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0. Introduction

Let M be a compact subset of a Banach space E and ¢ : M — E be an upper semicontinuous set-valued map with compact
values. In the paper we ask about the existence of equilibria of ¢, i.e. X € M such that 0 € ¢(xp).

A classical result due to Browder and Fan [4,9] says that if M is convex, ¢ : M — E has convex values and is inward in
the sense that

@(x)NTy(x)#£P foreachxe M, (1)

where Ty (x) = cl((Upooh(M — X)), then ¢ admits an equilibrium. Observe that Tp(x) is a tangent cone to M at x and
therefore the inwardness condition (1) can be interpreted as a tangency condition.

This result has been generalized many times, e.g. [6-8]. In [2], Ben-El-Mechaiekh and Kryszewski relaxed the convexity
of M and obtained a similar result. Namely, if M is L-retract with the nontrivial Euler characteristic (x (M) # 0), ¢ is as
above but tangent with respect to the Clarke cone, i.e.

@(x)NCy(x) £ @ foreachxe M, (2)

where Cps(x) stands for the Clarke cone tangent to M at x, then an equilibrium still exists.
A natural problem concerning the relaxation of convexity of values of ¢ arises. As shown in [2], if M is as above and ¢
has acyclic (e.g. contractible or cell-like) values and satisfies the strong tangency condition

@(x) C Cy(x) foreachxe M, (3)
then there equilibria exist.
The following conjecture was posed in [2]:

(C) If M is an L-retract such that x (M) # 0, ¢ has acyclic values and condition (2) is satisfied, then there exists an equilibrium of ¢.
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We show that the very conjecture is false.

Example 0.1. Let M =[0,1] x [0, 1], E=R? and ¢ : M — E be a map defined by:
conv({(—1,0), (0, H}) Uconv({(0, 1), (1,0)}), if (x,y) e {1} x[0,1],
{(1,0)}, if (x,y) €[0,1) x [0,1].

Since M is convex, then for any x € M, Cy(x) = Ty (x) and ¢(x) N Cy(x) is nonempty and convex. Then condition (2) is
satisfied and ¢ is upper semicontinuous with contractible, hence acyclic, values. Moreover M is compact and convex, thus
M is an L-retract and x (M) =1 (see Section 1). However, it is clear that 0 ¢ @(x) for each x € M.

PR, Yy) = {

Hence, it appears that the pointwise tangency condition (2) together with the acyclicity (or even contractibility) of values
of ¢ are too weak for the existence of equilibria. In order to obtain a positive answer it seems that one needs to study the
local behavior of ¢ with respect to M in terms of homotopical triviality. We provide a class of the so-called n-tangent set-
valued maps with not necessarily convex values (see Definition 2.1) and show that for that class the problem of existence
of equilibria has a solution (see Theorem 2.3, Corollary 2.7).

1. Preliminaries

We consider set-valued maps ¢ : X — Y, where X and Y are metric spaces, that assign to each x € X, a nonempty
subset @(x) of Y. By the graph of ¢ we mean the set Gr(p) :={(x,y) € X x Y | y € ¢(x)}. We say that a set-valued map ¢
is lower semicontinuous if for any open set U C Y, the preimage ¢~ 1(U) := {x € X: @(x) N U s @} is open; ¢ is upper
semicontinuous if for any open set U C Y, the small preimage ¢+1(U) :={x € X: ¢(x) C U} is open; ¢ is continuous if it
is upper and lower semicontinuous simultaneously. By a selection of ¢ we mean a continuous map f: X — Y such that
f(x) € p(x) for any x € X.

If AC B, then A < B is homotopy n-trivial provided that for any 0 < k < n, every continuous map fo : S¥ — A admits
a continuous extension f : D¥*!1 — B, ie. f(x) = fo(x) for any x € Sk, where S¥ and D¥*! stand for a unit sphere and a
closed ball in R¥*1. A map @ has acyclic values if Hq(¢(x)) ~ I:Iq(pt) for any q € Z and x € X, where H denotes the Cech
cohomology functor and pt is a one point space. In particular, if for any x € X, ¢(x) is convex, contractible, cell-like, then
forany n=0,1,2,..., (x) € UV"! and hence ¢ has acyclic values [10,3].

It is well known that approximation methods are helpful in the study of fixed points or equilibria of set-valued maps.
However in the context of our problem we would like to look for a graph approximation f: M — E of ¢ satisfying the
additional tangency condition: f(x) € Cy(x) for any x € M. In [11, Th. 2.1] we have obtained a useful result in this direction.
Below we recall an appropriate version of this result convenient for our purposes (comp. [11, Cor. 2.2, Rem. 2.3], [5,12]).

Theorem 1.1. Let n > 0, X be a metric space, E be a Banach space, ¢ : X —o E be upper semicontinuous with compact values, C : X — E
be lower semicontinuous with closed and convex values. Then for any open neighborhood U of Gr(¢), there is a continuous selection
f : X — E of C such that Gr(f) c U provided that dim(X) < n + 12 and the following conditions hold:

(T) forany x € X, p(x) N C(x) # 0,
(Cpn) for any x € X, for any open neighborhood U of ¢(x), there are an open neighborhood V C U of ¢(x) and an open neighbor-
hood W of x such that for any y € W the inclusion V N C(y) < U N C(y) is homotopy n-trivial.

If condition (T) holds, then (Cp) is satisfied provided that ¢ has convex values. Moreover, if the strong tangency condition
is satisfied, i.e. for any x € X, ¢(x) C C(x), then (Cy) is equivalent to the condition: ¢(x) € UV" for any x € X (see [11,
Lem. 2.13]).

In what follows we recall notions of tangent cones in a Banach space. Given a closed subset M of a Banach space E, for
any x € M, by

dix +tv,M
CM(x)::{v‘ lim sup w:o},

t—0t, x> yx t
we denote the Clarke tangent cone to M at x € M. It is well known that Cy;(x) is closed and convex and if M is convex, then
Cm () =Tm(x) (see [1]).
By Tﬁ,(x) we denote the Bouligand tangent cone to M at x, i.e.

d tv,M
T,’a,(x) = {v lilll(l)grlf(x%‘/) :0}_

1 Recall that for a subset A of metric space X, A € UV™ if for any open neighborhood U of A there is an open neighborhood V c U of A such that the
inclusion V < U is homotopy n-trivial.
2 dim(X) denotes the covering dimension of the metric space X.
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In general Cy(x) C T,{i,(x) for any x € M. We say that M is sleek if the set-valued map M > x +—o Tﬁ,(x) C E is lower semi-
continuous. Then Tlf;, (x) = Cy(x) for any x € M, and hence the set-valued map M > x +o Cp;(x) C E is lower semicontinuous,
too [1].

We say that M is an L-retract [2] if there are an open neighborhood §2 of M in E, L > 1 and a retraction r: 2 - M
such that

[reo — x| < L-d(x, M)

for any x € £2. It is well known that any closed and convex subset of Banach space is sleek (see [1]) and by [2] is L-retract.
Moreover, any compact C!-manifold in Euclidean space is a sleek L-retract and Clarke tangent cones coincide with the
tangent spaces of the manifold.

2. Equilibria of n-tangent set-valued maps

Let M be a closed subset M of a Banach space E. Now we introduce a class of n-tangent set-valued maps.

Definition 2.1. We say that a map ¢ : M — E with compact values is n-tangent, if tangency condition (2) holds and

for any x € M, for any open neighborhood U of ¢(x), there are an open neighborhood V C U of ¢ (x) and an
open neighborhood W of x such that for any y € W the inclusion V N Cp(y) < U N Cp(y) is homotopy (4)
n-trivial.

Let C: M — E be given by the formula: C(x) := Cp(x) for any x € M. If ¢ : M — E is n-tangent, then condition (4)
coincides with condition (Cp).

Example 2.2. (1) If M is sleek, ¢ : M — E has compact and convex values, ¢(x) N Cy(x) # @ for any x € M, then ¢ is
n-tangent for any n > 0. Indeed, given x € M, for any open neighborhood U of ¢(x), there is an open and convex neighbor-
hood V C U of ¢(x). The set W :=C~ (V) ={y e M|V NCy(y) #9) is open, since C is lower semicontinuous. For any
y € W the set VN Cy(y) is nonempty and convex, and then condition (4) is satisfied.

(2) Let M be sleek, ¢ : M — E be a map with compact values such that ¢(x) C Cy(x) for any x € M. If for any x € M,
@(x) e UV™, then ¢ is n-tangent. In particular, if ¢ has contractible or cell-like values, then ¢ is n-tangent.

Observe that the map ¢ given in Example 0.1 is not n-tangent for any n > 0, since any open neighborhood U of ¢(1,1)
contains an open neighborhood V of ¢(1,1) and there is tg € (0, 1) such that for any t € (g, 1), the set V. N Cy(t, 1) has
two path-connected components.

Theorem 2.3. f an L-retract M is compact and sleek, x (M) # 0, dim(M) < n+1, and ¢ : M — E is n-tangent upper semicontinuous
set-valued map, then there exists Xo € M such that 0 € ¢(xp).

Proof. In view of Theorem 1.1, for any ¢ > 0O, there is an approximation f, : M — E such that

Gr(f:) C B(Gr(g), £)

and f¢(x) € Cy(x) for any x € M. Hence, by the above mentioned Ben-El-Mechaiekh and Kryszewski result, there is x; € M
such that 0 = f.(x¢). (M) is compact since M is compact and ¢ is upper semicontinuous with compact values. Then it is
easy to check that ¢ has an equilibrium. O

In general, condition (4) seems to be difficult to verify. Therefore we provide a more natural class of maps (see Exam-
ple 2.5 and Corollary 2.7).

Definition 2.4. We say that a map ¢ : M — E with compact values is locally uniformly n-tangent, if tangency condition (2)
holds and

for any x € M, for any € > 0 there are 0 < § < ¢ and an open neighborhood W of x such that forany y € W (5)
the inclusion B(¢(y), 8) N Cym(y) = B(@(y), &) N Cy(y) is homotopy n-trivial.

The following example justifies the relevance of the class.
Example 2.5. Let ¢ : M — E have compact values and for any x € M, @(x) N Cp(x) # @. If there is g9 > 0 such that
B(p(x), &) N Cp(x) is contractible for any x € M and 0 < ¢ < &g, then ¢ is locally uniformly n-tangent. In particular, if
for any x € M and € > 0, B(¢(x), €) N Cy(x) is convex, then ¢ is locally uniformly n-tangent.

Proposition 2.6. If ¢ : M —o E is locally uniformly n-tangent continuous set-valued map, then ¢ is n-tangent.
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Proof. Let x € M and let U be an open neighborhood of ¢(x). Then B(¢(x),&) C U for some ¢ > 0. Since the map ¢ is
upper semicontinuous, there is an open neighborhood Wy of x such that

B(¢(y).2/2) C B(p(x), £)

for any y € W1. By (5), we find § > 0 and an open neighborhood W of x such that for any y € W, and for any 0 <k <n,
every map fo: Sk — B(¢(y),8) N Cy(y) admits an extension f : pk+1 B(p(y),€/2) N Cpm(y). The set-valued map ¢ is
lower semicontinuous with compact values, then ¢ is H-lower semicontinuous, i.e. for any x € X and ¢’ > 0, there is §' > 0
such that supge, ) d(@, 9(¥)) < &’ for any y € M such that d(x, y) < §'. Hence, there is an open neighborhood W3 of x such
that

B(¢(x).8/2) C B(e(¥).8)

for any y € W3. Let W := W1 N W, N W3 and V := B(¢(x),§/2). Then it is easy to check that for any y € W and for any
0<k<n,every map fo:S¥— VNCy(y) admits an extension f:D*'! - UNCy(y). O

Corollary 2.7. If an L-retract M is compact and sleek, x (M) # 0, dim(M) < n+ 1, and ¢ : M —o E is locally uniformly n-tangent
continuous set-valued map, then there exists xo € M such that 0 € ¢ (xp).

Proof. The conclusion follows from Proposition 2.6 and Theorem 2.3. 0O

Note that in Corollary 2.7 the assumption on the continuity of ¢ cannot be weakened by the upper semicontinuity.
Indeed, the map ¢, given in Example 0.1, satisfies the following condition: for any x € M and ¢ > 0, B(¢(x), &) N Cm(X) is
convex. Hence condition (5) is satisfied. However ¢ has no equilibria.

Observe that, if condition (5) is satisfied and ¢ has compact values, then ¢(x) N Cy(x) € UV™ in Cp(x), hence ¢(x) N
Cm(x) e UV™ in E (see [3, Lem. 2]). Therefore if ¢ is locally uniformly n-tangent, then

foranyxe M, @x)NCy(x) UV (6)

In Corollary 2.7 condition (5) cannot be relaxed by (6).

Example 2.8. Let M =[0, 1] x [0, 1], E =R2, and let @ : M —o E be defined as follows:

conv({(1,0), (1 —2x, 2x)}), ifxe[0,1/2],
conv({(1,0), (0, 1)}) Uconv({(0, 1), (—2x + 1,2 — 2x)}), ifxe (1/2,1].

Then ¢ is continuous, ¢(x), ¢(x) N Cy(x) are contractible, hence ¢(x) € UV™ and ¢(x) N Cy(x) € UV" for any x € M.
Moreover, M is compact and convex. Thus M is a sleek L-retract and x (M) = 1. However 0 ¢ ¢(x) for any x € M.

PR, Yy) = {
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