
J. Math. Anal. Appl. 388 (2012) 801–816
Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

Calderón–Zygmund operators related to Laguerre function expansions of
convolution type ✩

Adam Nowak a,b,∗, Tomasz Z. Szarek a

a Instytut Matematyczny, Polska Akademia Nauk, Śniadeckich 8, 00-956 Warszawa, Poland
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We develop a technique of proving standard estimates in the setting of Laguerre function
expansions of convolution type, which works for all admissible type multi-indices α in
this context. This generalizes a simpler method existing in the literature, but being valid
for a restricted range of α. As an application, we prove that several fundamental operators
in harmonic analysis of the Laguerre expansions, including maximal operators related to
the heat and Poisson semigroups, Riesz transforms, Littlewood–Paley–Stein type square
functions and multipliers of Laplace and Laplace–Stieltjes transforms type, are (vector-
valued) Calderón–Zygmund operators in the sense of the associated space of homogeneous
type.
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1. Introduction and preliminaries

Let d � 1 and α = (α1, . . . ,αd) ∈ (−1,∞)d . We shall work on the space R
d+ = (0,∞)d equipped with the measure

μα(dx) = x2α1+1
1 · . . . · x2αd+1

d dx

and with the Euclidean norm | · |. Since μα satisfies the doubling condition, the triple (Rd+,dμα, | · |) forms the space of
homogeneous type in the sense of Coifman and Weiss [2]. The Laguerre operator

Lα = −� + |x|2 −
d∑

i=1

2αi + 1

xi

∂

∂xi

is symmetric and positive in L2(dμα), and it has a natural self-adjoint extension Lα whose spectral decomposition is
discrete and is given by the Laguerre functions of convolution type �α

k , see [5]. The associated heat semigroup {exp(−t Lα)}
has an integral representation, and the Laguerre heat kernel is known explicitly, see [5, Section 2], to be

Gα
t (x, y) = (sinh 2t)−d exp

(
−1

2
coth(2t)

(|x|2 + |y|2)) d∏
i=1

(xi yi)
−αi Iαi

(
xi yi

sinh 2t

)
,
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with Iν denoting the modified Bessel function of the first kind and order ν; as a function on R+ , Iν is real, positive and
smooth for any ν > −1, cf. [12].

The main objective of this paper is to develop, for arbitrary α ∈ (−1,∞)d , a technique of proving standard estimates,
see (3.1)–(3.4) below, for various kernels expressible via Gα

t (x, y). Typical and important examples here are kernels associ-
ated with the Laguerre heat and Poisson maximal operators, Riesz–Laguerre transforms, Littlewood–Paley–Stein type square
functions and multipliers of Laplace and Laplace–Stieltjes transforms type. The multiplier operators just mentioned cover as
special cases imaginary powers of Lα and the related fractional integrals.

For the restricted range of α ∈ [−1/2,∞)d , the problem was treated by Nowak and Stempak [5]. The idea standing
behind the method presented in [5] has roots in Sasso’s paper [8] and it is based on Schläfli’s Poisson type representation
for the Bessel function (see [12, Chapter VI, Section 6·15] and [5, Section 5])

Iν(z) = zν

∫
[−1,1]

exp(−zs)Πν(ds), |arg z| < π, ν � −1/2, (1.1)

where the measure Πν is given by the density

Πν(ds) = (1 − s2)ν−1/2ds√
π2νΓ (ν + 1/2)

, ν > −1/2,

and in the limit case Π−1/2 becomes the atomic measure defined as the sum of unit point masses at −1 and 1 divided
by

√
2π . Assuming that α ∈ [−1/2,∞)d , Schläfli’s formula allows to write the heat kernel in the following symmetric way:

Gα
t (x, y) =

(
1 − ζ 2

2ζ

)d+|α| ∫
[−1,1]d

exp

(
− 1

4ζ
q+(x, y, s) − ζ

4
q−(x, y, s)

)
Πα(ds), (1.2)

where |α| = α1 + · · · + αd , Πα stands for the product measure
⊗d

i=1 Παi ,

q±(x, y, s) = |x|2 + |y|2 ± 2
d∑

i=1

xi yi si, x, y ∈ R
d+, s ∈ [−1,1]d,

and t is related to ζ by ζ = tanh t; equivalently,

t = t(ζ ) = 1

2
log

1 + ζ

1 − ζ
, ζ ∈ (0,1). (1.3)

This representation of the heat kernel turned out to be particularly well suited for considerations connected with applica-
tions of the Calderón–Zygmund theory. The essence and convenience of the technique derived in [5] lies in the fact that
the integral against Πα(ds) occurring in kernels defined via Gα

t (x, y) can be handled independently of the integrand. Then
expressions one has to estimate are relatively simple and contain no transcendental functions. Unfortunately, the restriction
α ∈ [−1/2,∞)d resulting from Schläfli’s formula cannot be released in a straightforward manner.

To solve the problem and cover in a unified way all α ∈ (−1,∞)d we combine (1.1) with the recurrence relation (cf. [12,
Chapter III, Section 3·71])

Iν(z) = 2(ν + 1)

z
Iν+1(z) + Iν+2(z), (1.4)

as suggested vaguely in [5, p. 666]. This leads to a representation of Gα
t (x, y) as a sum of 2d components, all of them being

similar to the expression in (1.2), see Section 2. Then each component is analyzed by means of a suitable generalization
of the strategy employed in [5]. However, the technical side of the present paper is considerably more involved than that
of [5] and also some essentially new arguments are required.

As an application of the presented technique, we prove that the maximal operators of the heat and Poisson semigroups,
Riesz–Laguerre transforms, Littlewood–Paley–Stein type square functions and multipliers of Laplace and Laplace–Stieltjes
transforms type are, or can be viewed as, Calderón–Zygmund operators in the sense of the space (Rd+,dμα, | · |), see Theo-
rem 4.1. This recovers and extends to all α ∈ (−1,∞)d known results for α ∈ [−1/2,∞)d obtained in [5] for the maximal
operators and Riesz transforms, in [9] for vertical and horizontal g-functions of order one, and in [11] for Laplace type
multipliers of both types. Moreover, here we also deal with g-functions of arbitrary orders and mixed vertical and horizon-
tal components, which were not investigated earlier in the Laguerre context. Noteworthy, our technique is well suited to
a wider variety of operators, including more general forms of the g-functions and Lusin’s area type integrals.

It is remarkable that recently, in a similar spirit, analogous techniques have been developed in the Bessel setting (the
context of the Hankel transform) by Betancor, Castro and Nowak [1], and in the more complex Jacobi setting by Nowak
and Sjögren [4]. However, in [1], as well as in [4], ranges of admissible type indices are restricted, as it took place in the
Laguerre situation in [5,9,11]. The results of this paper show how to remove the restriction in the Bessel setting, and give an
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intuition how it could be done in the Jacobi situation. Furthermore, they also suggest that various results obtained recently
in the context of the Dunkl harmonic oscillator and the associated group of reflections isomorphic to Z

d
2, see [6,7,10,11],

hold for more general (not necessarily positive) multiplicity functions.
The paper is organized as follows. In Section 2 we gather various facts and preparatory results needed for kernel esti-

mates. In Section 3 we demonstrate our technique by proving standard estimates for kernels associated with the operators
mentioned above. Then, in Section 4, we conclude that the operators in question can be interpreted as Calderón–Zygmund
operators. Finally, Appendix A contains a somewhat lengthy proof of one of the auxiliary technical results from Section 2.

Notation. Throughout the paper we use a fairly standard notation with essentially all symbols referring to the space of
homogeneous type (Rd+,dμα, | · |). For the sake of clarity, we now explain all symbols and relations that might lead to a
confusion. Given x, y ∈ R

d+ , β ∈ R
d and a multi-index n ∈ N

d , N = {0,1,2, . . .}, we denote

e j ≡ jth coordinate vector in R
d+,

1 = (1, . . . ,1) ∈ N
d,

|n| = n1 + · · · + nd (length of n),

B(x, r) = {
y ∈ R

d+: |x − y| < r
}
, r > 0

(
balls in R

d+
)
,

xy = (x1 y1, . . . , xd yd),

xβ = xβ1
1 · . . . · xβd

d ,

x � y ≡ xi � yi, i = 1, . . . ,d,

x ∨ y = (
max{x1, y1}, . . . ,max{xd, yd}

)
,

∂xi = ∂/∂xi, i = 1, . . . ,d (ordinary partial derivatives),

∂n
x = ∂

n1
x1 ◦ · · · ◦ ∂

nd
xd

,

δxi = ∂xi + xi, i = 1, . . . ,d (Laguerre partial derivatives),

δn
x = δ

n1
x1 ◦ · · · ◦ δ

nd
xd

,(
∂k

x F
)n = (

∂k
x1

F
)n1 · . . . · (∂k

xd
F
)nd , k = 1,2, . . . ,

where in the last identity F is a suitable function on R
d+ defined in a moment.

Further, we also introduce the following notation and abbreviations:

q± = q±(x, y, s),

Exp(ζ,q±) = exp

(
− 1

4ζ
q+ − ζ

4
q−

)
,

F = F (ζ,q±) = ln Exp(ζ,q±),

Log(ζ ) = log
1 + ζ

1 − ζ
,

Ψ
j

± = Ψ
j

±(x, y, s) = x j ± y j s j, j = 1, . . . ,d,

Ψ± = (
Ψ 1±, . . . ,Ψ d±

)
,

Φ
j
± = Φ

j
±(x, y, s) = y j ± x j s j, j = 1, . . . ,d,

where x, y ∈ R
d+ , s ∈ [−1,1]d and ζ ∈ (0,1).

While writing estimates, we will use the notation X � Y to indicate that X � C Y with a positive constant C independent
of significant quantities. We shall write X 	 Y when simultaneously X � Y and Y � X .

2. Preparatory facts and results

Let α ∈ (−1,∞)d . By means of (1.4) and (1.1) the Laguerre heat kernel can be written as

Gα
t (x, y) =

∑
ε∈{0,1}d

Cα,ε

(
1 − ζ 2

2ζ

)d+|α|+2|ε|
(xy)2ε

∫
exp

(
− 1

4ζ
q+ − ζ

4
q−

)
Πα+1+ε(ds), (2.1)

where Cα,ε = [2(α + 1)]1−ε and t and ζ are related as in (1.3). Here and later on, for the sake of brevity, we omit the set of
integration [−1,1]d in integrals against Πα+1+ε(ds).
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The following generalization of [5, Proposition 5.9] is a crucial point in our method of estimating kernels. It establishes
a relation between expressions involving certain integrals with respect to Πα+1+ε(ds) and the standard estimates for the
space (Rd+,dμα, | · |).

Lemma 2.1. Let α ∈ (−1,∞)d. Assume that ξ, κ ∈ [0,∞)d are fixed and such that α + ξ + κ ∈ [−1/2,∞)d. Then, uniformly in
x, y ∈ R

d+ , x 
= y,

(x + y)2ξ

∫ (
1

q+

)d+|α|+|ξ |
Πα+ξ+κ (ds) � 1

μα(B(x, |x − y|)) ,

(x + y)2ξ

∫ (
1

q+

)d+|α|+|ξ |+1/2

Πα+ξ+κ (ds) � 1

|x − y|μα(B(x, |x − y|)) .

To prove this we need two auxiliary results. The first one is a natural extension of [5, Proposition 3.2].

Lemma 2.2. Let α ∈ (−1,∞)d. Then

μα

(
B(x, r)

) 	 rd
d∏

i=1

(xi + r)2αi+1, x ∈ R
d+, r > 0.

Proof. Let x ∈ R
d+ and r > 0. Given ε ∈ {0,1}d , we consider the cube Q ε(x, r) being a product of the intervals [xi + εir,

xi + r + εir], i = 1, . . . ,d. Since μα possesses the doubling property, for each ε ∈ {0,1}d we have

μα

(
Q ε(x, r)

) 	 μα

(
B(x, r)

)
, x ∈ R

d+, r > 0.

Now for a fixed α we choose ε such that εi = 1 when αi < −1/2 and εi = 0 if αi � −1/2. By the mean value theorem for
integration,

μα

(
Q ε(x, r)

) 	 rdθ2α+1, x ∈ R
d+, r > 0,

where θ = θ(x, r) is a point in Q ε(x, r). But the right-hand side here is, by the choice of ε, dominated by rd ∏d
i=1(xi +r)2αi+1.

A similar argument shows that

μα

(
Q 1−ε(x, r)

)
� rd

d∏
i=1

(xi + r)2αi+1, x ∈ R
d+, r > 0.

The conclusion follows. �
The second result we need is a slightly more general version of [5, Lemma 5.8].

Lemma 2.3. Let a � −1/2, b � 0 and λ > 0 be fixed. Then∫
[−1,1]

Πa+b(ds)

(A − Bs)a+1/2+λ
� 1

Aa+1/2(A − B)λ
, A > B > 0.

Proof. When b = 0 this is precisely [5, Lemma 5.8]. Using this special case we can write∫
[−1,1]

Πa+b(ds)

(A − Bs)a+1/2+λ
� (A + B)b

∫
[−1,1]

Πa+b(ds)

(A − Bs)a+b+1/2+λ
� (A + B)b

Aa+b+1/2(A − B)λ
.

Since (A + B) 	 A, the desired bound follows. �
Proof of Lemma 2.1. It suffices to verify the first estimate of the lemma. Then the second one follows immediately by
observing that q+ � |x − y|2. Further, our task can be reduced to showing that∫ (

1

q+

)d+|α|
Πα+κ (ds) � 1

μα(B(x, |x − y|)) , x, y ∈ R
d+, x 
= y, (2.2)

provided that α + κ ∈ [−1/2,∞)d . Indeed, replacing in (2.2) α by α + ξ and using Lemma 2.2 we get
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(x + y)2ξ

∫ (
1

q+

)d+|α+ξ |
Πα+ξ+κ (ds) � (x + y)2ξ 1

μα+ξ (B(x, |x − y|))

	 (x + y)2ξ

|x − y|d ∏d
i=1(xi + |x − y|)2(αi+ξi)+1

� 1

|x − y|d ∏d
i=1(xi + |x − y|)2αi+1

	 1

μα(B(x, |x − y|)) ,

where the third relation follows from the bound xi + yi � xi + |x − y|.
It remains to verify (2.2). Let Iα = { j: α j < −1/2}. Taking into account Lemma 2.2, the symmetry of Πα+κ and the

estimate

1

|x − y|2α j+1
� 1

(x j + |x − y|)2α j+1
, α j < −1/2,

we see that it is enough to show the bound

∫ (
1

q−

)d+|α|
Πα+κ (ds) � 1

|x − y|d ∏
i∈Iα

|x − y|2αi+1
∏

j /∈Iα
(x j + |x − y|)2α j+1

, x, y ∈ R
d+, x 
= y, (2.3)

with the usual convention concerning empty products. Here, without any loss of generality, we may assume that Iα =
{1, . . . ,k} for some k = 0,1, . . . ,d (by convention, k = 0 corresponds to Iα = ∅). Then proving (2.3) consists of two steps.

Step 1. If Iα = {1, . . . ,d}, we go immediately to Step 2. Otherwise we proceed as in the proof of [5, Proposition 5.9],
using Lemma 2.3 instead of [5, Lemma 5.8]. This either produces directly (2.3) in case Iα = ∅, or leads to the estimate

∫ (
1

q−

)d+|α|
Πα+κ (ds)

� 1∏d
j=k+1(x j + |x − y|)2α j+1

∫
[−1,1]k

1

(|x|2 + |y|2 − 2
∑k

i=1 xi yi si − 2
∑d

j=k+1 x j y j)
d+∑k

i=1 αi−(d−k)/2
Πα̃+κ̃ (ds̃),

where ·̃ indicates the restriction to the first k axes.
Step 2. Taking into account the last estimate, the fact that the measure Πα̃+κ̃ is finite and the bounds

d +
k∑

i=1

αi − (d − k)/2 � (d − k)/2 � 0,

|x|2 + |y|2 − 2
∑
i∈Iα

xi yi si − 2
∑
j /∈Iα

x j y j � |x − y|2,

we conclude that∫ (
1

q−

)d+|α|
Πα+κ (ds) � 1∏

j /∈Iα
(x j + |x − y|)2α j+1

1

|x − y|d+k+∑k
i=1 2αi

.

This implies (2.3). The proof is finished. �
The remaining part of this section contains lemmas that are needed to control the relevant kernels and their gradients

by means of the estimates from Lemma 2.1.

Lemma 2.4. Let d � 1, α ∈ (−1,∞)d, n ∈ N
d, m ∈ N, ε ∈ {0,1}d. Then

∣∣∣∣∂m
t δn

x

[(
1 − ζ 2

ζ

)d+|α|+2|ε|
(xy)2ε

Exp(ζ,q±)

]∣∣∣∣
�

(
1 − ζ 2)d+|α|+2|ε|

y2ε
∑

η∈{0,1,2}d

x2ε−ηεζ−d−|α|−2|ε|−m−|n|/2+|ηε|/2
√

Exp(ζ,q±) (2.4)

and



806 A. Nowak, T.Z. Szarek / J. Math. Anal. Appl. 388 (2012) 801–816
∣∣∣∣∇x,y∂
m
t δn

x

[(
1 − ζ 2

ζ

)d+|α|+2|ε|
(xy)2ε

Exp(ζ,q±)

]∣∣∣∣
�

(
1 − ζ 2)d+|α|+2|ε|

{
y2ε

∑
η∈{0,1,2}d

x2ε−ηεζ−d−|α|−2|ε|−m−|n|/2+|ηε|/2−1/2(
Exp(ζ,q±)

)1/4

+
d∑

j=1

χ{ε j=1} y2ε−e j
∑

η∈{0,1,2}d

x2ε−ηεζ−d−|α|−2|ε|−m−|n|/2+|ηε|/2(
Exp(ζ,q±)

)1/4

}
, (2.5)

uniformly in ζ ∈ (0,1), s ∈ [−1,1]d and x, y ∈ R
d+; here ζ = ζ(t) = tanh t.

The proof of Lemma 2.4 is lengthy and purely technical. We postpone it to a final Appendix A to avoid possible confusion
with the main line of thought of the paper.

Lemma 2.5. Let a > 1, b > 0 and M ∈ R be fixed. Then

1∫
0

(
Log(ζ )

)M(
1 − ζ 2)b−1

ζ−a−M exp
(−T ζ−1)dζ � T −a+1, T > 0.

Proof. We split the region of integration onto (0,1/2) and (1/2,1), denoting the resulting integrals by J0 and J1, re-
spectively. We first analyze J0. For ζ ∈ (0,1/2) we have 1 − ζ 2 	 1 and Log(ζ ) 	 ζ . Using this and changing the variable
T ζ−1 
→ u gives

J0 	
1/2∫
0

ζ−a exp
(−T ζ−1)dζ = T −a+1

∞∫
2T

ua−2 exp(−u)du < T −a+1

∞∫
0

ua−2 exp(−u)du.

Since the last integral is finite, we get the required bound for J0.
We next focus on J1. Since ζ 	 1 for ζ ∈ (1/2,1) and supu�0 ua−1e−u < ∞, we see that

ζ−a−M exp
(−T ζ−1) � T −a+1(T ζ−1)a−1

exp
(−T ζ−1) � T −a+1, ζ ∈ (1/2,1), T > 0.

This implies the desired estimate for J1 because
∫ 1

1/2(Log(ζ ))M(1 − ζ 2)b−1 dζ < ∞. �
The next lemma will be applied in Section 3 with p = 1, p = 2 and p = ∞. Other values of p are of interest in con-

nection with operators not considered in this paper, for instance more general forms of Littlewood–Paley–Stein type square
functions.

Lemma 2.6. Let d � 1, α ∈ (−1,∞)d, 1 � p � ∞, W ∈ R and C > 0. Assume that ε ∈ {0,1}d and ϑ,� ∈ {0,1,2}d are such that
ϑ � 2ε and � � 2ε. Given u � 0, we consider the function Hu: R

d+ × R
d+ × (0,1) → R defined by

Hu(x, y, ζ ) = (
1 − ζ 2)d+|α|+2|ε|

ζ−d−|α|−2|ε|+|ϑ |/2+|�|/2−W /p−u/2x2ε−ϑ y2ε−�

∫ (
Exp(ζ,q±)

)C
Πα+1+ε(ds),

where W /p = 0 for p = ∞. Then Hu satisfies the integral estimate

∥∥Hu
(
x, y, ζ(t)

)∥∥
L p(tW −1 dt) � 1

|x − y|u
1

μα(B(x, |y − x|)) ,

uniformly in x, y ∈ R
d+ , x 
= y, and here t and ζ are related as in (1.3).

Proof. We will show the estimate when p < ∞. The case p = ∞ can be treated in a similar way, using in the reasoning
below instead of Lemma 2.5 the estimate

(Aq±)b exp(−c Aq±) � 1, (2.6)

which holds uniformly in x, y ∈ R
d+ , s ∈ [−1,1]d and A > 0, for each b � 0 and c > 0 fixed (see Lemma A.3 (a) below).

Changing the variable according to (1.3) and then using sequently Minkowski’s integral inequality, Lemma 2.5 (specified
to M = W −1, b = p(d+|α|+2|ε|), a = p(d+|α|+2|ε|−|ϑ |/2−|�|/2+u/2)+1, T = Cpq+

4 ) and the inequality |x− y|2 � q+ ,
we obtain
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∥∥Hu
(
x, y, ζ(t)

)∥∥
L p(tW −1 dt)

= x2ε−ϑ y2ε−�

( 1∫
0

(
Log(ζ )/2

)W −1(
1 − ζ 2)p(d+|α|+2|ε|)−1

ζ−p(d+|α|+2|ε|−|ϑ |/2−|�|/2+W /p+u/2)

×
( ∫ (

Exp(ζ,q±)
)C

Πα+1+ε(ds)

)p

dζ

)1/p

� x2ε−ϑ y2ε−�

∫ ( 1∫
0

(
Log(ζ )

)W −1(
1 − ζ 2)p(d+|α|+2|ε|)−1

ζ−p(d+|α|+2|ε|−|ϑ |/2−|�|/2+u/2)−W

× (
Exp(ζ,q±)

)Cp
dζ

)1/p

Πα+1+ε(ds)

� x2ε−ϑ y2ε−�

∫
(q+)−d−|α|−2|ε|+|ϑ |/2+|�|/2−u/2Πα+1+ε(ds)

� 1

|x − y|u (x + y)2(2ε−ϑ/2−�/2)

∫
(q+)−d−|α|−|2ε−ϑ/2−�/2|Πα+1+ε(ds).

Now an application of Lemma 2.1 (taken with ξ = 2ε − ϑ/2 − �/2 and κ = 1 − ε + ϑ/2 + �/2) leads directly to the desired
bound. �

We end this section with two lemmas that will come into play when proving the smoothness estimates (3.2) and (3.3)
(see Section 3) in cases when B 
= C. They will enable us to reduce the difference conditions to certain gradient estimates,
which are easier to verify.

Lemma 2.7. (See [9, Lemma 4.5], [10, Lemma 4.3].) Let x, y, z ∈ R
d+ and s ∈ [−1,1]d. Then

1

4
q±(x, y, s) � q±(z, y, s) � 4q±(x, y, s),

provided that |x − y| > 2|x − z|. Similarly, if |x − y| > 2|y − z| then

1

4
q±(x, y, s) � q±(x, z, s) � 4q±(x, y, s).

Lemma 2.8. (See [10, Lemma 4.5].) We have

1

|z − y|μα(B(z, |z − y|)) 	 1

|x − y|μα(B(x, |x − y|))
on the set {(x, y, z) ∈ R

d+ × R
d+ × R

d+: |x − y| > 2|x − z|}.

3. Kernel estimates

Let B be a Banach space and let K (x, y) be a kernel defined on R
d+ × R

d+ \ {(x, y): x = y} and taking values in B. We
say that K (x, y) is a standard kernel in the sense of the space of homogeneous type (Rd+,dμα, | · |) if it satisfies so-called
standard estimates, i.e. the growth estimate

∥∥K (x, y)
∥∥

B
� 1

μα(B(x, |x − y|)) (3.1)

and the smoothness estimates

∥∥K (x, y) − K
(
x′, y

)∥∥
B

� |x − x′|
|x − y|

1

μα(B(x, |x − y|)) , |x − y| > 2
∣∣x − x′∣∣, (3.2)

∥∥K (x, y) − K
(
x, y′)∥∥

B
� |y − y′|

|x − y|
1

μ (B(x, |x − y|)) , |x − y| > 2
∣∣y − y′∣∣. (3.3)
α
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When K (x, y) is scalar-valued, i.e. B = C, the difference bounds (3.2) and (3.3) are implied by the more convenient gradient
estimate∣∣∇x,y K (x, y)

∣∣ � 1

|x − y|μα(B(x, |x − y|)) . (3.4)

Notice that in these formulas, the ball B(x, |y − x|) can be replaced by B(y, |x − y|), in view of the doubling property of μα .
We will show that the following kernels, valued in suitably chosen Banach spaces B, satisfy the standard estimates.

(1) The kernel associated to the Laguerre heat semigroup maximal operator,

Gα(x, y) = {
Gα

t (x, y)
}

t>0, B = L∞(dt).

(2) The kernels associated with Riesz–Laguerre transforms,

Rα
n (x, y) = 1

Γ (|n|/2)

∞∫
0

δn
x Gα

t (x, y)t|n|/2−1 dt, B = C,

where n ∈ N
d is such that |n| > 0.

(3) The kernels associated with mixed square functions,

Hα
n,m(x, y) = {

∂m
t δn

x Gα
t (x, y)

}
t>0, B = L2(t|n|+2m−1 dt

)
,

where n ∈ N
d and m ∈ N are such that |n| + m > 0.

(4) The kernels associated to Laplace transform type multipliers,

Kα
ψ(x, y) = −

∞∫
0

ψ(t)∂t Gα
t (x, y)dt, B = C,

where ψ ∈ L∞(dt).
(5) The kernels associated to Laplace-Stieltjes transform type multipliers,

Kα
ν (x, y) =

∫
R+

Gα
t (x, y)dν(t), B = C,

where ν is a signed or complex Borel measure on (0,∞) with total variation |ν| satisfying∫
R+

e−t(2d+2|α|) d|ν|(t) < ∞. (3.5)

The result below extends to all α ∈ (−1,∞)d analogous estimates obtained in [5,9,11] for α ∈ [−1/2,∞)d (to be precise,
Hα

n,m(x, y) was estimated in [9] only in the special cases when either |n| = 1 and m = 0 or |n| = 0 and m = 1; here we
obtain a more general result).

Theorem 3.1. Let α ∈ (−1,∞)d. Then the kernels (1)–(5) satisfy the standard estimates (3.1), (3.2) and (3.3) with B as indicated
above.

The Laguerre–Poisson semigroup is given by the Laguerre–Poisson kernel Pα
t (x, y), which is linked to the heat kernel by

the subordination formula,

Pα
t (x, y) =

∞∫
0

Gα
t2/(4u)

(x, y)
e−udu√

πu
.

Our technique, presented in a moment in the proof of Theorem 3.1, works perfectly also for kernels emerging from Pα
t (x, y),

and only slightly more effort is needed (see for instance [9, Section 4.3]). In particular, it can be proved that the kernels in
(1) and (4) with Gα

t (x, y) replaced by Pα
t (x, y) satisfy the standard estimates. The same is true about the kernel in (3) if B

corresponding to {∂m
t δn

x Pα
t (x, y)} is chosen as L2(t2|n|+2m−1 dt), and about the kernel in (5) if we replace 2d + 2|α| in (3.5)

by
√

2d + 2|α|. We leave details to interested readers.
The remaining part of this section is devoted to the proof of Theorem 3.1. In the proof we tacitly assume that passing

with the differentiation in t , x j or y j under integrals against Πα+1+ε(ds), dt or dν(t) is legitimate. This is indeed always the
case, as can be easily justified with the aid of the estimates obtained in Lemma 2.4 and in the proof of Theorem 3.1; see [5,
Section 5] and [9, Section 4], where the details are given in the contexts of Riesz transforms and g-functions, respectively.
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Proof of Theorem 3.1; the case of Gα(x, y). In view of (2.1), the growth condition for Gα(x, y) is a direct consequence of
Lemma 2.6 (specified to u = 0, p = ∞, W = C = 1, ϑ = � = 0).

To prove the smoothness estimates it is enough, by symmetry reasons, to show (3.2). By the Mean Value Theorem∣∣Gα
t (x, y) − Gα

t

(
x′, y

)∣∣ �
∣∣x − x′∣∣∣∣∇xGα

t (x, y)
∣∣
x=θ

∣∣,
where θ is a convex combination of x, x′ that depends also on t . Thus it suffices to verify that∥∥∣∣∇xGα

t (x, y)
∣∣
x=θ

∣∣∥∥
L∞(dt) � 1

|x − y|μα(B(x, |x − y|)) , |x − y| > 2
∣∣x − x′∣∣.

Observe that θ � x ∨ x′ , |x − θ | � |x − x′| and |x − x ∨ x′| � |x − x′|. Applying (2.5) of Lemma 2.4 (taken with n = (0, . . . ,0)

and m = 0) and Lemma 2.7 (first with z = θ and then with z = x ∨ x′) we obtain∣∣∇xGα
t (x, y)

∣∣
x=θ

∣∣ �
∑

ε∈{0,1}d

(
1 − ζ 2)d+|α|+2|ε|

y2ε
∑

η∈{0,1,2}d

(
x ∨ x′)2ε−ηε

ζ−d−|α|−2|ε|+|ηε|/2−1/2

×
∫ (

Exp
(
ζ,q±

(
x ∨ x′, y, s

)))1/64
Πα+1+ε(ds)

+
∑

ε∈{0,1}d

(
1 − ζ 2)d+|α|+2|ε| d∑

j=1

χ{ε j=1} y2ε−e j
∑

η∈{0,1,2}d

(
x ∨ x′)2ε−ηε

ζ−d−|α|−2|ε|+|ηε|/2

×
∫ (

Exp
(
ζ,q±

(
x ∨ x′, y, s

)))1/64
Πα+1+ε(ds),

provided that |x − y| > 2|x − x′|. Now the conclusion follows with the aid of Lemma 2.6 (applied with u = 1, p = ∞, W = 1,
C = 1/64, ϑ = ηε and either � = 0 or � = e j) and Lemma 2.8 specified to z = x ∨ x′ . �
Proof of Theorem 3.1; the case of Rα

n (x, y). The growth estimate (3.1) follows immediately from (2.4) of Lemma 2.4 taken
with m = 0 and Lemma 2.6 (applied with u = 0, p = 1, W = |n|/2, C = 1/2, ϑ = ηε and � = 0).

To prove the gradient condition (3.4), it suffices to check that∥∥∣∣∇x,yδ
n
x Gα

t (x, y)
∣∣∥∥

L1(t|n|/2−1dt) � 1

|x − y|μα(B(x, |x − y|)) , x 
= y.

This estimate, however, follows readily by combining (2.5) of Lemma 2.4 (specified to m = 0) with Lemma 2.6 (taken with
u = 1, p = 1, W = |n|/2, C = 1/4, ϑ = ηε and either � = 0 or � = e j). �
Proof of Theorem 3.1; the case of Hα

n,m(x, y). The growth condition follows by using (2.4) of Lemma 2.4 and then
Lemma 2.6 (specified to u = 0, p = 2, W = |n| + 2m, C = 1/2, ϑ = ηε, � = 0).

Next, we verify the smoothness bound (3.2). Proving the other smoothness estimate relies on essentially the same argu-
ments and is left to the reader.

By the Mean Value Theorem it suffices to show that∥∥∣∣∇x∂
m
t δn

x Gα
t (x, y)

∣∣
x=θ

∣∣∥∥
L2(t|n|+2m−1dt) � 1

|x − y|μα(B(x, |x − y|)) , |x − y| > 2
∣∣x − x′∣∣,

where θ is a convex combination of x and x′ that depends also on t . Using (2.5) of Lemma 2.4, the inequalities θ � x ∨ x′ ,
|x − θ | � |x − x′|, |x − x ∨ x′| � |x − x′| and Lemma 2.7 twice (with z = θ and z = x ∨ x′) we get∣∣∇x∂

m
t δn

x Gα
t (x, y)

∣∣
x=θ

∣∣
�

∑
ε∈{0,1}d

(
1 − ζ 2)d+|α|+2|ε|

y2ε
∑

η∈{0,1,2}d

(
x ∨ x′)2ε−ηε

ζ−d−|α|−2|ε|−m−|n|/2+|ηε|/2−1/2

×
∫ (

Exp
(
ζ,q±

(
x ∨ x′, y, s

)))1/64
Πα+1+ε(ds)

+
∑

ε∈{0,1}d

(
1 − ζ 2)d+|α|+2|ε| d∑

j=1

χ{ε j=1} y2ε−e j
∑

η∈{0,1,2}d

(
x ∨ x′)2ε−ηε

ζ−d−|α|−2|ε|−m−|n|/2+|ηε|/2

×
∫ (

Exp
(
ζ,q±

(
x ∨ x′, y, s

)))1/64
Πα+1+ε(ds),

provided that |x − y| > 2|x − x′|. This, together with Lemma 2.6 (specified to u = 1, p = 2, W = |n| + 2m, C = 1/64, ϑ = ηε
and either � = 0 or � = e j) and Lemma 2.8 (applied with z = x ∨ x′), produces the desired bound. �
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Proof of Theorem 3.1; the case of K α
ψ(x, y). The growth condition is a straightforward consequence of (2.4) of Lemma 2.4

(taken with n = (0, . . . ,0) and m = 1), the fact that ψ ∈ L∞(dt) and Lemma 2.6 (specified to u = 0, p = 1, W = 1, C = 1/2,
ϑ = ηε, � = 0).

To prove the gradient condition, in view of the boundedness of ψ , it suffices to verify that∥∥∣∣∇x,y∂t Gα
t (x, y)

∣∣∥∥
L1(dt) � 1

|x − y|μα(B(x, |x − y|)) , x 
= y.

This, however, follows immediately from (2.5) of Lemma 2.4 (with n = (0, . . . ,0) and m = 1) and Lemma 2.6 (applied with
u = 1, p = 1, W = 1, C = 1/4, ϑ = ηε and either � = 0 or � = e j). �
Proof of Theorem 3.1; the case of K α

ν (x, y). In order to show the growth bound it is enough, by the assumption (3.5)
concerning ν , to check that

et(2d+2|α|)Gα
t (x, y) � 1

μα(B(x, |x − y|)) , x 
= y, t > 0.

Taking into account (2.1), an application of (2.6) (specified to b = d + |α| + 2|ε|, c = 1/4, A = ζ−1) gives

et(2d+2|α|)Gα
t (x, y) �

∑
ε∈{0,1}d

ζ−d−|α|−2|ε|(xy)2ε

∫
Exp(ζ,q±)Πα+1+ε(ds)

�
∑

ε∈{0,1}d

(x + y)4ε

∫
(q+)−d−|α|−2|ε|Πα+1+ε(ds).

This, in view of Lemma 2.1 (applied with ξ = 2ε, κ = 1 − ε), leads to the desired conclusion.
To justify the gradient estimate (3.4), it suffices to verify that

et(2d+2|α|)∣∣∇x,y Gα
t (x, y)

∣∣ � 1

|x − y|μα(B(x, |x − y|)) , x 
= y, t > 0.

Proceeding in a similar way as in the case of the growth condition, using this time (2.5) of Lemma 2.4 (applied with
n = (0, . . . ,0) and m = 0) and (2.6) (specified to c = 1/16, A = ζ−1 and either b = d + |α| + 2|ε| − |ηε|/2 + 1/2 or b =
d + |α| + 2|ε| − |ηε|/2) we see that

et(2d+2|α|)∣∣∇x,y Gα
t (x, y)

∣∣
�

∑
ε∈{0,1}d

∑
η∈{0,1,2}d

(x + y)2(2ε−ηε/2)

∫
(q+)−d−|α|−|2ε−ηε/2|−1/2Πα+1+ε(ds)

+
∑

ε∈{0,1}d

d∑
j=1

χ{ε j=1}
∑

η∈{0,1,2}d

(x + y)2(2ε−ηε/2−e j/2)

∫
(q+)−d−|α|−|2ε−ηε/2−e j/2|−1/2Πα+1+ε(ds).

Finally, in view of Lemma 2.1 (taken with ξ = 2ε−ηε/2, κ = 1−ε+ηε/2 and ξ = 2ε−ηε/2−e j/2, κ = 1−ε+ηε/2+e j/2),
we arrive at the required bound. �

The proof of Theorem 3.1 is complete.

4. Conclusions

Let B be a Banach space and suppose that T is a linear operator assigning to each f ∈ L2(dμα) a strongly measurable
B-valued function T f on R

d+ . Then T is said to be a (vector-valued) Calderón–Zygmund operator in the sense of the space
(Rd+,dμα, | · |) associated with B if

(A) T is bounded from L2(dμα) to L2
B
(dμα),

(B) there exists a standard B-valued kernel K (x, y) such that

T f (x) =
∫

R
d+

K (x, y) f (y)dμα(y), a.e. x /∈ supp f ,

for every f ∈ L∞
c (dμα), where L∞

c (dμα) is the subspace of L∞(dμα) of bounded measurable functions with compact
supports.
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Here integration of B-valued functions is understood in Bochner’s sense, and L2
B
(dμα) is the Bochner–Lebesgue space of all

B-valued dμα-square integrable functions on R
d+ .

It is well known that a large part of the classical theory of Calderón–Zygmund operators remains valid, with appro-
priate adjustments, when the underlying space is of homogeneous type and the associated kernels are vector-valued, see
for instance [5, p. 649] and references given there. In particular, if T is a Calderón–Zygmund operator in the sense of
(Rd+,dμα, | · |) associated with a Banach space B, then its mapping properties in weighted L p spaces follow from the gen-
eral theory; see [1, Section 2].

Let

T α
t f (x) =

∫
R

d+

Gα
t (x, y) f (y)dμα(y), t > 0, x ∈ R

d+.

For α ∈ (−1,∞)d consider the following operators defined initially in L2(dμα).

(1) The Laguerre heat semigroup maximal operator

T α∗ f = ∥∥T α
t f

∥∥
L∞(dt).

(2) Riesz–Laguerre transforms of order |n| > 0

Rα
n f =

∑
k∈Nd

(
4|k| + 2|α| + 2d

)−|n|/2〈
f , �α

k

〉
dμα

δn�α
k ,

where n ∈ N
d and 〈 f , �α

k 〉dμα are the Fourier–Laguerre coefficients of f .
(3) Littlewood–Paley–Stein type mixed square functions

gα
n,m( f ) = ∥∥∂m

t δn T α
t f

∥∥
L2(t|n|+2m−1 dt),

where n ∈ N
d , m ∈ N, |n| + m > 0.

(4) Multipliers of Laplace transform type

Mα
m f =

∑
k∈Nd

m
(
4|k| + 2|α| + 2d

)〈
f , �α

k

〉
dμα

�α
k ,

where m(z) = z
∫ ∞

0 e−tzψ(t)dt with ψ ∈ L∞(dt).
(5) Multipliers of Laplace–Stieltjes transform type

Mα
m f =

∑
k∈Nd

m
(
4|k| + 2|α| + 2d

)〈
f , �α

k

〉
dμα

�α
k ,

where m(z) = ∫
R+ e−tz dν(t) with ν being a signed or complex Borel measure on (0,∞), with its total variation |ν|

satisfying (3.5.)

We remark that the formulas defining T α∗ f and gα
n,m( f ) are valid (the integral defining T α

t f (x) converges and produces
a smooth function of (x, t) ∈ R

d+ × R+) for general functions f from weighted L p spaces and Muckenhoupt weights; see [5,
p. 648] and [9, Section 2] for the relevant arguments.

As a consequence of Theorem 3.1 we get the following result.

Theorem 4.1. Let α ∈ (−1,∞)d. The Riesz–Laguerre transforms and the multipliers of Laplace and Laplace–Stieltjes transforms type
are scalar-valued Calderón–Zygmund operators in the sense of the space (Rd+,dμα, | · |). Furthermore, the Laguerre heat semigroup
maximal operator and the mixed square functions can be viewed as vector-valued Calderón–Zygmund operators in the sense of
(Rd+,dμα, | · |) associated with Banach spaces B = C0 and B = L2(t|n|+2m−1 dt), respectively, where C0 is a separable subspace of
L∞(dt) consisting of all continuous functions f on R+ which have finite limits as t → 0+ and vanish as t → ∞.

Proof. The standard estimates are provided in all the cases by Theorem 3.1. Thus it suffices to verify L2-boundedness
and kernel associations (conditions (A) and (B) above). This, however, was essentially done already in [5,9,11] since the
arguments given there are actually valid for all α ∈ (−1,∞)d provided that the same is true about the standard estimates.
To be precise, an exception here are the mixed square functions because the arguments from [9] cover only some special
cases. Proving the desired properties in the general case requires in addition the decomposition from [5, Proposition 3.5];
see [1, Section 4.2] where the relevant arguments were given in the setting of continuous Bessel expansions. �

Denote by Aα
p , 1 � p < ∞, the Muckenhoupt classes of weights related to (Rd+,dμα, | · |) (for the definition, see for

instance [5, p. 645]).
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Corollary 4.2. Let α ∈ (−1,∞)d. The Riesz–Laguerre transforms and the multipliers of Laplace and Laplace–Stieltjes types extend to
bounded linear operators on Lp(wdμα), w ∈ Aα

p , 1 < p < ∞, and from L1(wdμα) to weak L1(wdμα), w ∈ Aα
1 . Furthermore, the

Laguerre heat semigroup maximal operator and the mixed square functions, viewed as scalar-valued sublinear operators, are bounded
on L p(wdμα), w ∈ Aα

p , 1 < p < ∞, and from L1(wdμα) to weak L1(wdμα), w ∈ Aα
1 .

Proof. The part concerning Rα
n and Mα

m is a direct consequence of Theorem 4.1 and the general theory. The remaining part
requires some additional, but standard arguments, see the proof of [5, Theorem 2.1] and [9, Corollary 2.5]. We leave details
to interested readers. �

Finally, we remark that results parallel to Theorem 4.1 and Corollary 4.2 are in force for the Poisson semigroup based
analogues of T α∗ , gα

n,m and Mα
m , see the comment following the statement of Theorem 3.1. This follows by quite obvious

adjustments of the arguments for the heat semigroup based objects and hence the details are omitted.

Appendix A. Proof of Lemma 2.4

To prove Lemma 2.4 we need some preparatory results. An important tool we shall use below is Faà di Bruno’s formula
for the Nth derivative, N � 1, of the composition of two functions (see [3] for the related references and interesting historical
remarks),

∂N
x (g ◦ f )(x) =

∑ N!
p1! · . . . · pN ! ∂ p1+···+pN g ◦ f (x)

(
∂1

x f (x)

1!
)p1

· . . . ·
(

∂N
x f (x)

N!
)pN

, (A.1)

where the summation runs over all p1, . . . , pN � 0 such that p1 + 2p2 + · · · + NpN = N .

Lemma A.1. Let d � 1, n ∈ N
d, ε ∈ {0,1}d. Then

δn
x

[
(xy)2ε

Exp(ζ,q±)
] = y2ε

∑
η∈{0,1,2}d

x2ε−ηε
∑

k,l∈N
d

k+2l�n−ηε

χ{n�ηε} Pn,ε,η,k,l(x)(∂x F )k(∂2
x F

)l
Exp(ζ,q±),

where

Pn,ε,η,k,l(x) =
d∏

i=1

Pni ,εi ,ηi ,ki ,li (xi)

is a product of one-dimensional polynomials of degrees ni − ηiεi − ki − 2li , respectively.

Proof. By the product structure of the expression (xy)2ε
Exp(ζ,q±) it is enough to prove the result in the one-dimensional

case. Thus we assume that d = 1.
Proceeding inductively it is easy to see that

δn
x f =

n∑
m=0

Pn,m(x)∂m
x f ,

where Pn,m is a polynomial of degree n − m. Further, we observe that by Leibniz’ rule

∂m
x

[
x2 f

] = x2∂m
x f + 2χ{m�1}mx∂m−1

x f + χ{m�2}m(m − 1)∂m−2
x f .

Finally, taking into account that ∂3
x F = ∂4

x F = . . . = 0, we deduce from (A.1) that

∂m
x Exp(ζ,q±) = ∂m

x exp(F ) = exp(F )
∑

k,l�0
k+2l=m

cm,k(∂x F )k(∂2
x F

)l
,

where cm,k ∈ R are constants.
These facts altogether imply that for ε = 0,

δn
x

[
x2ε

Exp(ζ,q±)
] =

∑
k,l�0

k+2l�n

Pn,k,l(x)(∂x F )k(∂2
x F

)l
Exp(ζ,q±),

and when ε = 1,
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δn
x

[
x2ε

Exp(ζ,q±)
] =

n∑
m=0

Pn,m(x)
∑

η=0,1,2

Cm,ηχ{m�η}x2−η∂
m−η
x Exp(ζ,q±)

=
∑

η=0,1,2

x2−η
∑

k,l�0
k+2l�n−η

χ{n�η} Pn,η,k,l(x)(∂x F )k(∂2
x F

)l
Exp(ζ,q±),

where Pn,k,l and Pn,η,k,l are polynomials of degrees n − k − 2l and n − η − k − 2l, respectively. Combining together the
formulas for ε = 0 and ε = 1 produces

δn
x

[
x2ε

Exp(ζ,q±)
] =

∑
η=0,1,2

x2ε−ηε
∑

k,l�0
k+2l�n−ηε

χ{n�ηε} Pn,ε,η,k,l(x)(∂x F )k(∂2
x F

)l
Exp(ζ,q±)

with Pn,ε,η,k,l being a polynomial of degree n − ηε − k − 2l. The conclusion follows. �
Lemma A.2. Let d � 1, α ∈ (−1,∞)d, m ∈ N \ {0}, n ∈ N

d, ε ∈ {0,1}d. Then

∂m
t δn

x

[(
1 − ζ 2

ζ

)d+|α|+2|ε|
(xy)2ε

Exp(ζ,q±)

]

= y2ε
∑

w∈N
m

w1+···+mwm=m

Q w(ζ )
∑

η∈{0,1,2}d

x2ε−ηε
∑

k,l∈N
d

k+2l�n−ηε

χ{n�ηε} Pn,ε,η,k,l(x)

×
|l|∑

i=−|l|

∑
v∈N

d

v�k

∑
j,p,r∈N

j+p+r�|w|

Cm,w, j,p,r,d,α,ε,i,v,k,l
(
1 − ζ 2)d+|α|+2|ε|+|w|− j

ζ−d−|α|−2|ε|+i−|w|+2 j

×
(

q+
ζ

)p

(ζq−)r
(

1

ζ
Ψ+

)v

(ζΨ−)k−v
Exp(ζ,q±),

where ζ = ζ(t) = tanh t, Q w are polynomials, Cm,w, j,p,r,d,α,ε,i,v,k,l are constants and Pn,ε,η,k,l are the polynomials from Lemma A.1.

Proof. For the sake of lucidity we denote

Υn
(
x, y, ζ(t), s

)
=

(
1 − ζ 2

ζ

)d+|α|+2|ε|
δn

x

[
(xy)2ε

Exp(ζ,q±)
]

=
(

1 − ζ 2

ζ

)d+|α|+2|ε|
y2ε

∑
η∈{0,1,2}d

x2ε−ηε
∑

k,l∈N
d

k+2l�n−ηε

χ{n�ηε} Pn,ε,η,k,l(x)(∂x F )k(∂2
x F

)l
Exp(ζ,q±),

where the second identity is a consequence of Lemma A.1. Applying Faà di Bruno’s formula (A.1) we obtain

∂m
t Υn

(
x, y, ζ(t), s

) =
∑

w∈N
m

w1+···+mwm=m

C w∂
|w|
ζ Υn(x, y, ζ, s)

[(
∂1

t ζ(t)
)w1 · . . . · (∂m

t ζ(t)
)wm

]
.

We first analyze the expression in square brackets above. By induction it follows that

∂u
t ζ(t)

∣∣
t=t(ζ )

= (
1 − ζ 2)Ru(ζ ), u = 1,2, . . . ,

where Ru are polynomials. Thus we get(
∂1

t ζ(t)
)w1 · . . . · (∂m

t ζ(t)
)wm = (

1 − ζ 2)|w|
Q w(ζ ), (A.2)

where Q w are polynomials.
Next we deal with ∂uΥn(x, y, ζ, s) for u ∈ N. Proceeding inductively one checks that for any M, W ∈ R
ζ
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∂u
ζ

[(
1 − ζ 2)M

ζ W
Exp(ζ,q±)

] =
∑

j,p,r∈N

j+p+r�u

Cu, j,p,r,M,W
(
1 − ζ 2)M− j

ζ W −u+2 j
(

q+
ζ

)p

(ζq−)r
Exp(ζ,q±), (A.3)

where Cu, j,p,r,M,W ∈ R are constants. Furthermore, since

∂x j F = − 1

2ζ
Ψ

j
+ − ζ

2
Ψ

j
−, ∂2

x j
F = − 1

2ζ
− ζ

2
, j = 1, . . . ,d,

by means of Newton’s formula we infer that

(
1 − ζ 2

ζ

)d+|α|+2|ε|
(∂x F )k(∂2

x F
)l = (

1 − ζ 2)d+|α|+2|ε|
|l|∑

i=−|l|

∑
v∈N

d

v�k

Ci,v,k,l ζ
−d−|α|−2|ε|+i

(
1

ζ
Ψ+

)v

(ζΨ−)k−v ,

where Ci,v,k,l ∈ R are constants. Then using (A.3) specified to M = d + |α| + 2|ε|, W = −d − |α| − 2|ε| + i − |v| + |k − v| and
u = |w| produces

∂
|w|
ζ

[(
1 − ζ 2

ζ

)d+|α|+2|ε|
(∂x F )k(∂2

x F
)l

Exp(ζ,q±)

]

=
|l|∑

i=−|l|

∑
v∈N

d

v�k

∑
j,p,r∈N

j+p+r�|w|

C w, j,p,r,d,α,ε,i,v,k,l
(
1 − ζ 2)d+|α|+2|ε|− j

ζ−d−|α|−2|ε|+i−|w|+2 j

×
(

q+
ζ

)p

(ζq−)r
(

1

ζ
Ψ+

)v

(ζΨ−)k−v
Exp(ζ,q±),

where C w, j,p,r,d,α,ε,i,v,k,l ∈ R are constants.
Combining the last identity with (A.2) leads to the asserted formula. �
The following is a compilation of [9, Lemma 4.2] and [5, Corollary 5.2, Lemma 5.5 (a)].

Lemma A.3. Let b � 0 and c > 0 be fixed. Then for any j = 1, . . . ,d, we have

(a) (Aq±)b exp(−c Aq±) � 1,

(b)
(∣∣Ψ j

+
∣∣ + ∣∣Φ j

+
∣∣)b(

Exp(ζ,q±)
)c � ζ b/2,

(c)
(∣∣Ψ j

−
∣∣ + ∣∣Φ j

−
∣∣)b(

Exp(ζ,q±)
)c � ζ−b/2,

(d) (x j)
b(

Exp(ζ,q±)
)c � ζ−b/2,

uniformly in x, y ∈ R
d+ and s ∈ [−1,1]d, and also in A > 0 if (a) is considered, and in ζ ∈ (0,1) when items (b)–(d) are taken into

account.

Now we are in a position to prove Lemma 2.4.

Proof of Lemma 2.4. We will verify (2.4) and (2.5) for m > 0. Analogous arguments combined with Lemma A.1 rather than
Lemma A.2 in the reasoning below justify the case m = 0.

The proof is based on the explicit formula established in Lemma A.2. In what follows we use the notation of that lemma
without further comments. We first show (2.4). Using Lemma A.3 (a)–(d) and the inequality ζ < 1, we see that∣∣Pn,ε,η,k,l(x)

∣∣(Exp(ζ,q±)
)1/6 � ζ−|n|/2+|ηε|/2+|k|/2+|l|,(

1 − ζ 2)|w|− j � 1, 0 � j � |w|,
ζ i−|w|+2 j � ζ−|l|−m, 0 � j � |w| � m, −|l| � i � |l|,(

q+
ζ

)p

(ζq−)r(
Exp(ζ,q±)

)1/6 � 1, 0 � p, r � |w|,
∣∣∣∣
(

1
Ψ+

)v

(ζΨ−)k−v

∣∣∣∣(Exp(ζ,q±)
)1/6 � ζ−|k|/2, v � k � n,
ζ
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where the relations � hold uniformly in ζ ∈ (0,1), x, y ∈ R
d+ and s ∈ [−1,1]d . Combining Lemma A.2 with these estimates

and using the fact that the polynomials Q w are bounded on (0,1) leads directly to the desired conclusion.
It remains to prove (2.5). We have∣∣∣∣∇x,y∂

m
t δn

x

[(
1 − ζ 2

ζ

)d+|α|+2|ε|
(xy)2ε

Exp(ζ,q±)

]∣∣∣∣ �
∣∣∣∣∇x ∂m

t δn
x

[(
1 − ζ 2

ζ

)d+|α|+2|ε|
(xy)2ε

Exp(ζ,q±)

]∣∣∣∣
+

∣∣∣∣∇y∂
m
t δn

x

[(
1 − ζ 2

ζ

)d+|α|+2|ε|
(xy)2ε

Exp(ζ,q±)

]∣∣∣∣
≡ Hx + H y .

We will analyze Hx and H y separately. Treatment of Hx is straightforward. We observe that ∂x j = δx j − x j and since ∂m
t

commutes with δx j we get

∂x j ∂
m
t δn

x = ∂m
t δ

n+e j
x − x j∂

m
t δn

x , j = 1, . . . ,d.

Thus the required estimate of Hx follows easily from (2.4) and Lemma A.3 (d) applied with b = 1 and c = 1/4.
To deal with H y , we first differentiate in y j the formula from Lemma A.2. The result is

∂y j ∂
m
t δn

x

[(
1 − ζ 2

ζ

)d+|α|+2|ε|
(xy)2ε

Exp(ζ,q±)

]

= χ{ε j=1}2y2ε−e j
∑

w∈N
m

w1+···+mwm=m

Q w(ζ )
∑

η∈{0,1,2}d

x2ε−ηε
∑

k,l∈N
d

k+2l�n−ηε

χ{n�ηε} Pn,ε,η,k,l(x)

×
|l|∑

i=−|l|

∑
v∈N

d

v�k

∑
j,p,r∈N

j+p+r�|w|

Cm,w, j,p,r,d,α,ε,i,v,k,l
(
1 − ζ 2)d+|α|+2|ε|+|w|− j

ζ−d−|α|−2|ε|+i−|w|+2 j

×
(

q+
ζ

)p

(ζq−)r
(

1

ζ
Ψ+

)v

(ζΨ−)k−v
Exp(ζ,q±)

+ y2ε
∑

w∈N
m

w1+···+mwm=m

Q w(ζ )
∑

η∈{0,1,2}d

x2ε−ηε
∑

k,l∈N
d

k+2l�n−ηε

χ{n�ηε} Pn,ε,η,k,l(x)

×
|l|∑

i=−|l|

∑
v∈N

d

v�k

∑
j,p,r∈N

j+p+r�|w|

Cm,w, j,p,r,d,α,ε,i,v,k,l
(
1 − ζ 2)d+|α|+2|ε|+|w|− j

ζ−d−|α|−2|ε|+i−|w|+2 j

×
{

2

[
p

(
q+
ζ

)p−1
Φ

j
+

ζ
(ζq−)r + r

(
q+
ζ

)p

(ζq−)r−1(ζΦ
j
−
)](

1

ζ
Ψ+

)v

(ζΨ−)k−v

+
(

q+
ζ

)p

(ζq−)r
[

v js jζ
−1

(
1

ζ
Ψ+

)v−e j

(ζΨ−)k−v − (k j − v j)s jζ

(
1

ζ
Ψ+

)v

(ζΨ−)k−v−e j

]

+
(

q+
ζ

)p

(ζq−)r
(

1

ζ
Ψ+

)v

(ζΨ−)k−v
(

− 1

2ζ
Φ

j
+ − ζ

2
Φ

j
−
)}

Exp(ζ,q±).

Proceeding in a similar way as in the proof of (2.4), this time using also the fact that |s j| � 1, j = 1, . . . ,d, and the estimates∣∣∣∣Φ
j
+

ζ

∣∣∣∣(Exp(ζ,q±)
)1/4 � ζ−1/2,

∣∣ζΦ
j
−
∣∣(Exp(ζ,q±)

)1/4 � ζ 1/2 � ζ−1/2, j = 1, . . . ,d,

which follow from (b) and (c) of Lemma A.3, we arrive at the desired bound for H y . �
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