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We show that some pathological phenomena occur more often than one could expect,
existing large algebraic structures (infinite dimensional vector spaces, algebras, positive
cones or infinitely generated modules) enjoying certain special properties. In particular
we construct infinite dimensional vector spaces of non-integrable, measurable functions,
completing some recent results shown in García-Pacheco et al. (2009) [13], García-Pacheco
and Seoane-Sepúlveda (2006) [15], Muñoz-Fernández et al. (2008) [20]. We prove, as well,
the existence of dense and not barrelled spaces of sequences every non-zero element
of which has a finite number of zero coordinates (giving partial answers to a problem
originally posed by R.M. Aron and V.I. Gurariy in 2003).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction and preliminary results

This paper is a contribution to the search for special properties among function and sequence spaces. Given such a special
property, we say that subset M of functions satisfying it is lineable (respectively spaceable) if M ∪ {0} contains an infinite
dimensional (respectively closed) vector space. We will say that the set M is μ-lineable if it contains a vector space of
dimension μ. The terminology of lineable/spaceable was first introduced in [4,5,14]. One of the earliest results in this
direction was proved by Gurariy [18,19], who showed that the set of nowhere differentiable functions on [0,1] is lineable.
Let us denote by ℵ0 and c the cardinalities of N and the power set of N, P (N), respectively. In [4], it was shown that
the set of everywhere surjective functions is 2c-lineable. Moreover, there exist infinitely generated algebras every non-
zero element of which is an everywhere surjective function from C to C [2,6], and in this case the set is said to be
algebrable [6, Definition 1.1]. Some of these pathological behaviours occur in really interesting ways. In [15] vector spaces
of non-measurable functions of dimension β , for any cardinal β , were constructed. Also, Aron, Pérez-García, and the third
author [3] constructed, given any set E ⊂ T of measure zero, an infinite dimensional, infinitely generated dense subalgebra
of C(T) every non-zero element of which has a Fourier series expansion divergent in E . We refer the interested reader
to [2,7–12,16,21] for more recent results on this topic.

Besides vector spaces or algebras, one could also study the existence of positive or negative cones, introducing the
following concept (see [1, Definition 1.1]):
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Definition 1.1 (Coneability). A set of functions in F (K,K) is said to be coneable if it possesses a positive (or negative) cone
containing an infinite linearly independent set.

In this paper we will also introduce the new notion of moduleability, as follows:

Definition 1.2 (Moduleability). Let A be an infinitely generated algebra over the commutative field K. Let L be a subset of A.
We say that L is moduleable if there exists an infinitely generated subalgebra M of A and a non-zero additive subgroup G
of A such that G is a (K, M)-sub-bimodule of KAM and L ∪ {0} ⊇ G .

This notion is closely related to lineability and algebrability, as we see in the following remarks.

Remark 1.3. Let A be an infinitely generated algebra over the commutative field K. If M is an infinitely generated subalgebra
of A, then M is trivially a (K, M)-sub-bimodule of KAM . Therefore, algebrability implies moduleability.

The converse to the previous remark does not remain true.

Remark 1.4. Let A be an infinitely generated algebra over the commutative field K. Assume that A is commutative and has
no divisors of 0. Let g ∈ A and M an infinitely generated subalgebra of A such that gM �= {0} and gM ∩ M = {0}. Then,
G := gM is moduleable but not algebrable. Indeed, G is trivially a (K, M)-sub-bimodule of KAM . Now, G cannot contain any
subalgebra of A because of the following: if m1,m2,m3 ∈ M are such that (gm1)(gm2) = gm3, then g(m1m2) = m3, which
means that m1 = m2 = m3 = 0. A concrete example of this situation can be K := R, A := R[X] the ring of polynomials over
an infinite set X of variables, g := x ∈ X , and M := R[X \ {x}].

The next proposition shows that the interesting case of moduleability happens when G contains at least one non-divisor
of 0 of A.

Proposition 1.5. Let A be an infinitely generated algebra over the commutative field K. Let M be an infinitely generated subalgebra
of A. Let G be a non-zero additive subgroup of A such that G is a (K, M)-sub-bimodule of KAM . If G contains an element g ∈ G that
is not a divisor of 0, then G is K-infinite dimensional. Therefore, moduleability implies lineability.

Proof. In the first place, since M is an infinitely generated subalgebra, we have that M is K-infinite dimensional (if
(mn)n∈N ⊂ M is an algebraically independent sequence, then it is linearly independent). Now, the mapping

M → G,

m �→ gm,

is a monomorphism of K-vector spaces because g is not a divisor of 0, which concludes the proof. �
At this point an example of a lineable set that is not moduleable is due.

Remark 1.6. Let X be an infinite set. Let A := R[X], the ring of polynomials over the set X of variables. Let x ∈ X . Then,
R[x] is lineable but not moduleable.

This paper is arranged into four main sections, in which we focus on finding algebraic structures inside certain subsets of
functions or sequences. For instance, we study:

• Spaceability, algebrability and moduleability of the set of non-integrable measurable functions (Theorems 2.6 and 2.9).
• Lineability and dense (and not barrelled) subspaces of Banach spaces with a Schauder basis every non-zero element of

which has a finite number of zero coordinates (Theorems 3.1–3.4).
• Lineability or coneability of the following sets of functions: Differentiable functions with discontinuous derivative, dif-

ferentiable functions having an extreme value at a point where the derivative does not make a simple change in sign,
and differentiable functions whose derivative is positive at a point but not monotonic in any neighbourhood of the
point (Theorems 4.2–4.4).

Set theoretical considerations, abstract algebra, measure theory, cardinal theory, usual real analysis techniques, and clas-
sical Banach spaces techniques are used.
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2. Non-integrable, measurable functions

In this section we will complete and close some results from [13,15,20], for which we will need to recall some theorems
appearing in the latter references. In [15, Theorem 2.5] the authors proved the following result:

Theorem 2.1. There exists an infinite dimensional vector space every non-zero element of which is a non-measurable function. More-
over, this vector space can be chosen to be closed and to have dimension β for any cardinality β .

Later on, in [20, Section 3] the following result was proved.

Theorem 2.2. Let 1 � q < p. Then:

(1) Lq[0,1] \ Lp[0,1] is c-lineable.
(2) If I is any unbounded interval, then Lp(I) \ Lq(I) is c-lineable.
(3) �p \ �q is c-lineable.

Finally, in [13] the authors showed the following theorem.

Theorem 2.3. Given an interval I , we have the following:

(1) If I is unbounded, then the set of all almost everywhere continuous bounded functions on I which are not Riemann-integrable
contains an infinitely generated closed subalgebra. In particular, this set is spaceable and also algebrable.

(2) If I is unbounded, then the set of Riemann-integrable functions on I that are not Lebesgue-integrable is lineable (but not alge-
brable).

(3) The set of Lebesgue-integrable functions on I that are not Riemann-integrable is spaceable.

In this section we complete all these results by means of proving, particularly, that the set of non-integrable, measurable
functions can be made spaceable, algebrable, or even moduleable (see Definition 1.2).

Lemma 2.4. Let (Ω,Σ,μ) be a measure space such that there exists a family (An)n∈N ⊆ Σ of pairwise disjoint measurable sets with
μ(An) > 0 for all n ∈ N. Then, the mapping

�∞ → L∞(Ω,Σ,μ),

(an)n∈N �→
∞∑

n=1

anχAn (1)

is a ‖ · ‖∞-‖ · ‖∞ isometry and an algebra-isomorphism over its image.

Proof. It is sufficient to observe that

∥∥(an)n∈N

∥∥∞ = sup
{|an|: n ∈ N

} =
∥∥∥∥∥

∞∑
n=1

anχAn

∥∥∥∥∥∞
. �

Now we want to make a useful remark related to closed algebras of bounded sequences that not converging to 0
(see [13]).

Remark 2.5. According to [13, Proposition 2.1] (�∞ \ c0) ∪ {0} contains a closed and infinitely generated subalgebra M . In
particular, let P = {p1, p2, p3, . . .} denote the set of all prime numbers (assuming that p1 < p2 < p3 < · · ·), and for every
p ∈ P we consider the bounded sequence xp ∈ �∞ given by

xp
j =

{
1, if j = pk for some k ∈ N,

0, otherwise.

Then, the subspace of �∞

M :=
{ ∞∑

i=1

λi x
pi : (λi)i∈N ∈ �∞

}

is a ‖ · ‖∞-closed subalgebra of �∞ minimally generated by {xp: p ∈ P }.
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We are now ready to prove the main result of this section.

Theorem 2.6. Let (Ω,Σ,μ) be a measure space such that there exists ε > 0 and an infinite family (An)n∈N ⊆ Σ of pairwise disjoint
measurable sets with μ(An) � ε for all n ∈ N. Then,

∞⋂
p=1

L∞(Ω,Σ,μ) \ Lp(Ω,Σ,μ)

is ‖ · ‖∞-spaceable and algebrable.

Proof. Let M be as in Remark 2.5. Let us consider the mapping φ given in (1). Since φ is a ‖ · ‖∞-‖ · ‖∞ isometry and M is
‖ · ‖∞-closed, we have that φ(M) is ‖ · ‖∞-closed. Thus, it remains to check that

φ(M) ⊆ L∞(Ω,Σ,μ) \ Lp(Ω,Σ,μ) ∪ {0}
for all 1 � p < ∞. Indeed, let us fix 1 � p < ∞ and let (an)n∈N be in M \ {0}. Then,∣∣∣∣∣

∞∑
n=1

anχAn

∣∣∣∣∣
p

=
∞∑

n=1

|an|pχAn ,

thus ∫
Ω

∣∣∣∣∣
∞∑

n=1

anχAn

∣∣∣∣∣
p

dμ =
∫
Ω

∞∑
n=1

|an|pχAn dμ =
∞∑

n=1

|an|pμ(An) = ε

∞∑
n=1

|an|p = ∞

since (an)n∈N does not converge to 0. �
To summarise, we have found spaceability and algebrability of essentially bounded measurable functions that are not p-

integrable for 1 � p < ∞. The purpose now is to find a general result that includes finite measure spaces. Observe that then
we will need to consider measurable functions that are not essentially bounded, as indicated in the following well-known
fact:

Let (Ω,Σ,μ) be a finite measure space. Then L∞(Ω,Σ,μ) ⊆ L1(Ω,Σ,μ).

Notice that having to consider non-essentially bounded measurable functions will make us lose topological strength and
will take us to moduleability. However, our next step is to modify Lemma 2.4 so that we can consider measurable functions
that are not essentially bounded.

Lemma 2.7. Let (Ω,Σ,μ) be a measure space such that there exists an infinite family (An)n∈N ⊆ Σ of pairwise disjoint measurable
sets with μ(An) > 0 for all n ∈ N. Then, the mapping

KN → L0(Ω,Σ,μ),

(an)n∈N �→
∞∑

n=1

anχAn (2)

is τ -μ sequentially continuous and an algebra-isomorphism over its image, where τ denotes the topology of pointwise convergence
in KN and μ denotes the topology of local convergence in measure in L0(Ω,Σ,μ). If (Ω,Σ,μ) is σ -finite, then:

(1) The inverse of the previous mapping is μ-τ sequentially continuous.
(2) The range of the previous mapping is μ-sequentially closed.

Proof. Let ((ak
n)n∈N)k∈N be a sequence in KN that is τ -convergent to (an)n∈N ∈ KN . Then, (ak

n)k∈N converges to an for all
n ∈ N, therefore the sequence (

∑∞
n=1 ak

nχAn )k∈N converges almost everywhere to
∑∞

n=1 anχAn . Since almost everywhere con-
vergence implies local convergence in measure, we deduce that (

∑∞
n=1 ak

nχAn )k∈N is μ-convergent to
∑∞

n=1 anχAn . Assume
now that (Ω,Σ,μ) is σ -finite. Then:

(1) Let (
∑∞

n=1 ak
nχAn )k∈N be μ-convergent to

∑∞
n=1 anχAn . We will show that (ak

n)k∈N converges to an for all n ∈ N. Oth-

erwise, there exists n ∈ N, ε > 0, and a subsequence (aki
n )i∈N such that |aki

n − an| � ε for all i ∈ N. Since (Ω,Σ,μ)

is σ -finite, there exists another subsequence (
∑∞

n=1 a
ki j
n χAn ) j∈N that is almost everywhere convergent to

∑∞
n=1 anχAn .

Since μ(An) > 0, we deduce that (a
ki j
n ) j∈N converges to an , which is impossible since |aki j

n − an| � ε for all j ∈ N.
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(2) Let (
∑∞

n=1 ak
nχAn )k∈N be μ-convergent to f ∈ L0(Ω,Σ,μ). Since (Ω,Σ,μ) is σ -finite, there exists a subsequence

(
∑∞

n=1 aki
n χAn )i∈N that is almost everywhere convergent to f . This clearly implies that

f =
∞∑

n=1

(
lim

i→∞
aki

n

)
χAn . �

Before stating and proving the main result in this section we want to make a useful remark related to Remark 2.5.

Remark 2.8. Let A be any subalgebra of KN . Let

NA :=
{ ∞∑

i=1

λi x
pi : (λi)i∈N ∈ A

}
.

We have that NA is a subalgebra of KN whose intersection with c0 is {0}. Let us show that NA is τ -sequentially closed
in KN if A is τ -sequentially closed in KN . Indeed, let (

∑∞
i=1 λn

i xpi )n∈N be a sequence in NA that is τ -convergent to an
element (α j) j∈N ∈ KN . Observe that if j is not of the form pk for some p ∈ P and some k ∈ N then α j = 0. Now, if we fix
i ∈ N, then

αpk
i
= lim

n→∞λn
i

for all k ∈ N. This proves that

(α j) j∈N =
∞∑

i=1

(
lim

n→∞λn
i

)
xpi ∈ NA.

Observe that in general it can be showed that

cls
τ (NA) = Ncls

τ (A),

where cls
τ (C) denotes the τ -sequential closure of any subset C of KN . Finally, notice also that if M is as in Remark 2.5 then

M = N�∞ and M is τ -sequentially closed in �∞ .

Now we are in the right position to state and prove the main theorem in this section.

Theorem 2.9. Let (Ω,Σ,μ) be a measure space such that there exists an infinite family (An)n∈N ⊆ Σ of pairwise disjoint measurable
sets with μ(An) > 0 for all n ∈ N. Then, L0(Ω,Σ,μ) \ L1(Ω,Σ,μ) is moduleable. If (Ω,Σ,μ) is σ -finite, then the bimodule can be
chosen to be μ-sequentially closed.

Proof. Let N := NKN be as in Remark 2.8. Let

G := {
(an)n∈N ∈ KN:

(
anμ(An)

)
n∈N

∈ N
}
.

Note that G is a (K, N)-sub-bimodule of KKN

N . Now, let φ be as in (2) and show that φ(G) ⊆ L0(Ω,Σ,μ)\L1(Ω,Σ,μ)∪{0}.
Indeed, let (an)n∈N be in G \ {0}. Then,∣∣∣∣∣

∞∑
n=1

anχAn

∣∣∣∣∣ =
∞∑

n=1

|an|χAn ,

therefore∫
Ω

∣∣∣∣∣
∞∑

n=1

anχAn

∣∣∣∣∣dμ =
∫
Ω

∞∑
n=1

|an|χAn dμ =
∞∑

n=1

|an|μ(An) = ∞

since (anμ(An))n∈N does not converge to 0 in virtue of Remark 2.8. Assume now that (Ω,Σ,μ) is σ -finite. Since N is
τ -sequentially closed in KN in virtue of Remark 2.8 again, we deduce that G is also τ -closed in KN . Finally, since φ is a
τ -μ sequentially homeomorphism over its image and its image is μ-sequentially closed in L0(Ω,Σ,μ), we deduce that
φ(G) is μ-sequentially closed in L0(Ω,Σ,μ). �

In summary, we have found moduleability and (sequential) spaceability of non-integrable measurable functions.
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3. Subspaces of sequences with finitely many zero coordinates

R.M. Aron and V.I. Gurariy posed, in 2003, the question of whether there exists an infinite dimensional and closed
subspace of �∞ every non-zero element of which has a finite number of zero coordinates. Later on, in [20, Remark 1],
the authors also studied this problem partially. One could as well-consider the previous question but replacing the word
closed for dense. Also, it would be interesting, from our viewpoint, to study the existence of (either dense or closed) vector
subspaces of a Banach space with Schauder basis every non-zero vector of which has a finite number of zero coordinates.

We will first consider the particular case of the spaces c, c0, and �p (1 � p < ∞). It is well known that, in the above
spaces, the subspace c00 of sequences of finite range and convergent to 0 is dense and not barrelled. The purpose of our
work in this section is to show that, in the above spaces, there exists a dense and non-barrelled subspace non-zero vectors
of which have only a finite number of zero coordinates. From now on, and as usual, R[x] will denote the ring of polynomials
with coefficients in R.

Theorem 3.1. There exists a vector subspace H of �p (1 � p < ∞), verifying the following properties:

(1) If 0 �= a ∈ H, then card{i ∈ N: ai = 0} < ∞.
(2) If a,b ∈ H then ab ∈ H.
(3) H is dense and not barrelled.

Proof. Similarly as before, let us consider the vector space

H =
{(

q

(
1

n2

))
n∈N

: q ∈ R[x], q(0) = 0

}
.

Let q ∈ R[x] with q(0) = 0. Take M = sup{|q(x)|: x ∈ [0,1]}. By the Mean Value Theorem∣∣∣∣q
(

1

n2

)∣∣∣∣ � M

n2

for every n ∈ N. Then, it follows that H ⊆ �p . On the other hand, H verifies the first two properties. Therefore, it remains to
show that H is dense and not barrelled.

In first place, let us prove that H is not barrelled. Let

Hn =
{(

q

(
1

n2

))
n∈N

: q ∈ Rn[x], q(0) = 0

}
,

then we have that Hn is vector subspace of H of dimension n, furthermore H = ⋃
n∈N

Hn thus H is not barrelled.
Finally, we will show that H is dense in �p . Suppose not. We can find then a sequence (an)n∈N in �∗

p such that

∑
n∈N

an · q

(
1

n2

)
= 0,

for every q ∈ R[x] with q(0) = 0. Particularising in polynomials of the form qm(x) = xm , we obtain, for every m ∈ N, that

a1 + a2 ·
(

1

22

)m

+ a3 ·
(

1

32

)m

+ · · · + an ·
(

1

n2

)m

+ · · · = 0.

There also exists M > 0 such that |an| � M for n ∈ N, therefore

|a1| � M ·
[(

1

22

)m

+
(

1

32

)m

+ · · · +
(

1

n2

)m

+ · · ·
]

for every m ∈ N and necessarily a1 = 0, obtaining that

a2 ·
(

1

22

)m

+ a3 ·
(

1

32

)m

+ · · · + an ·
(

1

n2

)m

+ · · · = 0,

that is

a2 + a3 ·
(

22

32

)m

+ · · · + an ·
(

22

n2

)m

+ · · · = 0.

Similarly, it follows that a2 = 0 as well. Inductively, we have that an = 0 for every n ∈ N, reaching a contradiction. �
Let us see now the general case of Banach spaces with a Schauder basis. It is well known that if X is a Banach space

with a Schauder basis, then the vectors whose coordinates with respect to this basis are all zero but a finite number of them
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form a dense and not barrelled vector subspace of X . This arises the question of finding a dense and not barrelled vector
subspace every non-zero element of which has a finite number of zero coordinates. If X denotes an infinite dimensional
Banach space and (en)n∈N is a Schauder basis for X contained in SX , the unit sphere of X , then

�1 ⊆
{

(tn)n∈N:
∞∑

n=1

tnen converges

}
⊆ c0.

Moreover, the operator

�1 → X,

(tn)n∈N �→
∞∑

n=1

tnen (3)

verifies that

(1) it is linear,
(2) it is one-to-one,
(3) it is continuous with norm 1, and
(4) the image of �1 is dense in X (because it contains the image of c00).

Theorem 3.2. Let X be an infinite dimensional Banach space with a Schauder basis (en)n∈N contained in SX . There exists a vector
subspace V of X such that:

(1) If 0 �= a ∈ V , then card{n ∈ N: a[n] = 0} < ∞.
(2) If a,b ∈ V then

∑∞
n=1 a[n]b[n]en ∈ V .

(3) V is dense and not barrelled.

Proof. Let us denote by φ the operator given in (3). According to Theorem 3.1 for p = 1, there exists a vector subspace H
of �1 verifying that

(1) if 0 �= a ∈ H , then card{i ∈ N: ai = 0} < ∞;
(2) if a,b ∈ H then ab ∈ H ;
(3) H is dense and not barrelled.

Now, we consider V = φ(H). Taking into account the properties enjoyed by φ, we deduce that V verifies (1) and (2) of
the theorem. Besides, since φ is continuous and φ(�1) is dense in X , we deduce that V is dense in X . Finally, according to
the proof of Theorem 3.1, we can choose H in such a way it can be written as H = ⋃

n∈N
Hn where each Hn is a vector

subspace of dimension n. Now, since φ is one-to-one, we deduce that V = ⋃
n∈N

φ(Hn) and each φ(Hn) is a vector space of
dimension n. As a consequence, V is not barrelled. �

From the techniques appearing in proofs of the previous theorems we can obtain the following results as well:

Theorem 3.3. There exists a vector subspace E of c verifying the following properties:

(1) If 0 �= a ∈ E, then card{i ∈ N: ai = 0} < ∞.
(2) If a,b ∈ E then ab ∈ E.
(3) E is dense and non-barrelled.

Theorem 3.4. There exists a vector subspace F of c0 such that:

(1) If 0 �= a ∈ F , then card{i ∈ N: ai = 0} < ∞.
(2) If a,b ∈ F then ab ∈ F .
(3) F is dense and not barrelled.

Next, given any Banach space X with Schauder basis (en)n∈N contained in SX , we provide an explicit construction of
a non-barrelled dense vector subspace V of X every non-zero element of which has a finite number of zero coordinates.
Consider a dense sequence (yn)n∈N in X such that for every n ∈ N there exists k ∈ N with yn[ j] = 0 for every j � k, where
yn[ j] denotes the j-th coordinate of yn with respect to the Schauder basis (en)n∈N . Now, given the sequence (xn)n∈N in X
by

xn = yn + 1
(

1
n
,

1
n
,

1
n
, . . .

)
,

n 2 3 4
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one can show that the linear space V = span{xn: n > 1} enjoys the required properties (we spare the details of this proof
to the interested reader, since the technique is similar to that of Theorems 3.1 and 3.2).

To conclude this section, we will consider the case of �∞ . From the previous results it follows that �∞ contains a
subspace H such that

(1) if 0 �= a ∈ H , then card{i ∈ N: ai = 0} < ∞, and
(2) if a,b ∈ H then ab ∈ H .

In particular, if (αn)n∈N is any bounded sequence of real numbers, then{(
q(αn)

)
n∈N

: q ∈ R[x]} (4)

verifies (1) and (2). However, let us notice that if H is of the form given in (4), being (αn)n∈N a convergent sequence, then
H can be neither closed nor dense. This follows from the fact that we can adapt the proof of Theorem 3.3 to prove that H
is dense in c, therefore H cannot be either closed or dense in �∞ .

We finish the paper with a section devoted to some pathologies amongst the set of differentiable functions.

4. Some pathologies in subsets of differentiable functions

In [17, p. 36, ex. 2] is given an example of a function f : R → R which is differentiable and whose derivative is discon-
tinuous at the origin. Namely, the function given is the following:

f (x) =
{

x2 · sin(1/x), x �= 0,

0, x = 0.

This function is differentiable and

f ′(x) =
{

2x · sin(1/x) − cos(1/x), x �= 0,

0, x = 0.

Also, limx→0 f ′(x) does not exist.
One could wonder whether this kind of behaviour amongst functions occurs often, namely, whether there exists an

infinite dimensional vector space of such kind of functions. We will show that this is the case, but before that, let us recall
the following result, of simple proof, which is left as an exercise to the interested reader.

Lemma 4.1. Let P denote the set of odd prime numbers. The sets of functions {sin(1/px): p ∈ P } and {cos(1/px): p ∈ P } are linearly
independent families.

Theorem 4.2. The set of differentiable functions on R with discontinuous derivative at the origin, D, is lineable, i.e. there exists an
infinite dimensional vector space E, with E \ {0} ⊂ D.

Proof. For every p ∈ P (the set of odd prime numbers) define the following sequence of functions:

f p(x) =
{

x2 · sin(1/px), x �= 0,

0, x = 0.

Let E = span{ f p: p ∈ P } and let g ∈ E \{0}, i.e. g(x) = ∑k
i=1 αi ·x2 ·sin(1/pi x), with pi ∈ P and αi �= 0 for every i ∈ {1, . . . ,k}.

It is clear that g is also differentiable and that g′ can be written in the form g′(x) = Z(x) − C(x), where Z(x) → 0 as x → 0
and C(x) = ∑k

i=1
αi
pi

· cos(1/pi x). Next, we will see that limx→0 C(x) does not exist, and we will be done. To do this, let us

consider the sequence (xn)n given, for n ∈ N, by xn = (p2 · p3 · · · · · pk)
−1 · ( π

2 + 2nπ)−1. We have that xn → 0 as n → ∞,
and

C(xn) =
k∑

i=1

αi

pi
· cos

[
p2 · p3 · · · · · pk

pi
·
(

π

2
+ 2nπ

)]

= (α1/p1) · cos

[
p2 · p3 · · · · · pk

p1
·
(

π

2
+ 2nπ

)]

= (α1/p1) · cos

(
q ·

[
π

2
+ 2nπ

])
,

where q ∈ Q \ Z. Thus, limn→∞ g′(xn) = −α1
p1

· limn→∞ cos[q · ( π
2 + 2nπ)], which does not exist, therefore limx→0 g′(x) does

not exist, and g ∈ D . Thus we have proved that D is lineable (E is infinite dimensional by Lemma 4.1). �
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As in the proof of the previous results (and with help of the basic examples appearing in [17]) we also obtain the
following results on lineability/coneability.

Theorem 4.3. The set of differentiable functions having an extreme value at a point where the derivative does not make a simple
change in sign is lineable.

Theorem 4.4. The set of differentiable functions whose derivative is positive at a point but which is not monotonic in any neighbour-
hood of the point, N, is coneable and not lineable. Moreover, if V ⊂ N ∪ {0} is a vector space then V = {0}.
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