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a b s t r a c t

Let (M, g) be an n-dimensional Riemannian manifold and TM its tangent bundle. The
purpose of the present paper is three-fold. Firstly, to study paraholomorphy property of
two Riemannian metrics ga and ga,b of Cheeger Gromoll type depending on one parameter
and two parameters by using compatible paracomplex structures Ja and Ja,b on the tangent
bundle TM . Secondly, to classify Killing vector fields on the tangent bundle TM equipped
with the Riemannian metric ga,b. Finally, to give a detailed description of geodesics on the
tangent bundle TM with respect to the Riemannian metric ga,b.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The research in the topic of differential geometry of tangent bundles over Riemannianmanifolds begunwith Sasaki, who
constructed, in the original paper [1] of 1958, a Riemannian metric Sg on the tangent bundle TM of a Riemannian manifold
(M, g), which depends closely on the base metric g . Although the Sasaki metric is naturally defined, it has been shown
in many papers that the Sasaki metric presents a kind of rigidity. In [2], Kowalski proved that if the Sasaki metric Sg is
locally symmetric, then the base metric g is flat and hence Sg is also flat. In [3], Musso and Tricerri have demonstrated an
extreme rigidity of Sg in the following sense: if (TM, Sg) is of constant scalar curvature, then (M, g) is flat. Inspired by a
paper of Cheeger and Gromoll, they also defined a new g-natural metric CGg on the tangent bundle TM , which they called
the Cheeger Gromoll metric [4]. Sekizawa (see [5]) computed geometric objects related to this metric. Later, Gudmundson
and Kappos, in [6,7], have completed these results and shown that the scalar curvature of the Cheeger Gromoll metric is
never constant if the metric on the base manifold has constant sectional curvature. Furthermore, Abbassi and Sarih have
proved that the tangent bundle TM with the Cheeger Gromollmetric is never a space of constant sectional curvature (see [8]).
In [9], the first author and his collaborators studied the paraholomorphy property of the Sasaki and Cheeger Gromoll metrics
by using compatible paracomplex stuctures on the tangent bundle and showed that the Cheeger Gromoll metric is never
paraholomorphic with respect to the compatible paracomplex structure.

A more general metric is given by Anastasiei in [10] which generalizes both of the two metrics mentioned above in
the following sense: it preserves the orthogonality of the two distributions, on the horizontal distribution it is the same
as on the base manifold, and finally the Sasaki and the Cheeger Gromoll metric can be obtained as particular cases of
this metric. A compatible almost complex structure is also introduced and the tangent bundle TM becomes a locally
conformal almost Kählerian manifold. In [11], Munteanu studied another Riemannian metric on the tangent bundle TM
of a Riemannian manifold M which generalizes the Sasaki metric and Cheeger Gromoll metric and a compatible almost
complex structurewhich confers a structure of locally conformal almost K ählerianmanifold to TM togetherwith themetric.
He found conditions under which the tangent bundle TM is almost Kählerian, locally conformal Kählerian or Kählerian
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when the tangent bundle TM has constant sectional curvature or constant scalar curvature. On the other hand, Oproiu and
his collaborators constructed natural metrics on the tangent bundles of Riemannian manifolds which possess interesting
geometric properties [12–15]. All the preceding metrics belong to the wide class of the so-called g-natural metrics on the
tangent bundle, initially classified by Kowalski and Sekizawa [16] and fully characterized by Abbassi and Sarih [17–19] (see
also [20] for other presentation of the basic result from [16] and for more details about the concept of naturality).

The work is organized as follows: In Section 2, some introductory materials concerning with the tangent bundle TM
over an n-dimensional Riemannian manifold M are collected. In Section 3, we first introduce paraholomorphic Norden
manifolds (or para-Kähler-Norden manifolds) and then investigate the paraholomorphy property of two Cheeger Gromoll
type Riemannian metrics ga and ga,b by using compatible paracomplex structures Ja and Ja,b on the tangent bundle TM ,
respectively. In Section 4, the adapted framewhich allows the tensor calculus to be efficiently done is inserted in the tangent
bundle TM . Killing vector fields on (TM, ga,b) are classified; that is, general forms of all Killing vector fields on (TM, ga,b) are
found. Also, it is shown that if (TM, ga,b) is the tangent bundle with the Cheeger Gromoll type Riemannian metric ga,b of a
Riemannian, compact and orientable manifold (M, g) with vanishing first and second Betti numbers, then the Lie algebras
of Killing vector fields on (M, g) and on (TM, ga,b) are isomorphic. In Section 5, we study relations between geodesics on the
base manifold (M, g) and geodesics on the tangent bundle (TM, ga,b) by means of the adapted frame.

2. Preliminaries

LetM be an n-dimensional Riemannianmanifold. Throughout this paper, all manifolds, tensor fields and connections are
always assumed to be differentiable of class C∞. Also, we denote by ℑ

p
q(M) the set of all tensor fields of type (p, q) onM .

Basic formulas on tangent bundles: Let TM be the tangent bundle over an n-dimensional Riemannian manifold M , and π
the natural projection π : TM → M . Let the manifoldM be covered by a system of coordinate neighborhoods (U, xi), where
(xi), i = 1, . . . , n is a local coordinate system defined in the neighborhood U . Let (yi) be the Cartesian coordinates in each
tangent space TPM at P ∈ M with respect to the natural base


∂

∂xi


P


, P being an arbitrary point in U whose coordinates

are (xi). Then we can introduce local coordinates (xi, yi) on open set π−1(U) ⊂ TM . We call them induced coordinates on
π−1(U) from (U, xi). The projection π is represented by (xi, yi) → (xi). The indices I, J, . . . run from 1 to 2 n, the indices
i, j, . . . run from n + 1 to 2n. Summation over repeated indices is always implied.

Let X = X i ∂

∂xi
be the local expression in U of a vector field X onM . Then the vertical lift VX , the horizontal lift HX and the

complete lift CX of X are given, with respect to the induced coordinates, by

VX = X i∂i, (2.1)
HX = X i∂i − yjΓ i

jkX
k∂i, (2.2)

and
CX = X i∂i + ys∂sX i∂i, (2.3)

where ∂i =
∂

∂xi
, ∂i =

∂

∂yi
and Γ i

jk are the coefficients of the Levi-Civita connection ∇ of g .
In particular, we have the vertical spray Vu and the horizontal spray Hu on TM defined by

Vu = yiV (∂i) = yi∂i,
Hu = yiH(∂i) = yiδi, (2.4)

where δi = ∂i − yjΓ s
ji ∂s̄.

Vu is also called the canonical or Liouville vector field on TM .
Now, let r be the norm of a vector u ∈ TM . Then, for any smooth function f of R to R, we have

HX

f (r2)


= 0 (2.5)

VX

f (r2)


= 2f ′(r2)g(X, u) (2.6)

and in particular, we get

HX(r2) = 0. (2.7)
VX(r2) = 2g(X, u). (2.8)

Let X, Y and Z be any vector fields onM , then we have

HX(g(Y , u)) = g ((∇XY ), u) , (2.9)
VX(g(Y , u)) = g (X, Y ) , (2.10)
HX

V (g(Y , Z))


= X (g(Y , Z)) (2.11)
VX

V (g(Y , Z))


= 0 [19]. (2.12)
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Suppose that a tensor field S ∈ ℑ
p
q(M), q > 1, is given. We then define a tensor field γ S ∈ ℑ

p
q−1(TM) on π−1(U) by

γ S = (ylS j1...jpli2...iq
)∂j1 ⊗ · · · ⊗ ∂jp ⊗ dxi2 ⊗ · · · ⊗ dxiq

with respect to the induced coordinates (xi, yi) [21, p. 12]. The tensor field γ S defined on each π−1(U) determines global
tensor field on TM . We easily see that γ P has components, with respect to the induced coordinates (xi, yi),

(γ P) =


0

yiP
i
j


for any P ∈ ℑ

1
1(M) and (γ P)(V f ) = 0, f ∈ ℑ

0
0(M), i.e. γ P is a vertical vector field on TM .

Explicit expressions for the Lie bracket [, ] of the tangent bundle TM are given by Dombrowski in [22]. The bracket
operation of vertical and horizontal vector fields is given by the formulas

HX ,H Y


=
H [X, Y ]−V (R(X, Y )u)HX ,V Y


=

V (∇XY )VX ,V Y


= 0

(2.13)

for all vector fields X and Y onM , where R is the Riemannian curvature of g defined by
R (X, Y ) = [∇X , ∇Y ] − ∇[X,Y ].

3. Almost paracomplex structures with Norden metrics

An almost paracomplex manifold is an almost product manifold (M2k, ϕ), ϕ2
= id, ϕ ≠ ±id such that the two

eigenbundles T+M2k and T−M2k associated with the two eigenvalues +1 and −1 of ϕ, respectively, have the same rank.
Note that the dimension of an almost paracomplex manifold is necessarily even. This structure is said to be integrable if the
matrix ϕ = (ϕi

j) is reduced to the constant form in a certain holonomic natural frame in a neighborhood Ux of every point
x ∈ M2k. On the other hand, an almost paracomplex structure is integrable if and only if one can introduce a torsion-free
linear connection such that ∇ϕ = 0. A paracomplex manifold is an almost paracomplex manifold (M2k, ϕ) such that the G-
structure defined by the affinor field ϕ is integrable. Also it can give another equivalent-definition of paracomplex manifold
in terms of local homeomorphisms in the space Rk(j) =


(X1, . . . , Xk)/X i

∈ R(j), i = 1, . . . , k

and paraholomorphic

changes of charts in a way similar to [23] (see also [24]), i.e. a manifold M2k with an integrable paracomplex structure ϕ
is a real realization of the paraholomorphic manifoldMk(R(j)) over the algebra R(j).

A tensor field ω of type (0, q) is called a pure tensor field with respect to ϕ if
ω(ϕX1, X2, . . . , Xq) = ω(X1, ϕX2, . . . , Xq) = · · · = ω(X1, X2, . . . , ϕXq)

for any X1, . . . , Xq ∈ ℑ
1
0(M2k). The real model of a paracomplex tensor field

∗

ω on Mk(R(j)) is a (0, q)-tensor field on M2k,
being pure with respect to ϕ. Pure tensors have been studied bymany authors (see, e.g., [9,15,24–32]). Consider an operator
Φϕ : ℑ

0
q(M2k) → ℑ

0
q+1(M2k) applied to the pure tensor field ω by (see [32])

(Φϕω)(X, Y1, Y2, . . . , Yq) = (ϕX)(ω(Y1, Y2, . . . , Yq)) − X(ω(ϕY1, Y2, . . . , Yq))

+ ω((LY1ϕ)X, Y2, . . . , Yq) + · · · + ω(Y1, Y2, . . . , (LYqϕ)X),

where LY denotes the Lie differentiationwith respect to Y . Letϕ be a (an almost) paracomplex structure onM2k andΦϕω = 0,

the (almost) paracomplex tensor field
∗

ω on Mk(R(j)) is said to be (almost) paraholomorphic (see [25,32,33]). Thus a (an
almost) paraholomorphic tensor field

∗

ω onMk(R(j)) is realized onM2k in the form of a pure tensor field ω, such that
(Φϕω)(X, Y1, Y2, . . . , Yq) = 0

for any X, Y1, . . . , Yq ∈ ℑ
1
0(M2k). Therefore, the tensor field ω on M2k is also called a (an almost) paraholomorphic tensor

field.
An almost paracomplex Norden manifold (M2k, ϕ, g) is defined to be a real differentiable manifold M2k endowed with

an almost paracomplex structure ϕ and a Riemannian metric g satisfying the Nordenian property (or purity condition)
g(ϕX, Y ) = g(X, ϕY )

for any X, Y ∈ ℑ
1
0(M2k). Manifolds of this kind are referred to as anti-Hermitian and B-manifolds (see [15,24,28,31]). If ϕ

is integrable, we say that (M2k, ϕ, g) is a paracomplex Norden manifold. A paracomplex Norden manifold (M2k, ϕ, g) is a

realization of the paraholomorphic manifold (Mk(R(j)),
∗

g), where
∗

g= (
∗

g
uv

), u, v = 1, . . . , k is a paracomplex metric tensor

field onMk(R(j)).
In a paracomplex Norden manifold, a paracomplex Norden metric g is called paraholomorphic if

(Φϕg)(X, Y , Z) = 0 (3.1)

for any X, Y , Z ∈ ℑ
1
0(M2k). The paracomplex Norden manifold with paraholomorphic Norden metric (M2k, ϕ, g) is called a

paraholomorphic Norden manifold.
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In [28], Salimov and his collaborators have proved that for an almost paracomplex manifold with Norden metric g , the
condition Φϕg = 0 is equivalent to ∇ϕ = 0, where ∇ is the Levi-Civita connection of g (for complex version see [26]).
By virtue of this point of view, paraholomorphic Norden manifolds are similar to Kähler manifolds. Therefore, there exist a
one-to-one correspondence between para-Kähler–Norden manifolds and paracomplex Norden manifolds with a paraholo-
morphic metric. Recall that in such a manifold, the Riemannian curvature tensor is pure and paraholomorphic, also the
curvature scalar is a locally paraholomorphic function (see [28]).

Let (M, g) be an n-dimensional Riemannian manifold and denote by r , the norm, a vector u = (yi), i.e. r2 = gjiyjyi. The
Cheeger Gromoll metric CGg on the tangent bundle TM is given by

CGg(HX, HY ) =
V (g(X, Y )),

CGg(HX, VY ) = 0,

CGg(VX, VY ) =
1
α

V (g(X, Y )) + g(X, u)g(Y , u)


for all vector fields X, Y ∈ ℑ
1
0(M), where V (g(X, Y )) = (g(X, Y )) ◦ π and α = 1 + r2.

In [9], we defined an almost paracomplex structure JCG on TM by the formulas
JCG(HX) =

√
α VX −

1
1 +

√
α
g(X, u) Vu,

JCG(VX) =
1

√
α

HX +
1

√
α(1 +

√
α)

g(X, u) Hu,

and we have proved that the almost paracomplex Norden manifold

TM, JCG ,CG g


is never a para-Kähler-Norden manifold

(or a paraholomorphic Norden manifold).
Consider a Riemannian metric ga of Cheeger Gromoll type defined by the following formulas (see also, [10,34])

ga(HX, HY ) =
V (g(X, Y )),

ga(HX, VY ) = 0, (3.2)
ga(VX, VY ) = a(r2)

V (g(X, Y )) + g(X, u)g(Y , u)


for all vector fields X, Y ∈ ℑ
1
0(M), where a : [0, ∞) −→ (0, ∞). This metric is a generalization of the Cheeger Gromoll

metric.
We define an almost paracomplex structure Ja on TM by

Ja(HX) =
1

√
a


VX −

1
√

α(1 +
√

α)
g(X, u) Vu


,

Ja(VX) =
√
a


HX +
1

1 +
√

α
g(X, u) Hu


,

(3.3)

for all X, Y ∈ ℑ
1
0(M). Note that Ja(Hu) =

1
√

α·a
V
u and Ja(Vu) =

√
α · a Hu. By using (3.2) and (3.3), one can easily check

that the Riemannian metric ga is pure with respect to the almost paracomplex structure Ja. Hence we state the following
theorem.

Theorem 1. Let (M, g) be a Riemannianmanifold and TM be its tangent bundle equipped with the Riemannianmetric ga defined
by (3.2) and the paracomplex structure Ja defined by (3.3). The triple (TM, Ja, ga) is an almost paracomplex Norden manifold.

We now are interested in the paraholomorphy property of the Riemannian metric ga with respect to the almost
paracomplex structure Ja. Therefore, we shall need the following proposition.

Proposition 1 ([34]). Let (M, g) be a Riemannian manifold and equip its tangent bundle TM with the Riemannian metric ga.
Then the corresponding Levi-Civita connection ∇

a satisfies the following

∇
a
HX

HY =
H(∇XY ) −

1
2

V (R(X, Y )u),

∇
a
HX

VY =
V (∇XY ) +

a
2

H(R(u, Y )X),

∇
a
V X

HY =
a
2

H
(R(u, X)Y ),

∇
a
V X

VY = L

g(X, u)VY + g(Y , u)VX


+

1 − L
α

g(X, Y )Vu −
1
α
g(X, u)g(Y , u)Vu,

(3.4)

where L =
a′(r2)
2a(r2)

and α = 1 + r2.
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The covariant derivative

(∇aX Ja)Y = ∇
aX (JaY ) − Ja(∇aXY )

of the almost paracomplex structure Ja computed taking into account (3.4) is

(i) (∇a
HX Ja)

HY =

√
a

2
H(R(X, Y )u + R(u, Y )X),

(ii) (∇a
HX Ja)

VY = −

√
a

2
V (R(X, Y )u + R(u, Y )X) +

√
a

2(1 +
√

α)
g(Y , u)V (R(u, X)u)

+
1

√
a
√

α(1 +
√

α)
g(R(u, Y )X, u)Vu,

(iii) (∇a
V X Ja)

HY =
−L
√
a
g(X, u)VY +

L
√
a
√

α
g(Y , u)VX

+
1 + 2

√
α − L(1 +

√
α)

√
aα(1 +

√
α)

g(X, Y )Vu + g(X, u)g(Y , u)Vu

−

√
a

2
V (R(u, X)Y ) +

√
a

2
√

α(1 +
√

α)
g(R(u, X)Y , u)Vu,

(iv) (∇a
V X Ja)

VY =
a′

2
√
a
g(X, u)HY −

a′

2
√
a
g(Y , u)HX

+
a
√
a

2
H(R(u, X)Y ) +

a
√
a

2(1 +
√

α)

H(R(u, X)u)

+
a′(1 +

√
α) − 2a

2
√
a
√

α(1 +
√

α)
g(X, Y )Hu +

a′(1 +
√

α) − 2a
√

α

2
√
a(1 +

√
α)2

g(X, u)g(Y , u)Hu.

(3.5)

From (3.5), we certainly say that ∇
aJa ≠ 0. In this case ΦJaga ≠ 0. Hence we have the theorem below.

Theorem 2. Let (M, g) be a Riemannian manifold and let TM be its tangent bundle with the Riemannian metric ga and the
paracomplex structure Ja. The Riemannian metric ga is never paraholomorphic with respect to the paracomplex structure Ja, i.e.
the triple (TM, Ja, ga) is never a para-Kähler-Norden manifold.

Let us consider a more general metric of Cheeger Gromoll type, which is a family of Riemannian metrics depending on
two parameters. This metric is defined in [11] by the following formulas

ga,b(HX, HY ) =
V (g(X, Y )), (3.6)

ga,b(HX, VY ) = 0,

ga,b(VX, VY ) = a(r2)V (g(X, Y )) + b(r2)g(X, u)g(Y , u)

for all vector field X, Y ∈ ℑ
1
0(M), where a, b : [0, ∞) −→ (0, ∞), a > 0 and also called it ga,b. The Sasaki metric and the

Cheeger Gromoll metric are particular cases of this metric. Really, for a = 1 and b = 0, the Sasaki metric is obtained, while
the Cheeger Gromoll metric for a = b =

1
α
.

An almost paracomplex structure on TM , for which the Riemannian metric ga,b is pure with respect to the structure, is
defined by

Ja,b(HX) =
1

√
a
VX −

1
α − 1


1

√
a

+
1

√
a + b(α − 1)


g(X, u)Vu,

Ja,b(VX) =
√
aHX −

1
α − 1

(
√
a +


a + b(α − 1))g(X, u) Hu.

(3.7)

for all X, Y ∈ ℑ
1
0(M) and we call it Ja,b. Also note that Ja(Hu) = −

1
√
a+b(α−1)

V
u and Ja(Vu) = −

√
a + b(α − 1) Hu. Hence,

we have the result as follows.

Theorem 3. Let (M, g) be a Riemannian manifold and TM be its tangent bundle equipped with the Riemannian metric ga,b
defined by (3.6) and the paracomplex structure Ja,b defined by (3.7). The triple (TM, Ja,b, ga,b) is an almost paracomplex Norden
manifold.

Now we give the next proposition.
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Proposition 2 ([11]). Let (M, g) be a Riemannian manifold and let TM be its tangent bundle equipped with the Riemannian
metric ga,b. Then the corresponding Levi–Civita connection ∇

a,b satisfies the following relations

∇
a,b
HX

HY =
H(∇XY ) −

1
2

V (R(X, Y )u),

∇
a,b
HX

VY =
V (∇XY ) +

a
2

H(R(u, Y )X),

∇
a,b
V X

HY =
a
2

H
(R(u, X)Y ),

∇
a,b
V X

VY = L

g(X, u)VY + g(Y , u)VX


+ Rg(X, Y )Vu + Ng(X, u)g(Y , u)Vu,

(3.8)

where L =
a′(r2)
2a(r2)

, R =
2b(r2)−a′(r2)

2(a(r2)+(α−1)b(r2))
and N =

a(r2)b′(r2)−2a′(r2)b(r2)
2a(r2)(a(r2)+(α−1)b(r2))

.

Having determined Levi-Civita connection ∇
a,b, we can compute the covariant derivative of Ja,b. By direct computation,

we obtain the following relations

(i) (∇
a,b
HX Ja,b)

HY =

√
a

2
H(R(X, Y )u + R(u, Y )X),

(ii) (∇
a,b
HX Ja,b)

VY = −

√
a

2
V (R(X, Y )u + R(u, Y )X) −

√
a +

√
a + b(α − 1)

2(α − 1)


g(Y , u)V (R(u, X)u)

+

√
a(

√
a +

√
a + b(α − 1))

2(α − 1)
√
a + b(α − 1)

g(R(u, Y )X, u)Vu,

(iii) (∇
a,b
V X Ja,b)

HY =
−a′

2a
√
a
g(X, u)VY +

a′

2a
√
a
g(Y , u)VX

+
−(α − 1)a′

− 2(−a +

a2 + ab(α − 1))

2
√
a(α − 1)(a + b(α − 1))

g(X, Y )Vu −

√
a

2
V (R(u, X)Y )

+


ab′

− 2a′b +

2a′

−
4a

α−1


(a + b(α − 1))

 √
a + b(α − 1) +


a′

+ b′
+ 3b +

2a
α−1


2a

√
a

2a
√
a(a + b(α − 1))

√
a + b(α − 1)

× g(X, u)g(Y , u)Vu +
a

2(α − 1)


1

√
a

+
1

√
a + b(α − 1)


g(R(u, X)Y , u)Vu,

(iv) (∇
a,b
V X Ja,b)

VY =
a′

2
√
a
g(X, u)HY −

a′

2
√
a
g(Y , u)HX

+
a
√
a

2
H(R(u, X)Y ) −

a(
√
a +

√
a + b(α − 1))

2(α − 1)
g(Y , u) H(R(u, X)u)

+
−a′(α − 1) − 2(−a +


a2 + ab(α − 1))

2(α − 1)
√
a + b(α − 1)

g(X, Y )Hu

+
(4a2 − 4a


a2 + ab(α − 1)) − (4a′

√
a + b(α − 1) + 4

√
aa′

+ 3
√
ab′(α − 1) − 2

√
ab)

√
a(α − 1)

2a(α − 1)2
√
a + b(α − 1)

× g(X, u)g(Y , u)Hu.

(3.9)

If a is a positive constant and b vanishes, from (3.9), we write ∇
a,bJa,b = 0 if and only if the Riemannian manifold (M, g)

is flat. Otherwise, ∇a,bJa,b ≠ 0, i.e. (TM, Ja,b, ga,b) is never a paraholomorphic Norden manifold (or a para-Kähler-Norden
manifold). Thus, we have the next theorem.

Theorem 4. Let (M, g) be a Riemannianmanifold and TM be its tangent bundle equippedwith the Riemannianmetric ga,b defined
by (3.6) and the paracomplex structure Ja,b defined by (3.7). The triple (TM, Ja,b, ga,b) is a paraholomorphic Norden manifold if
and only if a = C(positive const.), b = 0 and the Riemannian manifold (M, g) is flat.

Remark 1. Let (M, g) be a Riemannian manifold and TM its tangent bundle. If a = 1 and b = 0 in (3.6) and (3.7), the
Riemannian metric ga,b is the Sasaki metric Sg and the paracomplex structure Ja,b is the paracomplex structure JS being
compatible with the Sasaki metric. In [9], it is proved that the triple (TM, JS, Sg) is a paraholomorphic Norden manifold if
and only if (M, g) is flat.

If a = C(positive const.) and b = 0 in (3.6), the Riemannian metric ga,b is a Sasaki type metric. By virtue of Theorem 3.6
in [9] and Theorems 2 and 4 in the present paper, we have the following result.

Corollary 1. There is no Cheeger Gromoll type structure on TM such that TM is a paraholomorphic Norden manifold (or a para-
Kähler-Norden manifold).
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4. Killing vector fields with respect to the Riemannian metric ga,b

With a torsion-free affine connection∇ given onM , we can introduce on each induced coordinate neighborhood π−1(U)
of TM a frame field which is very useful in our computation. In each local chart U ⊂ M , we put X(j) =

∂

∂xj
, j = 1, . . . , n. Then

from (2.1) and (2.2), we see that these vector fields have, respectively, local expressions
HX(j) = δh

j ∂h + (−Γ h
sj x

s)∂h
VX(j) = δh

j ∂h

with respect to the natural frame

∂h, ∂h


, where δh

j -Kronecker delta. These 2n vector fields are linear independent
and generate, respectively, the horizontal distribution of ∇ and the vertical distribution of TM . We have called the set
HX(j),

VX(j)

the frame adapted to the affine connection ∇ in π−1(U) ⊂ TM . On putting

Ej =
HX(j),

Ej =
VX(j),

we write the adapted frame as {Eλ} =

Ej, Ej


.

dxh, δyh


is the dual frame of


Ei, Ei


, where δyh = dyh + ybΓ h

badx
a. By

straightforward calculation, we have the following lemma.

Lemma 1 ([21,35]). The Lie brackets of the adapted frame of TM satisfy the following identities

Ej, Ei


= ybR a

ijbEc
Ej, Ei


= Γ a

ji Ea
Ej, Ei


= 0

where R a
ijb denote the components of the curvature tensor of M.

Using (2.1)–(2.3), we have

HX =


X jδh

j
−X jΓ h

sj y
s


= X j


δh
j

−Γ h
sj y

s


= X jEj

VX =


0
Xh


=


0
X jδh

j


= X j


0
δh
j


= X jEj,

and

CX =


X jδh

j
ys∂sX j


= X j


δh
j

−Γ h
sj y

s


+ ym∇mX j


0
δh
j


= X jEj + ym∇mX jEj

with respect to the adapted frame {Eλ}.
We shall need a new vector field on TM . For any vector field Y ∈ ℑ

1
0(M) with the components (Y h), let YA be a vector

field on TM defined by

YA = {−a(r2)yr∇ iYr}Ei +


(α − 1)(a′(r2) − b(r2)) + 2a(r2)
2a(r2)

Y i
−

a′(r2)
a(r2)

gksY kysyi

Ei,

with respect to the adapted frame {Eλ}, where α = 1 + r2 and r2 = gijyiyj. Clearly the lift YA is a smooth vector field on TM .
Let LX be the Lie derivation with respect to the vector fieldX , then we have the following lemma.

Lemma 2 (See [36]). The Lie derivations of the adapted frame and its dual basis with respect toX = vhEh + vhEh are given as
follows

(1) LXEh = −(Ehva)Ea +


ybvcR a

hcb − vbΓ a
b h − Eh(va)


Ea

(2) LXEh = −(Ehv
a)Ea +


vbΓ a

b h − Ehv
a Ea

(3) LXdxh = (Eavh)dxa + (Eāvh)δya

(4) LXδyh =


ycvbR h

bac + vbΓ h
b a + Eavh


dxa −


vbΓ h

b a − Eavh


δya.
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If g = gijdxidxj is the expression of the Riemannian metric g , the metric ga,b is expressed in the adapted local frame by

ga,b = gijdxidxj + hijδyiδyj,

where hij is the function on π−1(U) defined by hij = a(r2)gij + b(r2)gisgtjysyt .
We shall first state the following lemma, which is needed later on.

Lemma 3. The Lie derivatives LXga,b with respect to the vector fieldX = vhEh + vhEh are given as follows

LXga,b = (va∂agij + gajEiva
+ giaEjva)dxidxj +


2haj(ycvbR a

bic + vbΓ a
b i + Eiva) + 2gaiEjv

a

dxiδyj

+

vaEahij + vaEahij − 2hai(v

bΓ a
b j − Ejv

a)

δyiδyj.

Proof. Proof of Lemma 3 is similar to the proof of Proposition 2.3 of Yamauchi [35]. �

The general forms of Killing vector fields on (TM, ga,b) are given by

Theorem 5. Let (TM, ga,b) be the tangent bundle with the Riemannian metric ga,b of a Riemannian manifold (M, g). Let

(i) X be a Killing vector field on (M, g);
(ii) P be a (1, 1) tensor field on M which satisfies the following

(ii-1) parallel with respect to g, i.e. ∇kP i
j = 0, and

(ii-2) skew-symmetric with respect to g; Pa
i gaj + Pa

j gia = 0,
(iii) Y be a vector field on M which satisfies the following

(iii-1) ∇i∇jY k
+ ∇j∇iY k

= 0, and

(iii-2) a(r2)(R l
jrb ∇

bYs + R l
jsb ∇

bYr) = −
1
3 (∇

lY b)( 4a′(r2)−2b(r2)
a(r2)

grsgbj − 2a′(r2)−b(r2)
a(r2)

(gbsgrj + gbrgsj)).

Then the vector field on TM defined by

(♯) X =
CX + γ P + YA

is a Killing vector field on (TM, ga,b).
Conversely, every Killing vector field on (TM, ga,b) is of the form (♯).

We shall employ the natural method proposed by Tanno in [37] and prove the above result. Let TM be the tangent bundle
over M with the Riemannian metric ga,b, and letX be a Killing vector field on (TM, ga,b) such that LXga,b = 0. By means of
Lemma 3, we obtain the following three relations

va∂agij + gajEiva
+ giaEjva

= 0 (4.1)

2haj(ycvbR a
bic + vbΓ a

b i + Eiva) + 2gaiEjv
a
= 0 (4.2)

vaEahij + vaEahij − 2hai(v
bΓ a

b j − Ejv
a) = 0. (4.3)

First all, we shall study the particular cases CX, γ A and YA. Using (4.1)–(4.3) and the local expressions of CX, γ P, YA with
respect to the adapted frame, one can easily prove, by direct computation, the following lemmas.

Lemma 4. In order that a complete lift CX to TM of a vector field X on M be a Killing vector field of (TM, ga,b), it is necessary and
sufficient that X itself is a Killing vector field of (M, g).

Lemma 5. Let P be a (1, 1)-tensor field on (M, g) satisfying the conditions (ii−1) and (ii−2) in Theorem 5. Then γ P is a Killing
vector field on (TM, ga,b).

Lemma 6. Let Y be a vector field on (M, g) satisfying the conditions (iii − 1) and (iii − 2) in Theorem 5. Then YA is a Killing
vector field on (TM, ga,b).

Proof. Since sufficiency is shown by Lemmas 4–6, we now show necessity. We consider the 0-section (yi = 0) in the
coordinate neighborhoodπ−1(U) in TM and its neighborhoodW . For a vector fieldX = viEi+viEi on TM , and (x, y) = (xi, yi)
inW , we can write, by Taylor’s theorem,

vi(x, y) = vi(x, 0) + (∂rv
i)(x, 0)yr +

1
2
(∂r∂sv

i)(x, 0)yrys + · · · + [∗]
i
λ, (4.4)

vi(x, y) = vi(x, 0) + (∂rv
i)(x, 0)yr +

1
2
(∂r∂sv

i)(x, 0)yrys + · · · + [∗]
i
λ, (4.5)
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where [∗]
I
λ (I = 1, 2, . . . , 2n) is of the form:

[∗]
I
λ =

1
λ!

(∂λvI/∂yi1∂yi2 . . . ∂yiλ)(xa, θ(x, y)yb)yi1yi2 . . . yiλ; 1 ≤ i1, . . . , iλ ≤ n.

The following lemma is valid.

Lemma 7. In the above situation, the following

X = (X i(x)) = (vi(x, 0)),

Y = (Y i(x)) = (vi(x, 0)),
K = (K i

r(x)) = ((∂rv
i)(x, 0)),

E = (E i
rs(x)) = ((∂r∂sv

i)(x, 0)),

P = (P i
r(x)) = ((∂rv

i)(x, 0) − (∂rv
i)(x, 0))

are tensor fields on M [37].

For a Killing vector fieldX = viEi + viEi on TM , with the notations of Lemma 7, we can write:

vi(x, y) = X i
+ K i

ry
r
+

1
2
E i
rsy

rys + · · · + [∗]
i
λ, (4.6)

vi(x, y) = Y i
+ P̃ i

ry
r
+

1
2
Q i
rsy

rys + · · · + [∗]
i
λ, (4.7)

where P̃ i
r and Q i

rs are given by P̃ i
r = (∂rv

i)(x, 0) and Q i
rs = (∂r∂sv

i)(x, 0). Then we have

(∂jv
i)(x, y) = K i

j + E i
rjy

r
+ · · ·+ < ∗ >i

λ−1, (4.8)

(∂jv
i)(x, y) = P̃ i

j + Q i
rjy

r
+ · · · + ⟨∗⟩

i
λ−1, . . . etc. (4.9)

When we apply Taylor’s theorem to the left hand sides of (4.1)–(4.3) to some order λ, the results are the same as one
obtains by substituting (4.6)–(4.9), etc. into (4.1)–(4.3) up to order λ − 1. Furthermore the vanishing of the right hand sides
of the Eqs. (4.1)–(4.3) implies the vanishing of each coefficient (up to order λ − 1).

Substituting (4.6) into (4.1) and taking the part which does not contain yr , we have

Xa∂agij + (∂iXa)gaj + (∂jXa)gia = 0. (4.10)

Hence, the vector field X with the components (X i) is a Killing vector on (M, g). Since, by Lemma 4, CX = XaEa+(ym∇mXa)Ea
is a Killing vector on (TM, ga,b),X −

CX is also a Killing vector. Therefore, in the following, denoting X −
CX by the same

letterX , one may assume that X i
= 0 in (4.6). Then (P̃ r

i ) = (P r
i ) is a tensor field onM by Lemma 7.

Putting (4.6) and (4.7) into (4.2) (from now on, we omit this statement) and taking the part which does not contain yr ,
we get:

gaiK a
j = −a(r2)gaj∇iY a

= −a(r2)∇iYj (4.11)

which gives

K i
j = −a(r2)∇ iYj. (4.12)

Taking the coefficient of yr in (4.1), we get

K a
r ∂agij + gaj(∂iK a

r ) − gajΓ m
ri K

a
m + gia(∂jK a

r ) − giaΓ m
rj K

a
m = 0.

Using the equality ∂agij = Γ m
aj gim + Γ m

ia gmj and (4.11), we see that the last equation can be simplified to

∇i∇jYr + ∇j∇iYr = 0. (4.13)

Taking the part which does not contain yr in (4.3), we have

Pa
i gaj + Pa

j gia = 0. (4.14)

Taking the coefficient of yr in (4.2), we get

a(r2)gaj(Γ a
biP

b
r + ∂iPa

r − Γ b
ri P

a
b ) + gaiEa

jr = 0,

gaiEa
jr + a(r2)gaj∇iPa

r = 0.
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By (4.14), the last equation is simplified to

gaiEa
jr + a(r2)∇iPrj = 0,

where Prj = Pa
r gaj.

Since Ea
jr is symmetric in j and r , and (∇iPa

r )gaj = ∇iPrj is skew-symmetric in j and r by (4.14), we have

Ea
jr = 0 and ∇iPa

r = 0. (4.15)

Taking the coefficient of yr in (4.3), we get

Q a
rjgia + Q a

rigaj + Y a

2a′(r2)
a(r2)

gargij +
b(r2)
a(r2)

(giagrj + girgaj)


= 0. (4.16)

We put Q i
rs =

a′(r2)−b(r2)
a(r2)

Y igrs −
a′(r2)
a(r2)

(Y kgkrδi
s + Y kgksδi

r) + T i
rs. By a simple calculation, using (4.16), we can verify that

giaT a
rj + gajT a

ir = 0. If we put Tirj = gajT a
ir , then Tirj is symmetric in i and r , and skew-symmetric i and j. Hence Tirj = 0. That is

Q i
rs =

a′(r2) − b(r2)
a(r2)

Y igrs −
a′(r2)
a(r2)

(Y kgkrδi
s + Y kgksδi

r). (4.17)

Finally, we consider the coefficient of yrys in (4.2), we get by virtue of (4.17)

K b
r Rbisj + K b

s Rrjbi + (∇iY a)


a′(r2) − b(r2)

a(r2)
grsgaj +

2b(r2) − a′(r2)
a(r2)

gargsj −
a′(r2)
a(r2)

gasgrj


+ 2gai(∂s∂r∂jv

a)(x, 0) = 0. (4.18)

Taking the skew-symmetric part s and j of (4.18), we get

2K b
r Rbisj + K b

s Rrjbi − K b
j Rrsbi = −(∇iY a)


2a′(r2) − b(r2)

a(r2)
grsgaj −

2a′(r2) − b(r2)
a(r2)

gasgrj


. (4.19)

Taking the symmetric part s and r of (4.19), we get

K b
s Rrjbi + K b

r Rbisj = −
1
3
(∇iY a)


4a′(r2) − 2b(r2)

a(r2)
grsgaj −

2a′(r2) − b(r2)
a(r2)

(gasgrj + gargsj)


. (4.20)

Now, by (4.14) and (4.15), we see that γ P is a Killing vector field on (TM, ga,b) by Lemma 5. By (4.12), (4.13), (4.20) and
Lemma 6, YA is a Killing vector field on (TM, ga,b).

Summing up we find that X ∈ ℑ
1
0(TM) is a Killing vector field with respect to the Riemannian metric ga,b of Cheeger

Gromoll type iff

X̃ = {X i
− a(r2)yr∇ iYr}Ei +


ys(∇sX i

+ P i
s) +

(α − 1)(a′(r2) − b(r2)) + 2a(r2)
2a(r2)

Y i
−

a′(r2)
a(r2)

gksY kysyi

Ei

=
CX + γ P + YA

for each local coordinate systems (xi), i = 1, . . . , n on M . This proves the assertion and the conditions (i), (ii-1), (ii-2),
(iii-1), (iii-2) are direct consequences of (4.10), (4.12)–(4.15) and (4.20). �

Let X be a vector field on TM with components (vh, vh) with respect to the adapted frame

Eh, Eh


. Then X is a fibre-

preserving vector field on TM if and only if vh depend only on the variables

xh


. In the case, the vector fieldX in Theorem 5

reducesZ =
CX+γ P+

V ′

Y , where V ′

Y = {
(α−1)(a′(r2)−b(r2))+2a(r2)

2a(r2)
Y i

−
a′(r2)
a(r2)

gksY kysyi}Ei. Note that
V ′

Y is a vertical vector field

on TM . In fact, f ∈ ℑ
0
0(M); V ′

Y (V f ) = 0. Also, note that CX and γ P are fibre-preserving vector fields on TM , respectively. By
virtue of Theorem 5 and its proof, we have the following result.

Theorem 6. Let (TM, ga,b) be the tangent bundle with the Riemannian metric ga,b of a Riemannian manifold (M, g). Let

(i) X be a Killing vector field on (M, g);
(ii) P be a (1, 1) tensor field on M which satisfies the following

(ii-1) parallel with respect to g, i.e. ∇kP i
j = 0, and

(ii-2) skew-symmetric with respect to g; Pa
i gaj + Pa

j gia = 0,
(iii) Y be a vector field on M which is parallel with respect to g.
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Then the fibre-preserving vector field on TM defined by

(∗)Z =
CX + γ P +

V ′

Y

is a fibre-preserving Killing vector field on (TM, ga,b).
Conversely, every fibre-preserving Killing vector field on (TM, ga,b) is of the form (∗).

In Theorem 5, if we consider the manifold (M, g) is compact and if necessary, orientable, then Y satisfying (iii-1 and 2)
is parallel [8,37]. Hence we have the following theorem.

Theorem 7. In Theorem 5, if (M, g) is compact, then (♯) isX =
CX + γ P +

V ′

Y .

Theorem 8. In Theorem 5, if (M, g) is an Einstein with non-zero scalar curvature with the condition 2a(r2) S
n + (n −

1) 4a′(r2)−2b(r2)
3a(r2)

≠ 0, then Y satisfying (iii − 1 and 2) vanishes, in which case (♯) isX =
CX + γ P.

Proof. Contracting (iii-2) with respect to l and j, we obtain

a(r2)(Rrb∇
bYs + Rsb∇

bYr) = −
1
3


4a′(r2) − 2b(r2)

a(r2)
(∇bYb)grs −

2a′(r2) − b(r2)
a(r2)

(∇rYs + ∇sYr)


where Rij denotes the Ricci curvature tensor of (M, g). Since (M, g) satisfies Rrb =

S
ngrb for non-zero scalar curvature S, we

have

a(r2)

S
n
grb∇bYs +

S
n
gsb∇bYr


= −

1
3


4a′(r2) − 2b(r2)

a(r2)
(∇bYb)grs −

2a′(r2) − b(r2)
a(r2)

(∇rYs + ∇sYr)


,

from which
a(r2)

S
n

−
2a′(r2) − b(r2)

3a(r2)


(∇rYs + ∇sYr) = −

4a′(r2) − 2b(r2)
3a(r2)

(∇bYb)grs.

Multiplying both sides of the last equation by g rs, and summing over r and s, we get
2a(r2)

S
n

+ (n − 1)
4a′(r2) − 2b(r2)

3a(r2)


∇

sYs = 0.

Since 2a(r2) S
n + (n − 1) 4a′(r2)−2b(r2)

3a(r2)
≠ 0, we have ∇

sYs = 0, which means that ∇rY r
= 0.

Now, by virtue of (iii-1) and the Ricci identity

∇i∇jY r
− ∇j∇iY r

= R r
ijs Y

s,

we get

∇i∇jY r
= −

1
2
R r
jis Y s.

Contracting with respect to r and j, and applying∇rY r
= 0, we have RisY s

= 0, that is S
ngisY

s
=

S
nYs = 0. Hence Y = 0, since

S ≠ 0. �

We at last come to the following result.

Theorem 9. Let (TM, ga,b) be the tangent bundle with the Riemannian metric ga,b of Cheeger Gromoll type of a Riemannian
manifold (M, g). If (M, g) is compact and orientable, and if the first and second Betti numbers vanish, then the Lie algebra of
Killing vectors on (M, g) and the Lie algebra of Killing vectors on (TM, ga,b) are isomorphic, via the correspondence X →

CX.

Proof. M being compact, Y satisfying (iii-1 and 2) is parallel. Applying Hodge’s theorem [38], by virtue of b1(M) = 0, we
have Y = 0. Furthermore, if the (1, 1)-tensor field P is parallel then, by b2(M) = 0 and Hodge’s theorem, we have P = 0.
Hence every Killing vector field on (TM, ga,b) is of the form CX for some Killing vector field X on (M, g). On the other hand,
for any vector fields X and Y onM , it is known that C [X, Y ] =


CX ,C Y


. This proves the theorem. �

If a Riemannian manifoldM is isometrically immersed in the Euclidean En+r , then there exist onM, r symmetric tensors
b(ρ)

ij , ρ = 1, 2, . . . , r , such that the curvature tensor onM has the represantation

Rijkl =

r
ρ=1

(b(ρ)

jk b(ρ)

il − b(ρ)

jl b(ρ)

ik ).

Now, let us consider that for the Riemannian manifold M , the curvature tensor has such a representation in the
neighborhood of every point, with tensors b(ρ)

ij defined in each neighborhood only. The Riemannian manifold M is called

intrinsically semi-convex if all b(ρ)

ij are positive semi-definite, and the Riemannian manifold is called intrinsically convex if
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at least one tensor is positive definite. In [39, p. 172], it is proven that if a compact orientable Riemannian manifold M is
intrinsically convex, then the first two Betti numbers are zero, i.e. b1(M) = b2(M) = 0. Using the result, we obtain, as a
corollary to Theorem 9, the following conclusion.

Corollary 2. Let the Riemannianmanifold (M, g) be compact, orientable and intrinsically convex, and TM its tangent bundle with
the Riemannian metric ga,b. Then the Lie algebra of Killing vectors on (M, g) and the Lie algebra of Killing vectors on (TM, ga,b)
are isomorphic, via the correspondence X →

CX.

5. Geodesics in the tangent bundle (TM, ga,b)

An important geometric problem is to find the geodesics on the smoothmanifoldswith respect to the Riemannianmetrics
(see [21,40–44]). In [21], Yano and Ishihara proved that the curves on the tangent bundles of Riemannian manifolds are
geodesics with respect to certain lifts of the metric from the base manifold, if and only if the curves are obtained as certain
types of lifts of the geodesics from the base manifold. In [44], Salimov and his collaborators studied the analogous problem
for the tensor bundles.

LetC : [0, 1] → TM be a curve on TM and suppose thatC is expressed locally by xA = xA(t), i.e., xh = xh(t), xh = xh(t) =

yh(t) with respect to induced coordinates (xh, xh) in π−1(U) ⊂ TM, t being a parameter. Then the curve C = π ◦C onM is
called the projection of the curveC and denoted by πC , which is expressed locally by xh = xh(t). Let Xh(t) be a vector field
along C . Then, on TM we define a curveC by

xh = xh(t)
xh = Xh(t).

(5.1)

If the curve (5.1) satisfies at all points the relation

δXh

dt
=

dXh

dt
+ Γ h

ji
dxj

dt
X i

= 0,

then the curveC is said to be a horizontal lift of the curve C and denoted by HC [21, p. 172]. If Xh is the tangent vector field
dxh
dt to C , then the curveC defined by (5.1) is called the natural lift of the curve C and denoted by C∗.

We write ▽
a,b
Eα

Eβ =
a,bΓ

γ

αβEγ with respect to the adapted frame {Eλ} of TM , where a,bΓ
γ

αβ denote the Christoffel symbols
constructed by ga,b. The particular values of a,bΓ

γ

αβ for different indices, on taking account of (3.8), are found to be

a,bΓ h
ji = Γ h

ji ,
a,bΓ h

ji = −
1
2
ykR h

jik

a,bΓ h
ji =

a
2
ykR h

kij ,
a,bΓ h

ji = Γ h
ji

a,bΓ h
ji =

a
2
R h
kji ,

a,bΓ h
ji = 0

a,bΓ h
ji = 0

a,bΓ h
ji = L(yjδh

i + yiδh
j ) + Rgjiyh + Nyjyiyh

(5.2)

with respect to the adapted frame, where yj = gjiyi and L =
a′(r2)
2a(r2)

, R =
2b(r2)−a′(r2)

2(a(r2)+(α−1)b(r2))
,N =

a(r2)b′(r2)−2a′(r2)b(r2)
2a(r2)(a(r2)+(α−1)b(r2))

.

The geodesics of the connection a,b
∇ is given by the differential equations

δ2xA

dt2
=

d2xA

dt2
+

a,bΓ A
CB

dxC

dt
dxB

dt
= 0, (5.3)

with respect to the induced coordinates (xh, xh), where t is the arc length of a curve on TM .
We write down the form equivalent to (5.3), namely,

d
dt


θα

dt


+

a,bΓ α
γβ

θγ

dt
θβ

dt
= 0

with respect to adapted frame {Eλ}, where

θh

dt
=

dxh

dt
,

θ h̄

dt
=

δyh

dt
=

dyh

dt
+ Γ h

ji
dxj

dt
yi
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along a curve xA = xA(t) on TM . Taking account of (5.2), then we have
(a)

δ2xh

dt2
+

a
2
ykRh

kji
δyj

dt
dxi

dt
= 0,

(b)
δ2yh

dt2
+ [L(yjδh

i + yiδh
j ) + Rgjiyh + Nyjyiyh]

δyj

dt
δyi

dt
= 0.

(5.4)

Thus we have the following result.

Theorem 10. Let C̃ be a curve on TM and locally expressed by xh = xh(t), xh̄ = yh(t) with respect to the induced coordinates
(xh, xh̄) in π−1(U) ⊂ TM. The curve C̃ is a geodesic of ga,b, if it satisfies Eqs. (5.4).

If a curveC satisfying (5.4) lies on a fibre given by xh = const, then by virtue of dxh
dt = 0 and δyh

dt =
dyh

dt + Γ h
ij

dxi
dt y

j
=

dyh

dt ,
Eqs. (5.4) reduce to

d2yh

dt2
+ [L(yjδh

i + yiδh
j ) + Rgjiyh + Nyjyiyh]

dyj

dt
dyi

dt
= 0. (5.5)

Hence we have the result as follows.

Theorem 11. If a geodesic lies on a fibre of TM with metric ga,b, the geodesic is expressed by Eq. (5.5).

Let C = π ◦
HC be a geodesic of ∇ on M . Then δ2xh

dt2
= 0. Using the condition δ2xh

dt2
= 0 and the condition δyj

dt =
δXh

dt = 0,
we have the theorem below.

Theorem 12. The horizontal lift of a geodesic on M is always geodesic on TM with the metric ga,b.

Let now C = π ◦ C∗ be a geodesic of ∇ on M , i.e. δ2xh

dt2
=

δ
dt


dxh
dt


= 0. On the other hand, from definition of the natural

lift of the curve, we obtain

δyh

dt
=

δ

dt


dxh

dt


= 0. (5.6)

By virtue of (5.4) and (5.6) we easily see that the natural lift of a curve on M defined xh = xh(t) is geodesic on TM with the
metric ga,b. Thus we have the last theorem.

Theorem 13. The natural lift C∗ of any geodesic on M is a geodesic on TM with the metric ga,b.
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