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1. Introduction and main results

This paper is devoted to the study of the semilinear wave equation on asymptotically Euclidean non-trapping Riemannian
manifolds with small initial data. In particular, we verify the Strauss conjecture in this setting when n=3,4 and p > p..
Moreover, we obtain an almost sharp lifespan for the solution when 2 < p < p. and n=3.

In the Minkowski space-time, this problem has been thoroughly studied. The work on global existence part (i.e. p > p¢)
is initiated by John [10] for n =3 and ended by Georgiev, Lindblad and Sogge [5] and Tataru [19]. It is known that p > p.
is necessary for global existence, even with small data, see [16,20,23] and reference therein. Moreover, when n =3 and
p < pc, the sharp lifespan is known in Zhou [22] (see also [14] for lower bound of the lifespan p < p. and n > 3, and [24]
for upper bound of the lifespan when p < p. and n > 3).

When dealing with semilinear wave equations, we know that the Keel-Smith-Sogge (KSS) estimate plays an important
role, which is originated by Keel, Smith and Sogge [11] and states that

T
(10g(2 + T))71/2 H (X>71/2u/”L2([O,T]><]R3) S ”u/(O, )H L2(R3) +/HF(5’ ) ”LZ(R3) ds, (11)
0

where u solves the equation Ou = F and u’ = (d;u, dxu). This estimate has been generalized for general weight of form
(x)~% with a > 0 (see [9] and references therein).

Recently, Bony and Hifner [2] obtained a weaker version of the KSS estimates for asymptotically Euclidean space when
the metric is non-trapping. With this estimate, they were able to show the global and long time existence for quadratic
semilinear wave equations with dimension n >4 and n = 3. Then Sogge and Wang [17] proved the almost global existence
for 3-D quadratic semilinear equations by obtaining the sharp KSS estimates for a = 1/2. Together with the KSS estimates,
they also proved the Strauss conjecture for n =3 and p > p. with spherically symmetric metric. The proof is based on
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weighted Strichartz estimates, and there are the weighted Strichartz estimates of higher order where the additional sym-
metric assumption is posed to avoid the technical difficulties when commutating the Laplacian with the vector fields.

In this work, we are able to overcome the difficulties of commutating vector fields and verify the weighted Strichartz
estimates and energy estimates with derivatives up to second order, for a general metric. This enables us to prove the
Strauss conjecture with p > p. for n = 3, 4. Moreover, we are able to get the KSS estimates for 0 < a < 1/2, by applying the
corresponding estimates for wave equations with variable coefficients (see [15,8]). With these estimates in hand, we can
also prove the local existence for 2 < p < p. when n =3 with almost sharp lifespan.

Let us now state our results precisely. First, we introduce the necessary notations. We consider asymptotically Euclidean
manifolds (R", g) with n >3 and

n
g= Z g,'j(X) dx! dx.
i,j=1
We suppose gij(x) € C*°(R") and, for some p > 0,
Vo e N 8,‘3‘(g,-j —dij) = O((X)i‘alip), (H1)
with 8;j = 8!/ being the Kronecker delta function. We also assume that
g is non-trapping. (H2)
Let g(x) = (det(g))!/4. The Laplace-Beltrami operator associated with g is given by
1 .
Ag=) —0ig"g’;,
= &
j
where gl(x) denotes the inverse matrix of gij(x). It is easy to see that —A, is a self-adjoint non-negative operator on
L2(R", g%dx), while P = —gAgg~! is a self-adjoint non-negative operator on L?(R", dx).

Let p > 1,
S_n 2 s—l 1
C_2 p__17 d_z p

and p. be the positive root for
m—1p>*—m+1p—-2=0.

Note that p. =1+ +/2 for n =3 and p. =2 for n = 4. The semilinear wave equations we will consider are

(97 — Ag)u(t,x) = Fp(u(t,x), (t.x) eRy x R", (12)

u(0,) =up®,  du0,x) =u1(x), xeR" '
We will assume that the nonlinear term behaves like |u|P, and so we assume that

> |8 Fp| < ulP,  for jul small. (13)

0<j<2

Finally we introduce the notation for vector fields Z = {dx, £2;: 1 <i<j<3}, I' ={d} U Z, where £;j =x;d; — x;9; is the
rotational vector field, and define 9; = 8;g~", 2;; = 2;g~ .
Now we can state our main results.

Theorem 1.1. Suppose (H1) and (H2) hold with p > 2,n=3,4,and p. < p <1+44/(n— 1). Then for any € > 0 such that (recall that
Sc > Sq since p > p¢)

1
s=s.—€€ (Sd’f) (1.4)

there is a § > 0 depending on p so that (1.2) has a global solution satisfying (Z¥u(t, -), 8 Z%u(t,-)) € H* x H71, |a| < 2, t e Ry,
whenever the initial data satisfy

2 (1270 e + | 2% ] jyor) < 0. (15)
| <2
Moreover, in the case n = 3, we can relax the assumption for p to p > 1. More precisely, if F, (u) satisfies

3 o Fpa| < JulP (16)
0<j<1
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instead of (1.3), for any pc < p < 3 and any € > 0 such that (1.4) is true, the problem (1.2) has a global solution satisfying
(Z%u(t,-), 9: Z%u(t, -)) € H* x H*71, || < 1, t € R, whenever the initial data satisfy

> (12%uo]| s + [ 2w [ jer) < 5. (17)
jal<1

We also have the following existence result for 2 < p < p. when n = 3, where the lifespan is almost sharp (see [22] for
the blow up results).

Theorem 1.2. Suppose (H1) and (H2) hold with p >2,n=3,and2 < p <pc=1+ ﬁ Then there exist ¢ > 0 and &9 > 0 depending
on p so that (1.2) has a solution in [0, Ts] x R3 satisfying (Z%u(t, -), 3 Z%u(t, -)) € H® x H~1, |a| < 2, t € [0, T5], with

p(p—1)
+e
s=s54, Ts =c§r*-20-1" | (1.8)

whenever € > 0 and the initial data satisfy (1.7) with § < §g. Moreover, we can relax the assumption for p to p > 1, when F satis-
fies (1.6) and s = sq + €’ for some small €’ > 0.

Remark 1.1. The above result for p < pc is a natural extension of Theorem 4.1 in Chapter 4 of Sogge [18] and Theorem 4.2
of Hidano [6]. See also Theorem 4.1 of Yu [21] and Theorem 6.1 of [9] for closely related HS¢-results.

For convenience we define the norm Y, as
_ —(1/2)—s—
[£60ly,, = 160~ fo)] 5.

The main estimate we will need to prove Theorem 1.1 is as follows.

Theorem 1.3. Let u be a solution of the linear equation
(32 + P)u(t,x) = F(t,x), (t,x) eRy xR",
u(0,x) =uo(x), du(0,x) =ur(x), xeR"

with F = 0. Assume that (H1) and (H2) hold with p >2,n>3,2 < p < oo and s € (Sg, 1). For all € > 0 and n > 0 small enough, we
have

(1.9)

> Zau”Lst,g + |||x|”/2‘(”+1>/P—5—fz°‘u||L5L&‘Li+n(“x|>”) <Y (12%uo0] g + [ 2%un | gsr)- (1.10)
lor] <2 lor|<2

and for s € [0, 1],
Z (HZQUHL?HS + Hafzau”LgoHsfl + HZQUHL§’L§S(|x|<1)) N Z (”Za”(’HHs +[1Z%us ”HH)’ (111)
| <2 la|<2

where qs = 2n/(n — 2s). On the other hand, if we assume p > 1 instead of p > 2, we have the same estimates of first order (Jo| < 1).

p
Ix]

° p/r 1/p
”f”Lﬁ(‘LZ)(R”) = (/( / |f()»a))|rda)> )»n_l dk) s
0 gn—1

which is consistent with the usual Lebesgue space LY when p =r.

Recall that Theorem 1.3, with order 0 (Je| =0) and p > 0, has been proved in Theorem 1.6 of [17] for any s € (s4, 1] in
general. However, the estimates with higher order derivatives are much more complicated. As we will see, one of the main
difficulties in the proof is that we need to establish the relation between P and the vector fields Z, where only the powers
of P can be commutated with the equation 8[2 + P. The most difficult part of the commutators comes from the commutator
of P and the rotational vector fields £2;;. Another difficulty arises from the estimates with second order derivatives, and the
techniques we use here will require the assumption p > 2 instead of p > 1.

To obtain Theorem 1.2 we will need the following local in time weighted Strichartz estimates.

Here, the angular mixed-norm space L, L is defined as follows

Theorem 1.4. Let u be a solution of (1.9) with F = 0. Assume that (H1) and (H2) hold with p >2,n>3,0<a<1/p,2<p <0
and s = s4. Then we have
Z [ <X>_a|x|(n_])sza“HLPLf 1210.1xrm ~ (1 + T)1/Pmete Z (z%uo || s + [ Z2%un ] gs-1)- (112)

t x|

lor] <2 | <2



552 C. Wang, X. Yu /J. Math. Anal. Appl. 379 (2011) 549-566

On the other hand, if we assume p > 1 instead of p > 2, we have the same estimates of first order (|| < 1), with s = s4 + €’ for small
enough €’ > 0.

Remark 1.2. Note that the estimates in the above two theorems are given for solutions of (83 + P)u = F, which has the
benefit that the solution can be represented by the following formula

t
u(t) = cos(tP/?)ug + P~V/2sin(tPV/?)uy +f “Y2sin((t — s)P'/?)F(s)ds.
0

All of the operators occurring in this formula commutate with the wave operator Btz + P. In general, an estimate for —Ag
will correspond to another estimate for P. For example, if we have the estimate (1.10) for P, consider the equation

(02 — Ag)v(t, ) =G(t,%), (t,x) eRy x R",

(113)
u(0,x) =vo(x),  9v(0,x)=vi(x), xeR".
Notice that if we let u = gv and F = gG, then
(F —Ag)lv=G & (3 +P)u=F. (114)

Thus we have also the estimate (1.10) for —Ag.

The paper is arranged as follows. In Section 2 we prove the weighted Strichartz estimates and energy estimates (i.e.
Theorem 1.3). In Section 3 we prove higher order KSS estimates and local in time weighted Strichartz estimates (i.e. Theo-
rem 1.4). Finally in Section 4 we will see how Theorem 1.3 and Theorem 1.4 imply the Strauss conjecture when n =3, 4.

2. Weighted Strichartz and energy estimates

In this section, we will give the proof of our main estimates (1.10) and (1.11).
In what follows, “remainder terms”, rj, j € N, will denote any smooth functions such that

3rj(x) = 0((x)~P~ 71, va, (2.1)
thus P=—gAgg ' = —A +103%2 +119 +12.
2.1. Preparation
Before we go through the proof of the main theorems, we will present several useful lemmas. The first one is the KSS

estimates (Keel-Smith-Sogge estimates) on asymptotially Euclidean manifolds obtained in [2] and [17], and the second one
gives the relation between the operators P1/2 and .

Lemma 2.1 (KSS estimates). Assume that (H1) and (H2) hold with p > 1.Let N > 0, u > 1/2 and

_ | og@+1)"12 n=1y2,
A“(T)_{l, w>1/2.

Then the solution of (1.9) satisfies

sup Z (BN

_ ’ | ul
123 r¢
W (K W1+ )

OSIST e j<N+1 el <N L7 L
S 2 @ @+ Yo Ir G|y (2.2)
le|<N la|<N

where L1L = L9([0, T]; L™ (R™).
Proof. This is Theorem 1.3 in [17]. O

Remark 2.1. Here, we notice that the estimate (2.2) still holds if we replace I" and Z with 9y in (2.2) (see (3.6) in [17]).
Moreover, we will see later in Proposition 3.2 that the corresponding estimates for 0 < u < 1/2 also hold.

The next lemma gives the relation between the operators 3y and P1/2.
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Lemma 2.2. [f s € [—1, 1], then

lull s = | P20 . (23)
Ifse[0,1],
19jullg-s < |P2ul s, (2.4)
P2 e D N850l s (2.5)
j

Moreover, we have for s € (0,2]and 1 <q <n/s,
[P*2ul],q S llull jgsa- (2.6)
Proof. This is just Lemma 2.4 in [17]. O

The three following lemmas are proved to deal with the commutator terms we will encounter in the proof of our higher
order estimates (1.10) and (1.11).

Lemma 2.3. Let u solve the wave equation (1.9). Then for any s € [0, 1] and € > 0, we have:

Il 2y, < Muollgs + Nt llgss + X V2 FF 20, (2.7)

Proof. We give first the proof in the case ug =u; =0. First, from Remark 2.1 in [17] we know

—(3/2)—€ (1/2)+€
| x)=¢/ ””Lz(Ran) Sl F”LZ(RxR")' (2.8)
Next, using the KSS estimates on asymptotically Euclidean manifolds (Lemma 2.1 in [17]) together with (2.8), we have
—(1/2)—€ —(3/2)—€ —(1/2)—€,
| ¢x) / ””L?W(Ran) S [ / u”LZ(RxR”) + %) €y ”LZ(RxRﬂ)
(1/2)+e
S / F”LZ(Ran)' (2.9)
Since P is self-adjoint, for any fixed T > 0, if we let Opv = (8t2 + P)v = G with vanishing initial data at T, then
—(1/2)—€ —
| ) uf L2([0,T]xRM) — sup (u, G)
02T Gl 2,10 7y <1
= sup (Opu,v)
IO V2H€ G 12,10 7ppemny <1
(1/2)+€ —(1/2)—€
< [ / Opul| L2(-1([0, T]xR") ) V“L?Hl([o,r]an)
(1/2)+€ ) (1/2)+€
S “ (x) F”LfH—l([o,T]xR") H x) G||L2([O,T]><R”)
(1/2)+e
S ” (0 F”Lff‘l—l(Ran)'
Since the constants in the inequality are independent of T, we get
—(1/2)—€ (1/2)+e .
| ”HLZ(Ran)§ %) FHL%H*WRXR”)' (210)

Now we can get the desired estimate (2.7) for ug =u7 =0 by an interpolation between (2.8) and (2.10). The estimate with
F =0 follows just from the estimate (1.10) of order 0, which is proved in [17]. O

Lemma 2.4. Let w solve the wave equation (1.9) with ug = u1 = 0. Then for s € [0, 1] and € > 0,

Iwiigeiss < [0V F ] st (211)

Proof. We will show this estimate by interpolation. For s = 1, notice that KSS estimates in Lemma 2.1 give us

” <X>_1/2_€eitpl/zf||Lgx f, ||f||L§-
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After the standard TT* argument, we get

/e_iSP]/ZG(S, )ds 2 < ” (x)1/2+€G(t,X) H 2,

X

=

and so

/ei(t—s)PI/zF(s) ds < H /e—ispl/zF(s) ds
R

LeL2

12
S || (x)(l/Z) €F”LZ .
t.x

Thus by the Christ-Kiselev lemma (cf. [3]) we have

SN T2EE] 5
WX

L2

t
/ei(t’S)Pl/ZF(s) ds
0

Recall that w = P~1/2 [ sin((t — s)P'/2)F(s)ds, then we get the proof of (2.11) for the case s =1 as follows,
. 1/2 (1/2)+€
Wl ~ [ PV2wW ] ooz < [ 0 2FF 1o .

For s =0, by (2.2),

o0 w] g 5 0O Cwl g + 097ty S WPl

Ly~
The above inequality, combined with a similar duality argument for (2.10), gives
(1/2)+e .
Wiz S ) Flizg

which is just the estimate for s = 0. This completes the proof if we interpolate between the estimates for s=0and s=1. O

On the basis of the above two lemmas, we can control the commutator terms by a kind of weighted L?H3~! norm. Then
with the following lemma we will be able to bound this norm by the good terms, thus we can use the argument as in [17]
to get over the difficulty on error terms.

Lemma 2.5. Letn > 3, N > 1 and u be a solution to (1.9) with F = 0. Then for any s € [0, 1], ¢ > 0 and || = N, we have

Do =P 0¢u] e S lluollsapgs + lutlls-2ngs-- (2.12)
loe]=N

Proof. The estimate for s =1 follows directly from the KSS estimates (2.2) and Remark 2.1. Moreover, we have the following
estimate

” (X>_(1/2)_6u“ 272 = “ <x>_(1/2)_6P1/2(P_1/2u)|

121} |L§L§
SIP~uo o+ [ P72 2 S uolly + llunllgr- (213)
For s =0, first notice that since n > 3, we have Hardy’s inequality
-2 < )
|0 72xk] 2 S kg,
and the duality gives
[ 72xF ||y S 1 F1la-

Using the above estimate together with the KSS estimates and (2.13), we get

[~ 2=<qeu] .., < | (X)7(5/2)7€x8,‘j‘*1u”hzg—1 +| (x)*(l/Z)fea)‘(’f*luHLtzL%

2771
+H

<y (17— ga—1,,
< ) Oy HL?LE
S lluollgv—1 + lutll gy-2nf-1-

Now (2.12) follows from an interpolation between s=0and s=1. O
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Next we give three lemmas that will be used to prove the second order part of the estimates (1.10) and (1.11).

Lemma 2.6. For 0 < u < 3/2 and k > 2, we have
(531 (5]
[078j, - Bjeu] 5 S D NPTy + 3 x) 7 Pl 5, (214)
j=0 j=1
where [a] denotes the integer part of a (max{k € Z, k < a}).

Proof. This is just Lemma 4.8 in [2]. O

Lemma 2.7 (Fractional Leibniz rule). Let 0 < s <n/2,2 < pj<ooand1/2=1/p; +1/q; (i=1, 2). Then

I fgllgs SNFNianliglggser + 1F N gspa 1€]lLe2 -
Moreover, for any s € (—n/2,0) U (0,n/2),

1 F&llgs SN poongzisinisi 11811 s

Proof. The first inequality is well known, see, e.g., [12]. The second inequality with s > 0 is an easy consequence of the first
inequality together with Sobolev embedding. Then the result for negative s follows by duality. O

Lemma 2.8. For f € H(R™) N HST2(R™) withn > 3 and s € [0, 1], we have

192 £ s S IPFlligs + 11 F Nl (2.15)
On the other hand,
IPfllgs < D 102 £ - (2.16)
lor| <2

Proof. First, we give the proof for the estimate (2.16). When s = 0, noticing that Pf = g'/9; 0jf +r19xf +r2f, we have
IPFlz S 092 £z + 19xf iz + 1F 1z S 1 N2
When s =1, recalling that 3/r; = 0 ((x)~°~'J), by Hardy’s inequality,
[oxr2 )] 2 S [0xr2) | 2 + 28 fll 2 S N8 f I -
Thus
1Pl = 1P 1l 2 < [|ox(87i9; f) | 2 + |xCriox )| 2 + [ 0x (2 )] 12
S[3 1z + 18 fll2

S lisam -

Our estimate (2.16) is obtained by an interpolation between the above two estimates on Pf.
Now we turn to the proof of the estimate (2.15). First, when s =0, by elliptic property of P, we have

[0 Fll2 SUPFllz +11F 12 (217)

Second, for s =1, using (2.17),
163 £l 2 S IPOSllz +lloxfll 2
S P, 31 f | 2 + 18xPFll2 + 13 f1l2

> 3y f

lor| <2
SHPFllg + 1 Mg + 1 2

SUPFllg + 1 lgp + €l fllgs + A/ fllgn, Ve >0.

IS

T IPFilgn + 1 g
LX
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Here we have used Hardy's inequality and the fact that H3 N H' c H2. Now if we choose € > 0 small enough and use (2.16)
with s =0, we have

[ F g S UPF s + 1N S UPPY2F 2+ i S [PY2F o + [ PV2F 2 (218)
On the basis of (2.17) and (2.18), by an interpolation for the operator 32P~!/2 and making use of Lemma 2.2, we have
12 £l e S UPY2 Fllgpres + [PV2f [ o
SUPY2Fl s + [ PYEFCDRE ] o S IPY2F s + 1 F s (2:19)
We need only to deal with the term ||P'/2 f||;1.5. Noting that for s € [0, 1], we have
[P7Y2v] s SV Hs + V1L,

which is true for s =0 (see (2.3)) and s =1 (see (2.17)). Recalling that P — gifaiaj =r10x + 12, and by Leibniz rule (see
Lemma 2.7), we have for any small 0 <€ < p,

P2 £ s SUPF s + IPF Nl
SUPSF igs A 1 N ggas + Ir13 S 1 ggs + lir2 fll s
SUPF s + 1 N gras + 11 f e
SUPlgs + 1NN+ 112 £ 11,2, where 6; € (0,1]
SUPSllgs + I [2F | o™ + 112 |02 F ] s (2.20)

where we have used the fact that s<1+¢€,2—5s <2+ s (so that §; > 0) for s € (0, 1]. Now our estimate (2.15) (for s > 0)
follows from (2.19) and (2.20). O

2.2. Proof of Theorem 1.3

Now we are ready to give the proof of Theorem 1.3. Recall that it has been proved in [17] that the result holds in the
case with order 0 (Jo| =0) and p > 0. Specifically, by KSS estimates (2.2) and energy estimates, we have

lull 2y, + lull e s + N0cUll o fgs—1 S Nollgs + llunlljgs— (2.21)

for the solution u to the homogeneous linear wave equation (1.9) and s € [0, 1].
Recall that Fang and Wang obtained the following Sobolev inequalities with angular regularity ((1.3) in [4])

” x2S F (%) HL‘G;’ILZJr" < H x|"/275 £ (x) HL‘OX‘THZ)’I/Z Sl (2.22)

w

for s € (1/2,n/2) and some n > 0. By Lemma 2.2, we have
_s itpl/2 i pl/2
[ 25 £ o0 5 1647 £

< ”eitpl/z PS/Zf(X) H 112 5 H PS/2fH 2 < ||f||Hs (2.23)

for se (1/2,1].
On the basis of KSS estimates, we can also obtain local energy decay estimates

lpull2ps < llutoll s + lualljzs—

for ¢ € Cg° and s € [0, 1] (see Lemma 2.6 in [17]). Then for any p > 2,

lpullpp s < lloullzgs + @ulleps S Muollgs + Nl g1 (2.24)
Now if we apply interpolation method, the estimates (1.10) and (1.11) with order O are direct consequences of (2.21),

(2.23) and (2.24). Next we will prove these three estimates with order up to two.

Proposition 2.9 (Generalized Morawetz estimates). Letn > 3, s € [0, 1) and p > 2. Then for the solution u of Eq. (1.9) with F = 0, we
have

2o Z%ulzy,, < D0 (12%uo0] s + 1271 ] fom)- (2:25)
lor] <2 lor| <2

Moreover, if we assume only p > 1 and s € [0, 1], the estimate still holds with || < 1.
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Proof. We first prove the estimate for Z% = 9. Recall that for all —3/2 < & < u < 3/2, we have (Lemma 4.1 of [2])
[0~ 8ull < 0PV 2ul 5. (2.26)
Also recall that = dg~", a direct calculation induces
o Ao
Z | o ””Lf}(&e < Z ES u”LfY&s'
lor] <1 lr] <1
Then for any € > 0, by (2.21),

Z ” agu”Lfysve < Z Hé)?‘“HLgym

lor] <1 | <1

<2oIPu)
i<t

S D (1P72uo] e + | P20 | geoa)
i<t

S Y 18%uo] e + Nun oo + [ POV 20y |
lr] <1

< 2 (aguoll s + 88| o).
le|<1

where we have used the inequalities (2.3), (2.5) and Lemma 2.7 in the last two inequalities (note s € [0, 1]).
Next we check the case Z% = §2. Recall that by the interpolation of (2.8) and the duality of (2.8), we have

lullzy, . < IFllzy; . (2.27)

1-s,€
if u is a solution of (1.9) with vanishing initial data. Since [P, 2]u = Z\a\gz o0 u, by using a combination of (6.7)
in [17] and Lemma 2.3 for 2u, we have
12ull 2y, . S I1R2uoll s + 18211 51
3/2—s+€ 1/2+€q2
+ D [0 e aful .+ rol < ogu] 2 (2.28)
o<1
Now since p > 1, by (2.26) and Lemma 2.3,

S ot gl $ 3 1V
lal<1 RETTRS ’

DN [ It
<1 o

ST oot pul
i1 '

< 2 (1P uo] s + | PV2un | oon)
i1

< D loguol s + o5 un ] s (2:29)
le|<1

where in the last inequality we have used the inequalities (2.3), (2.5) and Lemma 2.7.
Let f(x) =ro(x)1/2T€ = O ((x)7P*1/2%€), Then f’(x) = O({(x)~P~1/2+€), Since n > 3, by Hardy’s inequality with duality,
the KSS estimates (2.2) with Remark 2.1, and interpolation,

| foRu] 2jgsr < 0x(FoD ] 2gsr + [ Ortt] 2 551
SIfoaullzgs + [x)f o] 246
< S 8% uol s+ D 8% un | - (2.30)

lo|<1 lo|<1
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On the basis of (2.28), (2.29) and (2.30), we are done with Z* = §2. This completes the proof of the first order estimates
under the condition p > 1.

For the second order part, we first consider the case Z% = 33. Since s € [0,1), we can always find € > 0 such that
1/2 + s+ € <3/2. By Lemma 2.6, the proof for Z* = 9y, Lemma 2.2 and Lemma 2.8, we have

HBZUHLZYSG ~ Z ‘Lzyse

o |<2

S Z HéauuL?Y“ +IPull 2y,
o<1 '

S Y (195 uol e + 05 1 | ysmr) + 1 Puoll s + 1l Pus ] s
la|<1

~ 3 (185 uol e + 88 un] gsr) + IPuol s + [ PY2un [ o
lo|<1

ool + 05 url ) + D o5 uol s + 3 10%un s
|

S 2

la|<1 l|<2 la|<1
< 2 (aguol s + o5 | o),

lo|<2

where the fractional Leibniz rule (Lemma 2.7) is used in the last inequality. Next, we consider the case Z% = £22. Since
[P, 2%u = Y wi<3 (- ey u), and £22u solves the wave equation with initial data (£22ug, 2%u;) and nonlinear term
[P, 2%]u, by (2.27), Lemma 2.3, Lemma 2.5 and the higher order estimates we have proved

|2,z

v, S 12700+ 1970 s

+ 20 1P e adul o+ 0 [0 o e

lor|<2 le|=3
S 2%uoll s + 122 s + D 08Ul 2y, + D [0V roadul 20
<2 lor]=3
< 20 (Z%uol s + 2% [ ga) + D7 602 raadfu] 2o
lor] <2 le|=3
< D (12%uo s + [ 2% jromr) + 02—t | owyipnn [0 72700 25
o] <2

< 2 (1Z%uo] e + 12%un | o) + D7 (1000 e + 85 1 o)
lal<2 lal<2

S 2 (1Z%uoll s + 1 2% | o)
al<2

where we have used the fact that p > 2.
Since the commutator term [P,d2]u =[P, 20]u = Zlalg(rg,ma}j‘u) corresponds to an even better case than what

for £22, the proof proceeds in the same way. This completes the proof of the higher order estimates under the conditions
p>2andse[0,1). O

Proposition 2.10 (Higher order energy estimates). Letn > 3, s € [0, 1] and p > 2. Then for the solution u of Eq. (1.9) with F = 0, we
have

Z HZ"‘u(t,x)’Lst ~ Z HZO[UOHHS ‘Z ulHHS 1) (2.31)

la|<2 | <2

Moreover, if we assume only p > 1, the estimate still holds with |o| < 1.

Proof. By Lemma 2.2 and elliptic regularity for P, we know
sl < J07ull 2 < IPullz + Nulliz < |PY2ul gy + [ PY2ul 4.

Interpolating this estimate with (2.3) with s =1, ||dxul|2 ~ | P1/?u]|;2, we get that for s € [0, 1],
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ot < | P2l g+ | PV2
S IP2ull e+l s
Thus by Lemma 2.2 we have for s € [0, 1/2] (such that s <1—s and H* N H'+S ¢ A'-9),
Z I ag””wys S Z” Pj/zuHLtOOHS + e s
o<1 i1

S Y (l08uo| g + 08 un | gsor) + ol s + lluall s
lo|<1

< 2 (1o uof e + oy un | )
jal<1

Now we can deal with 2u. Noticing that
Qiif =g "2 f + (xidjg”" —x;0ig7 ") f,
by the fractional Leibniz rule, we have

12 F s S D0 1R g Isl <n/2.

lr| <1
We have a similar relationship between dyu and dyu. By the Sobolev embedding, for any h € L", we have
[ <x>_1/2_6h”HH Ry Uz_eh””ﬁn/(nﬂ(l—s»
S M| (x) =12
Shea=2  u] .

u || [2n/(n—2s)

Thus by the energy estimate, Lemmas 2.4, 2.7 and 2.5:

~

120l gozs < 120l s + 1201 g + | (02 FELP, 2Tu] 2 s

SIQuolls + 12utlgsr + D Jra-jo 025U 2

1<]a|<2
S 2 (2%uof e + 2% [ o)
lo|<1
+ Z r— \al +2e ||Locm1l11—s,n/(1*5) || (x)71/27€ 53“ HL?HS—l
1<|x|<2

< 2 (12%uo] g +[2%m )+ D0 J0 2 0u] 20
ler| <1 1<]|<2

+ 0727 (0 Yul s + |07 [0( 08 Jull 25

< D (12%u0] e + [ 2% | o).
al<1

559

(2.32)

(2.33)

(2.34)

where we have used the fact that p > 1 and (2.34) with h=9g~ !, 9g=2 and h =d(g~'9g™") (the condition h € L" is

satisfied since the condition (H1) on the metric g). Noticing that 2u = gQu — g(£2g~)u, we hence have

1Ruleps S D [2%U] s © D7 (12%u0] s + [2%un ] o-n).
ler| <1 l|<1

(2.35)

On the basis of (2.33) and (2.35), we complete the proof of the energy estimates of order one, under the conditions s €

[0,1/2] and p > 1.
For the part with second order derivatives, we need only to deal with 83 and £2? as before.
By Lemma 2.8 and Lemma 2.2, we have
2
%00 o jgs S P gzo s + Ul e
S IPugllgys + IIPutllgs—1 + lluoll s + lluallgs—

S D (loguol g + oy | o).
l<2

(2.36)
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Here we remark that we can control Zlalzl ||a,‘j‘u\|thHs for s € [0, 1] instead of the restriction s € [0, 1/2] in (2.33), by (2.36)
and (2.21), which enables us to relax the condition to s € [0, 1] in the estimates of order one.
By Lemma 2.4, Lemma 2.5, and what we have gained in previous steps, if p > 2,

[ 2%l s < D0 1270 e

lor|<2

< Y (190 + [Pl + YD I 00

<2 1<]al<3

< Y (12%0] g 1220 )+ YD 07 ou e

lor|<2 1<]e|<3

< Y (120 g+ |27 o). (237)
lo|<2

We are done with the second order estimates based on (2.36) and (2.37). O

Proposition 2.11 (Sobolev inequality with angular smoothing). Let u be a solution of (1.9) with F = 0 and n > 3. Then for any
se (1/2,1]and p > 1, there exists a suitable n > 0 so that we have:

> Mz e, x)HLN 2 S Y (12%0]) s + 2% | o) (2.38)

tlx| =@

lo|<1 lo|<1
Furthermore, if we assume p > 2, then we have

D WP 2 u 0 200 S D (12700 s + [ 2701 gor)- (239)
@l<2 @l<2

Proof. This is a direct consequence of the energy estimates Proposition 2.10 and the inequality (2.22). O

Proposition 2.12 (Local energy estimates). Assume n > 3, lets € [0,1], p > 2,k=0,1,2, p > k and u be a solution of (1.9) with
F = 0. We have

Do lozulppe < Y- (12%uo0] s + [ 2%un ] jmn). (2.40)
lor| <k lor|<k
where ¢ € C5°(R™).

Proof. The estimate with k = 0 is just (2.24). For the higher order estimates with |a| =k > 1, by the higher order KSS
estimates (2.2),

l0z%ull 2 < [ @0xz%u] 2 +]l9'2%u] 2,
Sl ozl p + 072z
< D (2% g + 2% o).
ler| <k

For s =0, note that ¢ 2 =rgody,

l¢z*uliz, < 00~ 0z Tul] 2

S 2 (12%uof g + 27w )

lo|<k—1
< D0 (12%uo 2 + [ 2%un | )
lor| <k

By interpolation between the above two estimates, we get (2.40) with p = 2. This will complete the proof if we combine it
with the energy estimates in Proposition 2.10. O

Proof of Theorem 1.3. From the above four propositions, we have proved the higher order version of (2.21), (2.23) and
(2.24), which gives us the required higher order estimates (1.10) and (1.11). O
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3. Local in time Strichartz estimates

In this section, we give the proof of Theorem 1.4. The first lemma is concerned with the KSS estimates for the perturbed
wave equation, obtained in Theorem 2.1 of [8] (see also Theorem 5.1 in [15]).

2

Lemma 3.1. Let n > 3, Oy = 92 — A + h*P(t, x)343p, h*? = hP* and 3" |h*P| < 1/2. Then the solution to the equation Opu = F
2
J’_

satisfies
|x|—”2+“(|u’| + M) <x>—”“<|u’| + M)
[2([0,T]xRM) x|

Ix|
T
h
< v, .)||i2(Rn) +//<u’+ %) (|F| + (|h’| + m>|u’|> dxdt (31)
0

forany e >0anda € (0,1/2).

(1+T)"2

[2([0,T]xRM)

On the basis of the KSS estimates for wave equations with variable coefficients and local energy decay (2.40), we can
adapt the arguments in [17] to obtain the following KSS estimates for asymptotically Euclidean manifolds.

Proposition 3.2. Assume that (H1) and (H2) hold with p > 1. Let N > 0, 0 < it < 1/2. Then the solution of (1.9) satisfies
r'“u

Z (1+T);1.—1/2 <x>—,u.<|(rau)/|+ | |>

<N )

S 2 lEw el + 30 Ir Fe )l (3.2)

loe| <N la|<N

1212

where L1L, = L([0, T]; L"(R™)).

As a consequence of this KSS estimate, similarly to the previous proof of Proposition 2.9, we can have the following
estimates.

Corollary 3.3. Assume that (H1) and (H2) hold with p > 2. Let 0 < < 1/2 and

A (T)={(1°g(2+T))—”2, n=1/2,
a (14 T)r-1/2 0<p<1/2.
We have
i 2 _
[0 7€ £ 210 S AW 1S iz (33)

Moreover, if 0 < i < 1/2, for the solution u of Eq. (1.9) with F = 0, we have
- 1/2—p+e
Dol zou oy STV2REE S (1 2%0]) 12 + | 2% | 4-1)- (34)
lo|<2 lor|<2
And, if we assume p > 1 instead of p > 2, we have the same estimates of first order (Jar| < 1).
Proof. (3.3) is a direct consequence if we employ (3.2) with o = 0 for u’ = 9;u. To obtain (3.4), we basically follow the

argument as in Proposition 2.9 with some modifications. For the second order part, we first consider the case Z% = 33. We
claim that we have the following inequality

|0~ Faxu] 2 < ef 0~ ogul , +C@x)Hul 5. (3.5)
By Lemma 2.6, Lemma 2.2 and Lemma 2.8, we have
AuM 0 03ul 212 S ALT) Y [0 57 u] 2,
la|<2

SALT) Y07 8] 20 + A0 Pu 2
ll<1
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SAD Y [0 0 ul 2 + Au ] 0 Pul 5.9
|lo|<1
S €A |07 0%u ] 1212 + COALM [ X) U 22 + Au (D[ (x) 7 Pul| 25
S €A |07 83ul 122 + (o) (luolli2 + unll ) + I Poll2 + 1 Puall -1
where we have used (3.3) and (3.5). Hence we have
ApM |75 2,2 < lluolliz + luall g1 + IPuoll 2 + 1 Puall -
Slluollz + lurll g + IPuoll2 + | P ?ur 2

Slurllg-+ Y [|9guol 2 + 19us 2
la|<2

S 2 (¥ uol o + 85 ur ] 4-1)
lal<2

Now we are left with the norm for Z = £2, £22, but from the proof of Proposition 2.9, we know it suffices to prove the
following estimates

1/2—p+e€ 1/2+€ .

|0~ W”sz(or] wrm > T (e FHL?Hfl([o,T]an)’ (3.6)

if w is the solution of (1.9) with vanishing initial data. Recall that we have proved in Lemma 2.3 that
—1/2—€ 1/2+€ .

| ) WHL?YX([O,TJXR”) <l FHLZH—l([o,TJxR")' 3.7)

Also if we restrict the time ¢t in [0, T], it is easy to verify that Lemma 2.4 still holds, i.e.
1/2 1/2+€
||W||L3L,%([0,T]x1R" stV ||W||L°OLX (0.T]xrny ~ T / ” / F“LfH—l([o,T]xR")‘ (3.8)

Now (3.6) just follows from the interpolation between (3.7) and (3.8). To conclude the proof of (3.4), it remains to prove
the claim (3.5).

Proof of (3.5). This inequality is true for w = 0. For general u > 0, we apply the estimate for =0 to v = ¢u with ¢ =
Y(x/R), ¥ €C®, 0< ¢ <1, suppy C {1/4 < x| <2}, ¥ =1 in B1\By1,2 and R > 1. Because of {x: ¢(x) =1} C {|x| > R/4}
and supp¢ C {R/4 < |x| < 2R}, we get

—H — —H
H (x)""oxu ||L2({x: d)=1) — H x) 3x(¢”)H L2({x: (=1}
< CR?M H ax(¢u) H LZ(RH)

CR™(€ |93 (@) | 12 ny + C©) I dull 2 ) )

— a2 —
C(E || <X> Max (¢U) ||L2(R”) + C(E) ” <X> M¢u ” LZ(R”))

— a2 1 —
C(6 ” {x) Maxu ” L2 (supp ¢) +CeR ” (x)"Hoxu ” L2
+(C(e) + CeR7?) [ (x)~Ful 2

If we choose instead ¥ =1 in By and O for |x| > 2, then

NN

N

(supp¢’)

(SUPP¢))'

“< x)"Hoxu ||L2 (e <y S C€ ” “Hogu ||L2({x: 1x1<2h
+ Ce || (0 ~H Byu ”LZ({x: w<2n T (Ce +ce)| (X>7MUHL2({><: Ix|<2)°
Combining the above two inequalities, we see
H (x)_”axu ”LZ(R") < Ce H <X>_M33UHL2(RH) +Ce ” (x)—u—laxu ”LZ(R”) + C(C(e) + 6) ” (x)_“u ”LZ(R")’

which implies (3.5), by choosing small enough € >0. O
The next estimate is based on the endpoint trace lemma.

Proposition 3.4. Let B;q denote the homogeneous Besov space. Then we have

(n—1)/2,,itP1/2 < )
(IEY e f||LgoLchg) S ||f||B;/]2- (3.9)
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Proof. Recall that we have the endpoint trace lemma (see (1.7) in [4]):

(n—=1)/2

rt" | far “sz N IIfIIB;/IL (3.10)
which gives that

H |X|(n71)/zeitp1/2f”LSOL£) < Heitm/szg;/lZ' (311)
On the other hand, by Lemma 2.2 we have

[ £l gr S NP2 f Ly S NP2 i S 1Sl

Noticing that ||f||3§2 = || fll gs, we can rewrite the above estimate as

itp1/2 .
[ Fllgy, S 01 0sy,-
Interpolating this estimate with the energy estimate
itp1/2 .
[ Fllag, < 0505,
gives
itp1/2 _ || ,itP1/2 o < . _
He fHB;/lz = He fH(B;,z’Bg,Z)l/ZJ ~ ||f||(3%.2,33’2)1/2,1 = ”f”B;/]Z’ (3.12)
where we have used the fact that (Theorem 6.4.5 in [1])
Lo g Lo
(B Bplq])gyr =B}, ifso#s1, 0<6<1,71,q0,q1 >1ands* = (1—6)so+0s1.

Now our estimate (3.9) follows from (3.11) and (3.12). O
Now we are ready to obtain the local in time Strichartz estimates as follows.

Proposition 3.5. Let 2 < p < oo and a € (0, 1/p). Then we have

_ _ _ itpl/2 _
[ 0= @D ARTUREEEf s S A+ TP Fllgaaae. (3.13)

Proof. This estimate follows from the real interpolation between (3.3) and (3.9) with 6 =2/p (for similar arguments, see,
eg, [621]). O

Finally we give the proof of Theorem 1.4.

Proof of Theorem 1.4. Since the estimates in Theorem 1.4 with order O are just obtained in Proposition 3.5, we are left with
the higher order estimates. Similarly to the proof of Proposition 3.5, we need only to show the higher order estimates that
correspond to (3.3) and (3.9).

The higher order estimates corresponding to (3.3) are known from Corollary 3.3. For the higher order estimates of (3.9),
by (3.10) we have

(n=1)/2 . I -
DR [l A0 PP Y PAST(S g (3.14)
lo|<2 o] <2
On the other hand, from the energy estimates in Proposition 2.10, we have for any s € [0, 1]
D zoue )] < 30 (12%u0] s + 2% ] ).
|| <2 lor|<2
Now the real interpolation between the above two estimates with s =0 and s =1 gives
Z ” Z%u(t, ) ||Bl/2 < Z (||Z“u0||31/2 + ||ZaU1 HB’l/z)'
\C{|<2 2,1 |O{\<2 2,1 2,1

Combining this estimate with (3.14), we get the second order estimates of (3.9), which completes the proof of Theorem 1.4
for p > 2. When p > 1, we need only to use (2.22) instead of (3.10). O
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4. Strauss conjecture whenn =3, 4
In this section, we will prove the existence results in Theorem 1.1 and Theorem 1.2.
4.1. Global results whenn =3,4

In this subsection, we prove the Strauss conjecture stated in Theorem 1.1. The result when n =3 and p > 1 has been
proved in [17], under the additional assumption that g;j; is spherically symmetric. Since we have obtained the same esti-
mates without this assumption, the existence result with a general metric follows from the same argument. Here we present
the proof for n =3, 4 under the conditions p > 2 and p > p., and we are following the argument as in [7].

We define X = X; ¢ q(R") to be the space with norm defined by

Ml cq = Wlias iy + [/27 O DAZ2R] (41)
where n(% - ;—s) = s. Combining the Sobolev inequalities with angular regularity (2.22) with Sobolev embedding HS c L%,
we have the embedding

H® C X5.0.00
for s € (1/2,n/2) and some 1 > 0. By duality, we have (see Theorem 2.11 of [13])

Xi 5000 CH! forse(2-n)/2,1/2). (4.2)

With these notations, Theorem 1.3 tells us that for the solution u to the linear wave equation 3?u + Pu =0, we have

2 12Ul s, + 1062 o) S 30 (12%u0] s + 2701 ] )
jl<2 jl<2

for s € (1/2 —1/p, 1). By Duhamel’s formula and (4.2), we see that for u solving the linear wave equation Btzu + Pu=F,
we have

Z (”Za””LfOHSmfoSM + ||3fza”||Lf0HH)
lo|<2

S D (12%uof s + 1 2% [ oo + [ 2 F | 1y o)
al<2

S 3 (120l e+ |2 s+ 12F g ) @3)
lo|<2 w

ifp>2,p>2,se€(1/2-1/p,1/2).

For the linear wave equation (83 — Ag)u =F, using the observation (1.14), we have the same set of estimates.

Let us now see how we can use these estimates to prove Theorem 1.1. Considering the Cauchy data (ug, uy) satisfying
the smallness condition (1.7), set u=! =0 and let u® solve the Cauchy problem (1.2) with F = 0. We iteratively define u®,
for k > 1, by solving

(2 — Ag)u®(t, 0 = Fp(u®V(t,x), (¢,%0eRy xR,
u(0, -) = uyo, 0:u(0, ) =uy.

Let s=s.—pe/(p—1)=n/2—2/(p —1)—pe/(p — 1), our aim is to show that if the constant § > 0 in (1.7) is small enough,
then so is

My = Z (J z¢u® ”LtOOHSHLfXS,E,p + oezu® ”L?QHS*l)

lo|<2
for every k =0,1,2,.... Notice that since p. <p <1+ 4/(n—1), we can always choose € > 0 small enough so that
se(1/2—-1/p,1/2). Note also that we have the identity
p(/2—m+1)/p—s—e)=—(n/2—(1-5)). (4.4)

For k =0, by (4.3) we have My < Coé, with Cy a fixed constant. More generally, (4.3) implies that

My < Coé + Co Z (|| 1x17"72+1 =5z F, (u(k_l))”L}LllX‘Lg,(Rer{x: [x|>1)
o] <2

+ | 2% Fp (u®D)| ). (4.5)

qq_
LI ™ Ry x{x: [XI<1D)



C. Wang, X. Yu /J. Math. Anal. Appl. 379 (2011) 549-566 565

Recall that our assumption (1.3) on the nonlinear term Fj, implies that for small v

S 1Z9Fw)| S P Y |z + v Y [z (4.6)
la|<2 lo]<2 lal<1

Since the collection Z contains vectors spanning the tangent space to S"~!, by Sobolev embedding we have
[Vl + 20 12virle < 30 [2%va) |3

lal<1 lo| <2

Consequently, for fixed t,r >0
D) CAFIURRIGES)| Pl i PAMUS IS (4
lo| <2 ¢ a2 “

By (4.4), the first summand in the right-hand side of (4.5) is dominated by CyM{_, for small u®=1.
Since qj_, <2 <(¢s, p > 2 and n < 4, we can choose n > 0 small enough such that p,qs > 2+ 7 and so W22+ ¢ [°
H' c L4, Thus, for each fixed t, we have

] R TP o) e R P

l|<2 a|<2
_ 2
S Dl Ul NI Pl ¢ Mz iy
o<1
S Z H”(k 1)Hw22+n(x 1X1<2) Hza”(kq)(tv ')Hms(x: 1x1<1)
o] <2

_ 2
+ Z H o 1)”w22+n(x 1x1<2) ”Za“(k G ')”LZ(X: 1xI<2)

lor| <2
S Z |z#u® Ve, ')Hf%(x: XI<D)
| <2
+ Z |||x|”/2 (n+1)/p—s— ezﬁ (k— ])(t )”LP L2+"(|x|>1)
1BI<2

The second summand in the right-hand side of (4.5) is thus also dominated by C1M,f_1, and we conclude that Mj <
Cod +2CoC1M}_,. Then

My <2Co8, k=1,2,3,..., (4.7)
for 8§ > O sufficiently small. Moreover, the smallness condition of (4.6) is verified for sufficiently small § > 0, since

[u® ]z < M.

t.x
To finish the proof of Theorem 1.1 we need only to show that u®) converges to a solution of Eq. (1.2). For this it suffices
to show that
— Iy ® (k=1)

A= [[u® —u ”prssp
tends geometrically to zero as k — oo. Since |Fp(v) — Fp(w)| S |v — w|(|v|P~1 4 |w|P~1), the proof of (4.7) can be adapted
to show that, for small § > 0O, there is a uniform constant C so that

Ak < CA1(Miq + My )P,

which, by (4.7), implies that Ay < iAk_1 for small 8. Since A; is finite, the claim follows, which finishes the proof of
Theorem 1.1.

4.2. Local results whenn =3

In this subsection we prove Theorem 1.2. Let 2< p < pc=1++/2 and n=3.
Define s=s4=1/2 —1/p, and let a be the number such that

p[n—=1(1/2—-1/p)—a]=1-5-n/2,
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ie, a=—-1/p> — n—1)/(2p) + (n —1)/2. Since 2 < p < pc, we have a € (0,1/p). By the estimates (1.11), (1.12) and
Duhamel’s principle, we have for T > 1

Z (H|X|(n71)(1/271/p)7azauHLFL?L%,)([O,TJX{|X|>1}) + ”Za”||L§’L25([0,T1x{\x\<1}))

lor] <2
STVPE 3 (|20 g + [ 24w s + [ 2°F [ y5s1)
lor| <2
ST S (|2l 20+ 2Py, ) 9
jal<2 o
Now if we set
M= 3 (27U e + 020 o o)
lor] <2
+ T V/Pe Z (H|X|(71/27S)/pzauHLfoLfU([O,T]x{|x|>1}) +[z%u L{’L‘X’S([O,T]x{\x|<1}))’ (49)

lor] <2

then on the basis of (1.11) and (4.8), we can use the iteration method (with n = 0) as in Section 4.1 to get the existence
result for 2 < p < pc and p > 2 in Theorem 1.2.
Heuristically, the lifespan is given when we have

1/p—
My ~ (Ta/p a+éMk)p ~s.
which yields that
Ts ~ §PP=D)/(P?=2p=D)+e' v/ o .

The case p > 1 can be proved by the same argument in [17] combined with Theorem 1.4.
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