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1. Introduction

In this paper we are concerned with the existence of positive solutions for the second-order boundary value problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−u′′ + λu = ϕu + f (t, u), 0 < t < 1,

−ϕ′′ = μu, 0 < t < 1,

u(0) = u(1) = 0,

ϕ(0) = ϕ(1) = 0,

(1)

where λ > −π2, μ is a positive parameter, f ∈ C[(0,1) × R+, R+], that is, f is probably singular at t = 0 and t = 1.
Problem (1) is related to the stationary version of the reaction–diffusion system⎧⎪⎪⎪⎨

⎪⎪⎪⎩

u1t − �u1 = u1u2 − bu1, x ∈ Ω, t > 0,

u2t − �u2 = au1, x ∈ Ω, t > 0,

u1 = u2 = 0, x ∈ ∂Ω, t > 0,

u1(x,0) = u10(x) � 0, u2(x,0) = u20(x) � 0, x ∈ Ω,

(2)

where Ω ∈ RN is a smooth bounded domain, a, b > 0 are constants, u10, u20 are continuous nonnegative functions on Ω .
As a model to describe the neutron flux and temperature of the nuclear reactors, the system (2) is studied by the authors
in [3]. It is proved that there is at least one positive stationary solution if 2 � n < 6. In addition, it is also proved that every
positive stationary solution is a threshold when Ω is a ball.

Recently, boundary value problem of fourth-order ordinary differential equations has been extensively studied (see [6,8]
and references therein). Naturally, we can find that problem (1) is similar to the following fourth-order boundary prob-
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lem {
ϕ(4) + A(ϕ)ϕ′′ = f (t,−ϕ′′), 0 < t < 1,

ϕ(0) = ϕ(1) = ϕ′′(0) = ϕ′′(1) = 0.
(3)

So, it is useful for us to study problem (1). In addition, there are many authors have studied the differential system, such as
[1,4,7,9–12], and they obtain fruitful results. Inspired by the above references, we will study problem (1) by the following
fixed point theorem of cone expansion and compression in [2]:

Lemma 1.1. Let E be a Banach space, and K ⊂ E be a cone in E. Assume Ω1 , Ω2 are open subsets of E with 0 ∈ Ω1,Ω1 ⊂ Ω2 , and let
T : K ∩ (Ω2 \ Ω1) → K be a completely continuous operator such that either

(i) ‖T u‖ � ‖u‖, u ∈ K ∩ ∂Ω1 and ‖T u‖ � ‖u‖, u ∈ K ∩ ∂Ω2; or
(ii) ‖T u‖ � ‖u‖, u ∈ K ∩ ∂Ω1 and ‖T u‖ � ‖u‖, u ∈ K ∩ ∂Ω2 .

Then T has a fixed point in K ∩ (Ω2 \ Ω1).

The organization of this paper is as follows: In Section 2, we introduce some preliminaries. In Section 3, we state and
prove our main results. In Section 4, we give two examples to illustrate our main results.

2. Preliminaries

Let G(t, s) be the Green function of linear boundary value problem

−u′′ + λu = 0, u(0) = u(1) = 0,

where the constant λ > −π2. Thus, from [5], we have the following lemmas.

Lemma 2.1. Let ω = √|λ|, then G(t, s) can be expressed by

(i) G(t, s) =
⎧⎨
⎩

sinhωt sinhω(1−s)
ω sinhω , 0 � t � s � 1,

sinhωs sinhω(1−t)
ω sinhω , 0 � s � t � 1,

if λ > 0.

(ii) G(t, s) =
{

t(1 − s), 0 � t � s � 1,

s(1 − t), 0 � s � t � 1,
if λ = 0.

(iii) G(t, s) =
⎧⎨
⎩

sinωt sinω(1−s)
ω sinω , 0 � t � s � 1,

sinωs sinω(1−t)
ω sinω , 0 � s � t � 1,

if −π2 < λ < 0.

Lemma 2.2. The function G(t, s) has the following properties:

(i) G(t, s) > 0, ∀t, s ∈ (0,1),
(ii) G(t, s) � C G(s, s), ∀t, s ∈ [0,1],

(iii) G(t, s) � δG(t, t)G(s, s), ∀t, s ∈ [0,1],

where C = 1, δ = ω/ sinhω, if λ > 0; C = 1, δ = 1, if λ = 0; C = 1/ sinω, δ = ω sinω, if −π2 < λ < 0.

Problem (1) can be easily transformed into a nonlinear second-order ordinary differential equation with a nonlocal term.
Briefly, the boundary value problem

−ϕ′′ = μu, ϕ(0) = ϕ(1) = 0,

is solved by Lemma 2.1, namely,

ϕ(t) = μ

1∫
0

K (t, s)u(s)ds (4)

where K (t, s) denotes the Green function G(t, s) when λ = 0. Then, inserting (4) into the first equation of (1), we have
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⎧⎪⎪⎨
⎪⎪⎩

−u′′ + λu = μu

1∫
0

K (t, s)u(s)ds + f (t, u), 0 < t < 1,

u(0) = u(1) = 0.

(5)

Now we consider the existence of positive solutions of (5). the function u ∈ C2(0,1)∩ C[0,1] is a positive solution of (5),
if u satisfies (5), and u � 0, t ∈ [0,1], u �= 0. Then by Lemma 2.1, the solution of (5) can be expressed as following

u = μ

1∫
0

1∫
0

G(t, s)u(s)K (s, τ )u(τ )dτ ds +
1∫

0

G(t, s) f (s, u)ds.

We now define a mapping T : C[0,1] → C[0,1] by

T u(t) = μ

1∫
0

1∫
0

G(t, s)u(s)K (s, τ )u(τ )dτ ds +
1∫

0

G(t, s) f (s, u)ds.

It is clear that T : C[0,1] → C[0,1] is completely continuous.
Set

P =
{

u ∈ C[0,1]: u(t) � σ‖u‖, t ∈
[

1

4
,

3

4

]}
,

where σ = δm
C ∈ (0,1) and

m = min
t∈[1/4,3/4] G(t, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sinh ω
4 sinh 3

4 ω

ω sinhω , if λ > 0,

3
16 , if λ = 0,

sin ω
4 sin 3

4 ω

ω sinω , if −π2 < λ < 0.

It is well known that P is a cone in C[0,1].
Lemma 2.3. (See [5].) T (P ) ⊂ P and T : P → P is completely continuous.

3. Main result

Theorem 3.1. Assume that the following conditions hold:

(H1) λ > −π2;
(H2) f ∈ C[(0,1) × R+, R+], and

f (t, u) � p(t)q(u), t ∈ (0,1), u ∈ R+,

where p(t) ∈ C[(0,1), R+], q(u) ∈ C[R+, R+], and

1∫
0

G(s, s)p(s)ds < +∞;

(H3) lim
u→0+

q(u)

u
= 0, lim

u→+∞
min[1/4,3/4]

f (t, u)

u
= +∞.

If μ ∈ (0, 1
2C

∫ 1
0

∫ 1
0 G(s,s)K (s,τ )dτ ds

], then problem (1) has at least one positive solution.

Proof. By condition (H3), there exist c1 > 0, 0 < r < 1 such that

q(u) � c1u, u ∈ [0, r],
and satisfying

C · c1 ·
1∫

G(s, s)p(s)ds � 1

2
.

0



F. Wang, Y. An / J. Math. Anal. Appl. 373 (2011) 370–375 373
Thus, by Lemma 2.2, (H2) and (H3), we have

(T u)(t) = μ

1∫
0

1∫
0

G(t, s)u(s)K (s, τ )u(τ )dτ ds +
1∫

0

G(t, s) f (s, u)ds

� μC

1∫
0

1∫
0

G(s, s)K (s, τ )dτ ds ‖u‖2 + C

1∫
0

G(s, s)p(s)q(u)ds

� μC

1∫
0

1∫
0

G(s, s)K (s, τ )dτ ds ‖u‖2 + C · c1 ·
1∫

0

G(s, s)p(s)ds ‖u‖

� 1

2
‖u‖2 + 1

2
‖u‖

� ‖u‖, ∀u ∈ ∂ Br ∩ P , t ∈ [0,1].
Consequently,

‖T u‖ � ‖u‖, ∀u ∈ ∂ Br ∩ P .

On the other hand, by condition (H3), there exist c2 > 0, R1 > 0 such that

f (t, u) � c2u, ∀u � R1, t ∈ [1/4,3/4],
and satisfying

c2 · σ ·
3/4∫

1/4

G

(
1

2
, s

)
ds � 1.

Set R > R1
σ , it is easy to know that

min
t∈[ 1

4 , 3
4 ]

u � σ‖u‖ = σ R > R1, ∀u ∈ B R ∩ P .

Then, from conditions (H3) and Lemma 2.2, we have

(T u)

(
1

2

)
= μ

1∫
0

1∫
0

G

(
1

2
, s

)
u(s)K (s, τ )u(τ )dτ ds +

1∫
0

G

(
1

2
, s

)
f (s, u)ds

� μ

3
4∫

1
4

3
4∫

1
4

G

(
1

2
, s

)
u(s)K (s, τ )u(τ )dτ ds +

3
4∫

1
4

G

(
1

2
, s

)
f (s, u)ds

� μσ 2

3
4∫

1
4

3
4∫

1
4

G

(
1

2
, s

)
K (s, τ )dτ ds ‖u‖2 + σ c2

3
4∫

1
4

G

(
1

2
, s

)
ds ‖u‖

� σ c2

3
4∫

1
4

G

(
1

2
, s

)
ds ‖u‖

� ‖u‖
for all u ∈ ∂ B R ∩ P .

Consequently,

‖T u‖ � ‖u‖, ∀u ∈ ∂ B R ∩ P .

Then by Lemma 1.1, problem (1) has at least one positive solution. �
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Theorem 3.2. Assume that (H1) and (H2) hold. In addition, also assume that the following conditions hold:

(H4) lim
u→0+

min[1/4,3/4]
f (t, u)

u
= +∞, lim

u→+∞
min[1/4,3/4]

f (t, u)

u
= +∞;

(H5) There exists 0 < ρ � 1 such that

sup
u∈[0,1]

q(u) � ρ

2C
∫ 1

0 G(s, s)p(s)ds
.

If μ ∈ (0, 1
2C

∫ 1
0

∫ 1
0 G(s,s)K (s,τ )dτ ds

], then problem (1) has at least two positive solutions.

Proof. By conditions (H1) and (H5), for ∀u ∈ ∂ Bρ ∩ P and t ∈ [0,1], we have

(T u)(t) = μ

1∫
0

1∫
0

G(t, s)u(s)K (s, τ )u(τ )dτ ds +
1∫

0

G(t, s) f (s, u)ds

� μC

1∫
0

1∫
0

G(s, s)K (s, τ )dτ ds ‖u‖2 + C

1∫
0

G(s, s)p(s)q(u)ds

� μC

1∫
0

1∫
0

G(s, s)K (s, τ )dτ ds ‖u‖2 + C · ρ

2C
∫ 1

0 G(s, s)p(s)ds
·

1∫
0

G(s, s)p(s)ds

� 1

2
ρ2 + 1

2
ρ � ρ.

Consequently, we get

‖T u‖ � ‖u‖, ∀u ∈ ∂ Bρ ∩ P .

On the other hand, by (H4), there exist c3 > 0, 0 < r < ρ such that

f (t, u) � c3u, ∀u ∈ [0, r], t ∈ [1/4,3/4],
and satisfying

c3 · σ ·
3/4∫

1/4

G

(
1

2
, s

)
ds � 1.

Then, from conditions (H4) and Lemma 2.2, we have

(T u)

(
1

2

)
= μ

1∫
0

1∫
0

G

(
1

2
, s

)
u(s)K (s, τ )u(τ )dτ ds +

1∫
0

G

(
1

2
, s

)
f (s, u)ds

� μ

3
4∫

1
4

3
4∫

1
4

G

(
1

2
, s

)
u(s)K (s, τ )u(τ )dτ ds +

3
4∫

1
4

G

(
1

2
, s

)
f (s, u)ds

� μσ 2

3
4∫

1
4

3
4∫

1
4

G

(
1

2
, s

)
K (s, τ )dτ ds ‖u‖2 + σ c3

3
4∫

1
4

G

(
1

2
, s

)
ds ‖u‖

� σ c3

3
4∫

1
4

G

(
1

2
, s

)
ds ‖u‖

� ‖u‖
for all u ∈ ∂ Br ∩ P .
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Consequently,

‖T u‖ � ‖u‖, ∀u ∈ ∂ Br ∩ P .

From the proof of Theorem 3.1, for sufficiently large R > 1, we also have

‖T u‖ � ‖u‖, ∀u ∈ ∂ B R ∩ P ,

by (H4) and Lemma 2.2.
Then by Lemma 1.1, we know that T has at least two fixed points in (B R\Bρ) ∩ P and (Bρ\Br) ∩ P , namely, problem (1)

has at least two positive solutions. �
4. Examples

In this section, we will give two examples to illustrate Theorem 3.1 and Theorem 3.2 when λ = 0.

Example 1. In problem (1), let f (t, u) = u2

t(1−t) , we can choose p(t) = 1
t(1−t) and q(u) = u2. It is easy to see that (H1) is

satisfied. In addition, we can verify that

1∫
0

G(s, s)p(s)ds =
1∫

0

s(1 − s)
1

s(1 − s)
ds = 1 < +∞.

Then (H2) and (H3) are satisfied. Therefore, by Theorem 3.1, problem (1) has at least one positive solution when μ ∈ (0, 1
60 ].

Example 2. In problem (1), let f (t, u) = u2+u
1
2

6t(1−t) , we choose p(t) = 1
6t(1−t) , q(u) = u2 + u

1
2 . Then (H1), (H2) and (H4) are

obviously hold. In addition, let ρ = 1, then

2C

1∫
0

G(s, s)p(s)ds sup
u∈[0,1]

q(u) = 2 · 1 ·
1∫

0

s(1 − s)
1

6s(1 − s)
sup

u∈[0,1]
(
u2 + u

1
2
) = 2

3
< 1 = ρ,

namely, (H5) is satisfied. Therefore, by Theorem 3.2, problem (1) has at least two positive solutions when μ ∈ (0, 1
60 ].
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