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1. Introduction

Study on the stochastic maximum principle (SMP) can be traced back to 1970s by Kushner [9], and later
on by Haussmann [6,7]. From then on, a great deal of research has been devoted to different versions of
SMP, see, e.g. the references Peng [13,14], Shi and Wu [16], Wu [17,18], Xu [19] and Yong [22]. Especially, for
controlled FBSDESs, by introducing the reduction method to transform the original problem with endpoint
constraint to another one called the reduced problem, which has no endpoint constraint, Wu [18] and Yong
[22] obtained the optimality variational principle independently without convexity control domain. Their
work makes great progress for general SMP, which extends Peng’s SMP essentially.

In 2009, Buckdahn, Djehiche, Li and Peng [3] introduced a new kind of backward stochastic differential
equations (BSDEs) called mean-field BSDEs, which were derived as a limit of some highly dimensional
system of FBSDESs, corresponding to a large number of particles. Taking advantage of the dynamic pro-
gramming, Buckdahn, Li and Peng [4] proved that this mean-field BSDE gave the viscosity solution of
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a nonlocal PDE. Since then, many authors studied the system of this kind of McKean—Vlasov type (Lasry
and Lions [10]) adapted to different frameworks. Without being exhaustive, let us refer to Andersson and
Djehiche [1], Buckdahn, Djehiche and Li [2], Li [11] as well as Meyer-Brandis, @ksendal and Zhou [12] and
the references cited up there.

To the best of our knowledge, the topic about the SMP of mean-field FBSDEs is quite new in the
literature. Up till now, there is only one paper dealing with this class of control problems. In the case
of convex control domain, Xu and Zhang [20] studied the fully coupled mean-field FBSDEs, where well-
posedness of these equations was presented under certain monotonic conditions assisted by the combination
of classical methods (Hu and Peng [8]) with specific arguments in the mean-field theory. And also a SMP
was concluded in view of spike variation techniques. Based on this, our aim of this paper is to inves-
tigate another kind of controlled FBSDEs of mean-field type under the condition of non-convex control
domain. By making use of the monotonic conditions and reduction method developed in Yong [22], we
not only prove the well-posedness for this kind of equations, but also acquire a series of necessary optimal
conditions, which extend the classical results for fully coupled FBSDEs to the framework of mean-field
theory. Meanwhile, our work is a great continuation of the result of Li [2] both in the mean-field con-
text.

The paper is organized as follows: In Section 2, we state some preliminaries and obtain the well-posedness
of the controlled mean-field FBSDEs. Section 3 is devoted to the main theorem and its detailed proof. In
Section 4, an example of a linear—quadratic control problem is worked out to illustrate the theoretical
applications.

2. Preliminaries

Let (2, F,{Fi}t>0,P) be a filtered probability space satisfying the usual condition, on which a one-
dimensional standard Brownian motion (W});>¢ is defined, and F = {Fs, 0 < s < T} be the natural
filtration generated by (W});>0, and augmented by all P-null sets, i.e.

Fs=0{W,, r<s}VN,, sel0,T],

where N, is the set of all P-null subsets. We shall introduce some spaces to be used frequently in the
sequel.

L%(;R) = {X : 2 — R | X is F-measurable, E|X|* < co}.

S%(0,T; R) = {1/1 ([0, T x 2 — R ‘ ¥ is F-adapted and continuous, E{ sup |wt|2} < oo}.
te[0,T]

T
/|z/1t|2dt] < oo}.
0

H2(0,T; R) = {1/) :[0,T]x 2= R ’ 1 is F-adapted, F

M?2[0,T] := S%(0,T; R) x S%(0,T; R) x H%(0,T; R).

Clearly, M?[0,T] is a Banach space. Any process in M?2[0,T] is defined by © := (z,y, z) with the norm

t€[0,T] t€[0,7]

T 5
H9||M2[O,T] = {E sup |£I?t|2+ sup |yt|2+/|zt|2dt]} .
0
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2.1. Controlled mean-field FBSDFEs
Consider the following fully coupled FBSDE of mean-field type,

dxt = b(t7$t7yt, Zts Exta Eyt7 Eztvut) dt + U(taxtaytv 2ty El't, Eyta Eztvut) th7
—dy; = f(tal’tyyt,zt, Exy, By, E«Znut) dt — z; AW, (2-1)
z(0) = 20, yr = h(zr),

where b,o, f: [0,T]X RXRXRXRXx Rx RxU — R; h: R— R, and U is a non-empty subset of R.
The cost functional to be minimized over the space U = LQI(O, T;U) of admissible controls takes the form

J(u) = E[g(zr) +~(y0)], (2.2)

where g,y : R — R. The optimal control problem under consideration in this paper is

Problem .A. Find v € U such that

J(u) = 1}16115 J(v).

Some notations and assumptions are presented before giving the well-posedness of system (2.1). We
denote the scalar product by (-,-) and the norm by |- | of a Euclidean space. For I' := (z,y, 2,2, ¢, 2), define
F(t, I u) o= (= f(t, I u), b(t, I, u), ot I',u)).

(A1) b, o, f are continuously differentiable and Lipschitz continuous in I', g, v are continuously differen-
tiable in « and y respectively, and they are bounded by C(1 + |z| + |y| + |z| + |Z| + |g] + |Z] + |u]),
C(1+ |z|) and C(1 + |y|) respectively.

(A2) All the derivatives in (A;) are Lipschitz continuous and bounded.

(A3) VI, u € U, F(-, T u) € H%(0,T; R x R x R), and for each x € R, h(z) € L%(£2; R); there exists a
constant C' > 0 such that

|F(t, I'1,u) = F(t,Iy,u)| < C|I[ — I|, P-as.ae. te0,T],
|h(x1) = h(z2)| < Clzy — xs|,  P-as.,
vpj:(xjayjyzjajjvgjazj)a ]:1a2

(A4) (Monotonic conditions)

E(F(t,I'u) — F(t,I1,u),0 —01) < —B1E|© — 0>, P-as.,

(M) = h(z1), 2 —x1) = pn|w — x|,

E<F(t7Fau) 7F(t7F13u)79761> P 52E|@791|27 P-a.s

bl

<h<l') - h(x1)7l‘ - .I'1> < —,LL2|CE - ml‘zv VO = (1’;%2)7 @1 = (331791,21)7

where (1, pu1 and (s, po are given nonnegative constants.
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Theorem 2.1. Under the assumptions (As) and (A4), there exists a unique adapted solution (x,y,z) for the
mean-field system (2.1).

We shall use the following two technical lemmas to give a proof to the existence part of Theorem 2.1,
and the proof of these lemmas will be given in the sequel.

Lemma 2.1. Suppose (r,$,p) € M?[0,T], A € L%(2; R), then
t t
Ty = T + /(—ys — By, +71s)ds + /(—zs — Ezs + ¢s) dWs,
0 0 (2.3)

T T
yt=)\+xT—|—/($5+EmS—gos)ds—/zdeS
t t

has a unique solution (x,y,z) € M?[0,T].
Now, for any given a € R, we define

b (t, I u) = ab(t, Iu) + (1 — a)(—y — Ey),

c*(t, I u) =ac(t, I u)+ (1 —a)(—z — E2),
e, Iu) =af(t, [ u) + (o — 1)(—z — Ex),
h(z) = ah(z) + (1 — o)z,

I' = (z,y,2, Ex,Ey, Ez).

Consider the following equations

t t
xt:x0+/[ba(s7FS7us)+rs] ds—l—/[aa(s,lﬂs,us)-l—(bs} AW,
0 0 (2.4)

T T
Yt :)\‘i’ha(xT)‘i’/[fa(S;Feaus)*(ps] dS*\/Zs dWs
t t

Lemma 2.2. For a given o € [0,1) and any (r, ¢, ) € M?[0,T], X\ € L%(£2; R), Egs. (2.4) have an adapted
solution. Then there exists a 6y € (0,1) such that for all a € [ag, o + o] and any (r, ¢,p) € M?[0,T],
X € L%(82; R), Egs. (2.4) have an adapted solution.

Proof of Theorem 2.1. Uniqueness. If © := (x,y,2) and O := (Z,7, ) are two adapted solutions of (2.1),
we set

I'=(2,0,4,E% E),E3) =T - = (x — &,y — i,z — %, Ex — Ex, By — Ejj, Ez — E%),
A( = L) —b(t, T,u), &(t)=o(t, I u) —o(t, T, u),

From (As), by standard estimates, it follows that {#;} and {g;} are continuous and

E( sup |:i7t|2)+E( sup |§/t|2> < 0.
te[0,T] t€[0,T]
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Applying 1t&’s formula to £:9: on [0, T] yields

T
E/<F(t,Ft,ut) — F(t,ft,ut),Qt — ét> dt
0

=
=)
)ﬂ
—
=
)
)ﬂ
N—
|
>
—~
&I
)ﬂ
Nt
I

By assumption (A4), we have

mElar — 2 < E / 5116, — 64 dt.

So

0 =0.

Existence. From Lemma 2.1, we can easily see that, when o = 0, for any (r,¢,p) € M?[0,T],
A € L%(;R), (2.4) has an adapted solution. According to Lemma 2.2, for any (r,¢,9) € M?[0,T],
A € LL(£2;R), (2.4) can be solved successively for the case o € [0, 0], [d0,200],.... It turns out that
when a = 1, for any (r, ¢, ) € M?[0,T], A € L%(12; R), the adapted solution of (2.1) exists. O

2.2. Proof of lemmas

Proof of Lemma 2.1. We consider the following BSDE:

T T
gt:)\-l-/(—ﬂs—Ez]s—<ps+rs)d8—/(25s+E53—¢s)dW
t t

By the classical theory of mean-field BSDE (Theorem 3.1 in [4]), the above equation has a unique solution
(g, 2). Then we solve the following forward equation

t

t
xt:.’lﬁo—l—/(—l‘s—El‘s—gs—Eﬂs+7“5)d8+/(—25—E25+¢S)dW
0 0

Setting y = § + x, z = Z, we can easily see that (x,y, z) is a solution of (2.3). Thus the existence is proved.
As for the uniqueness, it suffices to use the method of the proof of uniqueness in Theorem 2.1, so we omit
it. 0O

Proof of Lemma 2.2. Observe that

beoHo (¢, Iu) = b (t, I, u) )+ 6 [b(t, I u) + y + Ey),
OO‘OH(t,F,u)—UO‘O t, [ u) —|—(5[UtFu —i—z—l—Ez],
oot Iou) = foo(t, T u) +6[ftFu —z — Ex|,
R0t (z) = h*(x) + 6 [h(z) — =].
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We set I'0 = (2°,4°,2°, E2®, Ey°, E2°) = 0, and solve iteratively the following equations
e =z + /{bo‘O (s, i ug) + 6 [b(s, IY us) +yt + Eyl] + 75} ds

+/{aa°(s,1"§+1,us) 5[0 (s, I uy) + 2+ B2] + 6} W,
0
2  (a5) 4 [h(ah) — 2] + )
T

T
+/{fao(s,p;+1 )+ 6 (s, I vuy) — xi—Emi]—gos}ds—/zz“dWs,
t t

where I' = (2%, y', 2%, Ex*, Byt, E2Y).
We set Ot = @1 — @ and apply Itd’s formula to 2714+ yielding

B{(h (o) — h0 (04)251"] = 9B (8 — (h(ah) — Bt ), 25)

T
+ E/(FO‘O (t, I uy) — Fo (6, I ug), 07T dt
T

i (sE/<éZ i Eéz + F(t’ Fti’ut) o F(tthi_laUt),éi+1> dt
0

From assumptions (A3) and (A4), we have

B(E (6,13 ) = Fo0 (1, T, ), 61
= aoB(F (6T u) = F( T w) 6771) + (1 — ao) (-6} — E&}™, 6/
oo B[O~ (1 - ) (6] + BO;, 6.

Hence

T T
(aopr +1—a)E|2 ;+1| + (B +1—ag)E /|(9§+1|2dt+(1—a0)/|Eé2+1|2dt

o

Set C’ = min(agus + 1 — ag, apf1 + 1 — ap, 1 — g, 1), then we obtain

T
A1,+1‘ +E/|@z+l| dt < (150){ (|AT||A1+1’ _|_/
0

Letting € = 6(%0), by virtue of ab < ’16—2 + %b2, we get

T
. . 25(1 2
E£%+1’2+E/|97£+1|2dt< (W) {E
0

(1+C{ (|2%

oi|6t ) + E|6;|E|6iT] dt}.

92-‘,—1‘)

i E16;1] dt}

T

T
2+E/]é};\2dt}. (2.6)
0
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Remember that Vi > 1

T

i = /{bao( i) — 5 (s, T ug) 4 8[b(s, T ) — b(s, T2, us) + 5 + Egi—] ) ds
0
T
+ /{00‘0 (S,Fj,us) — g% (S,ijl,us) + (5[0(8,F;71,us) — O'(S,[ZiQ,us) + 27 4 Eé’é*l] } dWs.
0

By a standard method of estimation, we derive

T
E|ah|* < KE/(\é;yQ+ 16:1) dt, @7
0

where K is a constant only depending on C' and T.
From (2.6) and (2.7), there exists a constant K’ > 0 which only depends on C, C' and T such that

T T
E/|é;§+1|2dt < K'52E/(|é;'|2 1O at
0 0

Hence there exists a dg € (0,1) depending on C, C’ and T, such that when 0 < ¢ < do,

T T
<16 flofa e flor P
0 0

The following inequality is presented from this recursion formula,

T i T
E/(|é;‘+1|2 N jl|é;;f> it < (;) E/(|éf|2 n i|é,}|2> dt, Viz1
0 0

It turns out that ©% is a Cauchy sequence in M?[0,T]. We denote its limit by © = (z,y, ). Passing to
the limit in (2.5), we see that, when 0 < § < g, © = (x,y, z) solves (2.4) for & = ag + . The proof is
completed. O

T

mH

0

Theorem 2.2. Under the assumptions (As) and (A4)’, there exists a unique adapted solution (x,y, z) for the
mean-field system (2.1).

Actually, the method to prove the existence is similar to Theorem 2.1. We now consider the following
system, for each « € [0, 1]:
dz = [ab(s, Iy ug)+ TS] ds + [aa(s, Is,ug) + gbs} dWs,
—dys = [(a — D) fsxs + af(s, Is,us) + gps] ds — zg dW, (2.8)
xOé(O) = Zo, y% = Oéh(l'T) + (Oé - 1)JUT + >\7

where (r,¢,¢) € M?[0,T], A € L%(£2; R). Clearly, when « = 1, the existence of (2.8) implies the existence
of (2.1). Next, we give a lemma to provide a priori estimate for the existence interval of (2.8) with respect
to a € [0,1].
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Lemma 2.3. Let (A3) and (A4) hold, then there exists a constant o9 > 0 such that if a priori, for an
ag € [0,1) there exists a solution (x®,y~,z*°) of (2.8), then for each § € [0,dp], there exists a solution
(xa0+57y010+5’2040+5) Of (28) fO'l“ a=ay+ S.

Proof. For simplicity, we use the notations:

T =(X,Y,2), = (X,Y,27),
A= (X,Y,Z EX,EY,EZ),
A=(X,Y,Z,EX,EY,EZ),
PoT-T, A=A-A

i

The symbols O, O, é, I T, I are the same as used before.

Since (r, ¢, ) € M?[0,T], A € L%(§2; R), oo € [0, 1), there exists a unique solution of (2.8), thus for each
Xr € L%Z(2;R) and (X,Y, Z) € M?[0,T] there exists a unique solution © = (z,y, z) € M?[0,T] satisfying
the following system

dzs = [aob(s, Is, us) + 6b(s, As, us) + 15| ds + o (s, Iy, us) + 00 (s, As, us) + ¢s| AW,
_dys = [(QO - 1)ﬁ2$s + aOf(Sv Fsvus) + 5(52Xs + f(s7As>us)) + 905] ds — Zs dWs,
z(0) = zg, yr = aph(zr) + (g — Dar + 5(h(XT) + XT) + A

We proceed to prove that, if § is sufficiently small, the mapping defined by
Tng16(T x X7) = O x xp : M?[0,T] x L%(2; R) — M?[0,T] x L%(£2; R)

is a contraction.
Let Ing+s (T X )_(T) = O x Zp. Using It6’s formula to &4, fulfills

aoE[i‘T (h(.’ET) — h(J_}T))] + (Oéo — 1)E‘£T|2 +o0F [.f?T((h(XT) — h(XT)) + XT)]
= E/{Oé0<F(t, Ft,ut) — F(t,ft,utL ét> + (5<F(t,At,Ut) — F(t, /it,ut), ét>
+ (1= ao)Be|@|* — 6821 X, } dt.
From (A3) and (A4)’, we can get

T T

(aopz + 1 — a0)Eldr|? + o / 8.2 dt + aofE / (1962 + [21%) dt
0

T
< C’6E(|£T|2 + |XT\ +C'6 E/ |1Q|2 + |@t
0
This implies that
uE|er|? + 52E/ |2 dt < C'SE(jar]? + | Kr)?) + C’éE/(\ftIQ +161[%) dt,
0

where agus + 1 — ap > ¢ = min(1, us).
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For the difference of the solutions (§, 2) = (y — 9,z — Z), applying the usual technique to the BSDE,

T

T T
E/ (36l + 12:/7) K6E{/|f’t2dt+|XT|2}+KE{/|:%t|2dt+|£T2}.
0

0 0

Here the constant K depends on the Lipschitz constant C, C’ and T.
Combining the above two estimates, we have

T T
E|£T|2+E/|ét|2dt<6K’E{/|ﬁ|2dt+|XT2}.
0 0

Here the constant K’ depends on the u, B2, C' and T.
Choosing § = W' For each fixed § € [0, dp], the mapping I,,+s5 is a contraction in the sense that

E|xT|2+E/\9t\2dt {/|Tt|2dt+XT|2}

By the fixed point theorem, there exists a unique point @0+° = (p¥0+9 g0+ »0+9) which is the solution
of (2.8) for @ = a + ¢. This completes the proof. 0O

Proof of Theorem 2.2. The uniqueness can be deduced from similar arguments as those in Theorem 2.1.
When « = 0, (2.8) has a unique solution, then by Lemma 2.3, there exists a dg € (0, 1) such that for any
0 € [0, 0], (2.8) has a unique solution for & = ap+4. Repeat this process for N-times with 1 < Ny < 1+Jp.
It then follows that for « = 1, A = 0, FBSDE (2.8) has a unique solution. This completes the proof. O

We now consider the following FBSDE:

d.’Et = b(taxtaytazta E:Eh Eyta Ezt7ut) dt + U(t7$tyil/t7 2ty Exta Eyt7 Eztaut) th7
—dyr = f(t, 2, Y1, 20, By, Bye, Bzg,ug) dt — 2 AW, (2.9)
z(0) = zo, yr = h(zr)+ hr,

with hp € L%(£2; R). Clearly, when hp = 0, the system (2.9) is reduced to the system (2.1).

Lemma 2.4. Let (A3), (A4) (or (A4)") hold, for any uw € U, the fully coupled FBSDE (2.9) admits a unique
solution (z,y,z) € M?[0,T]. Moreover, the following estimate holds:

|8||?\/I2[0,T]:E{ sup |z[* + sup |y|? /|Zt| dt}

€[0,T) tel0,T]

< OE{"rO'Z + ’h(o + hT| + /Hb t,O,Ut |2 + ’U(t707ut)’2 + |f(t70aut)’2} dt}a
0

where C is a multiplicative constant which can be different from line to line. Furthermore, if © = (z,9,2) €
M?[0,T) is the unique adapted solution of (2.9) controlled by (o, hr) € R x L%(2; R) and @ € U, then we
have the following estimate:
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T
16 = Oll3s2p0,m) = E{ sup [T — x>+ sup |g; — el + / |2 — Zt|2dt}
te[0,T) te[0,77] o

T

< CE{W’O - $0|2 + |f~LT — hT|2 + /Hb(t,l}ffbﬁ — b(t,]},ut)’Q
0

+ |o(t, I}, i) _U(t>Ft7Ut)|2 + | f(t, Iy i) — f(t7Ft,Ut)’2] dt},

where Iy := (x4, Yt, 2, Exy, Eyy, Ezy).

Proof. The well-posedness of (2.9) can be proved by using the same techniques as in Theorem 2.1 and
Theorem 2.2. Next, we will use the method of continuation to gain the above two estimates.
Using Itd’s formula to |z;|?, we have

¢ t
lz)? = |xo|? + /[2:csb(5,Fs,us) + |0(5,Fs,us)|2] ds + /QxSU(s,Fs,us) dW,
0 0
t

< Jzo2 +C / (1282 4+ ysl? + |22 + |Exal® + | Byl + | Ezf?
0
t

+b%(s,0,us) + 2(s,0, ub)] ds + Z/xsa(s, I, us) dWs. (2.10)
0

By taking expectations and using Gronwall’s inequality, one has that

T
E|x,5|2 < CE{.’E02 + /(\ys|2 + \zs|2 + bg(s,O,us) + 02(3,0,us)) ds}. (2.11)
0

Through the use of Burkholder-Davis-Gundy’s inequality to (2.10) (note (2.11)) yields

T

E( sup |1:t|2) < C’E{|9L‘o|2 + /(Iysl?‘ + |2]* + b%(s,0,us) + 0°(s,0, us)) ds}. (2.12)
t€[0,T] 5

On the other hand, by applying It&’s formula to |y;|* fulfills

T T T

\yt|2+/|zs|2ds= |yT|2+2/ysf<s,rs,us)ds—2/ysz5dWs
t t t

T
2
<C{|le2+|h(0)+hT| +/[I:Es|2+Iysl2+E|xs\2+E|ys\2+f2(s,0,us)] dS}
t
T T

T
1 1
+Z/|Zs|2ds—|—Z/E\zs|2ds—2/yszdes. (2.13)
t

t t
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Similar to the argument of getting (2.12), we have

E( sup_[yq|? +E/\ztl2dt
te[0,T]

<CE{MTF+Umn+hﬂ2+/ﬂmﬁ+¢ﬂungfyﬁ}. (2.14)

0

Let a C! function @ = (g g) :[0,T] — R?*2 be a bridge (definition 2.5 in [21]) extending from (b, o, f, h),
with some constant K, and A, B, D : [0,T] — R, satisfying

Dr<0, A >0, Vtel0,T],
1 0
Py < K .
0<% (o o)
Applying It6’s formula to (& ( Z ) (ZZ )), it follows that
e () Gr)) =20 () ()
yr yr Yo Yo
T
Tt b(t,Ft,ut) )> < (U(t,Ft,ut)> (U(t,Ft,ut))>
—£r [l2e , (o ,
0/{ < t(?/t) <—f(t,Ft7Ut) ' 2 2t
+ <¢'5t <$t> , <mt>>}dt. (2.15)
Yt Yt

Case 1. If the following inequalities hold,

221 (10 2 10)) (nio) L)) > 981 Vo R

e{0 () G20 () (o)
n <¢t (U(t,Ft,ut)Z— J(t,O,ut)> 7 <J(t,f't,ut)z— U(t,O,ut))>}

—0E|z|*, VI € R%, ae. tel0,T], as.

and

where 6 > 0, then

E<¢T<Z§)’(z§)>E gzjTEh(scTHhT) <hzT)+hT>>
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> B{dler|? — 2|Br|ler|[h(0) + hr| — 2C| Drl|h(0) + hr |

— 20| Drl[er||h(0) + hr| — |Dr||h(0) + hr|*}

>E{g|xT2—L|h(0)+hT;2}. (2.

Here the constant L > 0 only depends on C, 4, |Br| and |Dr|. Similarly,

T
b(t 0 Ut)
the right side of ( <E Slx 2Jr2<€15 (mt>7( o >>
& 0/{ | t| ! Yt *f(tyoaut)

+2<¢t( tOut> ( o(t, Iy, uy) —a(tOut)>>
(7))

T T
E/—g wi|*dt + C. E/[|b(t,0,ut)|2 + |o(t,0,up)|”
0

0

+ \f(t,o,ut)|2] dt+5E/(|yt‘2 + \zt|2) dt, (2.

where Ce > 0 only depends on the bound of |@,| as well as d, ¢.
Combining (2.15)—(2.17) and noting (2.14), we have proved that

T T
E|:cT|2+E/|xt|2dt<CE{E[|x02+ |1(0) + hr|’] +E/[|b(t,0,ut)|2+|a(t,0,ut)|2
0 0

T
2
170,00 d’f} S8 [l ) a
0

T
< CE{EHLEOQ +|h(0) + hr|*] + E/[|b(t,0,ut)|2 + o (t,0,u0)]”
0
T

1 0,u0)]] dt} +ECE{'$T|2 000+ bl [ (el + |20, e
0

with the constant C independent of . Choose suitable £ such that
T
Elzr|* + E/ |2e|? dt < CE{ [|zo]? + |(0) + hr|*] + /Hb(t,o,ut)]z
0 0

+ o, 0,un)|* + | £(2,0,u)[*] dt}.

913

16)

17)

2
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Then returning to (2.14), we deduce

T T

E( sup |yt|2) +E/|zt\2dt<0E [|zo]? + |(0) + he ] +/Hb(t,0,ut)|2
t€[0,T] 0 5

+ o (t,0,u0) [ + | £(2,0,u)]”] dt}. (2.18)

Finally, by (2.12), we have

T

E( sup |xt|2> <CE{[|xO|2+\h(o>+hT|2] —i—/Hb(t,O,ut)|2
t€[0,T] 5

+ o (t,0,un)|” + | £(2,0,us)|] dt}. (2.19)

Hence, the first estimation follows immediately from (2.18) and (2.19).

Case 2. Let the following inequalities hold,

E<¢T (h(aa) - h<o>> ’ <h<x> " ho >> >0 vrelk

2 () () -2 ) (i i)
n <¢t (a(t,l},ut)z— a(t,O,ut)> ’ <a(t,l},ut)z— o(t,0,u) )>}

< —SE(ly|* + 2], VI € R, ae. te[0,T], as.

and

where § > 0. In this case, we still have (2.12), (2.14) and (2.15). Further, by applying the similar arguments
as in Case 1, it follows that

Left side of (2.15) > —eE|xr|* — C.E[|zo|* + |h(0) + hT‘Q],
T
Right side of (2.15) < E/ -
0

N

T
(Jye® + [2]?) dt + OEE/I:|b(t707ut)|2 + |U(ta0,Ut)|2
0

T
+ | f(t, O,ut)}Q] dt + EE/ || dt,
0

with the constant C. > 0 depending on C, 4, |Br| and |Dr|.
Combining the above two inequalities (note (2.12)) and choosing suitable € > 0 yield

T T
E/(|yt\2 +[2]?) dt < CE{ [|zo]? + |h(0) + he|*] + [ [|B(¢,0,us)|”

0 0

+ o (t,0,u)|” + | £(2,0,us)|] dt}.



R. Li, B. Liu / J. Math. Anal. Appl. 415 (2014) 902-930 915

Again by (2.12) and (2.14), we can obtain the first estimation. As for the estimate of the difference of
solutions, we refer to the above arguments. 0O

It is remarkable that, in the fully coupled FBSDE (2.1) both z and u appear in the diffusion coefficient
of the forward equation, and the regularity of the process z (as a part of state process) seems to be not
enough to obtain a second-order expansion with respect to the control u. So a reduction method is adopted
to overcome this difficulty. First, we pose the following problem.

Problem B. Minimize J(z¢, Yo, z,u) = E[g(z1) + 7(y0)] over (zo,Y0,2,u) € R :== R x R x H%(0,T; R) xU
subject to the forward control system

dmt = b(taxtayta 2ty El‘t, Eyta Ezt7ut) dt + U(t,$t7 Yt, 2t E$t»Eyt7 Eztaut) th7
—dyt = f(t,$t7yt, 2ty ECEt, Eyt, Ezhut) dt — Zt th, (220)
1'(0) = Zo, y(O) = Yo,

with an optimal state constraint
2
E’yT — h(a:T)| =0.

Clearly, the original problem A is embedded into problem B, but the reverse is not true in general. So
based on the optimal control (Zo, 9o, z, u) of B, we know that « is optimal for A. In the following section,
the classical second-order variational technique is used to solve B.

3. Stochastic maximum principle

This section is devoted to the main theorem and its corresponding proof. Now, we assume that (Z, g, Z, )
is an optimal 4-tuple of problem B. For simplicity, we denote

ﬁ](t) = pj(t7jtaghztant)E?jhEZtaat)a
ﬁl](t) = pij(twfil‘mgtagtaE:i’taEghEzt?at%

5o ba(t) byt o (b by(t)
Bx(t).—(_fgﬂ(t) _fy(t)>, BX(t)._< ' ’

Sy(t) = (Umo(t) Uyo(t)>’ So(t) = (Uf(t) U@(ﬂ)y

p:b’0.7f; i?j:x’y7zﬁ'i7g7g'

Theorem 3.1. Let (A1)—(A4) or (A1)—(Ayg)" hold, and (Z,y,Z,u) be an optimal 4-tuple of problem B. Then
there exists an adapted solution (&,n,() € M?[0,T)] of the following FBSDE:

dé = {fy ()& — by(t)ne — ()G + B[ f3(£)6 — by(t)ne — 5(1)¢:] } at
+{fz gt—b(m—&z( )<t+E[fs(> - ()m—az ()] } AW,
—dny = {~fa(t §t+b()7_7t+0';c )+ E[— () + 52 (t)G] | dt — G AWy,

50 = ’_Y’y(ﬁ nr = gGL’T - h’ﬁL’Té-Tv

and let (P, Q) € 8%(0,T; R**?) x HZ(0,T; R*>*?) be the unique adapted solution of the following BSDE:

dP, = — [Bx(t)TPt + Ptéx(t) =+ Ex(t)TPtix(t) + Ex(t)TQt + Qtix(t) =+ ﬁxx(t)] dt + Qt th,

ngzT + gTBITIT 0
Pr=-—
T ( 0 0 )
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where Hx x (t) is defined by

Hxx(8) = ( ftfyz (t) + 77t ya (t) + GOy (t) gtfyy(t) + 77t yy () 4 Gy (1)

Then the following inequalities hold:

%<<00 ), (3.1)
0 ’Yyo Yo

and

o o 1 = = - \q2
H(t7xt7ytazt7ua§t7nt7ct)_H(ta‘Ttaytvzt;uhftvnh(t)+ipl(t)[g(tvphu)_O'(t7Ft7ut)}

<0, Yuel, a.e t€0,T], P-a.s. (3.2)

where Iy = (T4, s, 2%, B2y, Eijy, EZ), with P = (2 2) and H(t,z,y,z,u,&,n,() being the Hamiltonian
defined by

H(t7 :L.ﬂ y7 Z? u7 67 ,'77 C) = _gf(t7 F7 u) + nb(t7 F? u) + Ca(t7 F? u)'
Proof. Since the proof is lengthy, we divide it into a few steps to make the process clear.

Step 1: Introduction of the penalty functional and application of Ekeland’s variational principle. Let
(Zo, Yo, Z, @) be an optimal control of problem B, with the corresponding optimal state process (Z, ). Without
loss of generality, we assume that

J(Zo, Yo, z,u) = 0.
For any § > 0 and (zo, Yo, z,u) € R, we define the penalty functional
5 +12 2\3
J ($07y0a Z7u) = { I:(J(x07y0a Z,U;) + 5) ] + E|yT - h(xT)| } . (33)
To apply Ekeland’s variational principle, we endow the set & with the distance

d(u,ﬂ)zﬁ{(t,w € [0,T] xQ’ut ) # g (w )}, Yu,o € U,

where P is the product measure of the Lebesgue measure and P. Then 7—[2;(0, T; R) xU is a complete metric
space under the metric

D=

d((z,u), (2,2)) = [llz — 23 + d(u, @)%]*, V(zu), (% @) € H3(0,T; R) x U,

where [|2]|3 = EfOT |22 dt. Indeed, let {(2,,u,)} be a Cauchy sequence in H%(0,T; R) x U under d. Then
for any k > 2,

T
P{(t,w) € [0,T] x 2| |z — 2| >27M <2k{/

0 Q2(|zn—2m|>27%)

=

|2 — 2m|* dP dt}

< 2kHZn - Zm||27
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where P denotes the product measure of the Lebesgue measure and P. Hence, {zn} is a Cauchy sequence
convergent in measure P. By the Riesz Theorem, there exists a subsequence {z,, }, which converges almost
everywhere. We denote the limit by z. Then for any n > 1,

lim |zp, — 2n| = |2 — 2n|-
k—o0
On the other hand, since {z,} is a Cauchy sequence in the norm || - ||, for any € > 0, there is an N, such

that

|zn, — Zmll2 <€, n,m > N.

For any fixed n, we set m = ny, by Fatou’s lemma,

e > lim ||zn, — 2znll2
k—o0

7 ;
= lim {//|znk —zn|2det}
k—o00
2

0
7 3
:{ lim //pnk —zn|2det}
k—o0 ’
0

r 3
> {//|zn—5|2det} :
0 2

Thus, 2, — z € H%(0,T; R), which suggests z = (2 — z,) + 2, € H%(0,T; R). Besides,
IZ = znlle <e, Vn>=N.

This implies that {z,} converges to z in the norm || - ||z in H%(0,T; R). So far, we have proved the com-
pleteness of ’H%—(O,T; R). As for the completeness of U, the argument is the same as Lemma 6.4 in Yong
and Zhou [23], we omit the details here, but we still have d(u,,u) — 0 in U as n — oco.

Hence

d((zn’un)v (27 ﬂ)) = [”Zn - 2”% + d(um 7-7’)2]

N

— 0, n—o0.

This yields the completeness of H%(0,7; R) x U.
Moreover, J°(zq, yo, 2, u) is continuous from R into R. Obviously,

J‘s(:io,gjo,é,a) =0< inf J‘s(xo,yo,z,u)—&—é.

{ J6(£07y0az7u) > 07
(z0,y0,2,u)ER

By Ekeland’s variational principle [5], there exists a 4-tuple (23,43, 2°,u%) € R such that

J(s(xg,yg’z&’u‘s) < J6(£07g0a57ﬂ') = 57
28— 2" + g — 9ol + [12° 2 + du,0)° <,
V3 [Jaf - wo” + |y — wo” + ||2* — 2|12 + d(u?, )]

g Jé(x()?y()vzau) - Jé(xgvygvzévué)a v(anymZvu) eR.
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Therefore, (23,33, 2°,u°) is optimal for the system (2.20) with the new cost functional

T (20,90, 2, 10) + V3| — wo|” + |6 — wol + [|2° — 2|2 + d(u,u)’] 2.

Up to this point, we have transformed the original problem with endpoint constraints to the penalized
optimal control problem with no endpoint constraints, and the optimal 4-tuple (arg,yg , 20 u5) approaches
(Zo, Yo, Z,u) as 6 — 0.

Step 2: Nontriviality of the multiplier. Let ©° := (2%,1°,2%) be the unique adapted solution of the
following FBSDE:

da} = b(t, 2}, v, 2, Ex}, By} Bz}, ul) dt + o (t, 2, y), 2}, Ex), By}, B2) u)) dWy,
7dyf = f(t,xf,yf,zf,Exf,Eyf,Ezf,uf) dt - Z? tha
2°(0) ==}, y§ =h(z%) +hY,

with

Make some small disturbance to the above initial-terminal value to get

d,e d,e S b d,e d,e de 8 S, b, _de d,e d,e de 6§
doy =b(t, 2y, Y%, 205 Bxy® By Bz % ug) dt + o (", y, %, 2%, Exy S, By, ®, Bz uy) dWy,
o, d,e O, b, d,e 4, oe & J,e
—dy; —f(t,act Y 2 Bryt Byt Bz ,ut)dt—zt AWy,
5 5
2%5(0) = x) +eso,  yp = h(z%) + hY + v,

with (o, 97) € R x L%(12; R) satisfying |s0|* + E|97]* < 1. By virtue of Lemma 2.4,

lim ||96’E —
e—0

& [[sszpo.z) =0

which implies

e—0

T
lim E{|x5’5(0) - 1”6(())|2 + |yg"g — y8|2 + /|zf’5 — zf|2dt} =0.
0

By using the same argument as in Yong [22], we obtain

—CWVée < J‘S(xg’e,yg’s,z‘s’e,ué) - J‘s(zg,yg,z5,u6)
= Ip°[ (0", 9%, 2%, u®) = T (w5, 90, 2%, u’)] + BT (yg” = h(a7) — h7)]

= (Ig + 0(1)) [J(zg’s, yg’a, 2%€, u‘s) - J(:z:g, o, 2, u‘s)] + sE[(f% +0(1))d7],
where o(1) stands for certain scalars that go to 0 as ¢ — 0,

1 se 6,
2f0 [ﬁj(l"ogayo Ea z&gfu'é) + (1 - ﬁ)J(Z‘g, yg’ zéa u5) + 5]+ dfg
To(ag %, 0", 2%, ud) + I3 (af, 3, 29, u)
5, 5,
yr~ — h(z7%) + yr — h(zh)
Ja(xg,s’yg,s,zs,e’ua) + Ja(zg’y&za’ué)’

b,
1" =

)

7o
Iy =
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and

I§ = S(7d 13 .8 .0 ’
JO(xd, 5, 2%, ud)
78— y%_h(wéﬂ

T = 5/, 5 85 5  s\°
ERT T
We point out that (I3, I2.) is independent of (cp, ) and
2 =512
IL>0, |B|"+E|Z] =1
Thus, there exists a subsequence still denoted by (I3, I2.) convergent, i.e.

lim (13, I3) = (lo, It), with |Io|* + E|Ir|* = 1.
6—0
We claim that Iy # 0. The detailed illustration of this point refers to Shi [15]. Here (Iy, I7) is called the
Lagrange multiplier of the corresponding optimal 4-tuple (Zo, 9o, Z, ).
Step 3: Variations. For the sake of convenience, we denote

Ez

X:($>a v = z ) XO:<:EO>7 XT:<J:T>’
Y Yo yr

U
b(t,x,y,z, Bz, By, Bz, u)
—f(t,x,yﬂ,Ex,Ey,EZ,u) ’

Fx, Ey, FE
2(t7X7EX,U): <a(t?x7y7z7 :C, y7 Z7u)>7

z

G(Xr) =yr — Mar), F(Xo,X71)=g9(xr)+v(10),
F; = Fj(Xo, X1), Fij = Fij(Xo,X7), 1i,j= Xo,X1.

B(t,X,EX,v) = (

Consequently,
J(an Yo, =, ’U,) = J(XOa ’U)7 Jg(m()v Yo, =, u) = J(S(X()v U).
We denote the gradient DF and the Hessian D?F as follows:

F F
DF(XO’XT) = (FX()?FXT)? D2F(X0,XT) = ( XoXo XoXT ) )

Fx.x, Fx,;xr

Clearly,

For G, we have

DG(Xr1) = Gx,.(X7), D?*G(X7) = Gx,rxp (X7).
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To make the above more specific, let us take any Ire L%_-((Z; R). Then

A

<G(XT), fT> = (yT — ]’L(J?T))IT
Thus
{ [DG(XT)fT] = D[<G(XT),fT>] = <G(XT)’jT>XT = GXT (XT)fT,
[DZG(XT)IAT} = D2 [<G(XT), T>] = <G(XT)7 AT>XTXT = GXTXT (XT)fT7

with

. —Irhy . O

Fixing Xy € R? and v € H%(0,T; R) x H%(0,T; R) x U, for any € € (0,1), set

Xp® = X{ +VEXo,
and

o5 — vf, t €10, T\ Se,
! Ut, te 587

for some S, C [0, 7] with |S.| = €T, where |- | denotes the Lebesgue measure. Let X ¢ be the state process
corresponding to (Xg"g7 v%), and Xf’a, Xg’s be the solutions of the following SDEs:

dXY5(t) = { B ()XY (t) + BL () E[X(1)] } dt

T+ { S OXP° (1) + D% (OE[XP(1)] + AS (1), (1)} AW,
X7(0) = Ve Xo,
dXy°(t) = {BX () X3°(t) + BL () E[X3°(t)] + [AB(¢)

£ AB (X (] . (1) + 3 B (X517

+{Z% X7 (t) + DL (O E[X5° ()] + AL (0) X7 (1) Is. (¢)

1 <
+22XX( )XP(t)2) dW,

where

d)JX(t) = (bX (taXf7EXt5aU?)7

AP (t) = o(t, X[, EX) ve) — o(t, X7, EX],v)),
Ag(t) = ox(t, XE,EXf,vt) ox (t, X, EX] v}),
Fex (DX = ( (O30 )

¢XX
i,0 6 6 P
Px (1) = Py x (¢, X“EXt,vt), ¢=DB,%, i=12.

Then, we have the following estimates, whose proofs are similar as those given in Buckdahn, Djehiche and
Li [2].
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Bl sup |X75(0)["] + B[ sup [x7 - x7[*] < c<,
te[0,T te[0,T]

E[ sup | X0 — X7 — xP5(t)|” }+E[ sup | X5 ( t)!ﬂ < Ce%, (3.5)
te[0,T) t€[0,T)

Bl sup |X77 = X7 = X)7() - X3° ()] <o),
t€[0,T]

where py : (0,00) — (0, 00) such that lim._,q pr(c) = 0.
From (3.4), we obtain
—VE(VE|Xo| +eT) < J(X5%,0%%) — I (X§,07)
= 157 [T (X", 07) = J(X,0%)] + B(Iy", G(X7°) - G(X7))
= (I3 + o(1)) [T (X%, v%%) — J(X§,0°)] + E{I§ + (1), G(X3°) — G(X2)),

with
se 2 [0[BI(X0%,05€) + (1 — B)J(X§,v°) + 6] df
1075 — 0 0 » . 0> 7
Ja(XO’Ev vé,a) + Jé(ng vé)
pe_ GGG
T Ja(X0E we) + J8(XE, )
and

(XG0 + )

I y :
J5(XO ) Ué)
= ?JT h(xéT)
IT 6 .
JE(XOW(S)

In the following, we shall prove the conclusion that (I3,12) — (Io,Ir) and Iy # 0. By using Taylor’s
expansion,

J(X0%,0%¢) — J(X0,0°)

= B[F(XJ%,X%°) — F(X, X2)]

X0 - Xx¢ 1 X0 — X8 X% _ x?
=K DF5 68 g + 3 D2F§ 68 g ) g,s g
X5 — X5 2 X5 — X5 X5 — X5
: 5,
D2F5,€ XO - Xg XO S - XO
* X5 —x2 )0\ xh - X3
T T T T
5, 5,
= E{<F§<O,XO - X0) + (F%, Xp° — X§)

1
5 [P, (3 = ). X0 = X8) + (P, (X3 - XB). X3 - )

X5 - X, X5 - X¢
(e () ()
xh - x5 )\ xhe - x3

where
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§ é é 216 F)(S(X F)(S(X
D= (Fo P ), D= (0 1)
TA0 TAT

1
D*Foe — /ﬂ[D2F(BX3 + (1= B)X", BX} + (1 - B)X57) - D*F(X3, X7)] dB,
0

FJ(S:FJ(ngX%)7 Fzéj:Flj(Xgan“)7 %]ZXOaXT

Similarly,
B 6(X3) ~ 6(xh) = B{([DGT]. X3 = X + S [([D°6° 1) (03 - X1), X3 - xh)
(061 (X3 - ), x5 - x)] )
= 5{((G%, 7). X3~ X8) + 5 (G, T3] (X3 = X8). X3 - XB)
(DG (X3 - xf). X3 - )] .
with
[DGOI3F] = DG(X$)I3F, [D*GOI5°) = D2G(X2) 1),
D26 I = / S{ID°G(5XE + (1 - B)XG)I] ~ [D°G(X}) 1]} ds,
(G 1] = G (X, [y, 15 = Gy (XD

By use of the assumption (As) and (3.5),
T o A G L B e O A )]
< OB[|x0° - x3” +|x2° - x3°) < Cet.
Consequently,
VE(VEIX| +2T) < I [ 00) — J(X300)] + B(E G(XEY) — G(xE)
= B{ VR () T o) + 503 P, Xon Xo)

+ (155 (FE,) T+ (G, I2°], X95(T) + X34(T))

1 _
+ (1" F¥px, + [G&TXTI%E])Xf’%T),Xf’f(T»} +ole

Nl

).

2

Step 4: Duality. Let (#%°,¥%¢) be the adapted solution of the following BSDE:

{ Ao = —{BX ()" @) + E[B%(t) ")) + S% (1) ¥ + E[Z% (1) )] } dt + ¥ dW,
#h = {1 (F%,) T + (6%, ).
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Then (6%, ¥%¢) tends to (¥, ¥) as (6,e) — (0,0), which is the adapted solution of the following BSDE:

{ddit —{Bx(t)"®; + E[Bx(t) " ®;] + Ex(t) "W + E[Zx(t) " W] } dt + ¥, dWy,
Py = _{IO FXT) [GXTIT]}'

Applying Ito’s formula to (9%, X2=(t) + X3¢ (¢)) fulfills

~E(IY(F%,) "+ [Go, I5°], X95(T) + Xo=(T))
T

= B (@ VEX) + [ (580 + ABROXIW0) 5.0 + 3 Bx (0X00)
0

T

(0 (6550 + 65K >Xf’€<t>)fsa<t>+;2§(X<t>xf’f<t>2>dt}
e{

JW@+/R@aAmmym@ﬁAﬂ@ﬂ@ﬁ)

+%<H?&<t>Xf’6<t>,Xf’f<t>>dt} so(ed),

with HYS (1) = Hxx (t, X9, 00, ®7F, <) being the Hessian of
H(t, X, v,8,0) = (6, B(t, X, EX,v)) + (¥, 2(t, X, EX,v)).
Hence,
T €
e ol 1) < V()T ) 08 P X0 0)

+ <(Ig7EF§(TXT [GXTXT157E] )Xf’E(T)a Xf’E(T)>

DN | =

(872, AB (1)) + (&), AS° (1)) Is. (1)

O\H

wl»—\

o (HE (XD ),Xfﬁ(t»dt} +o(e?).
Note that Y° = X2 (£)XP5(t)T satisfies

Ay = {BX ()Y + YV B ()T + D% ()Y 5% ()T
+ 25t ><EX%E< ) (EXPE() 25 0+ A= ()

+ [ZXOXPTOAZ ()T + A X () TAZO ()T
+ADO(¢ )AE‘S() + AL ()] Is. (t }dt
DY+ Y2 ()T + A ()Y dw,

Y = eXo Xy,

where
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AP () = X7 (1) (EX](0) ' B(1) T

+ 25 0)X)° t(EXff(t))

A3E (1) = D% () (BEXY (1)) AZ () m@(mm» 257,

A§’€<t>:xf€<>< X))z <> + 2% () (BEXTE()) X5
+ XD )AZ () + AE‘% >Xf€<t>T]fsE<t>.

Now, let (P%¢,Q%°) be the adapted solution of the following BSDE:

dPP® = = [BX(t) ' PP° + BPEBY (1) + 25 (1) PE 2k (1)
+ S5 (1) TQYT + QYT X% (1) + HY (1)] dt + Q)° dWWy,
d, d, d,
‘PTrs = _{IO rsF‘)(S(TXT [GXTXTI E] }

Then, by (3.5) and applying 1t6’s formula to (P>°,Y,”¢) yields

_E[<(IS7EF§(TXT [GXTXTI(S,E])Xf,S(T)’ Xf,a(T)> + €<P(()5,8X07 X0>]

=E / (AT PIEAS (1)Ts, (t) — (HYS (D XTE(8), X{5(8)) ) dt + o(e3).

Consequently,
—V3(VE|Xo| +¢T) < E{JE(IS’E(Fﬁ(O)T — Y, Xo)

9
# S P, = P9 Xo. o)}
T

—E / [(@f~€,AB5(t)> (B A5 (1))

+ (PPEAZ (1), A25(t)>} Is.(t)dt + o(?). (3.6)

N | =
o

Step 5: Derivation of the inequality. Dividing /¢ in (3.6) and then sending ¢ — 0, § — 0, we see that
E{Iy(Fx,)" — @9, X0) >0, VX, € R?,
which implies
Dy = Io(Fx,)". (3.7)

Also, dividing €| Xo|? in (3.6) and sending |Xo| — 00, € — 0, § — 0, we get

E[lyFx,x, — Po] > 0. (3.8)
Finally, by taking Xo = 0 in (3.6), using a standard argument [23], the variational inequality follows

(D¢, B(t, Xy, EXy,v) — B(t, Xy, EXy,0p) ) + (W, 2(t, Xy, EXy,v) — 2(t, Xy, EXy, 0y))

1 _ _ _ _ _ _ _ _
+ §(E(ta X, EXy,v) — X(t, Xy, EXt7?7t))TPt (E(t; X, EXy,v) — X(t, Xy, EXt717t)) <0 (3.9)
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Step 6: Completing the proof. Since Iy # 0, we might as well set Iy = 1. Then

Ay = —{Bx(t) @, + E[Bg(t) 0] + Tx(t) W + B[Z¢(t) "] } dt + &, dWr,
bp = —{(Fx,)" +[Gx.Ir]},

and

+ Zx ()" Qe + Qe Xx (t) + Hxx (t)] dt + Q¢ dWr,

{ dP, = —[Bx(t)" P, + P.Bx(t) + Ex(t) ' P,Xx(t)
Pr = —{Fx,xs + [Gxrx, 7]}

Also, from (3.7) and (3.8),

Note that
_ 0
(Fxy) T = Fyy (Ko, Xr)T = ( ) ,
Yo
(FXT) - FXT(X()?XT) = (gg(E)T 5
v T _BZT 7T
Gx;Ir = Gx . (X1)Ir = I
Let

Then it follows from (3.10), (3.12) and (3.13) that

(2)=() (&)=
&o Yo ) &r —Ir ’

{ 50 = :Yyoa B
Nr = —Gup — thfT-

By use of (3.13), we may rewrite (3.10) as

So

60 = rs/yoa nr = _ng - }_legT-
Variational inequality (3.9) takes the form:
e [b(ve) — b(0r)] — & [f(ve) = f(@0)] + G [o(ve) — o (Dy)]
+ Gz — ) + %<Pt (U(vt) B J(vt)) ; <U(Ut> —o(@) >> <0,

Zt — Zt Zt — %t

925

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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where

{ t xtaytyztaEmtaEytaEzhut)
t l‘t,yt,Zt,El't,Eyt,EZt,Ut) P = b, g, f

Then taking u = u, z = z + €2y, Fz = Ez + cFz, dividing by € and sending € — 0, we have

e [b2(t)z0 + bz () Ezo| — & [ f-(t)z0 + f2(t) Ezo] + i [02(t)20 + 62(t) Ezo) + (20 <0, V2o € R.

Hence

= *{b ()& + 7, (1) ¢+ E[Bz(t)ﬁt — ()& + 52@)@] } (3.16)

Combining (3.14) and (3.16) gives the first-order adjoint equation. Furthermore,

- -I_—TBITIT 0) _ (ngmT + ETB1TIT 0>

FXTXT —+ [GXTXTI_T] = (ngzT 0 0 0 0

This provides the terminal value of Pp. Similarly, we have

_ 0 0
Fan= (0 )
e 0 Yyovo
Hence, inequality (3.1) follows from (3.12). Next, taking z = z, Fz = EZ in the variational inequality (3.15)
leads to

N [b(t,ft,ut) — b(t,ft,ﬂt)] — Et [f(t,ft,ut) — f(t,ft,ﬂt)] + Ct [U(t,ft,ut) — O'(t,f‘t,at)]

N %<Pt (U(t,Ft,ut) 8 a(t,Ft,at)> 7 (a(t,n,ut) Ba(t,ﬂg,at))>

= H(t,%¢,Ys, Ze, ut, §es ey G) — H(E, Te, Yr, 2o, Uty §ey M5 Ct)

1 _ _
+ 3P0 [o(t Dy ur) — o2, I,a))* <o.
This gives the optimal variational inequality (3.2), thus we have completed the total proof. O

Remark 3.1. Compared with the optimality variational principle of the classical fully coupled FBSDE
(Yong [22]), a conclusion similar to (3.6) in Yong [22] cannot be reached for the reason that the second-order
expansions of b(t, z,y, z, Ex, Ey, Ez,u), o(t,z,y, 2z, Ex, By, Ez,u), f(t,z,y, z, Bz, By, Ez, u) with respect to
z and Ez not only contain (z — 2)?, but also contain (z — 2)(Ez — Ez) and (Ez — Ez)2.

Remark 3.2. If the coefficients of the system (2.1) do not depend on the expected values of the states,
Theorem 3.1 reduces to the general SMP for fully coupled FBSDE. However, if the system (2.20) has the

state constraint that yr = h(axr, Exr), duality analysis of deriving the variational inequality is rather
complicated. We will leave it for a future study.

4. A linear—quadratic problem

Consider the optimal control problem:
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Problem D. Minimize J(u) = § E{g1x% + 1y} over U, subject to

daxy = {byxy + boys + b3z, + ba By + bs By, + b Bz, + byuy} dt

+ {012t + o2yt + 0321 + 04 Exy + 05 By + 06Ez + oqur} dWy,
—dy, = { frze + foyr + faze + faExy + fsEy + feEz + fru} dt — z dW,
z(0) = xo, yr = hixr,

(4.1)

where b;, 0, fi, i =1,...,7 and g1, 71, h1 are real constants of R, U = {u € L%(0,T;U) | uw € U} and
U C R could be arbitrary.

Noting the notations we have used before and the monotonic conditions (A4), we make assumptions for
coefficients of the state equation (4.1).

{E<F(t,F,u)—F(t,Fl,u),@—@1><—61E|@—@12, P—a.s., (42)

hl 2#1 >07 FZ(%%Z,E%EQ»EZ), @z(x,y,z%

where 51, 1 are given nonnegative constants. Then, by virtue of Theorem 2.1, for any v € U, the system
(4.1) has a unique solution (x,y, z). Now, we suppose Problem D admits an optimal 4-tuple (z,y, z, ).
Then the first-order adjoint equation reads

dé = { f2& — bamy — 092G + E|[f5& — bsmy — 05} dt

+ {f3& — bane — 03¢ + E[fe&t — bene — 06Ci] } AW,
—dny = {=fr& + bine + 016 + E[—fa&s + bane + 04} dt — G AW,
§o =7Y0, 1T =—g17T — hiér.

(4.3)

Similarly, by (4.2), it is easy to verify that the mean-field FBSDE (4.3) satisfies the monotonic conditions
(A4)". Then by Theorem 2.2, (4.3) admits a unique solution (£,7,¢). And the BSDE for (P, Q) becomes

dPy=—{B'P+ LB+ X " PY + XTQi + Q: X} dt + Q¢ dWy,

PT(%l 8) (4.4)

with
bl bg ) <O’1 0'2)
B= . Y= .
<_f1 —f2 0 O

Since all the coefficients in (4.4) are constants and the terminal value of Pr is deterministic, we deduce
Q = 0. Note P = (P1 D ), then (4.4) can be written as

P> Ps
Pi(t) = —(2b1 + o7) Po(t) + 2f1 P2 (), P(T) = —g1, (4.5)
Py(t) = —(ba + 0102) Pi(t) + (fo — b1) Pa(t) + f1Ps(t),  Pa(T) =0, (4.6)
Ps(t) = —02Py(t) — 2bo Po(t) + 2f2P3(t),  P3(T) =0. (4.7)

Clearly, linear ODEs (4.5)—(4.7) are independent of the optimal 4-tuple (Z, ¥, z, @) and only depend on
the coefficients of the state equation and the cost functional. Hence, condition (3.1), which takes the form

0 0
— Py >0, 4.
(0%) ) >0 (48)
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presents necessary conditions satisfied by these coefficients. Meanwhile, the optimality variational inequality
(3.2) takes the form

(—f7& + by + 07 ) (u — ug) + %a?l—_ﬁ(t)(u — )% <0, Yuel.
This implies that
—fr& + by + 07 < *%agPl(t)(u —u), YuelU, u>uy,
—fr&t + brng + 07 = —%a?ﬂ(t)(u — ), Yuel, u < iy.
Let us now look at a special case. Suppose that

f1>0, bgﬁo, O'3<0, f4>07 b5<0, O’GSO,

by = fa, o1 = f3, o9 = —bs, by = f5, o4 = fe, o5 = —bg.

It is easy to check that monotonic conditions (A4) and (A4)’ hold, this assures the well-posedness of (4.1)
and (4.3). Furthermore, if by = 09 = 0, systems (4.6) and (4.7) can be changed as

Py(t) = fLPs(t), Py(T) =0, (4.10)

P3(t) = 2f2P5(t),  P5(T) = 0. (4.11)
From (4.5), (4.10) and (4.11), we see that
Pi(t) = —g e@ted)(T—1) Py(-) =0, Ps(-) = 0.

Consequently, (4.8) becomes

(2b1+02)T
(916 1 0 > > 0.
0 Y1

Thus, it is necessary that
g1 =20, 7 2 0.

On the other hand, the optimality variational inequality (4.9) becomes

1
—fr&t + brne + 07 < 503916(%&0%)@7”(% —u), Yuel, u> iy,

—f7& + by + 07 = %Uggle(%ﬁ"f)@_t)(u —u), YuelU, u< uy. )
If in such a condition that o7 = 0, we have
—fr& + by +07G =0, Vuel, (4.13)
but in the condition that o7 # 0, g1 # 0, relations (4.12) imply
sup  u— U < 2= fr&e + b + 07G) < inf  w— . (4.14)

2 ~N _
well, u<iy 02gpebrtoi)(T—t) well, u>
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When U is discrete and not a singleton, the two sides of (4.14) are different. While, when U = R, we
always have (4.13) as the necessary optimality condition regardless of the value o7. Besides, it is necessary
to point out that we cannot obtain the explicit optimal control from the optimality variational inequality
(4.9) in general due to its heavy dependence on adjoint processes (€, 7, (), which is rather difficult to work
out. However, this can be achieved in some special cases mentioned below.

Remark 4.1. If we only focus on the forward control system, i.e. f; =0, hy = 0, by = by = bs = bg = 0,
o9 =03 =05 =0=0,i=1,...,7, then (4.1) reduces to the system investigated in Li [11]. There, under
the assumption of convex control domain, an optimal control for the linear quadratic control problem is
given in the feedback form.

Remark 4.2. If the coefficients of (4.1) do not depend on the expected values of the states, i.e. by =
bs =bsg =0,04 =05 =06 =0, fs = f5 = f¢ = 0, then it is just the classical fully coupled FBSDEs. The
corresponding linear quadratic problem with mixed initial-terminal conditions is studied in Yong [22], where
an optimal control in its explicit form is not presented. However, if in addition, by = b3 = 0, 09 = 03 = 0,
an explicit optimal control in its state feedback form is obtained in Wu [18].
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