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1. Introduction and statement of the results

Kamowitz and Scheinberg [1] studied compact composition operators on Lip(X, d), the Banach space of all bounded
Lipschitz functions f from a metric space (X, d) into the field of real or complex numbers K, endowed with the norm

∥f ∥d = max {∥f ∥∞ , Ld(f )} ,

where ∥f ∥∞ is the supremum norm of f and

Ld(f ) = sup


|f (x) − f (y)|
d(x, y)

: x, y ∈ X, x ≠ y


.

They proved that if (X, d) is a compact metric space and φ: X → X is a Lipschitz mapping, then the composition operator
Cφ: Lip(X, d) → Lip(X, d), defined by Cφ(f ) = f ◦φ, is compact if and only if φ is supercontractive. This means that for each
ε > 0, there exists δ > 0 such that d(φ(x), φ(y))/d(x, y) < ε whenever 0 < d(x, y) < δ. Really, they stated this result for
the space of complex-valued Lipschitz functions f on X with the norm ∥f ∥∞ + Ld(f ); but the same proof works also in the
real-valued case and with the norm ∥f ∥d.

Our first aim in this paper is to give a more complete characterization of compact composition operators on Lip(X, d)
without assuming compactness on X . Namely we prove the following result.

Theorem 1.1. Let (X, d) be a metric space and let φ: X → X be a Lipschitz mapping. Then the operator Cφ: Lip(X, d) →

Lip(X, d) is compact if and only if φ is supercontractive and φ(X) is totally bounded in X.

The purpose of removing the compactness hypothesis on the metric space (X, d) is not new when one studies a linear
preserver problem in the context of Lipschitz spaces. We can cite in this direction the papers by Araujo and Dubarbie [2]
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and Weaver [3] in their studies of the representation of surjective linear isometries of Lip(X, d) by means of weighted
composition operators, and those of Araujo and Dubarbie [4] and Leung [5] on biseparating maps of Lipschitz spaces.

Our approach lies in tackling the problem for pointed Lipschitz spaces Lip0 that generalize the Lipschitz spaces Lip.
Let (X, d) be a pointed metric space, that is, a metric space with a base point e ∈ X . Then Lip0(X, d) is the Banach space

of all Lipschitz functions f : X → K such that f (e) = 0 with the norm Ld(f ). If X is bounded, diam(X) denotes the diameter
of X .

Our main result is the following characterization of compact composition operators on Lip0 spaces.

Theorem 1.2. Let (X, d) be a bounded pointed metric space and let φ: X → X be a base point-preserving Lipschitz mapping.
Then the operator Cφ: Lip0(X, d) → Lip0(X, d) is compact if and only if φ is supercontractive and φ(X) is totally bounded in X.

Moreover, we obtain the analogous result for compact composition operators on little Lipschitz spaces lip(X, d) that
satisfy a kind of uniform point separation property.

Given ametric space (X, d), lip(X, d) is the closed subspace of Lip(X, d) formed by all those functions f in Lip(X, d)which
are supercontractive, that is,

lim
t→0

sup
0<d(x,y)<t

|f (x) − f (y)|
d(x, y)

= 0.

We refer the reader to the book [6] for a complete study on all these spaces of Lipschitz functions. Following Weaver [6,
Definition 3.2.1], we introduce the following property.

Definition 1.1. Let (X, d) be a metric space, not assumed to be compact. It is said that a linear subspace M of Lip(X, d)
separates points uniformly on bounded subsets of X if for each bounded set K ⊂ X , there exists a constant a ≥ 1 (which
may depend on K ) such that for every x, y ∈ K , some f ∈ M satisfies ∥f ∥d ≤ a and |f (x) − f (y)| = d(x, y).

Note that Lip(X, d) separates points uniformly on bounded subsets K ⊂ X with a = max {1, diam(K)} by taking, for
each x ∈ K , the function f (z) = min {diam(K), d(x, z)} defined on X . On the other hand, if X is a connected and complete
Riemannian manifold, then lip(X, d) does not separate points because it contains only constant functions [6, Example
3.1.5]. However, lip(X, d) satisfies the aforementioned uniform separation property when X is uniformly discrete (that is,
inf {d(x, y): x ≠ y} > 0) since lip(X, d) = Lip(X, d), or when X is a totally disconnected compact metric space [6, Example
3.1.6].

Moreover, replacing the metric d by a metric dα where 0 < α < 1, the spaces lip(X, dα) have the uniform separation
property on bounded subsets K ⊂ X with a = 2(1−α) max {1, diam(K)}. It suffices to notice that Lip(X, d) ⊂ lip(X, dα) and
∥f ∥dα ≤ 2(1−α) ∥f ∥d for all f ∈ Lip(X, d).

Theorem 1.3. Let (X, d) be a metric space and φ: X → X a bounded Lipschitz mapping. Assume that lip(X, d) separates points
uniformly on bounded subsets of X. Then the operator Cφ: lip(X, d) → lip(X, d) is compact if and only if φ is supercontractive
and φ(X) is totally bounded in X.

We must point out that Theorem 1.3 extends also the result obtained by Kamowitz and Scheinberg in [1] for lip(X, dα)
with X compact and 0 < α < 1. Furthermore, Theorems 1.1–1.3 hold for composition operators Cφ from Lip(X, dX )
(Lip0(X, dX ), lip(X, dX )) into Lip(Y , dY ) (respectively, Lip0(Y , dY ), lip(Y , dY )).

Our second aim is to study the spectrum of compact composition operators on Lipschitz spaces Lip(X, d) and lip(X, d).
In [1, Theorem 2], Kamowitz and Scheinberg claim that if (X, d) is a compact metric space and Cφ: Lip(X, d) → Lip(X, d)
is a nonzero compact composition operator, then the spectrum σ(Cφ) of Cφ has only two points, 0 and 1. However, when
X is not connected, this need not be true as the following modification of an example due to Kamowitz and Scheinberg [1]
shows.

Example 1.1. Take the sets Z = [−1, −1/2] ∪ [1/2, 1] and Y = [−1/2, −1/4] ∪ [1/4, 1/2] endowed, respectively, with
the metrics

dZ (x, y) = |x − y|, ∀x, y ∈ Z; dY (x, y) =


|x − y|, ∀x, y ∈ Y .

Let X = Y ∪ Z and let d: X × X → R be the distance on X given by

d(x, y) =


dZ (x, y) if x, y ∈ Z;

dY (x, y) if x, y ∈ Y ;

dZ (x, −1/2) + dY (−1/2, y) if x ∈ [−1, −1/2], y ∈ Y ;

dZ (y, −1/2) + dY (−1/2, x) if y ∈ [−1, −1/2], x ∈ Y ;

dZ (x, 1/2) + dY (1/2, y) if x ∈ [1/2, 1], y ∈ Y ;

dZ (y, 1/2) + dY (1/2, x) if y ∈ [1/2, 1], x ∈ Y .
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Notice that X is compact since the topology generated by d is the usual topology of X . Consider now the map φ: X → X
defined by

φ(x) =


−2x if x ∈ Y ,
1 if x ∈ [−1, −1/2],
−1 if x ∈ [1/2, 1].

It is not hard to check thatφ is Lipschitz and supercontractive, and thus Cφ: Lip(X, d) → Lip(X, d) is compact by Theorem1.1.
However, −1 is in the spectrum of Cφ since the function f : X → R given by

f (x) =


−1 if x ∈ [−1, −1/4],
1 if x ∈ [1/4, 1],

belongs to Lip(X, d) and f ◦ φ = −f .

Let us recall that if X is a set, n ∈ N and φ: X → X , then a point x0 ∈ X is called a fixed point of φ of order n if φn(x0) = x0
and φk(x0) ≠ x0 for all k = 1, . . . , n − 1. Using these points, we correct the flaw in [1, Theorem 2] as follows.

Theorem 1.4. Let (X, d) be a metric space, φ: X → X a Lipschitz mapping,φ its extension to the completionX of X and A the
set of natural numbers n such that φ has a fixed point of order n.

(i) If Cφ: Lip(X, d) → Lip(X, d) is a compact operator, then A is finite and

σ(Cφ) \ {0} =


n∈A

{λ ∈ K: λn
= 1}.

(ii) Assume further that φ is bounded and lip(X, d) separates points uniformly on bounded subsets of X. If Cφ: lip(X, d) →

lip(X, d) is a compact operator, then A is finite and

σ(Cφ) \ {0} =


n∈A

{λ ∈ K: λn
= 1}.

In both cases, if X is in addition infinite and connected, then σ(Cφ) = {0, 1}.

The r-connectedness of a metric space provides a very useful tool for analysing the linear isometries of spaces Lip(X, d)
and lip(X, d) (see [6]). We use this type of connectedness in the proof of Theorem 1.4. The argument given in the proof of
Theorem 2 in [1] fails because, unlike the r-connected components, the number of connected components of a compact
metric space need not be finite.

2. Proofs

Before going into the proof of Theorem 1.2, we deduce Theorem 1.1 from Theorem 1.2. To do this, we recall that every
Lip space is isometrically isomorphic to a certain Lip0 space.

Lemma 2.1. (See Proposition 1.7.1 and Theorem 1.7.2 in [6]). Let (X, d) be a metric space, e ∉ X and X0 = X ∪ {e}.

(i) The mapping d0: X0 × X0 → R given by

d0(x, y) = min {d(x, y), 2} , d0(x, e) = d0(e, y) = 1 (x, y ∈ X), d0(e, e) = 0,

is a distance on X0.
(ii) The mapping Φ: Lip(X, d) → Lip0(X0, d0) defined by

Φ(f )(x) = f (x) (x ∈ X), Φ(f )(e) = 0,

is an isometric isomorphism.

We also will need the next easy result.

Lemma 2.2. Let (X, d) be ametric space and let e ∉ X. Let (X0, d0) be themetric space given above. For eachmapping φ: X → X,
define φ0: X0 → X0 by

φ0(x) = φ(x) (x ∈ X), φ0(e) = e.

Then the following hold.

(i) If φ is Lipschitz, then φ0 is Lipschitz.
(ii) φ is supercontractive if and only if φ0 is supercontractive.
(iii) φ(X) is totally bounded in X if and only if φ0(X0) is totally bounded in X0.
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Let us recall that a linear operator between Banach spaces T : E → F is compact if T takes bounded sets in E into relatively
compact sets in F . If E, F and G are Banach spaces and S: E → F and T : F → G are bounded linear operators, then TS is
compact if either S or T is compact.

Proof of Theorem 1.1. We have a metric space (X, d) and a Lipschitz mapping φ: X → X . Let us choose a point e ∉ X and
define X0, d0, Φ and φ0 as in Lemmas 2.1 and 2.2. Clearly, (X0, d0) is a bounded pointed metric space and φ0: X0 → X0 a base
point-preserving Lipschitz mapping. Hence we can apply Theorem 1.2 to the operator Cφ0 : Lip0(X0, d0) → Lip0(X0, d0).

On the one hand, an easy verification yields ΦCφ = Cφ0Φ and then it is deduced readily that Cφ: Lip(X, d) → Lip(X, d)
is compact if and only if Cφ0 : Lip0(X0, d0) → Lip0(X0, d0) is compact. On the other hand, Cφ0 : Lip0(X0, d0) → Lip0(X0, d0) is
compact if and only if φ0 is supercontractive and φ(X0) is totally bounded in X0 by Theorem 1.2. This is equivalent to that φ
is supercontractive and φ(X) is totally bounded in X by Lemma 2.2, and the proof is complete. �

Remark 2.1. Observe that if φ: X → X is a Lipschitz mapping, then φ0: X0 → X0 is the unique base point-preserving
Lipschitz mapping making the equality ΦCφ = Cφ0Φ holds.

In the proof of Theorem 1.2, we use the following characterization of the compactness of the composition operators on
Lip0(X, d).

Proposition 2.3. Let (X, d) be a pointed metric space and let φ: X → X be a base point-preserving Lipschitz mapping. Then the
operator Cφ: Lip0(X, d) → Lip0(X, d) is compact if and only if for each bounded sequence {fn} in Lip0(X, d) which converges to
zero uniformly on totally bounded subsets of X, there exists a subsequence {fnk} such that Ld(fnk ◦ φ) → 0 as k → ∞.

For the proof we need two lemmas.

Lemma 2.4. Let (X, d) be a pointed metric space and let {fn} be a sequence in Lip0(X, d) that converges to a function f in
Lip0(X, d). Then {fn} converges to f pointwise on X.

Proof. Let x ∈ X . If x = e, we have fn(x) = 0 for all n and so limn→∞ fn(x) = 0 = f (x). Assume now x ≠ e and
let ε > 0 be given. Then there exists a m ∈ N such that Ld(fn − f ) < ε/d(x, e) whenever n ≥ m. It follows that
|fn(x) − f (x)| ≤ Ld(fn − f )d(x, e) < ε if n ≥ m, and thus {fn(x)} converges to f (x). �

Lemma 2.5. Let (X, d) be a pointed metric space. Then every bounded sequence {fn} in Lip0(X, d) has a subsequence that
converges pointwise on X to a function f ∈ Lip0(X, d). Moreover, this convergence is uniform on each totally bounded subset
of X.

Proof. According to [6, Theorem 2.2.2], Lip0(X, d) is isometrically isomorphic to a dual space. Then, by the Banach–Alaoglu
Theorem, there exist a function f ∈ Lip0(X, d) and a subsequence


fnk


such that


fnk


converges to f in the weak*

topology on Lip0(X, d). Since the weak* topology agrees with the topology of pointwise convergence on bounded subsets
of Lip0(X, d) [6, Theorem 2.2.2], it follows that


fnk


converges pointwise on X to f . Finally, let K be any totally bounded

subset of X and let ε > 0 be given. Let M = sup

Ld(fnk): k ∈ N


∪ {Ld(f )}. Since K is totally bounded, there exists a finite

set {x1, . . . , xm} ⊂ K such that K ⊂
m

i=1 B(xi, ε/3M). Now choose k0 so large that
fnk(xi) − f (xi)

 < ε/3 whenever k ≥ k0
and 1 ≤ i ≤ m. Now, given x ∈ K , choose i such that x ∈ B(xi, ε/3M), and for all k ≥ k0 we havefnk(x) − f (x)

 ≤
fnk(x) − fnk(xi)

 +
fnk(xi) − f (xi)

 + |f (xi) − f (x)|

< Md(x, xi) +
ε

3
+ Md(x, xi) < ε.

Thus
fnk(x) − f (x)

 < ε for all x ∈ K whenever k ≥ k0. This proves that

fnk


converges to f uniformly on K . �

Let us recall that a linear operator between Banach spaces T : E → F is compact if and only if every bounded sequence
{xn} in E has a subsequence


xnk


such that the sequence


T (xnk)


converges in F .

Proof of Proposition 2.3. Let us assume that Cφ: Lip0(X, d) → Lip0(X, d) is compact and let {fn} be a bounded sequence
in Lip0(X, d) that converges uniformly to 0 on totally bounded subsets of X . Since Cφ is compact, there exist a subsequence
fnk


of {fn} and a function f ∈ Lip0(X, d) such that Ld(fnk ◦ φ − f ) → 0 as k → ∞. By Lemma 2.4, for each x ∈ X the

sequence

fnk(φ(x))


converges to f (x) as k → ∞, but, on the other hand, this sequence converges to 0 as k → ∞. Hence

f (x) = 0 for every x ∈ X and so f = 0 as desired.
Conversely, let us assume that every bounded sequence {fn} in Lip0(X, d) which converges to zero uniformly on totally

bounded subsets of X has a subsequence {fnk} satisfying Ld(fnk ◦φ) → 0 as k → ∞. To prove that Cφ: Lip0(X, d) → Lip0(X, d)
is compact, take a bounded sequence {fn} in Lip0(X, d). By Lemma 2.5, we have a subsequence


fnk


and a function

f ∈ Lip0(X, d) such that

fnk


converges uniformly to f on totally bounded subsets of X . By our assumption,


fnk − f


has a subsequence, denoted next also by


fnk − f


, satisfying Ld(fnk ◦ φ − f ◦ φ) → 0 as k → ∞. This proves that

Cφ: Lip0(X, d) → Lip0(X, d) is compact. �
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Let (X, d) be a pointed metric space. For each x ∈ X , let δx: Lip0(X, d) → K be the evaluation functional defined by
δx(f ) = f (x) for all f ∈ Lip0(X, d). It is known that δx ∈ Lip0(X, d)∗ and ∥δx∥ = d(x, e) (see [6, p. 27]). Moreover, it is easy
to show that

δx − δy
 = d(x, y) for all x, y ∈ X .

Now, we are in a position to prove our main theorem.

Proof of Theorem 1.2 (Necessity). Let us assume first that φ(X) is not totally bounded in X . Then for some ε > 0, there is
a sequence {xn} in X such that d(φ(xn), φ(xm)) ≥ ε for all n,m ∈ N such that n ≠ m. It follows that

δφ(xn) − δφ(xm)

 ≥ ε
whenever n ≠ m, and this says us that the set

δφ(x): x ∈ X


=

C∗

φ(δx): x ∈ X


is not relatively compact in Lip0(X, d)∗. Since {δx: x ∈ X} ⊂ Lip0(X, d)∗ and ∥δx∥ ≤ diam(X) for all x ∈ X , we infer that
C∗

φ : Lip0(X, d)∗ → Lip0(X, d)∗ is not compact and, by Schauder’s Theorem, the same is true for the operator Cφ: Lip0(X, d) →

Lip0(X, d) as required.
Suppose now that φ is not supercontractive. Then there exist ε > 0 and, for each n ∈ N, xn, yn ∈ X such that

0 < d(xn, yn) <
1
n
,

d(φ(xn), φ(yn))
d(xn, yn)

≥ ε.

For each n ∈ N, let fn: X → R be defined by

fn(x) =
exp(−nd(e, φ(yn))) − exp(−nd(x, φ(yn)))

n
.

It is clear that fn(e) = 0 and, for every x, y ∈ X with x ≠ y,

|fn(x) − fn(y)|
d(x, y)

=
|exp(−nd(y, φ(yn))) − exp(−nd(x, φ(yn)))|

nd(x, y)
.

If d(x, φ(yn)) ≠ d(y, φ(yn)), the Mean Value Theorem applied to the function gn(t) = exp(−nt) on the interval with
extremes d(y, φ(yn)) and d(x, φ(yn)) guarantees the existence of a real number θn > 0 between d(y, φ(yn)) and d(x, φ(yn))
satisfying

|exp(−nd(y, φ(yn))) − exp(−nd(x, φ(yn)))|
nd(x, y)

=
exp(−nθn) |d(y, φ(yn)) − d(x, φ(yn))|

d(x, y)
.

Since |d(y, φ(yn)) − d(x, φ(yn))| ≤ d(x, y) and exp(−nθn) < 1, it follows that

|fn(x) − fn(y)|
d(x, y)

< 1.

This inequality holds clearly if d(x, φ(yn)) = d(y, φ(yn)). Therefore fn belongs to Lip0(X, d) and Ld(fn) ≤ 1. Hence {fn} is a
bounded sequence in Lip0(X, d) and, in addition, {fn} converges to 0 uniformly on X since ∥fn∥∞ ≤ 2/n for all n ∈ N.

However, it is not possible to find a subsequence

fnk


for which Ld(fnk ◦ φ) → 0 as k → ∞ because

Ld(fn ◦ φ) ≥
|fn(φ(xn)) − fn(φ(yn))|

d(xn, yn)

=
|1 − exp(−nd(φ(xn), φ(yn)))|

nd(xn, yn)

= exp(−nρn)
d(φ(xn), φ(yn))

d(xn, yn)
≥ exp(−Ld(φ))ε

for all n ∈ N, where we now have applied theMean Value Theorem to gn(t) = exp(−nt) on the interval [0, d(φ(xn), φ(yn))]
and the estimate exp(−nρn) ≥ exp(−Ld(φ)) which follows because g is decreasing and

0 < ρn < d(φ(xn), φ(yn)) ≤ Ld(φ)d(xn, yn) <
1
n
Ld(φ).

Hence Cφ: Lip0(X, d) → Lip0(X, d) is not compact by Proposition 2.3, and this completes the proof of the necessary condition
of the theorem. Some steps in the preceding argument have been motivated by ideas from the proof of [1, Theorem 1].

Sufficiency. Let us suppose that φ is supercontractive and φ(X) is totally bounded in X . Let {fn} be a bounded sequence in
Lip0(X, d) that converges uniformly to 0 on totally bounded subsets of X . Let b > 0 be such that Ld(fn) < b for all n ∈ N. Let
ε > 0 be given. We can take a δ > 0 such that if x, y ∈ X and 0 < d(x, y) < δ, then

d(φ(x), φ(y))
d(x, y)

<
ε

2b
.
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Let x, y ∈ X . If 0 < d(x, y) < δ, we have

|fn(φ(x)) − fn(φ(y))|
d(x, y)

=
|fn(φ(x)) − fn(φ(y))|

d(φ(x), φ(y))
d(φ(x), φ(y))

d(x, y)
<

ε

2
.

If d(x, y) ≥ δ, we get

|fn(φ(x)) − fn(φ(y))|
d(x, y)

≤
2 ∥fn ◦ φ∥∞

δ
.

Since {fn} → 0 uniformly on φ(X), there is a m ∈ N such that for n ≥ m, we have ∥fn ◦ φ∥∞ < εδ/4. It follows that

|fn(φ(x)) − fn(φ(y))|
d(x, y)

<
ε

2

whenever n ≥ m and d(x, y) ≥ δ. So we have proved that Ld(fn ◦ φ) < ε for all n ≥ m. We conclude that Cφ: Lip0(X, d) →

Lip0(X, d) is compact by Proposition 2.3 and this proves the theorem. �

We now prove Theorem 1.3.

Proof of Theorem 1.3. Assume that φ is supercontractive and φ(X) is totally bounded in X . Let {fn} be a bounded sequence
in lip(X, d). Then {fn} is bounded in Lip(X, d) and since Cφ is a compact operator from Lip(X, d) into itself by Theorem 1.1,
there exist a subsequence


fnk


and a function f ∈ Lip(X, d) such that

fnk ◦ φ − f

d → 0 as k → ∞. Since fnk ◦φ ∈ lip(X, d)

for all k ∈ N and lip(X, d) is closed in Lip(X, d), then f ∈ lip(X, d). This shows that Cφ: lip(X, d) → lip(X, d) is compact.
In order to prove the converse, note first that as lip(X, d) separates points uniformly on bounded subsets of X and

φ(X) ⊂ X is bounded, there is a constant a ≥ 1 (depending perhaps on φ(X)) such for any pair x, y ∈ X , some function
fxy ∈ lip(X, d) satisfies

fxyd ≤ a and
fxy(φ(x)) − fxy(φ(y))

 = d(φ(x), φ(y)).
Suppose that φ(X) is not totally bounded in X . Then for some ε > 0, there exists a sequence {xn} in X so that

d(φ(xn), φ(xm)) ≥ ε whenever n ≠ m. We can take a function fnm ∈ lip(X, d) satisfying the conditions ∥fnm∥d ≤ a and
|fnm(φ(xn)) − fnm(φ(xm))| = d(φ(xn), φ(xm)). It follows that

ε ≤ d(φ(xn), φ(xm))

= |fnm(φ(xn)) − fnm(φ(xm))|

≤
δφ(xn) − δφ(xm)

 ∥fnm∥d

≤ a
δφ(xn) − δφ(xm)


whenever n ≠ m, and this says us that the set

δφ(x): x ∈ X


=

C∗

φ(δx): x ∈ X


is not relatively compact in lip(X, d)∗. It can be seen easily that {δx: x ∈ X} ⊂ lip(X, d)∗ and ∥δx∥ = 1 for all x ∈ X . Then
we deduce that C∗

φ : lip(X, d)∗ → lip(X, d)∗ is not compact. Hence Cφ: lip(X, d) → lip(X, d) is not compact by Schauder’s
Theorem, as we desired.

Suppose now that Cφ: lip(X, d) → lip(X, d) is compact. Then the set Cφ(B) = {f ◦ φ: f ∈ B} is relatively compact in
lip(X, d), where B denotes the unit ball of lip(X, d). Let ε > 0 be given. For each f ∈ B, let

B

f ◦ φ,

ε

4a


=


g ∈ lip(X, d): ∥g − f ◦ φ∥d <

ε

4a


.

Since Cφ(B) is relatively compact, there exist f1, . . . , fn ∈ B such that Cφ(B) ⊂
n

k=1 B(fk ◦φ, ε/4a). For every f ∈ B, we have
Ld(f ◦ φ − fk ◦ φ) < ε/4a for some k ∈ {1, . . . , n} and, consequently,

|f (φ(x)) − f (φ(y))|
d(x, y)

≤
|(f − fk)(φ(x)) − (f − fk)(φ(y))|

d(x, y)
+

|fk(φ(x)) − fk(φ(y))|
d(x, y)

≤ Ld((f − fk) ◦ φ) +
|fk(φ(x)) − fk(φ(y))|

d(x, y)

<
ε

4a
+

|fk(φ(x)) − fk(φ(y))|
d(x, y)

for any x, y ∈ X with x ≠ y. For every k = 1, . . . , n, there is a δk > 0 such that

|fk(φ(x)) − fk(φ(y))|
d(x, y)

<
ε

4a

whenever 0 < d(x, y) < δk. Taking δ = min {δ1, . . . , δn}, we have

|f (φ(x)) − f (φ(y))|
d(x, y)

<
ε

2a
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if 0 < d(x, y) < δ. Since
δφ(x) − δφ(y)

 := sup {|f (φ(x)) − f (φ(y))| : f ∈ B}, we conclude thatδφ(x) − δφ(y)


d(x, y)
<

ε

a

whenever 0 < d(x, y) < δ.
If x, y ∈ X and 0 < d(x, y) < δ, we may take a function fxy ∈ lip(X, d) satisfying

fxyd ≤ a and
fxy(φ(x)) − fxy(φ(y))

 =

d(φ(x), φ(y)). Then we have

d(φ(x), φ(y))
d(x, y)

=

fxy(φ(x)) − fxy(φ(y))


d(x, y)
≤

a
δφ(x) − δφ(y)


d(x, y)

< ε,

and hence φ is supercontractive. This completes the proof of the theorem. �

It remains to prove Theorem 1.4. First, we recall that if X is a metric space,X is its completion and Y is a complete metric
space, then every Lipschitz mapping φ from X to Y has a Lipschitz extensionφ fromX to Y , and the Lipschitz constant does
not change [6, Proposition 1.7.1]. For the case that φ: X → X is also supercontractive, it is straightforward to obtain the
following fact.

Lemma 2.6. Let X be a metric space,X its completion and φ: X → X a supercontractive Lipschitz mapping. Then the extension
of φ toX,φ:X → X, is supercontractive.

We now give a sufficient condition for a scalar to be in the spectrum of a (not necessarily compact) operator Cφ .

Proposition 2.7. Let (X, d) be a metric space, φ: X → X a Lipschitz mapping and Cφ the composition operator induced by φ on
Lip(X, d) (respectively, on lip(X, d), where lip(X, d) separates points uniformly on bounded subsets of X). If φ has a fixed point
of order n ∈ N and λ ∈ K satisfies λn

= 1, then λ ∈ σ(Cφ).

Proof. Let x0 ∈ X be a fixed point ofφ of order n ∈ N and let λ ∈ K be such that λn
= 1. If n = 1, then λ = 1 ∈ σ(Cφ).

Assumenown ≥ 2. Since Lip(X, d) and lip(X, d) separate points uniformly onbounded subsets ofX , we can take the constant
a > 1 involved in Definition 1.1. Denote B =

φ(x0), . . . ,φn−1(x0)

and pick ε = (1/5a)d(x0, B). Consider z, y1, . . . , yn−1 ∈

X such that d(z, x0) < ε and d(yk,φk(x0)) < ε/(n − 1) for k = 1, . . . , n − 1. Notice that d(z, {y1, . . . , yn−1}) ≥ d(x0, B)/2.
For each k ∈ {1, . . . , n − 1} there exists a function fk ∈ Lip(X, d) (respectively, fk ∈ lip(X, d)) with Ld(fk) ≤ a for which
|fk(z) − fk(yk)| = d(z, yk). Take g ∈ Lip(X, d) (respectively, g ∈ lip(X, d)) defined by

g(x) = min


|fk(x) − fk(yk)|
d(z, yk)

: k = 1, . . . , n − 1


(x ∈ X).

Clearly, g(z) = 1, g(y1) = · · · = g(yn−1) = 0 and Ld(g) ≤ 2a/d(x0, B). To obtain a contradiction, suppose λf − f ◦ φ = g
for some f ∈ Lip(X, d) (respectively, f ∈ lip(X, d)). It is easy to prove by induction that

λnf − f ◦ φn
= λn−1g +

n−1
k=1

λn−1−kg ◦ φk,

and therefore

λnf (x0) −f φn(x0)


= λn−1g(x0) +

n−1
k=1

λn−1−kg φk(x0)

.

As the first member of this equality vanishes, it follows that

−λn−1g(x0) =

n−1
k=1

λn−1−kg φk(x0)

.

Taking modulus, we have

|g(x0)| ≤

n−1
k=1

g φk(x0)

−g(yk) ≤

n−1
k=1

Ld(g)d
φk(x0), yk


< Ld(g)ε.

On the other hand, from the inequality |g(x0) −g(z)| ≤ Ld(g)d(x0, z), we infer that 1− Ld(g)ε ≤ g(x0). Hence 1 ≤ 2Ld(g)ε.
Then 1 ≤ 4aε/d(x0, B) = 4/5, which is impossible. This proves that λI − Cφ is not surjective and thus λ ∈ σ(Cφ). �

Second, we recall the notion of r-connectedness (see [6]). Given r > 0, it is said that a metric space (X, d) is r-connected
if there are not two nonempty disjoint sets A, B ⊂ X such that X = A∪ B and d(A, B) ≥ r . We gather some properties about
r-connectedness.
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Lemma 2.8. Let (X, d) be a metric space and r > 0.

(i) If C1 and C2 are r-connected subsets of X such that C1 ∩ C2 ≠ ∅, then C1 ∪ C2 is r-connected.
(ii) The relation ∼, defined on X by setting x ∼ y if and only if there is a finite sequence of points x1, . . . , xk+1 ∈ X such that

x1 = x, xk+1 = y and d(xj, xj+1) < r for all j ∈ {1, . . . , k}, is an equivalence relation. The equivalence classes of this relation
are called the r-connected components of X.

(iii) The r-connected components of X are maximal r-connected subsets in X.
(iv) The r-connected components of X are open and closed subsets of X.

According to the terminology of Weaver [6, p. 80], it is said that a mapping φ: X → X is (δ, ε)-flat if 0 < d(x, y) < δ
implies |f (x) − f (y)| < ε d(x, y). Thus, ifφ is supercontractive, then for any ε > 0 there exists δ > 0 such thatφ is (δ, ε)-flat.

The following lemma will allow us to extend the results from the r-connected case to the general case.

Lemma 2.9. Let (X, d) be a compact metric space, r > 0, C a r-connected component of X and φ: X → X a (r, 1/2)-flat
mapping. Then there are k, n ∈ N and a r-connected component C0 of X such that both φk(C) and φn(C0) are contained in C0.

Proof. Let x ∈ C and letm ∈ N be the number of r-connected components of X . As the set

{φ(x), φ2(x), . . . , φm+1(x)}

is contained in the union of the r-connected components of X , then there exist a r-connected component C0 and j, k ∈

{1, . . . ,m+ 1} with k < j such that φk(x), φj(x) ∈ C0. Thus φk+(j−k)(x) ∈ φj−k(C0) ∩ C0 and φk(x) ∈ φk(C) ∩ C0. Taking into
account that φ is (r, 1/2)-flat, it follows easily that φj−k(C0) and φk(C) are r-connected subsets. Since φj−k(C0) and C0 are
r-connected, and φj−k(C0) ∩ C0 ≠ ∅, it has that φj−k(C0) ∪ C0 is r-connected. Then φj−k(C0) ⊂ φj−k(C0) ∪ C0 = C0 because
C0 is a maximal r-connected subset in X . Analogously, φk(C) ⊂ C0. �

Wenowprove an auxiliary lemma. Its second part is interesting in its own right because it provides a fixed point theorem
for a (r, 1/2)-flat mapping on a r-connected compact metric space.

Lemma 2.10. Let r > 0, (X, d) a r-connected compact metric space and φ: X → X a (r, 1/2)-flat mapping. Then the following
assertions hold.

(i) The sequence {diam(φn(X))} converges to 0.
(ii) φ has a unique fixed point x0 ∈ X and


∞

n=1 φn(X) = {x0}.
(iii) If φ is supercontractive, λ ∈ K \ {0, 1} and f ∈ Lip(X, d) satisfies f ◦ φ = λf , then f = 0.

Proof. (i) For each x ∈ X , we denote B(x, r) = {y ∈ X: d(x, y) < r}. Since X is compact, there exists a finite subset F ⊂ X
such that X =


x∈F B(x, r). Let m be the number of elements of F and n ∈ N.

If y0, z0 ∈ F , it is easy to check by induction onm that there exist k ∈ {1, . . . ,m} and x1, . . . , xk+1 ∈ F such that x1 = y0,
xk+1 = z0 and d(B(xj, r), B(xj+1, r)) < r for all j ∈ {1, . . . , k}. Then, given j ∈ {1, . . . , k}, there are x ∈ B(xj, r) and
w ∈ B(xj+1, r) such that d(x, w) < r . So, applying the condition of φ, we have

d(φn(xj), φn(xj+1)) ≤ d(φn(xj), φn(x)) + d(φn(x), φn(w)) + d(φn(w), φn(xj+1)) <
3r
2n

.

Therefore

d(φn(y0), φn(z0)) ≤

k
j=1

d(φn(xj), φn(xj+1)) <

k
j=1

3r
2n

≤
3mr
2n

.

Now, let y, z ∈ X . Then y ∈ B(y0, r) and z ∈ B(z0, r) for some y0, z0 ∈ F . Taking into account what has been stated above,
it follows that

d(φn(y), φn(z)) ≤ d(φn(y), φn(y0)) + d(φn(y0), φn(z0)) + d(φn(z0), φn(z)) <
(3m + 2)r

2n
.

Since y and z are arbitrary, we have diam(φn(X)) ≤ (3m + 2)r/2n. Hence the sequence {diam(φn(X))} converges to 0.
(ii) Let x ∈ X . By (i), {φn(x)} is a Cauchy sequence in X , and hence {φn(x)} converges to a point x0 ∈ X . Let m0 ∈ N be

such that d(φn(x), x0) < r for all n ≥ m0. Since φ is (r, 1/2)-flat, we obtain that d(φ(φn(x)), φ(x0)) ≤ (1/2) d(φn(x), x0)
for all n ≥ m0. It follows that {φn+1(x)} converges to φ(x0) and therefore φ(x0) = x0.

Finally, by Cantor’s theorem, the set


∞

n=1 φn(X) contains only one element, so


∞

n=1 φn(X) = {x0}. Furthermore, this
equality implies that x0 is the unique fixed point of φ.

(iii) We follow [1, Theorem 2]. By (ii), we have φ(x0) = x0; hence f (x0) = λf (x0), and therefore f (x0) = 0. Using that φ
is supercontractive, we obtain δ > 0 such that

d(φ(x), x0) <
|λ|

2
d(x, x0), ∀x ∈ X, 0 < d(x, x0) < δ.
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By (i) there ism ∈ N such that diam(φm(X)) < δ. Given x ∈ φm(X) and n ∈ N, we have

|λ|
n
|f (x)| = |f (φn(x)) − f (x0)| ≤ Ld(f ) d(φn(x), x0) ≤

|λ|
n

2n
Ld(f ) d(x, x0) <

|λ|
n

2n
Ld(f ) δ,

which implies f (x) = 0. Now, for each z ∈ X , we have λmf (z) = f (φm(z)) = 0, and so f (z) = 0. �

We are ready to demonstrate Theorem 1.4.

Proof of Theorem 1.4. We prove (i) and similar arguments apply to obtain (ii). Let Cφ be a compact composition operator
of Lip(X, d) induced by a Lipschitz mapping φ: X → X . Then φ is supercontractive and φ(X) is totally bounded in X by
Theorem 1.1.

Let λ ∈ σ(Cφ) \ {0}. Since Cφ is compact, λ is an eigenvalue of Cφ , that is, there exists f ∈ Lip(X, d) with f ≠ 0 such that
f ◦ φ = λf .

Denote by Y the closure of φ(X) inX . Clearly, Y is compact. Notice thatφ(X) ⊂ Y and thereforef |Y is nonzero.
Sinceφ is supercontractive by Lemma 2.6, there is r > 0 such thatφ is (r, 1/2)-flat. We want to prove that λn

= 1 for
some n ∈ A. Suppose the contrary and take a r-connected component C of Y . By Lemma 2.9, there exist another r-connected
component C0 of Y and k, j ∈ N such thatφk(C) ⊂ C0 andφj(C0) ⊂ C0.

By Lemma 2.10 (ii),φj
|C0 has a unique fixed point x0 ∈ C0. Then there exists p ∈ A such that p is the order of x0. Applying

Lemma 2.10 (iii) to the maps φp
|C0 andf |C0 , and the number λp

≠ 1, we obtainf |C0 = 0. Then, given x ∈ C , we have
λkf (x) = f (φk(x)) = 0, and thereforef (x) = 0. In this way we obtainf |Y = 0, which is a contradiction. Hence λn

= 1 for
some n ∈ A and so we get that

σ(Cφ) \ {0} ⊂


n∈A

{λ ∈ K: λn
= 1}.

The converse inclusion follows from Proposition 2.7.
Now we have to prove that A is finite. Let F be the set of all x ∈ X such that x is a fixed point of φ of order n for some

n ∈ N. If we prove that F is finite, then so is A. Observe that F ⊂ Y since φ(X) ⊂ Y . Let C1, . . . , Cm be the r-connected
components of Y . Then F = ∪

m
k=1(F ∩ Ck). Given k ∈ {1, . . . ,m}, if y0, z0 ∈ F ∩ Ck, we haveφn(y0) = y0 andφp(z0) = z0 for

some n, p ∈ A, and therefore y0 and z0 are fixed points ofφnp. By applying Lemma 2.10 to the mappingφnp
|Ck : Ck → Ck, we

deduce that y0 = z0. Then F ∩ Ck has at most one point and hence F has at mostm points. This completes the proof of (i).
Suppose now that X is infinite and connected. Then Y is connected too and m = 1. By the above, F contains at most

a point. By Lemma 2.10 applied to φ|Y : Y → Y , we deduce that φ has a fixed point of order 1. Therefore A = {1} and
σ(Cφ) \ {0} = {1}. If 0 ∉ σ(Cφ), then Cφ is invertible in the algebra of bounded and linear operators on Lip(X, d). Hence
I = Cφ ◦ C−1

φ is compact and this implies that Lip(X, d) is finite-dimensional, but this is impossible since X is infinite. Hence
0 ∈ σ(Cφ) and we conclude that σ(Cφ) = {0, 1}. �

Remark 2.2. In the proof of Theorem 1.4 we have shown that the number of fixed points of φ of any order is at most the
number of r-connected components of φ(X).
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