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Whenever the defining sequence of a Carleman ultraholomorphic class (in the
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order, flat functions are constructed in the class on sectors of optimal opening.
As consequences, we obtain analogues of both Borel–Ritt–Gevrey theorem and
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1. Introduction

The Carleman ultraholomorphic classes AM(S) in a sector S of the Riemann surface of the logarithm
consist of those holomorphic functions f in S whose derivatives of order n � 0 are uniformly bounded there
by, essentially, the values n!Mn, where M = (Mn)n∈N0 is a sequence of positive real numbers. In case bounds
are not uniform on S but are valid and depend on every proper subsector of S to which the function is
restricted, we obtain the class ÃM(S) of functions with a (non-uniform) M-asymptotic expansion at 0 in S,
given by a formal power series f̂ =

∑
n�0 anz

n/n! whose coefficients are again suitably bounded in terms
of M (we write f ∼M f̂ and (an)n∈N0 ∈ ΛM). The map sending f to (an)n∈N0 is the asymptotic Borel map B̃,
and f is said to be flat if B̃(f) is the null sequence. See Section 2.2 for the precise definitions of all these
classes and concepts.

In order to obtain good properties for these classes, the sequence M is usually subject to some standard
conditions; in particular, we will only consider strongly regular sequences as defined by V. Thilliez [27], see
Section 2.3. The best known example is that of Gevrey classes, appearing when the sequence is chosen to
be Mα = (n!α)n∈N0 , α > 0, and for which we use the notations Aα(S), Ãα(S), Λα, f ∼α f̂ and so on, for
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simplicity. Let us denote by Sγ the sector bisected by the direction d = 0 and with opening πγ. It is well
known that B̃ : Ãα(Sγ) → Λα is surjective if, and only if, γ � α (Borel–Ritt–Gevrey theorem, see [22,23,20],
[1, Thm. 2.2.1]). It is natural to call this an extension result, and to think then about the possibility of
obtaining linear and continuous right inverses for B̃ in suitably topologized classes. On the other hand, B̃
is injective (i.e., Ãα(Sγ) does not contain nontrivial flat functions, and then the class Ãα(Sγ) is said to be
quasianalytic) if, and only if, γ > α (Watson’s lemma, see for example [2, Prop. 11]). Our main aim in this
paper is to provide generalizations of this kind of results in the framework of Carleman ultraholomorphic
classes associated with strongly regular sequences inducing a proximate order. Let us start with an overview
of the existing literature in this respect.

In 1995 V. Thilliez [26] obtained right inverses in the Gevrey case when γ < α by applying techniques
from the ultradifferentiable setting (i.e. regarding extension results for classes of smooth functions on open
subsets of R

n, determined by imposing a suitable growth of the derivatives), and the same was done by
the author in [24] by adapting the truncated Laplace transform procedure already used by J.P. Ramis
in Borel–Ritt–Gevrey theorem [22] (this second solution was well-suited for the extension of this result
to the several variable case). Regarding general classes, J. Schmets and M. Valdivia [25] extended some
results of H.-J. Petzsche [21] for ultradifferentiable classes, and applied them in order to provide the first
powerful results in the present framework. Subsequently, V. Thilliez [27] improved the results in [25] in
several respects (see Section 3.1 in his paper for the details) by relying on a double application of suitable
Whitney’s extension results for Whitney ultradifferentiable jets on compact sets with Lipschitz boundary
appearing in [21,3,5]. In particular, he introduced a growth index γ(M) ∈ (0,∞) for every strongly regular
sequence M (which for Mα equals α), and proved the following facts: if γ < γ(M), then AM(Sγ) is not
quasianalytic, and there exist right inverses for B̃, which are obtained due to the explicit construction of
nontrivial flat functions in the class AM(Sγ). Indeed, these flat functions allowed A. Lastra, S. Malek and
the author [15] to define suitable kernels and moment sequences by means of which to obtain again right
inverses by the classical truncated Laplace transform technique. Because of the integral form of the solution,
this procedure admits an easy generalization to the several variable case, and does not rest on any result
from the ultradifferentiable setting.

However, the preceding results for general classes are not fully satisfactory. Firstly, the equivalences stated
in Borel–Ritt–Gevrey theorem and Watson’s lemma for the Gevrey case are now only one-side implications.
Secondly, and strongly related to the previous remark, the need to restrict the opening of the sector Sγ

to γ < γ(M) in order to obtain flat functions in AM(Sγ) does not allow one to treat the apparently limit
situation in which γ = γ(M). Note that, in the Gevrey case, the function e−z−1/α is flat in the class Ãα(Sα),
and of course in every Aα(Sγ) for γ < α. So, our main objective will be to obtain flat functions in sectors
of optimal opening.

In this sense, we first introduce for every strongly regular sequence M a new constant ω(M), measuring the
rate of growth of the sequence M, in terms of which quasianalyticity in the classes AM(Sγ) may be properly
characterized due to a classical result of B.I. Korenbljum ([11]; see Theorem 3.2). This constant is easily
computed in concrete situations (see (10)), and indeed it is the inverse of the order of growth of the classical
function M(t) associated with M, namely M(t) = supn∈N0

log(tn/Mn), t > 0 (see (11)). Regarding the
construction of flat functions, V. Thilliez [28] had characterized flatness in ÃM(Sγ) in terms of the existence
of non-uniform estimates governed by the function e−M(1/|z|), much in the same way as the function e−z−1/α

expresses flatness in the Gevrey case. So, it became clear to us the need to construct functions in sectors
whose growth is accurately specified by the function M(t). The classical theory of growth for holomorphic
functions defined in sectorial regions, based on the notion of (constant) exponential order, showed itself not
profound enough to deal with the general case. Luckily, the theory of proximate orders, allowing to change
the constant order ρ > 0 into a function ρ(r) more closely specifying the desired rate of growth, is available
since the 1920s, and some of its quite recent developments, mainly due to L.S. Maergoiz [18], have been the
key for our success. The problem of characterizing those sequences M associated with a proximate order has
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been solved (Proposition 4.9), and it turns out that all the interesting examples of strongly regular sequences
appearing in the literature belong to this class. Whenever this is the case, the results of L.S. Maergoiz allow
us to obtain the desired flat functions in ÃM(Sω(M)) (see Theorem 4.7) and, immediately, we may generalize
Watson’s lemma, see Corollary 4.12. Subsequently, in Section 5 suitable kernels and moment sequences are
introduced, by means of which we may prove that B̃ is surjective in ÃM(Sγ) if, and only if, γ � ω(M), so
generalizing Borel–Ritt–Gevrey theorem (see Theorem 6.1).

It should be mentioned that for the standard strongly regular sequences appearing in the literature, the
value of the constants γ(M) and ω(M) agree. However, we have only been able to prove that γ(M) � ω(M)
in general. In case γ(M) < ω(M) can actually occur for some sequences, our results would definitely improve
those of V. Thilliez by enlarging the sectors for which non-quasianalyticity holds or right inverses exist. In
any case, the equivalences stated in Theorem 6.1 and Corollary 4.12 are new.

Finally, in Theorem 6.2 we gather the information concerning the existence of right inverses for B̃ in
AM(Sγ): they exist whenever γ < ω(M), and their existence, under some specific condition (satisfied, for
instance, in the Gevrey case), implies that γ < ω(M).

2. Preliminaries

2.1. Notation

We set N := {1, 2, . . .}, N0 := N ∪ {0}. R stands for the Riemann surface of the logarithm, and C�z� is
the space of formal power series in z with complex coefficients.

For γ > 0, we consider unbounded sectors

Sγ :=
{
z ∈ R:

∣∣arg(z)
∣∣ < γπ

2

}

or, in general, bounded or unbounded sectors

S(d, α, r) :=
{
z ∈ R:

∣∣arg(z) − d
∣∣ < απ

2 , |z| < r

}
, S(d, α) :=

{
z ∈ R:

∣∣arg(z) − d
∣∣ < απ

2

}

with bisecting direction d ∈ R, opening απ and (in the first case) radius r ∈ (0,∞).
A sectorial region G(d, α) with bisecting direction d ∈ R and opening απ will be a domain in R such

that G(d, α) ⊂ S(d, α), and for every β ∈ (0, α) there exists ρ = ρ(β) > 0 with S(d, β, ρ) ⊂ G(d, α). In
particular, sectors are sectorial regions.

A sector T is a bounded proper subsector of a sectorial region G (denoted by T � G) whenever the
radius of T is finite and T \ {0} ⊂ G. Given two unbounded sectors T and S, we say T is an unbounded
proper subsector of S, and we write T ≺ S, if T \ {0} ⊂ S.

H(U) denotes the space of holomorphic functions in an open set U ⊂ R.
D(z0, r) stands for the disk centered at z0 with radius r > 0.

2.2. Asymptotic expansions and ultraholomorphic classes

Given a sequence of positive real numbers M = (Mn)n∈N0 , a constant A > 0 and a sector S, we define

AM,A(S) =
{
f ∈ H(S): ‖f‖M,A := sup

z∈S, n∈N0

|f (n)(z)|
Ann!Mn

< ∞
}
.

(AM,A(S), ‖ ‖M,A) is a Banach space, and AM(S) :=
⋃

A>0 AM,A(S) is called a Carleman ultraholomorphic
class in the sector S.
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One may accordingly define classes of sequences

ΛM,A =
{
μ = (μn)n∈N0 ∈ C

N0 : |μ|M,A := sup
n∈N0

|μn|
Ann!Mn

< ∞
}
.

(ΛM,A, | |M,A) is again a Banach space, and we put ΛM :=
⋃

A>0 ΛM,A.
Since the derivatives of f ∈ AM,A(S) are Lipschitzian, for every n ∈ N0 one may define

f (n)(0) := lim
z∈S,z→0

f (n)(z) ∈ C,

and it is clear that the sequence

B̃(f) :=
(
f (n)(0)

)
n∈N0

∈ ΛM,A, f ∈ AM,A(S).

The map B̃ : AM(S) −→ ΛM so defined is the asymptotic Borel map.
Next, we will recall the relationship between these classes and the concept of asymptotic expansion.

Definition 2.1. We say a holomorphic function f in a sectorial region G admits the formal power series
f̂ =

∑∞
p=0 apz

p ∈ C�z� as its M-asymptotic expansion in G (when the variable tends to 0) if for every
T � G there exist CT , AT > 0 such that for every n ∈ N, one has∣∣∣∣∣f(z) −

n−1∑
p=0

apz
p

∣∣∣∣∣ � CTA
n
TMn|z|n, z ∈ T.

We will write f ∼M

∑∞
p=0 apz

p in G. ÃM(G) stands for the space of functions admitting M-asymptotic
expansion in G.

Definition 2.2. Given a sector S, we say f ∈ H(S) admits f̂ as its uniform M-asymptotic expansion in S of
type A > 0 if there exists C > 0 such that for every n ∈ N, one has∣∣∣∣∣f(z) −

n−1∑
p=0

apz
p

∣∣∣∣∣ � CAnMn|z|n, z ∈ S. (1)

As a consequence of Taylor’s formula and Cauchy’s integral formula for the derivatives, we have the
following result (see [2,6]).

Proposition 2.3. Let S be a sector and G a sectorial region.

(i) If f ∈ AM,A(S), then f admits f̂ =
∑

p∈N0
1
p!f

(p)(0)zp as its uniform M-asymptotic expansion in S of
type A.

(ii) f ∈ ÃM(G) if, and only if, for every T � G there exists AT > 0 such that f |T ∈ AM,AT
(T ). Hence, the

map B̃ : ÃM(G) −→ ΛM is also well defined.

Definition 2.4. A function f in any of the previous classes is said to be flat if B̃(f) is the null sequence or,
in other words, f ∼M 0̂, where 0̂ denotes the null power series.

Remark 2.5. As a consequence of Cauchy’s integral formula for the derivatives, given a sector S one can
prove that whenever T � S, there exists a constant c = c(T, S) > 0 such that the restriction to T , fT , of
functions f defined on S and admitting uniform M-asymptotic expansion in S of type A > 0, belongs to
AM,cA(T ), and moreover, if one has (1) then ‖fT ‖M,cA � C.
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2.3. Strongly regular sequences and associated functions

Most of the information in this subsection is taken from the works of A.A. Goldberg and I.V. Ostrovskii [8],
H. Komatsu [10] and V. Thilliez [27], which we refer to for further details and proofs. In what follows,
M = (Mp)p∈N0 will always stand for a sequence of positive real numbers, and we will always assume that
M0 = 1.

Definition 2.6. We say M is strongly regular if the following hold:
(α0) M is logarithmically convex: M2

p � Mp−1Mp+1 for every p ∈ N.
(μ) M is of moderate growth: there exists A > 0 such that

Mp+� � Ap+�MpM�, p, 	 ∈ N0.

(γ1) M satisfies the strong non-quasianalyticity condition: there exists B > 0 such that

∑
��p

M�

(	 + 1)M�+1
� B

Mp

Mp+1
, p ∈ N0.

Remark 2.7. In the literature a different set of conditions appears frequently when dealing with ultraholomor-
phic or ultradifferentiable classes of functions. Let us clarify the relationship between these two approaches:
If M is strongly regular, then M

′ = (n!Mn)n∈N0 verifies the standard conditions (M.1), (M.2) and (M.3)
of H. Komatsu (see [10,19]). On the other hand, if a sequence of positive real numbers M

′ = (M ′
n)n∈N0 ,

with M ′
0 = 1, verifies (M.2) and (M.3) of H. Komatsu, and moreover M := (M ′

n/n!)n∈N0 is logarithmically
convex, then M is strongly regular.

Example 2.8.

(i) The best known example of strongly regular sequence is Mα = (n!α)n∈N0 , called the Gevrey sequence
of order α > 0.

(ii) The sequences Mα,β = (n!α
∏n

m=0 logβ(e + m))n∈N0 , where α > 0 and β ∈ R, are strongly regular.
(iii) For q > 1, M = (qn2)n∈N0 is logarithmically convex and strongly non-quasianalytic, but not of moderate

growth.

For a sequence M = (Mp)p∈N0 verifying properties (α0) and (γ1) one has that the associated sequence
of quotients, m = (mp := Mp+1/Mp)p∈N0 , is an increasing sequence to infinity, so that the map hM :
[0,∞) → R, defined by

hM(t) := inf
p∈N0

Mpt
p, t > 0; hM(0) = 0,

turns out to be a non-decreasing continuous map in [0,∞) onto [0, 1]. In fact

hM(t) =
{
tpMp if t ∈ [ 1

mp
, 1
mp−1

), p = 1, 2, . . . ,
1 if t � 1/m0.

Definition 2.9. (See [21,5].) Two sequences M = (Mp)p∈N0 and M
′ = (M ′

p)p∈N0 of positive real numbers are
said to be equivalent if there exist positive constants L,H such that

LpMp � M ′
p � HpMp, p ∈ N0.
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In this case, it is straightforward to check that

hM(Lt) � hM′(t) � hM(Ht), t � 0. (2)

One may also associate to a strongly regular sequence M the function

M(t) := sup
p∈N0

log
(

tp

Mp

)
= − log

(
hM(1/t)

)
, t > 0; M(0) = 0, (3)

which is a non-decreasing continuous map in [0,∞) with limt→∞ M(t) = ∞. Indeed,

M(t) =
{
p log t− log(Mp) if t ∈ [mp−1,mp), p = 1, 2, . . . ,
0 if t ∈ [0,m0),

and one can easily check that M is convex in log t, i.e., the map t �→ M(et) is convex in R.
Some additional properties of strongly regular sequences needed in the present work are the following

ones.

Lemma 2.10. (See [27].) Let M = (Mp)p∈N0 be a strongly regular sequence and A > 0 the constant appearing
in the property (μ) in Definition 2.6. Then,

mp � A2M1/p
p � A2mp for every p ∈ N0. (4)

Let s be a real number with s � 1. There exists ρ(s) � 1 (only depending on s and M) such that

hM(t) �
(
hM

(
ρ(s)t

))s for t � 0. (5)

Remark 2.11.

(i) The condition of moderate growth (μ) plays a fundamental role in the proof of (5), which will in turn
be crucial in many of our arguments.

(ii) From property (4) we deduce that M and (mp
p)p∈N0 are equivalent.

(iii) For every p ∈ N0, the continuity of M at mp amounts to the trivial equality mp
p/Mp = mp+1

p /Mp+1.
(iv) Moreover, since the sequence m = (mp)p∈N0 (respectively, the function M(t)) increases to infinity

as p (resp. t) tends to infinity, the sequence (M(mp))p∈N0 = (log(mp
p/Mp))p∈N0 , and consequently also

(mp
p/Mp)p∈N0 , increase to infinity, starting at the value 0 and 1, respectively. Note also that the p-th

and (p + 1)-th terms of any of these two sequences are equal if, and only if, mp = mp+1.

We now recall the following definitions and facts, mainly taken from the book of A.A. Goldberg and
I.V. Ostrovskii [8].

Definition 2.12. (See [8, p. 43].) Let α(r) be a nonnegative and nondecreasing function in (c,∞) for some
c � 0 (we write α ∈ Λ). The order of α is defined as

ρ = ρ[α] := lim sup
r→∞

log+ α(r)
log r ∈ [0,∞],

where log+ = max(log, 0). α(r) is said to have finite order if ρ < ∞.

We are firstly interested in determining the order of the function M(r) ∈ Λ defined in (3) and associated
with a strongly regular sequence M. To this end, we need to recall now the definition of exponent of
convergence of a sequence and how it may be computed.
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Proposition 2.13. (See [9, p. 65].) Let (cn)n∈N0 be a nondecreasing sequence of positive real numbers tending
to infinity. The exponent of convergence of (cn)n is defined as

λ(cn) := inf
{
μ > 0:

∞∑
n=0

1
cμn

converges
}

(if the previous set is empty, we put λ(cn) = ∞). Then, one has

λ(cn) = lim sup
n→∞

log(n)
log(cn) . (6)

We will also need the following fact, which can be found in [19]: if we consider the counting function for
the sequence of quotients m, ν : (0,∞) → N0 given by

ν(r) := #{j: mj � r}, (7)

then one has that

M(t) =
t∫

0

ν(r)
r

dr, t > 0. (8)

We may now state our first result.

Theorem 2.14. Let M be strongly regular, m the sequence of its quotients and M(r) its associated function.
Then, the order of M(r) is given by

ρ[M ] = lim
r→∞

logM(r)
log r = lim sup

n→∞

log(n)
log(mn) . (9)

Remark 2.15. The function d, defined for r > max{1,m0} by d(r) = log(M(r))/ log r, will play an important
role in what follows. It is clearly continuous and piecewise continuously differentiable in its domain (meaning
that it is differentiable except at a sequence of points, tending to infinity, at any of which it is continuous
and has distinct finite lateral derivatives).

Proof of Theorem 2.14. The first equality for ρ[M ] is due to the fact that the function d(r) is eventually
strictly increasing, as we now show. It is enough to prove that d′(r) > 0 for r ∈ (mp−1,mp) and p large
enough. This is best seen by considering the auxiliary function

D(t) := d
(
et
)

= log(pt− log(Mp))
t

, t ∈
(
log(mp−1), log(mp)

)
, p ∈ N,

and then proving that D′(t) > 0 for t ∈ (log(mp−1), log(mp)) and large enough. We have

D′(t) = 1
t2

(
1 + log(Mp)

pt− log(Mp)
− log

(
pt− log(Mp)

))
, t ∈

(
log(mp−1), log(mp)

)
.

When t runs over (log(mp−1), log(mp)), the value pt− log(Mp) runs over

(
log

(
mp−1

p−1/Mp−1
)
, log

(
mp

p/Mp

))
,

which, as long as mp−1 < mp, is a nonempty interval contained in (0,∞) (see Remark 2.11(iv)).
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Observe that Mp > 1 for p large enough, what we assume from now on. Since for any A > 0 the
function y ∈ (0,∞) �→ 1 + A/y − log(y) is strictly decreasing, we will conclude that D′(t) > 0 for t ∈
(log(mp−1), log(mp)) if we have that

1 + log(Mp)
log(mp

p/Mp)
− log

(
log

(
mp

p/Mp

))
> 0.

But

1 + log(Mp)
log(mp

p/Mp)
− log

(
log

(
mp

p/Mp

))
=

log
( mp

p

log(mp
p/Mp)

)
log(mp

p/Mp)
,

whose denominator is positive; finally, note that

mp
p > log

(
mp

p

)
> log

(
mp

p

)
− log(Mp) = log

(
mp

p/Mp

)
> 0,

so that the numerator is also positive and we are done.
For the second expression of ρ[M ], we take into account the link given in (8) between M(r) and the

counting function ν(r) for m (as defined in (7)), which also belongs to Λ. We may apply Theorem 2.1.1
in [8] to deduce that the order of M(r) equals that of ν(r). Now, from Theorem 2.1.8 in [8] we know that
the order of ν(r) is in turn the exponent of convergence of m, given by the formula in (6). �
Remark 2.16.

(i) Let Mα be the Gevrey sequence of order α > 0, and Mα(r) its associated function. By means of (9), it
is obvious that ρ[Mα] = 1/α. The same is true for any sequence of the form (ann!α)n∈N0 , with a, α > 0.

(ii) Let M = (Mn)n∈N0 and M
∗ = (M∗

n)n∈N0 be strongly regular sequences such that Mn � M∗
n for every

n ∈ N0. By the very definition of the respective associated functions M(r) and M∗(r), one has that
M(r) � M∗(r) for every r � 0, and consequently ρ[M ] � ρ[M∗].

(iii) By Lemma 1.3.2 in Thilliez [27], for every strongly regular sequence M there exist positive constants
a1, a2, γ, δ, with γ < δ, such that

an1n!γ � Mn � an2n!δ, n ∈ N0.

From the two previous remarks we deduce that 1/δ � ρ[M ] � 1/γ, and, in particular, ρ[M ] ∈ (0,∞).

We next recall the notion of growth index defined and studied by V. Thilliez [27, Sect. 1.3].

Definition 2.17. Let M = (Mp)p∈N0 be a strongly regular sequence and γ > 0. We say M satisfies property
(Pγ) if there exist a sequence of real numbers m′ = (m′

p)p∈N0 and a constant a � 1 such that: (i) a−1mp �
m′

p � amp, p ∈ N, and (ii) ((p + 1)−γm′
p)p∈N0 is increasing.

The growth index of M is

γ(M) := sup
{
γ ∈ R: (Pγ) is fulfilled

}
∈ (0,∞).

Example 2.18.

(i) For the Gevrey sequence of order α > 0, one has γ(Mα) = α.
(ii) For the sequences Mα,β in Example 2.8(ii) one can check that γ(Mα,β) = α.
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3. Results on quasianalyticity in ultraholomorphic classes

We are interested in characterizing those classes in which the asymptotic Borel map is injective. First,
quasianalytic Carleman classes are defined.

Definition 3.1. Let S be a sector and M = (Mp)p∈N0 be a sequence of positive numbers. We say that AM(S)
is quasianalytic if it does not contain nontrivial flat functions.

Characterizations of quasianalyticity for general sequences M in one and several variables are available
in [13], generalizing the work of B.I. Korenbljum [11]. In this paper, we restrict our attention to the one-
variable case, and focus on strongly regular sequences, although in many of the results in this section weaker
assumptions on M suffice. As shown in the next result, quasianalyticity is governed by the opening of the
sector.

Theorem 3.2. (See [11].) Let M be strongly regular and γ > 0. The following statements are equivalent:

(i) The class AM(Sγ) is quasianalytic.
(ii)

∑∞
n=0

(
Mn

(n+1)Mn+1

)1/(γ+1) = ∞.

Accordingly, we introduce a new quantity regarding quasianalyticity.

Definition 3.3. For a strongly regular sequence M, we put

QM =
{
γ > 0: AM(Sγ) is quasianalytic

}
.

The order of quasianalyticity of M is defined as ω(M) := inf QM.

We can obtain its value due to the following result.

Theorem 3.4. For a strongly regular sequence M with associated function M(r), we have

ω(M) = lim inf
n→∞

log(mn)
log(n) = 1

λ(mn)
, (10)

and consequently,

ω(M) = 1
ρ[M ] ∈ (0,∞). (11)

Proof. Since M is strongly regular, (n!Mn)n∈N0 is logarithmically convex. So, the sequence of its quotients,( (n+1)Mn+1
Mn

)
n∈N0

, is nondecreasing and, moreover, tends to infinity because of property (γ1) in Definition 2.6.
In view of (6), the exponent of convergence of the sequence ((n+1)Mn+1/Mn)n∈N0 = ((n+1)mn)n∈N0 and
that of the sequence (mn)n∈N0 are related as follows:

λ((n+1)mn) = lim sup
n→∞

log(n)
log((n + 1)mn) = 1

1 + lim infn→∞
log(mn)
log(n)

= 1
1 + 1/λ(mn)

.

On the other hand, from Theorem 3.2 and the definition of ω(M) it is clear that

1 = λ((n+1)mn),

ω(M) + 1
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hence

ω(M) = lim inf
n→∞

log(mn)
log(n) = 1

λ(mn)
.

Comparing this to (9), and by Remark 2.16(iii), we conclude. �
Remark 3.5. Observe that πω(M) is the optimal opening for quasianalyticity, in the sense that the class
AM(S) is (respectively, is not) quasianalytic whenever the opening of S exceeds (respectively is less than) this
quantity. When the opening of the sector equals πω(M) both cases are possible, as shown in the forthcoming
Example 3.10.

Remark 3.6.

(i) Consider a pair of equivalent sequences M and M
′. Given a sector S, the spaces AM(S) and AM′(S)

coincide. For a sectorial region G, also ÃM(G) and ÃM′(G) agree. So, it is clear that ω(M) = ω(M′), and
from (11), also ρ[M ] = ρ[M ′] for the associated functions (this last fact can also be deduced from (2)).

(ii) If the strongly regular sequences M and M
∗ are such that Mn � M∗

n for every n, then AM(S) ⊂ AM∗(S)
for any sector S, and so QM∗ ⊂ QM and ω(M) � ω(M∗). Note that this fact is not at all clear from the
formula (10).

Regarding the relationship between ω(M) and γ(M), we have the following result.

Proposition 3.7. For every strongly regular sequence M one has ω(M) � γ(M).

Proof. Suppose M verifies (Pγ) (see Definition 2.17) for some γ > 0. As indicated in [27, p. 173], this easily
implies the existence of a constant a > 0 such that ann!γ � Mn for every n ∈ N0. Hence, by (ii) in the
previous remark we have γ = ω((ann!γ)n∈N0) � ω(M), and the definition of γ(M) is enough to conclude. �

According to the very definition of ω(M), the previous result is indeed equivalent to the following one,
proved by V. Thilliez [27] and, subsequently, by A. Lastra and the author [13]. However, the present argument
seems to be simpler than the ones involved in the previous proofs of this theorem.

Theorem 3.8. (See [27,13].) Let 0 < γ < γ(M). Then, the class AM(Sγ) is not quasianalytic.

It is an open problem to decide whether ω(M) = γ(M) in general. At the moment, we have not been able
to find an example showing that ω(M) > γ(M) may occur. However, from the fact that ω(M) = 1/λ(mn)
we may deduce an easy characterization for the equality of both constants.

Corollary 3.9. Let M be strongly regular. The following statements are equivalent:

(i) ω(M) = γ(M).
(ii) For every γ > γ(M) we have that

∞∑
n=0

(
1
mn

)1/γ

= ∞.
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Example 3.10. Consider the sequences Mα,β , α > 0, β ∈ R, introduced in Examples 2.8(ii) and 2.18(ii).
Applying Theorem 3.2, it is easy to check that

QMα,β
=

{
[α,∞) if α � β − 1,
(α,∞) if α < β − 1,

so that ω(Mα,β) = α = γ(Mα,β).

4. Flat functions via proximate orders

In this section we show how one can construct flat functions in the classes ÃM(Sω(M)) for a strongly
regular sequence M by relying on the notion of analytic proximate orders, appearing in the theory of growth
of entire functions and developed, among others, by E. Lindelöf, G. Valiron, B.Ja. Levin, A.A. Goldberg,
I.V. Ostrosvkii and L.S. Maergoiz (see the references [30,17,8,18]).

Definition 4.1. (See [30].) We say a real function ρ(r), defined on (c,∞) for some c � 0, is a proximate order
if the following hold:

(i) ρ(r) is continuous and piecewise continuously differentiable in (c,∞),
(ii) ρ(r) � 0 for every r > c,
(iii) limr→∞ ρ(r) = ρ < ∞,
(iv) limr→∞ rρ′(r) log(r) = 0.

Definition 4.2. Two proximate orders ρ1(r) and ρ2(r) are said to be equivalent if

lim
r→∞

(
ρ1(r) − ρ2(r)

)
log(r) = 0.

Remark 4.3. If ρ1(r) and ρ2(r) are equivalent and limr→∞ ρ1(r) = ρ, then limr→∞ ρ2(r) = ρ and
limr→∞ rρ1(r)/rρ2(r) = 1.

From the work of L.S. Maergoiz we have the following result.

Theorem 4.4. (See [18, Thm. 2.4].) Let ρ(r) be a proximate order with ρ(r) → ρ > 0 as r → ∞. For every
γ > 0 there exists an analytic function V (z) in Sγ such that:

(i) For every z ∈ Sγ ,

lim
r→∞

V (zr)
V (r) = zρ,

uniformly in the compact sets of Sγ.
(ii) V (z) = V (z) for every z ∈ Sγ (where, for z = (|z|, arg(z)), we put z = (|z|,− arg(z))).
(iii) V (r) is positive in (0,∞), monotone increasing and limr→0 V (r) = 0.
(iv) The function t ∈ R → V (et) is strictly convex (i.e. V is strictly convex relative to log(r)).
(v) The function log(V (r)) is strictly concave in (0,∞).
(vi) The function ρ0(r) := log(V (r))/ log(r), r > 0, is a proximate order equivalent to ρ(r).

We denote by B(γ, ρ(r)) the class of such functions V . They share a property that will be crucial in the
construction of flat functions.
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Proposition 4.5. (See [18, Property 2.9].) Let ρ > 0, ρ(r) be a proximate order with ρ(r) → ρ, γ � 2/ρ and
V ∈ B(γ, ρ(r)). Then, for every α ∈ (0, 1/ρ) there exist constants b > 0 and R0 > 0 such that

�
(
V (z)

)
� bV

(
|z|

)
, z ∈ Sα, |z| � R0,

where � stands for the real part.

We will also make use of the following result of V. Thilliez.

Theorem 4.6. (See [28, Proposition 4].) Let M be a strongly regular sequence and S a sector. For f ∈ H(S),
the following are equivalent:

(i) f ∈ ÃM(S) and f ∼M 0̂.
(ii) For every bounded proper subsector T of S there exist c1, c2 > 0 with

∣∣f(z)
∣∣ � c1hM

(
c2|z|

)
= c1e

−M(1/(c2|z|)), z ∈ T.

In the next result we obtain the desired flat function in case ω(M) < 2 and d(r), defined in Remark 2.15,
is a proximate order. Subsequently, we will indicate how to deal with the case ω(M) � 2. Finally, we will
determine conditions on M amounting to d(r) being a proximate order, or at least guaranteeing that d(r)
is a proximate order.

Theorem 4.7. Suppose M is a strongly regular sequence with ω(M) < 2 and such that d(r) is a proximate
order. Then, for every V ∈ B(2ω(M), d(r)) the function G defined in Sω(M) by

G(z) = exp
(
−V (1/z)

)
belongs to ÃM(Sω(M)) and it is a (nontrivial) flat function.

Proof. It is enough to reason with sectors S(0, ω, r0) � Sω(M), where 0 < ω < ω(M) and r0 > 0. If
z ∈ S(0, ω, r0), we have 1/z ∈ Sω. By our assumptions, d(r) is a proximate order, and by (9) and (11), we
have that

lim
r→∞

d(r) = ρ[M ] = 1
ω(M) .

We are in a position to apply Proposition 4.5 with ρ = 1/ω(M), ρ(r) = d(r), γ = 2ω(M) and α = ω, and
deduce the existence of constants R0 > 0 and b > 0 such that �(V (ζ)) � bV (|ζ|) whenever ζ ∈ Sω with
|ζ| � R0. Then, for z ∈ S(0, ω, 1/R0) we obtain

∣∣G(z)
∣∣ = e−�(V (1/z)) � e−bV (1/|z|),

and for a suitable C > 0 we will have |G(z)| � Ce−bV (1/|z|) for z ∈ S(0, ω, r0). Now observe that, by the
definition of B(2ω(M), d(r)), we know that the function log(V (r))/ log(r) is a proximate order equivalent
to d(r) = log(M(r))/ log(r), so that, as a consequence of Remark 4.3, we have that there exists c > 0 such
that for r > 1/r0 one has V (r) > cM(r), and

∣∣G(z)
∣∣ � Ce−bcM(1/|z|) = C

(
hM

(
|z|

))bc � ChM

(
D|z|

)
, z ∈ S(0, ω, r0),

where D > 0 is a positive constant, suitably chosen according to whether bc > 1 or not (see property (5)).
It suffices to take into account Theorem 4.6 in order to conclude. �
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Remark 4.8. In case ω(M) � 2, we may also construct nontrivial flat functions by taking into account the
following facts:

(i) Given a strongly regular sequence M = (Mn)n∈N0 and a positive real number s > 0, the sequence of
s-powers M

(s) := (Ms
n)n∈N0 is strongly regular (see Lemma 1.3.4 in [27]) and one easily checks that,

with self-explaining notation, m(s) = (ms
n)n∈N0 , M (s)(t) = sM(t1/s) for every t � 0, ω(M(s)) = sω(M),

d(s)(r) = d(r1/s)/s + log(s)/ log(r) for r large enough, and

r
(
d(s))′(r) log(r) = 1

s
r1/sd′

(
r1/s) log

(
r1/s)− log(s)

log(r)

whenever both sides are defined. So, it is clear that d(r) is a proximate order if, and only if, d(s)(r) is.
(ii) If M is strongly regular, ω(M) � 2 and d(r) is a proximate order, choose s > 0 such that sω(M) < 2.

By (i), we may apply Theorem 4.7 to M
(s) and obtain G0 ∈ ÃM(s)(Sω(M(s))) which is flat. Now, the

function G, given in Sω(M) by G(z) = G0(zs), is well-defined and it is plain to see that it is a nontrivial
flat element in ÃM(Sω(M)).

Our next objective is to characterize those M such that d(r) is a proximate order. After looking at
Remark 2.15 and Theorems 2.14 and 3.4, it is clear that we only need to care about whether rd′(r) log(r) → 0
as r → ∞. The following result provides us with statements equivalent to this fact.

Proposition 4.9. Let M be a strongly regular sequence, and d(r) its associated function. The following are
equivalent:

(i) d(r) is a proximate order,
(ii) limp→∞ mpd

′(m+
p ) log(mp) = 0,

(iii) limp→∞
p+1

M(mp) = 1
ω(M) = ρ[M ].

Proof. For convenience, write b(r) = rd′(r) log(r) whenever it exists. It is easy to obtain that

b(r) = rM ′(r)
M(r) − d(r) = p

M(r) − d(r), r ∈ (mp−1,mp), p ∈ N. (12)

Since for sufficiently large r, distinct from every mp, we know that d′(r) > 0, the function b(r) is positive.
Moreover, as M and d are both increasing and continuous for large r, we see from (12) that b(r) is decreasing
in every interval (mp−1,mp), and it presents at every mp a jump of positive height equal to

lim
r→m+

p

b(r) − lim
r→m−

p

b(r) = 1
M(mp)

.

From this it is clear that (i) holds if, and only if, limp→∞ b(m+
p ) = 0, and this is precisely (ii). Now, observe

that

b
(
m+

p

)
= p + 1

M(mp)
− d(mp),

and recall from Theorem 2.14 that limp→∞ d(mp) = ρ[M ] = 1/ω(M). So, (ii) amounts to (iii) and we are
done. �

Next we obtain some easy condition that ensures that d(r) is a proximate order.



636 J. Sanz / J. Math. Anal. Appl. 415 (2014) 623–643
Corollary 4.10. If

lim
p→∞

p log
(
mp+1

mp

)
exists (finite or not), (13)

then its value is a fortiori ω(M), d(r) is a proximate order and, moreover,

ω(M) = lim
p→∞

log(mp)
log(p)

(
instead of lim inf

p→∞
, see (10)

)
.

Proof. By Stolz’s criterion we have that limp→∞
log(mp)
log(p) exists, since

lim
p→∞

log(mp+1/mp)
log((p + 1)/p) = lim

p→∞
p log

(
mp+1

mp

)
,

and the last limit exists. We take into account (10) in order to deduce that all these limits equal ω(M). But,
again by Stolz’s criterion,

lim
p→∞

M(mp)
p + 1 = lim

p→∞

log(mp
p/Mp)

p + 1 = lim
p→∞

p log
(

mp

mp−1

)
= ω(M),

and this equality amounts to (iii) in Proposition 4.9. �
Remark 4.11.

(i) The previous condition (13) holds for every sequence Mα,β , so that in any of these cases d(r) is a
proximate order and it is possible to construct flat functions in the corresponding classes. Indeed, we
have not been able yet to provide an example of a strongly regular sequence for which d(r) is not a
proximate order, i.e., for which condition (iii) in Proposition 4.9 does not hold.

(ii) In the Gevrey case, M1/k = (p!1/k)∈N0 , let us put M1/k(r), d1/k(r), and so on, to denote the corre-
sponding associated functions. Then, one can check (see, for example, [7]) that for large r we have
c2r

k � M1/k(r) � c1r
k for suitable constants c1, c2 > 0, so that log(c2) � (d1/k(r) − k) log(r) �

log(c1) eventually. This shows one can work with the constant proximate order ρ(r) ≡ k, and any
V ∈ B(2/k, ρ(r)) will provide us (due to Theorem 4.7, and since V (r) will be bounded above and
below by rk times some suitable constants) with a flat function in the class Ã1/k(S1/k). It is easy to
see that V (z) = zk belongs to B(2/k, ρ(r)), and we obtain in this way the classical flat function in this
situation, namely G(z) = exp(−z−k).

(iii) If M is such that d(r) is not a proximate order, but there exist a proximate order ρ(r) and constants
A,B > 0 such that eventually A � (d(r)− ρ(r)) log(r) � B, then, by reasoning as indicated in (ii), one
may also construct flat functions in ÃM(Sω(M)).

We are in a position to characterize quasianalyticity in the classes ÃM(Sγ).

Corollary 4.12 (Watson’s Lemma). Suppose M is strongly regular and such that d(r) is a proximate order,
and let γ > 0 be given. The following statements are equivalent:

(i) ÃM(Sγ) is quasianalytic, i.e., it does not contain nontrivial flat functions (in other words, the Borel
map is injective in this class).

(ii) γ > ω(M).
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Proof. By Theorem 4.7 and Remark 4.8(ii), whenever γ � ω(M) we have nontrivial flat functions in
ÃM(Sγ).

Conversely, suppose γ > ω(M) and that f ∈ ÃM(Sγ) is a nontrivial flat function. Choose γ′ with
ω(M) < γ′ < γ. By Proposition 2.3(ii), the restriction of f to Sγ′ belongs to AM(Sγ′) and it is flat, so that
AM(Sγ′) is not quasianalytic, contrary to the definition of ω(M). �
Remark 4.13. One may observe the difference with respect to the classes AM(Sγ), which could be quasian-
alytic for γ = ω(M) (see Example 3.10).

5. Kernels and moment sequences associated with MMM

As a next step in our study, we now devote ourselves to extend to general Carleman classes ÃM(Sγ)
the well-known result, named Borel–Ritt–Gevrey theorem, stating that the Borel map in Gevrey classes is
surjective if, and only if, the sector is narrow enough. The proof will be constructive, and will rest on the
use of truncated Laplace-like transforms whose kernels are intimately related to the nontrivial flat functions
obtained in Theorem 4.7. To any such kernel we will associate a sequence of moments which, in turn, will
be equivalent to the sequence M we departed from.

Definition 5.1. Let M = (Mp)p∈N0 be a strongly regular sequence such that d(r) is a proximate order, and
consider the flat function G ∈ ÃM(Sω(M)) constructed in Theorem 4.7 for a given V ∈ B(2ω(M), d(r)). We
define the kernel associated with V as eV : Sω(M) → C given by

eV (z) := zG(1/z) = ze−V (z), z ∈ Sω(M).

Remark 5.2.

(i) In a previous paper by A. Lastra, S. Malek and the author [15], similar kernels were obtained from
flat functions constructed by V. Thilliez in [27]. The main difference with respect to the present
one, which will be extremely important in forthcoming applications of these ideas to summability
theory of formal power series, is that Thilliez needed to slightly restrict the opening of the optimal
sector in order to construct such flat functions, while here we have been able to do it in the whole
of Sω(M).

(ii) The factor z appearing in eV takes care of the integrability of z−1eV (z) at the origin (see (i) in the
next lemma). Indeed, it could be changed into any power zα for positive α, where the principal branch
of the power is to be considered. Our choice aims at simplicity.

Lemma 5.3. The function eV enjoys the following properties:

(i) z−1eV (z) is integrable at the origin, it is to say, for any t0 > 0 and τ ∈ R with |τ | < πω(M)
2 the integral∫ t0

0 t−1|eV (teiτ )| dt is finite.
(ii) For every T ≺ Sω(M) there exist C,K > 0 such that

∣∣eV (z)
∣∣ � ChM

(
K

|z|

)
, z ∈ T. (14)

(iii) For every x ∈ R, x > 0, the value eV (x) is positive real.
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Proof. (i) Let t0 > 0 and τ ∈ R with |τ | < πω(M)
2 . Since G is flat, from Theorem 4.6 we obtain c1, c2 > 0

(depending on τ and t0) such that

t0∫
0

|eV (teiτ )|
t

dt �
t0∫

0

c1hM(c2/t) dt.

As hM is continuous and hM(s) ≡ 1 when s � 1
m1

, this integral converges.
(ii) As before, given T ≺ Sω(M) and R > 0 there exist c1, c2 > 0 (depending on T and R) such that

∣∣eV (z)
∣∣ � c1|z|hM

(
c2/|z|

)
, z ∈ T, |z| � R.

If |z| � R, we may apply (5) for s = 2 and the definition of hM to deduce that

∣∣eV (z)
∣∣ � c1|z|

(
hM

(
ρ(2)c2
|z|

))2

� c1|z|hM

(
ρ(2)c2
|z|

)
M2

(
ρ(2)c2
|z|

)2

� ρ(2)2c1c22M2

R
hM

(
ρ(2)c2
|z|

)
.

On the other hand, since V is bounded at the origin (because of property (iii) in Theorem 4.4), for z ∈ T

with |z| < R we deduce that eV (z) = ze−V (z) is bounded, and, in order to conclude, it suffices to observe
that hM(c2/|z|) is bounded below by some positive constant for |z| < R.

(iii) V (x) is real if x > 0, so eV (x) = xe−V (x) > 0. �
Remark 5.4. As suggested in Remarks 4.11(ii) and 5.2(ii), in the Gevrey case M1/k, k > 0, it is natural and
standard to consider the kernel

ek(z) = kzk exp
(
−zk

)
, z ∈ S1/k.

Definition 5.5. Let V ∈ B(2ω(M), d(r)). We define the moment function associated with V (or to eV ) as

mV (λ) :=
∞∫
0

tλ−1eV (t) dt =
∞∫
0

tλGV (1/t) dt =
∞∫
0

tλe−V (t) dt.

From Lemma 5.3 we see that mV , well defined in {Re(λ) � 0}, is continuous in its domain, and holo-
morphic in {Re(λ) > 0}. Moreover, mV (x) > 0 for every x � 0. So, the following definition makes sense.

Definition 5.6. The sequence of positive real numbers mV = (mV (p))p∈N0 is the sequence of moments
associated with V (or to eV ).

Proposition 5.7. Let eV be a kernel associated with the strongly regular sequence M, and mV = (mV (p))p∈N0

the sequence of moments associated with V . Then M and mV are equivalent.

Proof. It suffices to work with p � 1. From (14) we have C,K > 0 such that

mV (p) � C

∞∫
0

tp−1hM(K/t) dt = C

mp∫
0

tp−1hM(K/t) dt + C

∞∫
mp

tp−1hM(K/t) dt.

In the first integral of the right-hand side we take into account that hM is bounded by 1, while in the second
one we use the definition of hM to obtain that hM(K/t) � Kp+1Mp+1/t

p+1, t > mp. This yields

mV (p) � C
tp

p

∣∣∣∣
mp

− CKp+1Mp+1
1
t

∣∣∣∣
∞

=
Cmp

p

p
+ CKp+1Mp+1

m
.

0 mp
p
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We have Mp+1 = mpMp, and we may apply (4) to obtain that

mV (p) � C
(
A2p + Kp+1)Mp � 2C max{1,K}

(
max

{
A2,K

})p
Mp,

what concludes the first part of the proof.
On the other hand, L.S. Maergoiz [18, Thm. 3.3] has shown that the function

FV (z) =
∞∑

n=0

zn

mV (n) , z ∈ C, (15)

is entire and such that

lim sup
r→∞

log max|z|=r |FV (z)|
V (r) ∈ (0,∞).

From this fact we deduce that there exist constants C1,K1 > 0 such that for every z ∈ C one has
∣∣FV (z)

∣∣ � C1 exp
(
K1V

(
|z|

))
.

Now, recall that log(V (r))/ log(r) is a proximate order equivalent to d(r) = log(M(r))/ log(r). Consequently,
by Remark 4.3 there exists K2 > 0 such that V (r) � K2M(r) for large r, and so we have

∣∣FV (z)
∣∣ � C̃ exp

(
K̃M

(
|z|

))
(16)

for every z ∈ C and suitably large constants C̃, K̃ > 0. Finally, we take into account the following result by
H. Komatsu [10, Prop. 4.5]:

Let M(r) be the function associated with M. Given an entire function F (z) =
∑∞

n=0 anz
n, z ∈ C, the

following statements are equivalent:

(i) There exist C,K > 0 such that |F (z)| � CeM(K|z|), z ∈ C.
(ii) There exist c, k > 0 such that for every n ∈ N0, |an| � ckn/Mn.

It suffices to apply this equivalence to the function FV , by virtue of (16), and we end the second part of
the proof. �
Remark 5.8.

(i) We record for the future that, as a consequence of the first part of the previous proof, given K > 0
there exist C,D > 0 such that for every p ∈ N one has

∞∫
0

tp−1hM(K/t) dt � CDpMp. (17)

(ii) In the Gevrey case M1/k and with the kernel ek introduced in Remark 5.4, we obtain the moment
function m1/k(λ) = Γ (1 + λ/k) for �(λ) � 0, and we immediately check that M1/k and m1/k =
(m1/k(p))p∈N0 are equivalent.

6. A generalization of Borel–Ritt–Gevrey theorem. Right inverses for the asymptotic Borel map

The proof of the next result, a generalization of the classical Borel–Ritt–Gevrey theorem, will only be
sketched, since it is similar to the original one in the Gevrey case (see [22,29,4,2]; in the several variables
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case, see [24]). Indeed, in a previous work by A. Lastra, S. Malek and the author [15, Thm. 4.1], this same
technique was applied by using kernels derived from the flat functions of V. Thilliez [27], what obliged us to
work in sectors of non-optimal opening. This drawback is now overcome under the additional assumption
that the sequence M defines a proximate order d(r), which is the case for all the examples we have been
able to provide.

Theorem 6.1 (Generalized Borel–Ritt–Gevrey theorem). Let M be a strongly regular sequence such that d(r)
is a proximate order, and let γ > 0 be given. The following statements are equivalent:

(i) γ � ω(M).
(ii) For every a = (ap)p∈N0 ∈ ΛM there exists a function f ∈ ÃM(Sγ) such that

f ∼M f̂ =
∑
p∈N0

ap
p! z

p,

i.e., B̃(f) = a. In other words, the Borel map B̃ : ÃM(Sγ) −→ ΛM is surjective.

Proof. (i) =⇒ (ii) It is enough to treat the case γ = ω(M). Choose V ∈ B(2ω(M), d(r)), and consider the
associated kernel eV (see Definition 5.1) and sequence of moments mV = (mV (p))p∈N0 (see Definition 5.6).
Given (ap)p∈N0 ∈ ΛM, there exist C1, D1 > 0 such that

|ap| � C1D
p
1p!Mp, p ∈ N0,

so that, by Proposition 5.7, the series

ĝ =
∑
p∈N0

ap
p!mV (p)z

p (18)

converges in a disc D(0, R) for some R > 0, to a holomorphic function g. Choose 0 < R0 < R, and define

f(z) :=
R0∫
0

eV

(
u

z

)
g(u)du

u
, z ∈ Sω(M), (19)

which turns out to be a holomorphic function in Sω(M). Given T ≺ Sω(M), N ∈ N and z ∈ T , by standard
arguments we have

f(z) −
N−1∑
p=0

ap
zp

p! = f(z) −
N−1∑
p=0

ap
mV (p)mV (p)z

p

p!

=
R0∫
0

eV

(
u

z

) ∞∑
k=0

ak
mV (k)

uk

k!
du

u
−

N−1∑
p=0

ap
mV (p)

∞∫
0

up−1eV (u) duz
p

p!

=
R0∫
0

eV

(
u

z

) ∞∑
k=N

ak
mV (k)

uk

k!
du

u
−

∞∫
R0

eV

(
u

z

)N−1∑
p=0

ap
mV (p)

up

p!
du

u

= f1(z) + f2(z).

By Proposition 5.7 there exist C2, D2 > 0 such that

|ak| � C1D
k
1k!Mk � C2D

k
2 (20)
mV (k)k! mV (k)k!
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for all k ∈ N0, and so, taking R0 � (1 − ε)/D2 for some ε > 0 if necessary, we get

∣∣f1(z)
∣∣ � C2

R0∫
0

∣∣∣∣eV
(
u

z

)∣∣∣∣
∞∑

k=N

(D2u)k du
u

� εC2D
N
2

R0∫
0

∣∣∣∣eV
(
u

z

)∣∣∣∣uN−1 du. (21)

On the other hand, we have up � Rp
0u

N/RN
0 for u � R0 and 0 � p � N − 1. So, according to (20), we may

write

N−1∑
p=0

|ap|up

mV (p)p! �
N−1∑
p=0

C1D
p
1p!Mpu

p

mV (p)p! �
N−1∑
p=0

C1D
p
1C2D

p
2u

p � uN

RN
0

N−1∑
p=0

C1D
p
1C2D

p
2R

p
0 � C3D

N
3 uN

for some positive constants C3, D3, and deduce that

∣∣f2(z)
∣∣ � C3D

N
3

∞∫
R0

∣∣∣∣eV
(
u

z

)∣∣∣∣uN−1 du. (22)

In view of (21) and (22), we are done if we prove that

∞∫
0

∣∣∣∣eV
(
u

z

)∣∣∣∣uN−1 du � C4D
N
4 mV (N)|z|N

for every z ∈ T and for suitable C4, D4 > 0. But this is a straightforward consequence of Lemma 5.3(ii) and
the estimates in (17).

(ii) =⇒ (i) We will not provide all the details, but the argument could be completed easily with some of
the results in the preprint [16]. Anyway, the idea is similar to the one in the Gevrey case, see [2, p. 99]. For
γ > ω(M), consider a path δω(M) in Sγ like the ones used in the classical Borel transform, consisting of a
segment from the origin to a point z0 with arg(z0) = ω(M)(π + ε)/2 (for some ε ∈ (0, π)), then the circular
arc |z| = |z0| from z0 to the point z1 on the ray arg(z) = −ω(M)(π + ε)/2, and finally the segment from
z1 to the origin. Choose any lacunary series ĝ =

∑∞
p=0 bpz

p/p! convergent in the unit disc to a function g

that has no analytic continuation beyond that disc (for example, ĝ =
∑∞

p=0 z
2p). Then, the equivalence of

M and mV implies that a = (mV (p)bp)p∈N0 belongs to ΛM. If there would exist a function f ∈ ÃM(Sγ) such
that f ∼M f̂ :=

∑
p∈N0

mV (p)bpzp/p!, one may check that the function

G(u) := −1
2πi

∫
δω(M)

FV (u/z)f(z)dz
z
, u ∈ Sε,

where FV is the function introduced in (15), is an analytic continuation of g into the unbounded sector Sε.
Since this is not possible, we deduce B̃ is not surjective in this case. �

Finally, we will state a result concerning the surjectivity of the asymptotic Borel map B̃ in the classes
AM(Sγ), and the existence of suitably defined linear continuous right inverses for B̃.

Theorem 6.2. Let M be strongly regular and such that d(r) is a proximate order, and let γ > 0 be given.

(a) Each of the following assertions implies the next one:
(i) γ < ω(M).
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(ii) There exists d � 1 such that for every A > 0 there is a linear continuous operator

TM,A,γ : ΛM,A → AM,dA(Sγ)

such that B̃ ◦ TM,A,γ = IdΛM,A
, the identity map in ΛM,A.

(iii) The Borel map B̃ : AM(Sγ) → ΛM is surjective.
(iv) There exists a function f ∈ AM(Sγ) such that for every m ∈ N0 we have f (m)(0) = δ1,m (where

δ1,m stands for Kronecker’s delta).
(b) If one has

∞∑
n=0

(
1

(n + 1)mn

)1/(ω(M)+1)

= ∞, (23)

then (i) is equivalent to:
(v) The Borel map B̃ : AM(Sγ) → ΛM is not injective, i.e., AM(Sγ) is not quasianalytic.

(c) If one has

∞∑
n=0

(
1
mn

)1/ω(M)

= ∞, (24)

then all the conditions (i)–(v) are equivalent to each other.

Proof. (a) (i) =⇒ (ii) Fix A > 0. For every a = (ap)p∈N0 ∈ ΛM,A, the series ĝ given in (18) converges in
a disc D(0, R) not depending on a. We define TM,A,γ(a) as the restriction to Sγ of the function defined
in (19), which was shown to belong to ÃM(Sω(M)). By combining the information in Proposition 2.3 with
that in Remark 2.5, we conclude that there exists d � 1 such that TM,A,γ sends ΛM,A into AM,dA(Sγ) and
solves the problem.

(ii) =⇒ (iii) and (iii) =⇒ (iv) are immediate.
(b) By the definition of ω(M), we always have that (i) implies (v), and that (v) implies γ � ω(M). But

condition (23) excludes equality by Theorem 3.2.
(c) Under condition (24), the fact that (iv) implies (i) may be obtained in the same way as Proposition 3.3

in [12]. So, (i)–(iv) are all equivalent to each other. According to (b), in order to conclude it suffices to prove
that condition (24) implies condition (23), but this was obtained in Proposition 4.8(i) in [13]. �
Remark 6.3.

(i) Of course, all the results in this paper are valid for general unbounded sectors S(d, γ). We have con-
sidered the case d = 0 in the previous arguments only for convenience.

(ii) V. Thilliez [27] obtained (i) =⇒ (ii) in the previous result for γ < γ(M), where γ(M) is the growth index
described in Definition 2.17. Since γ(M) � ω(M) in general, our result would mean an improvement for
those M (if any) such that γ(M) < ω(M). Also, note that in our present construction of right inverses
for B̃ we need to consider just a “global” kernel eV in Sω(M), while in V. Thilliez’s and A. Lastra,
S. Malek and the author’s previous approaches (see [27,15]) the kernel had to be chosen depending on
the sector Sγ on which the class was defined.

(iii) As commented before, the integral expression for the operators TM,A,γ is well suited for their extension
to the several variable case. The interested reader may compare this and other approaches in [24,14,15].

(iv) For Gevrey sequences, condition (24) holds, since it amounts to the divergence of the harmonic series.
In general, condition (23) does not imply (24). For instance, as stated in Example 3.10, the sequence
Mα,β satisfies (23) if, and only if, α � β − 1. One easily checks that it satisfies (24) if, and only if,
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α � β. So, if β − 1 � α < β we have that Mα,β satisfies (23) and not (24). Whenever this is the case,
it is an open problem to decide whether (iv) in the previous theorem implies (i).
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