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a b s t r a c t

Let ∆ be the open unit disc in C. The paper deals with the following conjecture: if f is
a continuous function on b∆ such that the change of argument of Pf + 1 around b∆ is
nonnegative for every polynomial P such that Pf + 1 has no zero on b∆ then f extends
holomorphically through ∆. We prove a related result on meromorphic extendibility for
smooth functions with finitely many zeros of finite order, which, in particular, implies that
the conjecture holds for real analytic functions.
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1. Introduction

Let ∆ be the open unit disc in C. Given a continuous function ϕ on b∆ with no zero on b∆ we denote by W (ϕ) the
winding number of ϕ around 0, so 2πW (ϕ) is the change of argument of ϕ(z) as z runs around b∆ in the positive direction.
If a function g is holomorphic on ∆ then we denote by Z(g) the number of zeros of g counting multiplicity. We denote by
A(∆) the disc algebra, that is the algebra of all continuous functions on ∆ which are holomorphic on ∆. It is known that one
can characterize holomorphic extendibility in terms of the argument principle:

Theorem 1.1 ([1–3]). A continuous function f on b∆ extends holomorphically through ∆ if and only if W (f + Q ) ≥ 0 for every
polynomial Q such that f + Q ≠ 0 on b∆.
Note that the ‘‘only if’’ part is a consequence of the argument principle.

One can view f + Q above as Pf + Q with P ≡ 1. We believe that an analogous theorem holds for Q ≡ 1:

Conjecture 1.2. Let f be a continuous function on b∆ such that

W (Pf + 1) ≥ 0 (1.1)

whenever P is a polynomial such that Pf + 1 ≠ 0 on b∆. Then f extends holomorphically through ∆.
The present note is the result of an unsuccessful attempt to prove this conjecture. In the paper we prove the conjecture for
sufficiently smooth functions with finitely many zeros of finite order. In particular, the conjecture holds for real analytic
functions.

2. Functions with no zeros

Suppose that the function f has no zero. In this case (1.1) implies that W (f ) ≥ 0. Indeed, there is an ε > 0 such that
W (f ) = W (f + η) for all η, |η| < ε. Choosing for P a constant c, |c| > 1/ε, (1.1) implies that W (f ) ≥ 0. Note that (1.1)
implies that

W (f ) + W

P +

1
f


= W (Pf + 1) ≥ 0
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so

W (P + 1/f ) ≥ −W (f )

for every polynomial P such that P+1/f ≠ 0 on b∆. IfW (f ) = 0 then Theorem1.1 implies that 1/f extends holomorphically
through∆ and sinceW (f ) = 0 the argument principle shows that this holomorphic extension has no zero on∆which gives:

Proposition 2.1. Let f be a continuous function on b∆ which has no zero and which satisfies W (f ) = 0. If W (Pf + 1) ≥ 0
whenever P is a polynomial such that Pf + 1 ≠ 0 on b∆ then f extends holomorphically through ∆.

Now, let W (f ) = N > 0. Then W (Pf + 1) = W (f ) + W (P + 1/f ) ≥ 0, so W (1/f + P) ≥ −N for every polynomial P
such that 1/f + P ≠ 0 on b∆. A recent theorem of Raghupathi and Yattselev [4, Theorem 2] applies to show that if f is
α-Hölder continuous with α > 1/2 then 1/f has a meromorphic extension through ∆ which has at most N poles, counting
multiplicity. So in this case there are a function H in the disc algebra and a polynomial R of degree not exceeding N , with all
zeros contained in ∆, such that

1
f (z)

=
H(z)
R(z)

(z ∈ b∆).

Since W (1/f ) = −N and since deg R ≤ N it follows by the argument principle that R has exactly N zeros in ∆, counting
multiplicity, and H has no zero on ∆. It follows that f = R/H extends holomorphically through ∆. This proves:

Proposition 2.2. Let f be an α-Hölder continuous function on b∆ with α > 1/2 which has no zero on b∆. If W (Pf + 1) ≥ 0
whenever P is a polynomial such that Pf + 1 ≠ 0 on b∆ then f extends holomorphically through ∆.

3. Functions with finitely many zeros

The reasoning in Section 2 is no longer possible if f has zeros on b∆. Suppose that f has the form

f (z) = (z − b1)m1(z − b2)m2 · · · (z − bn)mng(z) (z ∈ b∆),

where bi ∈ b∆, 1 ≤ i ≤ n, bi ≠ bj (i ≠ j) and where g is a continuous function with no zeros. (In particular, this holds
when f is real analytic). Assume thatW (g) = N . Then (1.1) implies that

W (1/g + (z − b1)m1 · · · (z − bn)mnP) ≥ −N.

If m1 = · · · = mn = 0 as in the preceding section then, if N ≥ 0, [4, Theorem 2] implies that 1/g has a meromorphic
extension through ∆ with at most N poles. So the relevant question now is whether the same is true in general:

Question 3.1. Let b1, b2, . . . , bn ∈ b∆, bi ≠ bj if i ≠ j, and let m1, . . . ,mn ∈ N. Let P be the family of all polynomials Q of
the form

Q (z) = (z − b1)m1 · · · (z − bn)mnp(z),

where p is a polynomial, and let J ∈ N ∪ {0}. Suppose that f is a continuous function on b∆ such that

f (bj) ≠ 0 (1 ≤ j ≤ n) (3.1)

and such thatW (f +Q ) ≥ −J for each Q ∈ P such that f +Q ≠ 0 on b∆. Must f extend meromorphically through ∆ with
the extension having at most J poles, counting multiplicity?

Note that one has to assume (3.1) since otherwiseW (f +Q ) is undefined for every Q ∈ P . Ifm1 = · · · = mn = 0 and J = 0
then the positive answer is provided by Theorem 1.1. Ifm1 = · · · = mn = 0 and J ≥ 1 and if f is α-Hölder continuous with
α > 1/2 then the answer is positive by [4, Theorem 2] which was proved by using the theorem on rigid interpolaton:

Theorem 3.2 ([4, Theorem 5]). Suppose that g is a holomorphic function on∆ and let N ∈ N. Suppose that for every nonnegative
integer n and for every polynomial p of degree not exceeding n we have

Z(zng + p) ≤ N + n. (3.2)

Then g is a quotient of polynomials of degree not exceeding N.

Note that if g is a quotient of polynomials of degree not exceeding N then (3.2) holds for every polynomial p of degree
not exceeding n. In the present paper we use Theorem 3.2 as an essential tool.
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4. On Question 3.1

Theorem 4.1. Let bj ∈ b∆, 1 ≤ j ≤ n, bi ≠ bj (i ≠ j), and let mj ∈ N, 1 ≤ j ≤ n. Let P be the family of all polynomials Q of
the form

Q (z) = (z − b1)m1(z − b2)m2 · · · (z − bn)mnp(z),

where p is a polynomial. Let N = m1 + m2 + · · · + mn. Suppose that f ∈ CN+1(b∆) is such that f (bj) ≠ 0 (1 ≤ j ≤ n), let J be
a nonnegative integer and assume that

W (f + Q ) ≥ −J for every Q ∈ P such that f + Q ≠ 0 on b∆.

Then f has a meromorphic extension through ∆ having at most J poles in ∆, counting multiplicity.

We shall rewrite the condition in Theorem 4.1 in a slightly different form. Let aj ∈ b∆, 1 ≤ j ≤ N , and let S be the family
of all polynomials Q of the form

Q (z) = (z − a1) · · · (z − aN)p(z),

where p is a polynomial. Note that we do not require that ai ≠ aj if i ≠ j. To prove Theorem 4.1 it will be enough to prove
the following:

Suppose that f is a function of class CN+1 on b∆ such that f (aj) ≠ 0,
1 ≤ j ≤ N, and such thatW (f + Q ) ≥ −J whenever Q ∈ S and f + Q ≠ 0
on b∆. Then f has a meromorphic extension through ∆ having at most J
poles in ∆ counting multiplicity.

 (4.1)

Proposition 4.2. A continuous function f on b∆ satisfies

W (f + (z − a1) · · · (z − aN)g) ≥ −J (4.2)

for every polynomial g such that

f + (z − a1) · · · (z − aN)g ≠ 0 on b∆ (4.3)

if and only if f satisfies (4.2) for every function g ∈ A(∆) which satisfies (4.3).

Proof. If for some g ∈ A(∆) satisfying (4.3) we haveW (f +(z−a1) · · · (z−an)g) ≤ −J−1 then this holds for all sufficiently
small perturbations of g . In particular, it holds for some polynomial sufficiently close to g , contradicting (4.2), completing
the proof. �

Lemma 4.3. Let I ⊂ b∆ be an arc centered at a and let f ∈ Cn+1(I). There are a polynomial p of degree not exceeding n − 1
and a function h ∈ C1(I) such that f (z) = p(z) + (z − a)nh(z) (z ∈ I).

Proof. Write a = eit0 and let J be a segment on R centered at t0. Then

f (eit) = f (eit0) + c1(t − t0) + · · · + cn−1(t − t0)n−1
+ (t − t0)ng(t) (t ∈ J), (4.4)

where g ∈ C1(J). For all t close to t0, t ≠ t0, we have

t − t0
eit − eit0

= a0 + a1(eit − eit0) + a2(eit − eit0)2 + · · · , (4.5)

where the series converges for t near t0. Now, by (4.4) and (4.5),

f (eit) = f (eit0) +

n−1
k=1

ck


∞
j=0

aj(eit − eit0)j
k

(eit − eit0)k +


∞
j=0

aj(eit − eit0)j
n

(eit − eit0)ng(t).

Computing the powers and rearranging we get

f (eit) = f (eit0) + b1(eit − eit0) + · · · + bn−1(eit − eit0)n−1
+ (eit − eit0)n


g(t) + w(t)


,

where, as a sum of a convergent power series, w is real analytic and so g + w = h is of class C1. The proof is complete. �

Lemma 4.4. Let f be a function of class CN+1 on b∆ and let bj ∈ b∆, 1 ≤ j ≤ n, bi ≠ bj (j ≠ i). Let m1, . . . ,mn be positive
integers such that m1 + · · ·mn = N and let
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ak = b1 (1 ≤ k ≤ m1)

ak = b2 (m1 + 1 ≤ k ≤ m1 + m2)

· · ·

ak = bn (m1 + · · ·mn−1 + 1 ≤ k ≤ m1 + · · ·mn.)

There are constants Ak, 0 ≤ k ≤ N − 1, and a function g of class C1 on b∆ such that

f (z) = A0 + A1(z − a1) + A2(z − a1)(z − a2) + · · · + AN−1(z − a1) · · · (z − aN−1) + g(z)(z − a1) · · · (z − aN).

Proof. By Lemma 4.3 we have

f (z) = B10 + B11(z − b1) + · · · + B1,m1−1(z − b1)m1−1
+ g1(z)(z − b1)m1 (z ∈ b∆),

where g1 is of class C1 on b∆ and of class CN+1 on b∆ \ {b1}. We repeat the procedure to write

g1(z) = B20 + B21(z − b2) + · · · + B2,m2−1(z − b2)m2−1
+ g2(z)(z − b2)m2 (z ∈ b∆),

where the function g2 is of class C1 on b∆ and of class CN+1 on b∆ \ {b1, b2}. Repeating this procedure we get the functions
g2, g3, · · · , gn, all of class C1 on b∆, such that

gn−1(z) = Bn0 + Bn1(z − bn) + · · · + Bn,mn−1(z − bn)mn−1
+ gn(z)(z − bn)mn .

Putting g = gn and substituting the expression for gn−1 into the expression for gn−2 and so on we get the result with

A0 = B10, . . . , Am1−1 = B1,m1−1,

Am1 = B20, Am1+1 = B21, . . . , Am2−1 = B2,m2−1,

· · ·

which completes the proof. �

5. Proof of Theorem 4.1

As alreadymentioned, we have to prove (4.1). So suppose that f ∈ CN+1(b∆) satisfies f (aj) ≠ 0 (1 ≤ j ≤ N) and satisfies
(4.2) for every polynomial g satisfying (4.3). By Proposition 4.2, f satisfies (4.2) for every g in the disc algebra that satisfies
(4.3). By Lemma 4.4 there are numbers A0, A1, . . . , AN−1 and a function g of class C1 on b∆ such that if

D(z) = A0 + A1(z − a1) + · · · + AN−1(z − a1) · · · (z − aN−1)

then

f (z) = D(z) + (z − a1) · · · (z − aN)g(z) (z ∈ b∆)

which implies that

W

D + (z − a1) · · · (z − aN)g + (z − a1) · · · (z − aN)P


≥ −J

for every P in the disc algebra such that the expression in parentheses is different from 0 on b∆. Since g is of class C1 we
can write

g(z) = F(z) + G(z) (z ∈ b∆),

where F and G are in the disc algebra with boundary values of class Hα for every α < 1 which implies that

W

D + (z − a1) · · · (z − aN)(F + G + P)


≥ −J

for every P in the disc algebra such that the expression in parentheses is different from 0 on b∆, so

W

D + (z − a1) · · · (z − aN)(G + P)


≥ −J (5.1)

whenever P in the disc algebra is such that

D + (z − a1) · · · (z − aN)(G + P) ≠ 0 on b∆. (5.2)

By our assumption we have f (aj) ≠ 0 (1 ≤ j ≤ N) which implies that

D(aj) ≠ 0 (1 ≤ j ≤ N). (5.3)

Recall that (5.1) holds whenever P is in the disc algebra and is such that (5.2) holds. In particular, (5.1) holds whenever P is
a polynomial satisfying (5.2). Conjugating (5.1) we get

W

D + (z − a1) · · · (z − aN)(G + P)


≤ J
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which, multiplying the expression in parentheses with zN , gives

W

zND + (1 − a1z) · · · (1 − aNz)(G + P)


≤ N + J

for every polynomial P such that the expression in parentheses does not vanish on b∆. In particular, if A is the polynomial
such that

A(z) = zND(z) (z ∈ b∆) and if B(z) = (1 − a1z) · · · (1 − aNz)
then the degree of A does not exceed N and we have

W (A + BG + BP) ≤ N + J

for every polynomial P such that A + BG + BP ≠ 0 on b∆. On b∆ we have P(z) = p(z)/zm wherem ∈ N ∪ {0} and where p
is a polynomial of degree not exceedingm, so it follows that

W (zm(A + BG) + Bpm) ≤ N + J + m
wheneverm ∈ N ∪ {0} and pm is a polynomial of degree not exceedingm such that

zm(A + BG) + Bpm ≠ 0 on b∆. (5.4)
The argument principle implies that

Z

zm


A
B

+ G


+ pm


≤ N + J + m (5.5)

for every m ∈ N ∪ {0} and for every polynomial pm of degree not exceeding m such that (5.4) holds. Now, by (5.3) we have
A(aj) ≠ 0 (1 ≤ j ≤ N). Since B(aj) = 0 (1 ≤ j ≤ N), (5.4) holds if and only if

zm

A(z)
B(z)

+ G(z)


+ pm(z) ≠ 0 (z ∈ b∆, z ≠ aj, 1 ≤ j ≤ N). (5.6)

It follows that (5.5) holds for every polynomial pm of degree not exceedingm, without condition (5.6). Indeed if

Z

zm


A
B

+ G


+ qm


≥ N + J + m + 1 (5.7)

for some m ∈ N ∪ {0} and for some polynomial qm of degree not exceeding m then, by the argument principle, the same
holds for qm replaced by qm + η for all sufficiently small η. However, since G is α-Hölder smooth with α > 1/2, the same
holds for the function z → zm


A(z)/B(z) + G(z)


+ qm(z) which implies that the set

zm

A(z)
B(z)

+ G(z)


+ qm(z): z ∈ b∆, z ≠ aj, 1 ≤ j ≤ N


has planar measure zero, so there are arbitrarily small η such that (5.7) holds for qm replaced by pm = qm + η where pm
satisfies (5.6). This proves that (5.5) holds for any m ∈ N ∪ {0} and for any polynomial pm of degree not exceeding m.
Theorem 3.2 now applies to show that there are polynomials P,Q of degree not exceeding N + J without common factors
such that

A(z)
B(z)

+ G(z) =
P(z)
Q (z)

(z ∈ b∆).

Recall that

B(z) =
1

a1a2 · · · an
(a1 − z)(a2 − z) · · · (aN − z)

and that A(aj) ≠ 0 (1 ≤ j ≤ N). We have G = P/Q − A/B. The function G is continuous on ∆, so if a factor (α − z)k occurs
in B then Q has to be divisible by (α − z)k. In fact, if Q contained only ℓ factors (α − z) with ℓ < k then we would get

(z − α)ℓG =
P
Q1

−
A

(z − α)k−ℓB1
,

where Q1 is a polynomial, Q1(α) ≠ 0, and where B1 is a polynomial. Since the left side is continuous at α, since Q1(α) ≠ 0
and since A(α) ≠ 0, this is not possible. Thus Q = RB where R is a polynomial of degree not exceeding J . It follows that

G =
P
Q

−
A
B

=
P − RA

RB
.

Since G is continuous on ∆ it follows that P − RA must be divisible by B. Since deg A ≤ N, deg R ≤ J, deg P ≤ N + J it
follows that P − RA is a polynomial of degree not exceeding N + J . Thus, on b∆, G is a quotient of two polynomials of degree
not exceeding J , which implies that the same holds for G. Thus, g = F + G extends meromorphically through ∆ with the
number of poles not exceeding J and so the same holds for

f = A0 + A1(z − a1) + · · · + AN−1(z − a1) · · · (z − aN−1) + (z − a1) · · · (z − aN)g.
The proof is complete. �
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Remark. Another look at the proof of Theorem 4.1 shows that it is enough to assume that f ∈ CL+1(b∆) where L =

max{m1,m2, . . . ,mn}.

6. On Conjecture 1.2

We prove somewhatmore general result than Conjecture 1.2 for sufficiently smooth functions f with finitelymany zeros
on b∆ of finite order:

Theorem 6.1. Suppose that f is of class C∞ on b∆ with at most finitely many zeros of finite order and let J ∈ N ∪ {0}. Then

W (Pf + 1) ≥ −J

for each polynomial P such that Pf + 1 ≠ 0 on b∆ if and only if f extends meromorphically through ∆ with the extension having
at most J poles, counting multiplicity. In particular, f extends holomorphically through ∆ if and only if W (Pf + 1) ≥ 0 for every
polynomial P such that Pf + 1 ≠ 0 on b∆.

Corollary 6.2. A real analytic function f on b∆ extends meromorphically through ∆ with at most J poles in ∆, counting
multiplicity, if and only if W (Pf + 1) ≥ −J for each polynomial P such that Pf + 1 ≠ 0 on b∆. In particular, f extends
holomorphically through ∆ if and only if W (Pf + 1) ≥ 0 for each polynomial P such that Pf + 1 ≠ 0 on b∆.

Proof of Theorem 6.1. Let J be a nonnegative integer and let f be a smooth function on b∆ that satisfies

W (Pf + 1) ≥ −J (6.1)

for all polynomials P such that Pf +1 ≠ 0 on b∆. This happens if and only if (6.1) holds for all functions P in the disc algebra
such that Pf + 1 ≠ 0 on b∆. Indeed, if we haveW (Pf + 1) ≤ −J − 1 for some P0 in the disc algebra then the same holds for
all P in the disc algebra sufficiently close to P0. In particular, it holds for some polynomial P . We assume that f has at most
finitely many zeros (of finite order) on b∆, so f = Πg whereΠ(z) = (z−a1)(z−a2) · · · (z−an) and g is a smooth function
on b∆ without zeros. Now (6.1) becomes

W (PΠg + 1) ≥ −J

which gives

W

PΠ +

1
g


≥ −J − W (g).

Suppose first thatW (g) = N ≥ −J and so N + J ≥ 0; hence

W

1
g

+ ΠP


≥ −(N + J)

for every polynomial P such that 1/g + ΠP ≠ 0 on b∆. By Theorem 4.1,

1
g(z)

=
H(z)
Q (z)

(z ∈ b∆),

where H is in the disc algebra and Q is a polynomial with at most N + J zeros on ∆. The argument principle now shows
that N = W (g) = W (Q ) − W (H) = Z(Q ) − Z(H) ≤ N + J − Z(H) which implies that Z(H) ≤ J which shows that g , and
consequently f = Πg , has a meromorphic extension through ∆ with at most J poles, counting multiplicity.

We now complete the proof by showing that N + J < 0 is impossible. Assume that −(N + J) ≥ 1. Since g is smooth and
W (g) = N < 0 one can write

g(z) = F(z)G(z)zN (z ∈ b∆),

where F and G are in the disc algebra with no zeros on ∆ and with smooth boundary values. We get

W

PΠFGzN + 1


≥ −J

whenever P in the disc algebra is such that the expression in parentheses is different from zero on b∆. Since F has no zero
on ∆ this happens if and only if

W

PΠG + z−N

≥ −J − N ≥ 1

and, since G has no zero on ∆, we have

W

z−N

G
+ PΠ


≥ 1
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whenever P in the disc algebra is such that

z−N

G
+ PΠ ≠ 0 on b∆.

By Theorem 4.1 it follows that z−N/G extends holomorphically through ∆ which is possible if and only if

z−N

G(z)
= Q (z) (z ∈ b∆)

where Q is a polynomial of degree not exceeding −N . In particular,

W (Q + PΠ) ≥ 1 (6.2)

for all functions P in the disc algebra such that Q + PΠ ≠ 0 on b∆. However, one can choose P in the disc algebra such that
Q + PΠ = eΨ with Ψ entire. To do this one has to choose Ψ in such a way that (eΨ

− Q )/Π is holomorphic. This is easy
to do; see [5]. The argument principle now shows that with this P , we haveW (F + PΠ) = 0, so (6.2) fails. This shows that
N + J < 0 is impossible and completes the proof of Theorem 6.1. �

7. Generalizations of Theorem 4.1

Suppose that f is a continuous function and R is a fixed polynomial. Suppose that f is a continuous function on b∆ that
does not vanish at any zero of R contained in b∆, such that

W (f + Rp) ≥ 0

for every polynomial p such that f + Rp ≠ 0 on b∆. Must f extend holomorphically through ∆? We know from Section 4
that the answer is positive provided that all zeros of R are on b∆ and provided that f is sufficiently smooth.

For general R the answer is negative. To see this, let f (z) = z/(z−1/2) (z ∈ b∆). If p is a polynomial such that f +zp ≠ 0
on b∆ then the argument principle implies that

W (f + zp) = W


z
z − 1/2

+ zp


= W


z
z − 1/2

(1 + (z − 1/2)p)


= W


z
z − 1/2


+ W


1 + (z − 1/2)p) ≥ 0

yet f does not extend holomorphically through ∆. We now show that for sufficiently smooth functions the answer to the
question above is positive provided that R has no zero in ∆.

LetΠ1 be a product ofN ≥ 0 factors of the form z−a, a ∈ ∆, letΠ2 be a finite product of factors of the form z−a, a ∈ b∆,
and let Π3 be a finite product of factors of the form z − a, a ∈ C \ ∆. Let Π = Π1Π2Π3, let J be a nonnegative integer and
suppose that f is a smooth function on b∆ such that f does not vanish at any zero of Π2 and such that

W (f + Πp) ≥ −J (7.1)

whenever p is a polynomial such that f + Πp ≠ 0 on b∆. We know that this happens if and only if (7.1) holds for each p in
the disc algebra such that f + Πp ≠ 0 on b∆. Now, since the zeros of Π3 are in C \ ∆ it follows that p is in the disc algebra
if and only Π3p is in the disc algebra. It follows that (7.1) holds for every p in the disc algebra such that f + Πp ≠ 0 on b∆
if and only if

W (f + Π1Π2p) ≥ −J (7.2)

for each p in the disc algebra such that f + Π1Π2p ≠ 0 on b∆. Now, (7.2) implies that

W


f
Π1

+ Π2p


≥ −J − N

whenever p is a polynomial such that f /Π1 +Π2p ≠ 0 on b∆. If f is sufficiently smooth then Theorem 4.1 implies that f /Π1
has a meromorphic extension through ∆ which has at most J + N poles in ∆, counting multiplicity. This proves:

Theorem 7.1. Let Π = Π1Π2Π3 where Π1 is a product of N factors of the form z − a, a ∈ ∆, where Π2 is a finite product
of factors of the form z − a, a ∈ b∆, and where Π3 is a finite product of factors of the form z − a, a ∈ C \ ∆. Assume that
f ∈ C∞(b∆) vanishes at no zero of Π2 and assume that J is a nonnegative integer. Then f satisfies

W (f + Πp) ≥ −J

for every polynomial p such that f + Πp ≠ 0 on b∆ if and only if f /Π1 has a meromorphic extension through ∆ which has at
most N + J poles in ∆, counting multiplicity.
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8. Remarks

If D is a bounded domain in C, we denote by A(D) the algebra of all continuous functions on D which extend
holomorphically through D. Theorem 1.1 has been generalized to:

Theorem 8.1 ([6]). Let D ⊂ C be a bounded domain whose boundary consists of a finite number of pairwise disjoint simple
closed curves. Let J be a nonnegative integer. Then W (Pf + Q ) ≥ −J for each P,Q in A(D) such that Pf + Q ≠ 0 on bD if and
only if f has a meromorphic extension through D with at most J poles counting multiplicity.

If J = 0, that is, if we speak of holomorphic extendibility, then one can take P ≡ 1 [2]. It remains an open question whether
one can take P ≡ 1 in general. Ragupathi and Yattselev [4] made progress by proving that one can take P ≡ 1 in the case
where D = ∆ and f is α-Hölder continuous with α > 1/2. Conjecture 1.2 deals with the open question of whether one can
take Q ≡ 1 in Theorem 8.1. We conclude by mentioning a related result which holds for all continuous functions:

Theorem 8.2. Let f be a continuous function on b∆ and assume that

W

P(f + c) + 1) ≥ 0

whenever c is a constant and P is a polynomial such that P(f + c) + 1 ≠ 0 on b∆. Then f extends holomorphically through ∆.

Proof. Observe that by choosing c large enough, W (f + c) = 0 and so, by Proposition 2.1, f + c extends holomorphically
through ∆ and so does f . �
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