)
|r|2

T∫
−T

∣∣Q 2(t)
∣∣2

dt + |r|δm1/2 + 2T

((
π2

2T 2
+ ε1

)
ξ2 + ζ

)

= −
((

π2

2T 2
+ ε1

)
m − M

)
|r|2 + |r|δm1/2 + 2T

((
π2

2T 2
+ ε1

)
ξ2 + ζ

)
,

which implies that there exists r2 ∈ R \ {0} such that ‖r2 Q 2‖E1 > 	 and I1(r2 Q 2) < 0. Set e2(t) = r2 Q 2(t) and γk(t) = e2(t).
Then γk ∈ Ek , ‖γk‖Ek = ‖e2‖E1 > 	2 and Ik(γk) = I1(e2) < 0 for each k ∈ N . By the Mountain Pass theorem, Ik possesses a
critical value dk � α2 given by

dk = inf
g∈Γk

max
s∈[0,1] Ik

(
g(s)

)
, (29)

where

Γk = {
g ∈ C

([0,1], Ek
) ∣∣ g(0) = 0, g(1) = γk

}
.

Hence, for each k ∈ N , there exists uk ∈ Ek such that

Ik(uk) = dk, I ′k(uk) = 0. (30)

Then the function uk is a desired classical solution of system (6).

Lemma 2.9. Let uk ∈ Ek be the solution of system (6) which satisfies (30) for all k ∈ N. Then there is a constant M6 > 0 independent
of k such that

‖uk‖Ek � M6 (31)

for all k ∈ N.

Proof. Similar to Lemma 2.5, it follows from (29) that

dk � max
s∈[0,1] I1

(
g1(s)

) ≡ M5,

where M0 is independent of k ∈ N , then from (18) we obtain

Ik(uk) � M5,
∥∥I ′k(uk)

∥∥(
1 + ‖uk‖Ek

) = 0. (32)

It follows from (30), (9), (W3) and ( f ) that
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2M5 � 2Ik(u j) + ∥∥I ′k(u j)
∥∥(

1 + ‖u j‖Ek

)
� 2Ik(u j) − 〈

I ′k(u j), u j
〉

�
kT∫

−kT

((∇W (t, u j), u j
) − 2W (t, u j)

)
dt +

kT∫
−kT

(
f (t), u j(t)

)
dt

� d2

kT∫
−kT

∣∣u j(t)
∣∣μ dt −

kT∫
−kT

g(t)dt

−
( kT∫

−kT

∣∣ f (t)
∣∣μ/(μ−1)

dt

)(μ−1)/μ( kT∫
−kT

∣∣u j(t)
∣∣μ dt

)1/μ

,

which implies that

2M5 � d2

kT∫
−kT

∣∣u j(t)
∣∣μ dt − ‖ f ‖Lμ/(μ−1)

( kT∫
−kT

∣∣u j(t)
∣∣μ dt

)1/μ

− ‖g‖L1 .

Since μ > 1, there exists D > 0 independent of k such that

kT∫
−kT

∣∣u j(t)
∣∣μ dt � D.

Then from (9), (32), (W ′
1), (24) and Lemma 2.3 we obtain

1

2
‖u̇ j‖2

L2
2kT

= Ik(u j) +
kT∫

−kT

W
(
t, u j(t)

)
dt −

kT∫
−kT

(
f (t), u j(t)

)
dt

� M5 + d1

∫
{t∈[−kT ,kT ]||u j |>σ }

∣∣u j(t)
∣∣β dt

− ε0

∫
{t∈[−kT ,kT ]||u j |�σ }

∣∣u j(t)
∣∣2

dt + ‖ f ‖Lμ/(μ−1)

( kT∫
−kT

∣∣u j(t)
∣∣μ dt

)1/μ

,

which implies that

ε0‖u j‖2
Ek

� d1

∫
{t∈[−kT ,kT ]||u j |>σ }

∣∣u j(t)
∣∣β dt + ε

∫
{t∈[−kT ,kT ]||u j |>σ }

∣∣u j(t)
∣∣2

dt

+ ‖ f ‖Lμ/(μ−1)

( kT∫
−kT

∣∣u j(t)
∣∣μ dt

)1/μ

+ M5

�
(
d1 + εσ 2−β

) ∫
{t∈[−kT ,kT ]||u j |>σ }

∣∣u j(t)
∣∣β dt + ‖ f ‖Lμ/(μ−1)

( kT∫
−kT

∣∣u j(t)
∣∣μ dt

)1/μ

+ M5

�
(
d1 + εσ 2−β

) kT∫
−kT

∣∣u j(t)
∣∣β dt + ‖ f ‖Lμ/(μ−1) D1/μ + M5

�
(
d1 + εσ 2−β

)
DCβ−μ‖u j‖β−μ

Ek
+ ‖ f ‖Lμ/(μ−1) D1/μ + M5.

Since β − μ < 2, uk is uniformly bounded in Ek . We obtain our conclusion.
The following proof is the same to Lemmas 2.6 and 2.8. We complete the proof. �
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Proof of Corollary 1.1. It follows from (W ′′
2 ) that there exists a T > 0 such that

lim inf|x|→∞
W (t, x)

|x|2 >
π2

2T 2

uniformly in t ∈ [−T , T ], which implies the condition (W ′
2) in Theorem 1.2. Similar to the proof of Theorem 1.2, Corollary 1.1

holds. The proof is completed. �
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