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Strong solutions to the equations of electrically conductive
magnetic fluids

Youcef Amirat∗ and Kamel Hamdache†

Abstract
We study the equations of flow of an electrically conductive magnetic fluid, when

the fluid is subjected to the action of an external applied magnetic field. The system
is formed by the incompressible Navier-Stokes equations, the magnetization relaxation
equation of Bloch type and the magnetic induction equation. The system takes into
account the Kelvin and Lorentz force densities. We prove the local-in-time existence of
the unique strong solution to the system equipped with initial and boundary conditions.
We also establish a blow-up criterion for the local strong solution.

2010 Mathematics Subject Classification: 35Q35, 76D05.
Key words and phrases: magnetic fluid, Navier-Stokes equations, magnetization relaxation
equation, induction equation, strong solution, blow-up criterion.

1 Introduction

Electrically conductive magnetic fluid models describe the dynamics of electromagnetic fine
particles having internal rotations in a carrier fluid. Many applications, with different model-
ing, are used in engineering sciences in view of their potential applications in clutches, valves,
actuators and also in bioengineering and medicine sciences. See [4, 20, 27] for example.

The model we are concerned in this work is described by the fluid velocity U , the magnetic
induction B, the electric inductionD and the magnetization fieldM ; the electric polarization
is assumed to be 0. The magnetic induction satisfies the state law B = μ0(H +M) where
H is the magnetic field and μ0 is the magnetic permeability constant. The electromagnetic
fields satisfy the Maxwell equations while the magnetization obeys the Bloch equation. The
fluid velocity satisfies the incompressible Navier-Stokes equation with volume forces as the
Kelvin and Lorentz force densities.

Consider a laminar incompressible flow of a Newtonian and electrically conducting mag-
netic fluid under the influence of an applied external magnetic field. The fluid flows in a
bounded domain Ω ⊂ R

3 with boundary ∂Ω. Let T > 0 be a fixed time and ΩT = (0, T )×Ω.
The electromagnetic fields satisfy the Maxwell equations where the displacement current is
neglected ([13, 14, 18, 27]):

∂tB + curlE = 0, divB = 0, (1)
J = σ1Ω(E + U ∧B), (2)
curlH = J. (3)
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Equations (1)–(3) are considered in (0, T ) × R
3, J is the electric current density, E is the

electric field, σ is the electric conductivity and 1Ω is the characteristic function of Ω. The
magnetization M obeys the equation

∂tM + (U · ∇)M =
1

2
curlU ∧M − 1

tm
(M − χmH)− μ0

4ξr
M ∧ (M ∧H) in ΩT , (4)

where tm is the Brownian relaxation time, ξr is the vortex (rotational) viscosity and χm

denotes the total magnetic susceptibility. Equation (4), proposed by M.I. Shliomis [23],
is the magnetization relaxation equation of Bloch type, which takes account of rotational
Brownian motion. It follows from (2) and (3) that the electric field E satisfies

E + U ∧B =
1

σ
curlH in ΩT , (5)

then taking the curl of the above equation and using (1) we deduce that B satisfies the
equation

∂tB + curl

(
1

σ
curlH

)
= curl (U ∧B) in ΩT .

The fluid motion is governed by the incompressible Navier-Stokes equations

divU = 0 in ΩT ,

ρ(∂tU + (U · ∇)U)− μΔU +∇p = μ0M · ∇H +
μ0

2
curl (M ∧H) + J ∧B in ΩT ,

where p is the pressure, ρ is the fluid density and μ is the dynamical viscosity. The term
μ0(M · ∇)H represents the Kelvin body force due to magnetization, μ0M ∧H is the body
torque density which causes the magnetic nanoparticles and surrounding fluid to spin and
the term J ∧B represents the Lorentz force due to the induced electric current of magneto-
hydrodynamics (MHD).

We require the functions U , B and E to satisfy the following boundary conditions. For
the velocity we impose the no-slip boundary condition, namely

U = 0 on (0, T )× ∂Ω.

We also impose the perfect conductor boundary condition

E ∧ n = 0, B · n = 0 on (0, T )× ∂Ω, (6)

n being the unit outward normal vector to ∂Ω. It results from (5) and (6) that

curlH ∧ n = 0 on (0, T )× ∂Ω.

We thus obtain a boundary-value problem set in ΩT for the velocity U , the pressure p, the
magnetic field H and the magnetization M formed by the equations

divB = 0, divU = 0, (7)

∂tM + (U · ∇)M =
1

2
curlU ∧M − 1

tm
(M − χmH)− μ0

4ξr
M ∧ (M ∧H), (8)

∂tB + curl

(
1

σ
curlH

)
= curl (U ∧B), (9)

ρ(∂tU + (U · ∇)U)− μΔU +∇p = μ0M · ∇H +
μ0

2
curl (M ∧H) + J ∧B, (10)
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where
B = μ0(H +M) and J = curlH. (11)

System (7)–(11) is equipped with the boundary and initial conditions

B · n = 0, curlH ∧ n = 0, U = 0 on (0, T )× ∂Ω, (12)
U |t=0 = U0, M |t=0 = M0, B|t=0 = B0 in Ω. (13)

Before we can formulate our main result we need to introduce some notations. We assume
that Ω is a simply-connected bounded domain in R

3, with smooth boundary ∂Ω. Let Lq(Ω)
and W s,q(Ω) (1 ≤ q ≤ ∞, s ∈ R) be the usual Lebesgue and Sobolev spaces of scalar-valued
functions, respectively. When q = 2, W s,q(Ω) is denoted by Hs(Ω). By ‖ · ‖ and (·, ·)
we denote the L2-norm and its scalar product, respectively. The Hölder spaces Ck,α(Ω)
(k ∈ N, 0 < α < 1) are defined as the subspaces of Ck(Ω) consisting of functions whose k-th
order partial derivatives are Hölder continuous with exponent α. We set Lq(Ω) = (Lq(Ω))3,
W

s,q(Ω) = (W s,q(Ω))3, H
s(Ω) = (Hs(Ω))3 and Ck,α(Ω,R3) = (Ck,α(Ω))3. We denote

by D(Ω,R3) (resp. D(Ω,R3)) the space of infinitely differentiable functions with compact
support in Ω (resp. Ω) and valued in R

3. We introduce the classical function spaces in the
theory of the Navier-Stokes equations (see [9, 10, 15, 16, 17, 25, 26]):

Ds(Ω) =
{
v ∈ D(Ω,R3) : div v = 0 in Ω

}
,

U = closure of Ds(Ω) in H
1(Ω),

U0 = closure of Ds(Ω) in L
2(Ω).

As is well known,

U =
{
v ∈ H

1
0(Ω) : div v = 0 in Ω

}
,

U0 =
{
v ∈ L

2(Ω) : div v = 0 in Ω, v · n = 0 on ∂Ω
}
,

U ⊂ U0 ⊂ U ′ = dual space of U when U0 is identified with its dual.

We also introduce the spaces

Ds(Ω) =
{
C ∈ D(Ω,R3) : divC = 0 in Ω, C · n = 0 on ∂Ω

}
,

B = closure of Ds(Ω) in H
1(Ω),

B0 = closure of Ds(Ω) in L
2(Ω).

We have

B =
{
C ∈ H

1(Ω) : divC = 0 in Ω, C · n = 0 on ∂Ω
}
,

B0 = U0,

B ⊂ B0 ⊂ B′ = dual space of B.

Note that
(´

Ω |curlC|2 dx) 1
2 defines a norm on B which is equivalent to that induced

by H
1(Ω) on W , see [7, Chap. 7, Theorem 6.1]. Recall that v · n makes sense in H− 1

2 (∂Ω)
when v belongs to the space

H(div,Ω) = {v ∈ L
2(Ω) : div v ∈ L2(Ω)}
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and we have the Stokes formula: ∀v ∈ H(div,Ω), ∀ϕ ∈ H1(Ω),ˆ
Ω
v · ∇ϕdx = −

ˆ
Ω
ϕ div v dx+ 〈v · n, ϕ〉∂Ω,

where 〈·, ·〉∂Ω is the duality pairing between H− 1
2 (∂Ω) and H

1
2 (∂Ω). Similarly, if v belongs

to the space
H(curl,Ω) = {v ∈ L

2(Ω) : curl v ∈ L
2(Ω)},

then v has a tangential component v ∧ n ∈ H
− 1

2 (∂Ω) and the following Green’s formula
holds:

∀w ∈ H
1(Ω),

ˆ
Ω
curl v · w dx =

ˆ
Ω
v · curlw dx+ 〈v ∧ n,w〉∂Ω.

Without loss of generality, in the sequel we will suppose that ρ = cp = σ = μ0 = 1. For
notational convenience, we refer to Problem (7)–(13) to as problem (P). We assume that

U0 ∈ H
2(Ω) ∩ U , (14)

M0 ∈ H
2(Ω), (15)

B0 ∈ H
2(Ω) ∩ B. (16)

Definition 1. We say that (U,M,H) is a strong solution of problem (P) if:

(i)

U ∈ C([0, T ];U ∩H
2(Ω)) ∩ L2(0, T ;H3(Ω)) ∩W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;U),

M ∈ L∞(0, T ;H2(Ω)) ∩W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)),

H ∈ L∞(0, T ;H2(Ω)) ∩W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)).

(ii) The function M satisfies the problem

∂tM + (U · ∇)M =
1

2
curlU ∧M − 1

tm
(M − χmH)− 1

4ξr
M ∧ (M ∧H) in ΩT ,

M |t=0 = M0.

(iii) The function H solves the problem

∂tH + curl 2H = curl (U ∧B)− ∂tM in ΩT ,

divB = 0 in ΩT ,

B · n = 0, curlH ∧ n = 0 on (0, T )× ∂Ω,

H|t=0 = H0 ≡ B0 −M0 in Ω,

where B = H +M .

(iv) Equation (10), together with the incompressibility condition divU = 0 in ΩT , holds
weakly, that is, for every v ∈ U ,

d

dt

ˆ
Ω
U · v dx+

ˆ
Ω
(U · ∇)U · v dx+ μ

ˆ
Ω
∇U · ∇v dx

=

ˆ
Ω
(M · ∇)H · v dx+

1

2

ˆ
Ω
(curl (M ∧H)) · v dx+

ˆ
Ω
(J ∧B) · v dx in D ′(]0, T [),

U |t=0 = U0.
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(v) There exists p ∈ L2(0, T ;H2(Ω)) such that equation (10) holds a.e. in ΩT .

Definition 2. A positive number T � is called a finite blow-up time of the strong solution
(U,M,H) of problem (P) if

J(t) < ∞ for 0 ≤ t < T � and lim
t→T �

J(t) = +∞,

where the functional J(t) is defined by

J(t) = sup
0≤s≤t

(
‖U(s)‖H2(Ω) + ‖Ut(s)‖+ ‖M(s)‖H2(Ω) + ‖H(s)‖H2(Ω) + ‖Mt(s)‖+ ‖Ht(s)‖

)

+

ˆ t

0

(
‖U(s)‖2

H3(Ω) + ‖Ut(s)‖2H1(Ω) + ‖Mt(s)‖2H1(Ω) + ‖Ht(s)‖2H1(Ω)

)
ds, t ≥ 0.

(17)

Our main result is:

Theorem 1. Under assumptions (14)–(16), there is a time T∗ > 0 such that problem (P)
admits a unique strong solution (U,M,H) in ΩT∗ . Moreover, if T � is a finite blow-up time
of (U,M,H), we have

ˆ T �

0

(‖∇U(s)‖+ ‖M(s)‖H2(Ω) + ‖H(s)‖H2(Ω)

)12
ds = +∞. (18)

To prove the local-in-time existence of a strong solution, we use a classical linearization
and iteration method, see for instance [6].

Assume that (U �,M �, H�) is given, U � belongs to L∞(0, T ;U ∩H
2(Ω)) ∩ L2(0, T ;H3(Ω)),

∂tU
� belongs to L∞(0, T ;L2(Ω)) ∩ L2(0, T ;U), M � ∈ L∞(0, T ;H2(Ω)), ∂tM

� ∈
L∞(0, T ;L2(Ω)), H� ∈ L∞(0, T ;H2(Ω)) and ∂tH

� ∈ L∞(0, T ;L2(Ω)). We define the func-
tion M as the solution of the linearized hyperbolic equation

∂tM + (U � · ∇)M − 1

2
curlU � ∧M +

1

tm
M +

1

4ξr
M ∧ (M � ∧H�) =

χm

tm
H� in ΩT , (19)

M |t=0 = M0 in Ω. (20)

Then we define H as the solution of

∂tH + curl 2H = curl (U � ∧B)− ∂tM in ΩT , (21)
divB = 0 in ΩT , (22)
B · n = 0, curlH ∧ n = 0 on (0, T )× ∂Ω, (23)
H|t=0 = H0 ≡ B0 −M0 in Ω, (24)

where B = H+M . Setting J = curlH, we define U as the solution of the linearized problem

∂tU + (U � · ∇)U − μΔU +∇p = M · ∇H +
1

2
curl (M ∧H) + J ∧B in ΩT , (25)

divU = 0 in ΩT , (26)
U = 0 on (0, T )× ∂Ω, (27)
U |t=0 = U0 in Ω. (28)
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For convenience, in the sequel, we refer to problem (19), (20) to as problem (PM ), problem
(21)–(24) to as problem (PH) and problem (25)–(28) to as problem (PU ).

Using this approach by linearization we will construct a sequence (Un,Mn, Hn) of approx-
imate solutions to problem (P). Then we will derive some uniform bounds of the sequence
(Un,Mn, Hn) which allow to prove the convergence of the sequence to a strong solution of
problem (P). Our proof of the existence of a strong solution also provides a priori estimates
which allow to obtain the blow-up criterion (18). See Section 3.

Let us now mention some previous studies [1, 2, 3, 24]. These studies deal with the flow
of electrically nonconducting magnetic fluids. A differential system describing the motion of
an isothermal electrically nonconducting ferrofluid driven by an external magnetic field is
considered in [1]. The system reads

divU = 0 in ΩT , (29)

∂tM + (U · ∇)M =
1

2
curlU ∧M − 1

tm
(M − χmH)− μ0

4ξr
M ∧ (M ∧H) in ΩT , (30)

curlH = 0, divB = F in ΩT , (31)

ρ(∂tU + (U · ∇)U)− μΔU +∇p = μ0M · ∇H +
μ0

2
curl (M ∧H) in ΩT , (32)

where F is a given function in ΩT such that
´
Ω F dx = 0, for all t ∈ [0, T ], and the boundary

and initial conditions are taken as

U = 0 on (0, T )× ∂Ω, (33)
B · n = 0 on (0, T )× ∂Ω, (34)
U |t=0 = U0, M |t=0 = M0 in Ω. (35)

Note that system (29)–(32) can be deduced from system (7)–(11) by taking J = 0 and
replacing the magnetic induction equation (9) by the magnetostatic equations (31) with
F = 0. We prove the local-in-time existence of the unique strong solution to problem
(29)–(35).

The paper [24] deals with the differential system formed by the equations (29), (30), (32)
posed in the whole domain R

3 and coupled with the equations

curlH = 0, divB = −divHext in (0, T )× R
3. (36)

The authors study the Cauchy problem, they obtain a local-in-time existence result of a
strong solution, establish a blow-up criterion and a global-in-time existence result under
smallness assumptions on the data.

In [2] we are concerned with the model proposed by R.E. Rosensweig [19] to describe
the motion of a ferrofluid under the action of an external applied magnetic field. The state
variables are the fluid velocity U , the angular velocity ω, the magnetization field M and
the magnetic field H. The differential system is formed by the Navier-Stokes equations, the
angular momentum equation, the magnetization equation and the magnetostatic equations.
The magnetization relaxation equation has the form

∂tM + (U · ∇)M = ω ∧M − 1

tm
(M − χmH).

We prove the local-in-time existence of the unique strong solution to the differential system
equipped with initial and boundary conditions.
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In the paper [3] we study the equations of flow and heat transfer in an electrically non-
conducting magnetic fluid, when the fluid is subjected to the action of an external applied
magnetic field. The system of equations is formed by the Navier-Stokes equations, the
magnetization relaxation equation of Bloch type, the magnetostatic equations and the tem-
perature equation. We prove the local-in-time existence of the unique strong solution to the
system equipped with initial and boundary conditions and establish a blow-up criterion for
the strong solution. We also prove the global-in-time existence of strong solutions, under
smallness assumptions on the initial data and the external magnetic field.

Regarding involved mathematical methods, we note that the mathematical analysis of
problem (P) requires more refined estimates, particularly for the magnetization M and the
magnetic field H, to that in [1, 2, 3, 24]. In [1, 2, 3, 24], the magnetic field H is the solution
of (31) (or (36)), and the estimates on H follow straightforwardly from that onM . While for
problem (P) we need additional estimates ofM to derive suitable estimates ofH. Namely, we
establish estimates ofM in L∞(0, T ;H2(Ω))∩W 1,∞(0, T ;L2(Ω))∩H1(0, T ;H1(Ω)), see Lem-
mas 2 and 3. These estimates allow to derive from the magnetic induction equation estimates
of H in the spaces L∞(0, T ;H2(Ω)), W 1,∞(0, T ;L2(Ω)) and H1(0, T ;H1(Ω)), see Lemma 4.
Lemma 5 is used to estimate the electromagnetic forces. Then we obtain estimates of U in
the spaces L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)) and W 1,∞(0, T ;L2(Ω))∩H1(0, T ;H1(Ω)), see
Lemma 6. Finally, note that our uniform estimates on the approximate solutions of problem
(P) provide estimates which allow to obtain the blow-up criterion (18), see Section 3.

There have been extensive mathematical studies on the solutions of the equations of
MHD viscous and resistive incompressible fluids. Global weak solutions and local strong
solutions have been constructed in [8]. Properties of weak and strong solutions have been
examined in [22]. Some sufficient conditions for regularity of weak solutions to the MHD
equations were obtained in [12]. Blow up criteria for smooth solutions of the incompressible
MHD equations were obtained, see for example [5].

Throughout the paper, C indicates a generic constant that depends only on some bounds
of the physical data.

2 Study of problems (PM), (PH) and (PU)

2.1 Problem (PM)

Throughout the paper we will make frequent use of the Sobolev embedding:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

if 1 ≤ r < 3, then W 1,r(Ω) ↪→ Lr�(Ω), with r� =
3r

3− r
,

if r = 3, then W 1,r(Ω) ↪→ Lγ(Ω) for any real number γ ≥ 1,

if r > 3, then W 1,r(Ω) ↪→ L∞(Ω).

(37)

In particular, we will use estimates in the space L
r(Ω) of functions of the type A ∧ B and

A ∧ (B ∧D). The Hölder inequality gives

‖A ∧B‖Lr(Ω) ≤ ‖A‖L6(Ω)‖B‖
Lq(r)(Ω),

with q(r) = 6r
6−r if 2 ≤ r < 6, and q(r) = +∞ if r = 6. Observe that, for any 2 ≤ r ≤ 6,

W 1,r(Ω) ↪→ Lq(r)(Ω). (38)
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Indeed, if 2 ≤ r < 3 we have Lr�(Ω) ↪→ Lq(r)(Ω) (with r� = 3r
3−r ) and in view of (37)1 we have

W 1,r(Ω) ↪→ Lr�(Ω). If 3 ≤ r ≤ 6, according to (37)2 and (37)3, we haveW
1,r(Ω) ↪→ Lq(r)(Ω).

The claim is proved. We deduce that

‖A ∧B‖Lr(Ω) ≤ C‖A‖L6(Ω)‖B‖W1,r(Ω).

Employing the Hölder inequality, (37)3 and (38), we have

‖A ∧ (B ∧D)‖Lr(Ω) ≤ C‖A‖W1,r(Ω)‖B‖L6(Ω)‖D‖W1,6(Ω). (39)

Lemma 1. Problem (PM ) has a unique global-in-time strong solution M ∈
L∞(0, T ;H2(Ω)) ∩ H1(0, T ;H1(Ω)) ∩ H2(0, T ;L2(Ω)). Moreover, the following estimates
hold:

‖M(t)‖r
Lr(Ω) +

ˆ t

0
‖M(s)‖r

Lr(Ω) ds ≤ C

(
‖M0‖rLr(Ω) +

ˆ t

0
‖H�(s)‖r

Lr(Ω) ds

)
, (40)

‖∇M(t)‖r(Lr(Ω))3 +

ˆ t

0
‖∇M(s)‖r(Lr(Ω))3 ds ≤ Ca1(t), (41)

‖Mt(t)‖ ≤ Ca2(t), (42)

for any 2 ≤ r ≤ 6 and t ∈ (0, T ). The functions a1 and a2 are given by

a1(t) = a11(t) exp

(
C

ˆ t

0
a21(s) ds

)
,

with

a11(t) = ‖∇M0‖r(Lr(Ω))3 +

ˆ t

0

(
‖M(s)‖r

Lr(Ω)‖U �(s)‖W2,6(Ω) + ‖∇H�(s)‖r(Lr(Ω))3

)
ds

+

ˆ t

0
‖M(s)‖r

Lr(Ω)‖H�(s)‖W1,6(Ω)‖∇M �(s)‖(L6(Ω))3 ds

+

ˆ t

0
‖M(s)‖r

Lr(Ω)‖M �(s)‖W1,6(Ω)‖∇H�(s)‖(L6(Ω))3 ds,

a21(t) = ‖H�(t)‖W1,6(Ω)‖∇M �(t)‖(L6(Ω))3 + ‖M �(t)‖W1,6(Ω)‖∇H�(t)‖(L6(Ω))3

+ ‖U �(t)‖W2,6(Ω) + 1,

and

a2(t) = ‖U �(t)‖H1(Ω)‖M(t)‖W1,6(Ω) + ‖H�(t)‖+ ‖M(t)‖
+ ‖M �(t)‖W1,6(Ω)‖M(t)‖W1,6(Ω)‖H�(t)‖.

Since ∇U � belongs to the space L2(0, T ;C0, 1
2 (Ω,R9)) and M � ∧ H� belongs to

L∞(0, T ;H2(Ω)), the existence, regularity and uniqueness of a solution to (19), (20) is
classical. For the proof of (40)–(42) we refer to [1] (Lemma 2).

Lemma 2. We have

‖∂2
xixj

M(t)‖2 +
ˆ t

0
‖∂2

xixj
M(s)‖2 ds ≤ Ca3(t), (43)

for any i, j = 1, 2, 3 and t ∈ (0, T ). Here a3 is a function from L∞(0, T ), depending only on
‖U �‖L2(0,T ;H3(Ω)), ‖M0‖H2(Ω), ‖M‖L∞(0,T ;W1,6(Ω)), ‖M �‖L∞(0,T ;H2(Ω)), ‖H�‖L∞(0,T ;H2(Ω)).



9

Remark 1. The explicit formula of the function a3 is given in the following proof.

Proof. Differentiating equation (19) with respect to xi (1 ≤ i ≤ 3) yields

∂tN + (U � · ∇)N − 1

2
curlU � ∧N +

1

4ξr
N ∧ (M � ∧H�) +

1

tm
N = Z, (44)

with N = ∂xiM , K� = ∂xiH
�, N � = ∂xiM

�, V � = ∂xiU
�, and

Z =
χm

tm
K� − (V � · ∇)M +

1

2
curlV � ∧M − 1

4ξr
M ∧ (N � ∧H�)− 1

4ξr
M ∧ (M � ∧K�). (45)

Then, differentiating equation (44) with respect to xj (1 ≤ j ≤ 3) we obtain

∂tÑ + (U � · ∇)Ñ − 1

2
curlU � ∧ Ñ +

1

4ξr
Ñ ∧ (M � ∧H�) +

1

tm
Ñ = Z(1) + Z(2). (46)

Here the tilde sign denotes the derivative with respect to xj , thus Ñ = ∂xjN , K̃� = ∂xjK
�,

Ṽ � = ∂xjV
�, · · · , and

Z(1) = −(Ũ � · ∇)N +
1

2
curl Ũ � ∧N − 1

4ξr
N ∧ (M̃ � ∧H�)− 1

4ξr
N ∧ (M � ∧ H̃�)

and Z(2) = Z̃ where Z is given by (45), that is

Z(2) =
χm

tm
K̃� − (Ṽ � · ∇)M − (V � · ∇)M̃ +

1

2
curl Ṽ � ∧M +

1

2
curlV � ∧ M̃

− 1

4ξr
M̃ ∧ (N � ∧H�)− 1

4ξr
M ∧ (Ñ � ∧H�)− 1

4ξr
M ∧ (N � ∧ H̃�)

− 1

4ξr
M̃ ∧ (M � ∧K�)− 1

4ξr
M ∧ (M̃ � ∧K�)− 1

4ξr
M ∧ (M � ∧ K̃�).

Multiplying equation (46) by Ñ and integrating over Ω yields

1

2

d

dt
‖Ñ‖2 + 1

tm
‖Ñ‖2 =

ˆ
Ω
(Z(1) + Z(2)) · Ñ dx. (47)

The right-hand side is estimated as follows:∣∣∣∣
ˆ
Ω
Z(1) · Ñ dx

∣∣∣∣ ≤
ˆ
Ω

(
|(Ũ � · ∇)N |+ 1

2
|curl Ũ � ∧N |

)
|Ñ | dx

+
1

4ξr

ˆ
Ω

(
|N ∧ (M̃ � ∧H�)|+ |N ∧ (M � ∧ H̃�)|

)
|Ñ | dx

≡ J1 + J2. (48)

Cauchy-Schwarz’s inequality yields

J1 ≤ C

(
‖(Ũ � · ∇)N‖+ ‖curl Ũ � ∧N‖

)
‖∇N‖.

Using the Sobolev embedding we have

‖(Ũ � · ∇)N‖ ≤ C‖Ũ �‖W1,6(Ω)‖∇N‖ ≤ C‖U �‖W2,6(Ω)‖∇N‖,
‖curl Ũ � ∧N‖ ≤ ‖curl Ũ �‖L6(Ω)‖N‖L3(Ω) ≤ C‖U �‖W2,6(Ω) (‖N‖+ ‖∇N‖) ,
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and applying the Young inequality we obtain

J1 ≤ C‖U �‖W2,6(Ω)

(‖N‖2 + ‖∇N‖2) .
Employing (39) we have

‖N ∧ (M̃ � ∧H�)‖ ≤ C‖H�‖W1,6(Ω)‖∇M �‖(L6(Ω))3‖ (‖N‖+ ‖∇N‖) ,
‖N ∧ (M � ∧ H̃�)‖ ≤ C‖M �‖W1,6(Ω)‖∇H�‖(L6(Ω))3 (‖N‖+ ‖∇N‖) ,

hence

J2 ≤ C
(
‖H�‖W1,6(Ω)‖∇M �‖(L6(Ω))3 + ‖M �‖W1,6(Ω)‖∇H�‖(L6(Ω))3

) (‖N‖2 + ‖∇N‖2) .
We thus have

J1 + J2 ≤ Ca13
(‖N‖2 + ‖∇N‖2) , (49)

where a13 is defined by

a13(t) = ‖U �(t)‖W2,6(Ω) + ‖H�(t)‖W1,6(Ω)‖∇M �(t)‖(L6(Ω))3

+ ‖M �(t)‖W1,6(Ω)‖∇H�(t)‖(L6(Ω))3 .

Employing the Hölder inequality and the Sobolev embedding we also have

‖(Ṽ � · ∇)M‖ ≤ C‖U �‖W2,6(Ω)‖M‖W1,6(Ω),

‖(V � · ∇)M̃‖ ≤ C‖U �‖W2,6(Ω)‖∇M̃‖,
‖curl Ṽ � ∧M‖ ≤ C‖U �‖H3(Ω)‖M‖W1,6(Ω),

‖curlV � ∧ M̃‖ ≤ C‖U �‖W2,6(Ω)‖M‖W1,6(Ω),

and

‖M̃ ∧ (N � ∧H�)‖ ≤ C‖∇M‖(L6(Ω))3‖∇M �‖(L6(Ω))3‖H�‖L6(Ω),

‖M ∧ (Ñ � ∧H�)‖ ≤ C‖M‖W1,6(Ω)‖M �‖H2(Ω)‖H�‖W1,6(Ω),

‖M ∧ (N � ∧ H̃�)‖ ≤ C‖M‖L6(Ω)‖M �‖W1,6(Ω)‖H�‖W1,6(Ω),

‖M̃ ∧ (M � ∧K�)‖ ≤ C‖M‖W1,6(Ω)‖M �‖L6(Ω)‖H�‖W1,6(Ω),

‖M ∧ (M̃ � ∧K�)‖ ≤ C‖M‖L6(Ω)‖M �‖W1,6(Ω)‖H�‖W1,6(Ω),

‖M ∧ (M � ∧ K̃�)‖ ≤ C‖M‖W1,6(Ω)‖M �‖W1,6(Ω)‖H�‖H2(Ω).

Using the Young inequality we deduce that∣∣∣∣
ˆ
Ω
Z(2) · Ñ dx

∣∣∣∣ ≤ C
(‖∇N‖2 + a23

)
, (50)

where a23 is defined by

a23(t) = ‖H�(t)‖2
H2(Ω) + ‖U �(t)‖2

H3(Ω)‖M(t)‖2
W1,6(Ω)

+ ‖M(t)‖2
W1,6(Ω)‖M �(t)‖2

H2(Ω)‖H�(t)‖2
W1,6(Ω)

+ ‖M(t)‖2
W1,6(Ω)‖M �(t)‖2

W1,6(Ω)‖H�(t)‖2
H2(Ω).



11

We deduce from (47)–(50) that

1

2

d

dt
‖Ñ‖2 + 1

tm
‖Ñ‖2 ≤ C

(
a33

(‖N‖2 + ‖∇N‖2)+ a23

)
. (51)

where a33(t) = a13(t) + 1. Let us introduce the quantities

R(t) =
3∑

i,j=1

‖∂2
xixj

M(t)‖2, R0 =
3∑

i,j=1

‖∂2
xixj

M0‖2.

Summing (51) over i, j = 1, 2, 3 and using the inequality ‖N‖ ≤ ‖∇M‖ we obtain
1

2

dR

dt
+

R

tm
≤ C

(
a33R+ a33‖∇M‖2 + a23

)
and Gronwall’s inequality implies that

R(t) +

ˆ t

0
R(s) ds ≤ C

(
R0 +

ˆ t

0

(
a33(s)‖∇M(s)‖2 + a23(s)

)
ds

)
exp

(
C

ˆ t

0
a33(s) ds

)
,

hence (43) with

a3(t) =

(
‖M0‖2H2(Ω) +

ˆ t

0

(
a33(s)‖∇M(s)‖2 + a23(s)

)
ds

)
exp

(
C

ˆ t

0
a33(s) ds

)
.

Lemma 2 is proved.

Lemma 3. We have

‖∂2
txi

M(t)‖ ≤ Ca4(t), (52)
‖Mtt(t)‖ ≤ Ca5(t), (53)

for any i = 1, 2, 3 and t ∈ (0, T ). Here a4 is a function from L∞(0, T ), depending
only on ‖U �‖L∞(0,T ;H2(Ω)), ‖M‖L∞(0,T ;H2(Ω)), ‖M �‖L∞(0,T ;W1,6(Ω)), ‖H�‖L∞(0,T ;W1,6(Ω)),
while a5 belongs to L2(0, T ), depending only on ‖U �‖L2(0,T ;W2,6(Ω)), ‖U �

t ‖L2(0,T ;H1(Ω)),
‖M‖L∞(0,T ;W1,6(Ω)), ‖Mt‖L∞(0,T ;L2(Ω)), ‖M �‖L∞(0,T ;W1,6(Ω)), ‖H�‖L∞(0,T ;W1,6(Ω)),
‖M �

t ‖L∞(0,T ;L2(Ω)), ‖H�
t‖L∞(0,T ;L2(Ω)).

Remark 2. The explicit formulae of the functions a4 and a5 are given in the following proof.

Proof. Writing

∂tN = −(U � · ∇)N +
1

2
curlU � ∧N − 1

4ξr
N ∧ (M � ∧H�)− 1

tm
N + Z

with N = ∂xiM , K� = ∂xiH
�, N � = ∂xiM

�, V � = ∂xiU
�, and Z given by (45), we easily

deduce that (52) holds with

a4(t) = ‖U �(t)‖H2(Ω)‖M(t)‖H2(Ω) + ‖∇M(t)‖+ ‖∇H�(t)‖
+ ‖∇M(t)‖‖M �(t)‖W1,6(Ω)‖H�(t)‖W1,6(Ω)

+ ‖M(t)‖W1,6(Ω)‖∇M �(t)‖‖H�(t)‖W1,6(Ω)

+ ‖M(t)‖W1,6(Ω)‖M �(t)‖W1,6(Ω)‖∇H�(t)‖.
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Differentiating equation (19) with respect to t gives

Mtt =− (U �
t · ∇)M − (U � · ∇)Mt +

1

2
curlU �

t ∧M +
1

2
curlU � ∧Mt

− 1

tm
(Mt − χmH�

t )−
1

4ξr
Mt ∧ (M � ∧H�)− 1

4ξr
M ∧ (M �

t ∧H�)

− 1

4ξr
M ∧ (M � ∧H�

t )

from which we deduce (53) with

a5(t) = ‖U �
t (t)‖H1(Ω)‖M(t)‖W1,6(Ω) + ‖U �(t)‖W1,6(Ω)‖Mt(t)‖H1(Ω)

+ ‖Mt(t)‖+ ‖H�
t (t)‖+ ‖Mt(t)‖‖M �(t)‖W1,6(Ω)‖H�(t)‖W1,6(Ω)

+ ‖M(t)‖W1,6(Ω)‖M �
t (t)‖‖H�(t)‖W1,6(Ω)

+ ‖M(t)‖W1,6(Ω)‖M �(t)‖W1,6(Ω)‖H�
t (t)‖.

Lemma 3 is proved.

2.2 Problem (PH)

Lemma 4. Problem (PH) has a unique global-in-time strong solution H ∈ L∞(0, T ;H2(Ω))∩
W 1,∞(0, T ;L2(Ω))∩H1(0, T ;H1(Ω)). Moreover, the following estimates hold for t ∈ (0, T ):

(i)

‖H(t)‖2 +
ˆ t

0
‖curlH(s)‖2 ds ≤ b1(t), (54)

‖H‖L2(0,T ;H1(Ω)) ≤ C
(‖curlH‖+ ‖M‖L2(0,T ;H1(Ω))

)
, (55)

where

b1(t) =

(
‖H0‖2 +

ˆ t

0

(‖U �(s)‖2
L∞(Ω)‖M(s)‖2 + ‖Mt(s)‖2

)
ds

)
×

× exp

(
t+

ˆ t

0
‖U �(s)‖2

L∞(Ω) ds

)
;

(ii)

‖curlH(t)‖2 +
ˆ t

0
‖Ht(s)‖2 ds ≤ b2(t), (56)

‖H‖L∞(0,T ;H1(Ω)) ≤ C
(‖curlH‖L∞(0,T ;L2(Ω)) + ‖M‖L∞(0,T ;H1(Ω))

)
, (57)

where

b2(t) =2

ˆ t

0

(
‖∇U �(s)‖2(L∞(Ω))3‖B(s)‖2 + ‖U �(s)‖2

L∞(Ω)‖B(s)‖2
H1(Ω) + ‖Mt(s)‖2

)
ds

+ ‖curlH0‖2;
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(iii)

‖curlH(t)‖2 +
ˆ t

0
‖curl 2H(s)‖2 ds ≤ b3(t), (58)

‖H‖L2(0,T ;H2(Ω)) ≤ C
(‖curl 2H‖+ ‖M‖L2(0,T ;H2(Ω))

)
, (59)

where

b3(t) =

(
‖curlH0‖2 +

ˆ t

0

(
C‖U �(s)‖2

W2,6(Ω)‖curlM(s)‖2 + ‖curlMt(s)‖2
)
ds

)
×

× exp

(
t+ C

ˆ t

0
‖U �(s)‖2

W2,6(Ω) ds

)
;

(iv)

‖Ht(t)‖2 + 1

4

ˆ t

0
‖curlHt(s)‖2 ds ≤ b4(t), (60)

‖Ht‖L2(0,T ;H1(Ω)) ≤ C
(‖curlHt‖+ ‖Mt‖L2(0,T ;H1(Ω))

)
, (61)

where

b4(t) =

(
‖Ht(0)‖2 +

ˆ t

0

((‖U �
t (s)‖L6(Ω)‖B(s)‖L3(Ω) + ‖U �(s)‖L∞(Ω)‖Bt(s)‖

)2
+

1

2
‖Mtt(s)‖2

)
ds

)
exp

(
t

2

)
,

with

Ht(0) = −curl 2H0 + curl (U �(0) ∧B0)−Mt(0),

Mt(0) = −(U �(0)∇)M0 +
1

2
curl (U �(0) ∧M0)− 1

tm
M0 − 1

4ξr
M0 ∧ (M �(0) ∧H�(0))

+
χm

tm
H�(0);

(v)
‖H(t)‖H2(Ω) ≤ C

(
‖∇U �(t)‖‖B(t)‖W1,4(Ω) + ‖Bt(t)‖+ ‖M(t)‖H2(Ω)

)
. (62)

Proof. We only need to prove the estimates.
(i) Multiplying equation (21) by H and integrating by parts yields

1

2

d

dt

ˆ
Ω
|H|2 dx+

ˆ
Ω
|curlH|2 dx =

ˆ
Ω

(
U � ∧ (H +M)

)
· curlH dx−

ˆ
Ω
MtH dx.

≡ I1 + I2.

Using Cauchy-Schwarz and Young inequalities it holds that

|I1| ≤ ‖U �‖L∞(Ω)‖H‖‖curlH‖+ ‖U �‖L∞(Ω)‖M‖‖curlH‖
≤ 1

2
‖curlH‖2 + 1

2
‖U �‖2

L∞(Ω)

(‖H‖2 + ‖M‖2)
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and

|I2| ≤ 1

2
(‖H‖2 + ‖Mt‖2).

We thus have

d

dt

ˆ
Ω
|H|2 dx+

ˆ
Ω
|curlH|2 dx

≤
(
‖U �‖2

L∞(Ω) + 1
)
‖H‖2 + ‖U �‖2

L∞(Ω)‖M‖2 + ‖Mt‖2.

Integrating over (0, t) and using the Gronwall lemma we get (54). From the equality B =
H +M it holds that

‖curlB‖ ≤ ‖curlH‖+ ‖curlM‖,
since divB = 0 in ΩT and B · n = 0 on (0, T )× ∂Ω, it results that

‖B‖L2(0,T ;H1(Ω)) ≤ C‖curlB‖,

hence (55).
(ii) We multiply equation (21) by Ht and integrate by parts to obtain

ˆ
Ω
|Ht|2 dx+

1

2

d

dt

ˆ
Ω
|curlH|2 dx =

ˆ
Ω
curl

(
U � ∧B

)
·Ht dx−

ˆ
Ω
MtHt dx.

≡ I3 + I4.

In view of the vector identity

curl (U � ∧B) = (divB)U � − (divU �)B + (B · ∇)U � − (U � · ∇)B,

and the conditions divB = divU = 0, we have

curl (U � ∧B) = (B · ∇)U � − (U � · ∇)B. (63)

We deduce that

|I3| ≤ 1

4
‖Ht‖2 +

(
‖∇U �‖2(L∞(Ω))3‖B‖2 + ‖U �‖2

L∞(Ω)‖B‖2
H1(Ω)

)
.

We also have

|I4| ≤ 1

4
‖Ht‖2 + ‖Mt‖2.

We thus have

1

2

ˆ
Ω
|Ht|2 dx+

1

2

d

dt

ˆ
Ω
|curlH|2 dx

≤ ‖∇U �‖2(L∞(Ω))3‖B‖2 + ‖U �‖2
L∞(Ω)‖B‖2

H1(Ω) + ‖Mt‖2.

Integrating over (0, t) we deduce (56). Arguing as above we show that

‖B‖L∞(0,T ;H1(Ω)) ≤ C
(‖curlH‖L∞(0,T ;L2(Ω)) + ‖M‖L∞(0,T ;H1(Ω))

)
,

hence (57).
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(iii) Multiplying equation (21) by curl 2H and integrating by parts yields

1

2

d

dt

ˆ
Ω
|curlH|2 dx+

ˆ
Ω
|curl 2H|2 dx =

ˆ
Ω
curl

(
U � ∧B

)
· curl 2H dx

−
ˆ
Ω
curlH · curlMt dx.

≡ I5 + I6.

Using (63), the Cauchy-Schwarz inequality, the Sobolev embedding H1(Ω) ↪→ L6(Ω), the
equality B = H +M and the equivalence of norms in B we have

|I5| ≤
(
‖∇U �‖(L∞(Ω))3‖B‖+ ‖U �‖L∞(Ω)‖∇B‖

)
‖curl 2H‖

≤ C‖U �‖W2,6(Ω)‖curlB‖‖curl 2H‖
≤ C‖U �‖W2,6(Ω) (‖curlH‖+ ‖curlM‖) ‖curl 2H‖
≤ 1

2
‖curl 2H‖2 + C‖U �‖2

W2,6(Ω)

(‖curlH‖2 + ‖curlM‖2) .
We also have

|I6| ≤ 1

2
‖curlH‖2 + 1

2
‖curlMt‖2.

It results that

d

dt

ˆ
Ω
|curlH|2 dx+

ˆ
Ω
|curl 2H|2 dx

≤ ‖curlH‖2
(
C‖U �‖2

W2,6(Ω) + 1
)
+ C‖U �‖2

W2,6(Ω)‖curlM‖2 + ‖curlMt‖2.

Integrating over (0, t) we deduce (58). Writing curl 2B = curl 2H+curl 2M , using Lemma 2,
the conditions divB = 0 in ΩT and B · n = 0 in (0, T )× ∂Ω, applying a classical regularity
result for curl 2 equations with a nonhomogeneous boundary condition curlB×n = curlM×
n with curlM × n ∈ L2(0, T ;H− 1

2 (∂Ω)), see [11] and [21, Proposition 2.1], gives B ∈
L2(0, T ;H2(Ω)) and the following estimate

‖B‖L2(0,T ;H2(Ω)) ≤ C
(
‖curl 2H‖+ ‖curl 2M‖+ ‖curlM‖

L2(0,T ;H− 1
2 (∂Ω))

)
holds. We deduce that H ∈ L2(0, T ;H2(Ω)) and satisfies (59).

(iv) Differentiating equation (21) with respect to t, multiplying the resulting equation by
Ht and integrating by parts yields

d

dt

ˆ
Ω
|Ht|2 dx+

1

2

ˆ
Ω
|curlHt|2 dx

=

ˆ
Ω

(
U �
t ∧B + U � ∧Bt

)
· curlHt dx−

ˆ
Ω
Mtt ·Ht dx

≡ I7 + I8.

We have
|I7| ≤ 1

4
‖curlHt‖2 +

(
‖U �

t ‖L6(Ω)‖B‖L3(Ω) + ‖U �‖L∞(Ω)‖Bt‖
)2

.

We also have
|I8| ≤ 1

2

(‖Mtt‖2 + ‖Ht‖2
)
.
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It results that

d

dt

ˆ
Ω
|Ht|2 dx+

1

4

ˆ
Ω
|curlHt|2 dx

≤
(
‖U �

t ‖L6(Ω)‖B‖L3(Ω) + ‖U �‖L∞(Ω)‖Bt‖
)2

+
1

2

(‖Mtt‖2 + ‖Ht‖2
)
.

Integrating over (0, t) and using the Gronwall Lemma we deduce (60). Writing curlBt =
curlHt+curlMt, we have ‖curlBt‖ ≤ ‖curlHt‖+‖curlMt‖ and using the conditions divBt =
0 in ΩT and Bt · n = 0 in (0, T ) × ∂Ω we get that Bt ∈ L2(0, T ;H1(Ω)) and we have the
estimate

‖Bt‖L2(0,T ;H1(Ω)) ≤ C (‖curlHt‖+ ‖curlMt‖) .
We deduce that Ht ∈ L2(0, T ;H1(Ω)) and we have (61).

(v) Using (63) and the Hölder inequality we deduce from equation (21) that

‖curl 2H(t)‖ ≤ ‖U �(t)‖L6(Ω)‖∇B(t)‖(L3(Ω))3 + ‖B(t)‖L∞(Ω)‖∇U �(t)‖+ ‖Bt(t)‖.

Using the Poincaré inequality and the Sobolev embeddings (37)1 and (37)3, we obtain

‖curl 2H(t)‖ ≤ C‖∇U �(t)‖‖B(t)‖W1,4(Ω) + ‖Bt(t)‖, t ∈ (0, T ).

Since the right-hand side belongs to L∞(0, T ), the function curl 2H belongs to
L∞(0, T ;L2(Ω)) which implies that curl 2B ∈ L∞(0, T ;L2(Ω)). Therefore H and B be-
long to L∞(0, T ;H2(Ω)) and satisfy (62). The proof of Lemma 4 is complete.

Lemma 5. Let M be the solution of problem (PM ), H the solution of problem (PH) and
J = curlH. Then:

(i) (M · ∇)H, M ∧H, curl (M ∧H) and J ×B satisfy, for t ∈ (0, T ),

‖(M · ∇)H(t)‖H1(Ω) ≤ C‖M(t)‖H2(Ω)‖H(t)‖H2(Ω), (64)

‖M ∧H(t)‖H1(Ω) ≤ C‖M(t)‖H2(Ω)‖H(t)‖H2(Ω), (65)

‖curl (M ∧H)(t)‖H1(Ω) ≤ C‖M(t)‖H2(Ω)‖H(t)‖H2(Ω), (66)

‖J ∧B(t)‖H1(Ω) ≤ C‖B(t)‖H2(Ω)‖H(t)‖H2(Ω); (67)

(ii) [M ∧H]t, curl [M ∧H]t, [(M · ∇)H]t, [J ×B]t satisfy, for t ∈ (0, T ),

‖[M ∧H]t(t)‖ ≤ C
(‖H(t)‖W1,6(Ω)‖Mt(t)‖L6(Ω) + ‖M(t)‖W1,6(Ω)‖Ht(t)‖

)
, (68)

‖curl [M ∧H]t(t)‖H−1(Ω) ≤ C‖[M ∧H]t(t)‖, (69)

‖[(M · ∇)H(t)]t‖H−1(Ω) ≤ C
(‖[M ∧H]t(t)‖+ ‖divMt(t)‖‖B(t)‖W1,6(Ω)

)
+ C

(‖Ht(t)‖‖M(t)‖W1,6(Ω) + ‖H(t)‖H1(Ω)‖M(t)|H1(Ω)

)
, (70)

‖[J ∧B]t(t)‖H−1(Ω) ≤ C
(‖Ht(t)‖‖B(t)‖L∞(Ω) + ‖Ht(t)‖‖∇B(t)‖(L3(Ω))3

)
+ C‖Bt(t)‖‖J(t)‖L3(Ω). (71)

Proof. The proofs of (i), (68) and (69) are easy, we use the Hölder inequality and the Sobolev
embedding. To prove (70) we use the vector identity

(M · ∇)H = −curl (M ∧H) + (divM)B + (H · ∇)M,
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which by differentiation with respect to t gives

[(M · ∇)H]t = −curl [M ∧H]t + (divMt)B + (divM)Bt + (Ht · ∇)M + (H · ∇)Mt.

Estimating each term in the right-hand side gives (70). To show (71) we write, for any
w ∈ U , ˆ

Ω
[J ∧B]t · w dx =

ˆ
Ω
[Jt ∧B] · w dx+

ˆ
Ω
[J ∧Bt] · w dx

=

ˆ
Ω
Ht ·

(
(B∇)w − (w∇)B

)
dx+

ˆ
Ω
curlH · [Bt ∧ w] dx,

from which follows∣∣∣∣
ˆ
Ω
[J ∧B]t · w dx

∣∣∣∣ ≤‖Ht‖‖B‖L∞(Ω)‖∇w‖+ ‖Ht‖‖∇B‖(L3(Ω))3‖w‖L6(Ω)

+ ‖Bt‖‖w‖L6(Ω)‖curlH‖L3(Ω),

hence (71). The lemma is proved.

2.3 Problem (PU)

Arguing as in [1] (Lemma 6) we prove the following result.

Lemma 6. Problem (PU ) admits a unique global-in-time strong solution U satisfying:

(i)
U ∈ C([0, T ];U ∩H

2(Ω)) ∩ C1([0, T ];H1(Ω)) ∩ L2(0, T ;H3(Ω));

(ii)

‖U(t)‖2 +
ˆ t

0
‖∇U(s)‖2 ds

≤ C

(
‖U0‖2 +

ˆ t

0

(‖(M · ∇)H(s)‖2 + ‖M ∧H(s)‖2 + ‖J ∧B(s)‖2) ds

)
, t ∈ (0, T );

(iii)

‖∇U(t)‖2 +
ˆ t

0
‖Ut(s)‖2 ds ≤ Cd1(t), t ∈ (0, T ),

ˆ t

0
‖U(s)‖2

H2(Ω)) ds ≤ Cd2(t), t ∈ (0, T ),

where

d1(t) =

(
‖∇U0‖2 +

ˆ t

0

(‖(M · ∇)H(s)‖2 + ‖curl (M ∧H)(s)‖2) ds
+

ˆ t

0
‖J ∧B(s)‖2 ds

)
exp

(
C

ˆ t

0
‖U �(s)‖2

L∞(Ω) ds

)
,

d2(t) =

ˆ t

0
‖Ut(s)‖2 ds+ ‖U �(s)‖2

L∞(0,t;H2(Ω))

ˆ t

0
‖∇U(s)‖2 ds

+

ˆ t

0

(‖(M · ∇)H(s)‖2 + ‖curl (M ∧H)(s)‖2 + ‖J ∧B(s)‖2) ds;
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(iv)

‖Ut(t)‖2 +
ˆ t

0
‖∇Ut(s)‖2 ds ≤ C(d13 + d23)(t), t ∈ (0, T ),

‖U(t)‖2
H2(Ω) ≤ Cd4(t), t ∈ (0, T ),

where d13, d
2
3 and d4 are given by

d13 = ‖ΔU0‖2L2(Ω) + ‖U �(0)‖2
H2(Ω)‖∇U0‖2 + ‖(M0 · ∇)H0‖2 + ‖(M0 ∧H0)‖2

+ ‖curlH0 ∧B0‖2,

d23(t) =

ˆ t

0

( ‖[(M · ∇)H]t(s)‖2H−1(Ω) + ‖[J ∧B]t(s)‖2H−1(Ω)

)
ds

+

ˆ t

0
‖[M ∧H]t(s)‖2H−1(Ω) ds+ ‖U �

t ‖2L∞(0,t;L2(Ω))

ˆ t

0
‖U‖2

H2(Ω)) ds,

d4(t) = ‖Ut(t)‖2 + ‖U �(t)‖2
H2(Ω)‖∇Ut(t)‖2 + ‖(M · ∇)H(t)‖2

+ ‖curl (M ∧H)(t)‖2 + ‖J ∧B(t)‖2;

(v)
ˆ T

0
‖U(s)‖2

H3(Ω) ds ≤ C

ˆ T

0
‖Ut(s)‖2H1(Ω) ds+ C

ˆ T

0
‖U �(s)‖2

H2(Ω)‖U(s)‖2
H2(Ω) ds

+ C

ˆ T

0
‖(M · ∇)H(s)‖2

H1(Ω) ds+ C

ˆ T

0
‖curl (M ∧H)(s)‖2

H1(Ω) ds

+ C

ˆ T

0
‖J ∧B(s)‖2

H1(Ω) ds.

3 Proof of Theorem 1

3.1 Approximate solutions

Set (U0,M0, H0) = (0, 0, 0). Assuming that the triplet (Un,Mn, Hn) is defined, let
(Un+1,Mn+1, Hn+1) be the solution of problem (19)–(28) with (U �,M �, H�) replaced by
(Un,Mn, Hn). Thus Mn+1 satisfies

∂tM
n+1 + (Un · ∇)Mn+1 − 1

2
curlUn ∧Mn+1 +

1

tm
Mn+1 +

1

4ξr
Mn+1 ∧ (Mn ∧Hn)

=
χm

tm
Hn in ΩT , (72)

Mn+1(0) = M0 in Ω. (73)

The function Hn+1 satisfies

∂tH
n+1 + curl 2Hn+1 = curl (Un ∧Bn+1)− ∂tM

n+1 in ΩT , (74)

divBn+1 = 0 in ΩT , (75)

Bn+1 · n = 0, curlHn+1 ∧ n = 0 on (0, T )× ∂Ω, (76)

Hn+1|t=0 = H0 ≡ B0 −M0 in Ω, (77)
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where Bn+1 = Hn+1 +Mn+1. The function Un+1 satisfies

∂tU
n+1 + (Un · ∇)Un+1)− μΔUn+1 +∇pn+1

= (Mn+1 · ∇)Hn+1 +
1

2
curl (Mn+1 ∧Hn+1) + Jn+1 ∧Bn+1 in ΩT , (78)

divUn+1 = 0 in ΩT , (79)

Un+1 = 0 on (0, T )× ∂Ω, Un+1(0) = U0 in Ω. (80)

The previous study of problems (PM ), (PH) and (PU ) shows that (Un+1,Mn+1, Hn+1) is
well-defined by (72)–(80).

3.2 Uniform bounds

Let N be a large fixed integer and let us introduce an auxiliary function ΦN defined on
(0, T ) by

ΦN (t) = max
0≤n≤N

(
sup
0≤s≤t

(
1 + ‖∇Un+1(s)‖+ ‖Mn+1(s)‖H2(Ω) + ‖Hn+1(s)‖H2(Ω)

))
.

Arguing as in [1] (Lemmas 7, 8) and using Lemma 5 we prove the following result.

Lemma 7. We have

‖∇Un+1(t)‖2 +
ˆ t

0
‖Un+1

t (s)‖2 ds ≤ C + C

ˆ t

0
Φ6
N (s) ds, (81)

‖Un+1
t (t)‖2 +

ˆ t

0
‖∇Un+1

t (s)‖2 ds ≤ C exp

(
C

ˆ t

0
Φ8
N (s) ds

)
, (82)

for any 0 ≤ n ≤ N and t ∈ (0, T ).

Consider the Stokes system (for fixed t ∈ (0, T ))

−μΔUn+1 +∇pn+1 = Gn+1, divUn+1 = 0 in Ω, Un+1 = 0 on ∂Ω, (83)

where

Gn+1 = −(Un+1
t + (Un · ∇)Un+1) + Sn+1,

and Sn+1 is given by

Sn+1 = (Mn+1 · ∇)Hn+1 +
1

2
curl (Mn+1 ∧Hn+1) + Jn+1 ∧Bn+1.

We have
‖(Mn+1 · ∇)Hn+1‖ ≤ C‖Mn+1‖L∞(Ω)‖∇Hn+1‖, (84)

‖Jn+1 ∧Bn+1‖ ≤ C
(‖Mn+1‖L∞(Ω) + ‖Hn+1‖L∞(Ω)

) ‖∇Hn+1‖, (85)

and

‖curl (Mn+1 ∧Hn+1)‖ ≤ C
(‖Mn+1‖L∞(Ω)‖∇Hn+1‖+ ‖Hn+1‖L∞(Ω)‖∇Mn+1‖) . (86)
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For the last inequality we used the identity

curl (Mn+1 ∧Hn+1) =(divHn+1)Mn+1 − (divMn+1)Hn+1

+ (Hn+1 · ∇)Mn+1 − (Mn+1 · ∇)Hn+1.

Using the Sobolev embedding H2(Ω) ↪→ L∞(Ω) we deduce from (84)–(86) that

‖Sn+1‖ ≤ C‖Hn+1‖H2(Ω)‖∇Mn+1‖+ C
(‖Mn+1‖H2(Ω) + ‖Hn+1‖H2(Ω)

) ‖∇Hn+1‖.

Similarly, using (64)–(67) and the Sobolev embedding H1(Ω) ↪→ L6(Ω) we show that

‖Sn+1‖L6(Ω) ≤ C
(‖Mn+1‖H2(Ω) + ‖Hn+1‖H2(Ω)

) ‖Hn+1‖H2(Ω).

Now applying the elliptic regularity results for the Stokes system (83), by using the
techniques in [1], we derive the estimates

‖Un+1(t)‖H2(Ω) ≤ C
(‖Un+1

t (t)‖+ ‖∇Un(t)‖2 ‖∇Un+1(t)‖+ ‖Sn+1(t)‖) , (87)

‖Un+1(t)‖2
H2(Ω) ≤ C

(‖Un+1
t (t)‖2 +Φ6

N (t)
)
, (88)

‖Un+1(t)‖2
W2,6(Ω) ≤ C

(‖∇Un+1
t (t)‖2 + ‖Un+1

t (t)‖4 +Φ12
N (t)

)
, (89)ˆ t

0
‖Un+1(s)‖2

W2,6(Ω) ds ≤ C exp

(
C

ˆ t

0
Φ12
N (s) ds

)
, (90)

for any 0 ≤ n ≤ N and t ∈ (0, T ).

Lemma 8. We have

‖Mn+1(t)‖r
Lr(Ω) +

ˆ t

0
‖Mn+1(s)‖r

Lr(Ω) ds ≤ C + C

ˆ t

0
Φr
N (s) ds, 2 ≤ r ≤ 6, (91)

‖Mn+1(t)‖W1,r(Ω) ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12
N (s) ds

))
, 2 ≤ r ≤ 6, (92)

ˆ t

0
‖∇Mn+1

t (s)‖2 ds ≤ C exp

(
C

ˆ t

0
Φ8
N (s) ds

)
, (93)

for any 0 ≤ n ≤ N and t ∈ (0, T ). Moreover,

‖∂2
xixj

Mn+1(t)‖2 +
ˆ t

0
‖∂2

xixj
Mn+1(s)‖2 ds ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12
N (s) ds

))
, (94)

for any i, j = 1, 2, 3, for any 0 ≤ n ≤ N and t ∈ (0, T ).

Proof. We show inequalities (91) and (92) by similar arguments to that used in [1]
(Lemma 9). Inequality (93) follows directly from (52), (82) and (88). Let us prove (94).
Arguing as in the proof of (43) we have

‖∂2
xixj

Mn+1(t)‖2 +
ˆ t

0
‖∂2

xixj
Mn+1(s)‖2 ds ≤ Ca3(t), (95)

with

a3(t) =

(
‖M0‖2H2(Ω) +

ˆ t

0

(
a33(s)‖∇Mn+1(s)‖2 + a23(s)

)
ds

)
exp

(
C

ˆ t

0
a33(s) ds

)
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and

a23(t) = ‖Hn(t)‖2
H2(Ω) + ‖Un(t)‖2

H3(Ω)‖Mn+1(t)‖2
W1,6(Ω)

+ ‖Mn+1(t)‖2
W1,6(Ω)‖Mn(t)‖2

H2(Ω)‖Hn(t)‖2
W1,6(Ω)

+ ‖Mn+1(t)‖2
W1,6(Ω)‖Mn(t)‖2

W1,6(Ω)‖Hn(t)‖2
H2(Ω),

a33(t) = ‖Un(t)‖W2,6(Ω) + ‖Hn(t)‖W1,6(Ω)‖∇Mn(t)‖(L6(Ω))3

+ ‖Mn(t)‖W1,6(Ω)‖∇Hn(t)‖(L6(Ω))3 + 1.

Using Young’s inequality we have

a3(t) ≤
(
‖M0‖2H2(Ω) +

ˆ t

0

(
1

2
(a33)

2(s) +
1

2
‖∇Mn+1(s)‖4 + a23(s)

)
ds

)
×

× exp

(
C

ˆ t

0
a33(s) ds

)
. (96)

Using (82) and (89) we find that
ˆ t

0
(a33)

2(s) ds ≤ C exp

(
C

ˆ t

0
Φ12
N (s) ds

)
. (97)

According to Lemma 6 (v) we have
ˆ t

0
‖Un+1(s)‖2

H3(Ω) ds

≤ C

ˆ t

0
‖Un+1

t (s)‖2
H1(Ω) ds+ C

ˆ t

0
‖Un(s)‖2

H2(Ω)‖Un+1(s)‖2
H2(Ω) ds

+ C

ˆ t

0
‖(Mn+1 · ∇)Hn+1(s)‖2

H1(Ω) ds+ C

ˆ t

0
‖curl (Mn+1 ∧Hn+1)(s)‖2

H1(Ω) ds

+ C

ˆ t

0
‖Jn+1 ∧Bn+1(s)‖2

H1(Ω) ds.

Then, using (64)–(67), (82) and (88) it holds that
ˆ t

0
‖Un+1(s)‖2

H3(Ω) ds ≤ C exp

(
C

ˆ t

0
Φ12
N (s) ds

)
. (98)

Using (92) and (98) we easily see that
ˆ t

0
a23(s) ds ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12
N (s) ds

))
. (99)

It results from (96), (97) and (99) that

a3(t) ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12
N (s) ds

))
.

This inequality, together with (95), implies (94). The lemma is proved.
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Lemma 9. We have

‖Hn+1(t)‖2 +
ˆ t

0
‖curlHn+1(s)‖2 ds ≤ C exp

(
C exp

(
C

ˆ t

0
Φ8
N (s) ds

))
, (100)

‖curlHn+1(t)‖2 +
ˆ t

0
‖Hn+1

t (s)‖2 ds ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12
N (s) ds

))
, (101)

‖curlHn+1(t)‖2 +
ˆ t

0
‖curl 2Hn+1(s)‖2 ds ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12
N (s) ds

))
, (102)

‖Hn+1
t (t)‖2 +

ˆ t

0
‖curlHn+1

t (s)‖2 ds ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12
N (s) ds

))
, (103)

for any 0 ≤ n ≤ N and t ∈ (0, T ).

Proof. Multiplying equation (74) by Hn+1 yields the analogue of (54):

‖Hn+1(t)‖2 +
ˆ t

0
‖curlHn+1(s)‖2 ds ≤ b1(t),

with

b1(t) =

(
‖H0‖2 +

ˆ t

0

(‖Un(s)‖2
L∞(Ω)‖Mn+1(s)‖2 + ‖Mn+1

t (s)‖2) ds) ×

× exp

(
t+

ˆ t

0
‖Un(s)‖2

L∞(Ω) ds

)
.

Using the Sobolev embedding, (82) and (88), we obtain
ˆ t

0
‖Un(s)‖2

L∞(Ω) ds ≤ C

ˆ t

0
‖Un(s)‖2

H2(Ω) ds ≤ C exp

(
C

ˆ t

0
Φ8
N (s) ds

)
. (104)

Similar arguments, together with the inequality ‖Mn+1(s)‖ ≤ ΦN (s), imply that
ˆ t

0
‖Un(s)‖2

L∞(Ω)‖Mn+1(s)‖2 ds ≤ C exp

(
C

ˆ t

0
Φ8
N (s) ds

)
. (105)

We deduce from equation (72) that

‖Mn+1
t ‖ ≤ C

(‖∇Un‖‖Mn+1‖W1,6(Ω) + ‖Mn+1‖+ ‖Hn‖)
+ C‖Mn+1‖W1,6(Ω)‖Mn‖W1,6(Ω)‖Hn‖

≤ CΦ3
N , (106)

Estimates (104)–(106) imply that

b1(t) ≤ C exp

(
C exp

(ˆ t

0
Φ8
N (s) ds

))

and (100) follows.
Arguing as in the proof of (56) we have

‖curlHn+1(t)‖2 +
ˆ t

0
‖Hn+1

t (s)‖2 ds ≤ b2(t),
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with

b2(t) =2

ˆ t

0

(
‖∇Un(s)‖2(L∞(Ω))3‖Bn+1(s)‖2 + ‖Un(s)‖2

L∞(Ω)‖Bn+1(s)‖2
H1(Ω)

+ ‖Mn+1
t (s)‖2

)
ds+ ‖curlH0‖2.

Using the Sobolev embedding W 1,6(Ω) ↪→ L∞(Ω) we have
ˆ t

0
‖∇Un(s)‖2(L∞(Ω))3‖Bn+1(s)‖2 ds ≤ C max

0≤s≤t
‖Bn+1(s)‖2

ˆ t

0
‖Un(s)‖2

W2,6(Ω) ds

≤ C max
0≤s≤t

(‖Mn+1(s)‖2 + ‖Hn+1(s)‖2)×
×
ˆ t

0
‖Un(s)‖2

W2,6(Ω) ds. (107)

Using inequalities (89), (91) and (100), we deduce from (107) that
ˆ t

0
‖∇Un(s)‖2(L∞(Ω))3‖Bn+1(s)‖2 ds ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12
N (s) ds

))
.

Similarly to (105) we show that
ˆ t

0
‖Un(s)‖2

L∞(Ω)‖Bn+1(s)‖2
H1(Ω) ds ≤ C exp

(
C

ˆ t

0
Φ8
N (s) ds

)
.

We conclude, together with (106), that

b2(t) ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12
N (s) ds

))
,

hence (101).
As for (58) we have

‖curlHn+1(t)‖2 +
ˆ t

0
‖curl 2Hn+1(s)‖2 ds ≤ b3(t), (108)

with

b3(t) =

(
‖curlH0‖2 +

ˆ t

0

(
C‖Un(s)‖2

W2,6(Ω)‖curlMn+1(s)‖2 + ‖curlMn+1
t (s)‖2)ds)×

× exp

(
t+ C

ˆ t

0
‖Un(s)‖2

W2,6(Ω) ds

)
.

We have
ˆ t

0
‖Un(s)‖2

W2,6(Ω)‖curlMn+1(s)‖2 ds ≤ C sup
0≤s≤t

‖Mn+1(s)‖2
H1(Ω)

ˆ t

0
‖Un(s)‖2

W2,6(Ω) ds,

then, using (90) and (92) we deduce that
ˆ t

0
‖Un(s)‖2

W2,6(Ω)‖curlMn+1(s)‖2 ds ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12
N (s) ds

))
.
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It results, together with (93), that

b3(t) ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12
N (s) ds

))
,

hence (102).
Arguing as for (60) we derive the inequality

‖Hn+1
t (t)‖2 + 1

4

ˆ t

0
‖curlHn+1

t (s)‖2 ds ≤ b4(t),

with

b4(t) =

(
‖Hn+1

t (0)‖2+
ˆ t

0

((‖Un
t (s)‖L6(Ω)‖Bn+1(s)‖L3(Ω)

+ ‖Un(s)‖L∞(Ω)‖Bn+1
t (s)‖)2 + 1

2
‖Mn+1

tt (s)‖2
)
ds

)
exp

(
t

2

)

and

Hn+1
t (0) = −curl 2H0 + curl (U0 ∧B0)−Mn+1

t (0),

Mn+1
t (0) = −(U0∇)M0 +

1

2
curl (U0 ∧M0)− 1

tm
M0 − 1

4ξr
M0 ∧ (M0 ∧H0) +

χm

tm
H0.

We deduce from equation (74) and inequality (106) that

‖Hn+1
t ‖ ≤ C

(‖Hn+1‖H2(Ω) + ‖∇Un‖‖Bn+1‖W1,6(Ω) + ‖Mn+1
t ‖)

≤ CΦ3
N . (109)

Using the Sobolev embedding, (82), (88), (106) and (109), we deduce that
ˆ t

0
‖Un(s)‖2

L∞(Ω)‖Bn+1
t (s)‖2 ds ≤ C

ˆ t

0
‖Un(s)‖2

H2(Ω)

(‖Mn+1
t (s)‖2 + ‖Hn+1

t (s)‖2) ds

≤ C exp

(
C

ˆ t

0
Φ12
N (s) ds

)
.

We also have
ˆ t

0
‖Un

t (s)‖2L6(Ω)‖Bn+1(s)‖2
L3(Ω) ds

≤ C

(
max
0≤s≤t

‖Mn+1(s)‖2
H1(Ω) + max

0≤s≤t
‖Hn+1(s)‖2

H1(Ω)

) ˆ t

0
‖∇Un

t (s)‖2 ds,

then, using the inequality (analogue of (57))

‖Hn+1‖L∞(0,T ;H1(Ω)) ≤ C
(‖curlHn+1‖L∞(0,T ;L2(Ω)) + ‖Mn+1‖L∞(0,T ;H1(Ω))

)
(110)

and estimates (82), (92) and (101) we obtain
ˆ t

0
‖Un

t (s)‖2L6(Ω)‖Bn+1(s)‖2
L3(Ω) ds ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12
N (s) ds

))
.



25

Similar calculations (see (53)) show that
ˆ t

0
‖Mn+1

tt (s)‖2 ds ≤ C exp

(ˆ t

0
Φ8
N ds

)
.

Since ‖Hn+1
t (0)‖2 ≤ C, we conclude that b4(t) ≤ C exp

(
C exp

(
C
´ t
0 Φ

12
N (s) ds

))
, hence

(103). The proof of the lemma is finished.

Lemma 10. We have

‖Mn+1
t (t)‖ ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12
N (s) ds

))
, (111)

‖Hn+1(t)‖H2(Ω) +

ˆ t

0
‖∇Hn+1

t (s)‖2 ds ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12
N (s) ds

))
, (112)

‖Un+1(t)‖H2(Ω) ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12
N (s) ds

))
, (113)

for any 0 ≤ n ≤ N and t ∈ (0, T ).

Proof. Since (see (106))

‖Mn+1
t (t)‖ ≤ C

(‖∇Un(t)‖‖Mn+1(t)‖W1,6(Ω) + ‖Mn+1(t)‖+ ‖Hn(t)‖)
+ C‖Mn+1(t)‖W1,6(Ω)‖Mn(t)‖W1,6(Ω)‖Hn(t)‖,

inequality (111) follows from (81), (92), (100).
In accordance with (61) we have

‖Hn+1
t ‖L2(0,T ;H1(Ω)) ≤ C

(‖curlHn+1
t ‖+ ‖Mn+1

t ‖L2(0,T ;H1(Ω))

)
.

Using (91), (93) and (103) we deduce that
ˆ t

0
‖∇Hn+1

t (s)‖2 ds ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12
N (s) ds

))
.

According to (62) we have

‖Hn+1(t)‖H2(Ω) ≤ C
(‖∇Un(t)‖‖Bn+1(t)‖W1,4(Ω) + ‖Bn+1

t (t)‖+ ‖Mn+1(t)‖H2(Ω)

)
. (114)

Using the Gagliardo-Nirenberg-Sobolev inequality

‖∇v‖L4(Ω) ≤ C‖∇v‖ 1
4 ‖v‖

3
4

H2(Ω)
, ∀v ∈ H2(Ω),

we have

‖Bn+1(t)‖W1,4(Ω) ≤ C‖∇Bn+1(t)‖ 1
4 ‖Bn+1(t)‖

3
4

H2(Ω)
+ C‖Bn+1(t)‖L4(Ω). (115)

Inserting (115) in (114) and applying the Young inequality we obtain

‖Hn+1(t)‖H2(Ω) ≤C
(‖∇Un(t)‖4‖∇Bn+1(t)‖+ ‖∇Un(t)‖‖Bn+1(t)‖L4(Ω) + ‖Bn+1

t (t)‖)
+ C‖Mn+1(t)‖H2(Ω) +

1

2
‖Bn+1(t)‖H2(Ω).



26

Since ‖Bn+1(t)‖H2(Ω) ≤ ‖Hn+1(t)‖H2(Ω) + ‖Mn+1(t)‖H2(Ω) and H1(Ω) ↪→ L4(Ω) we obtain

‖Hn+1(t)‖H2(Ω) ≤C
(‖∇Un(t)‖4‖Bn+1(t)‖H1(Ω) + ‖∇Un(t)‖‖Bn+1(t)‖H1(Ω) + ‖Bn+1

t (t)‖)
+ C‖Mn+1(t)‖H2(Ω).

Using (81), (92), (94), (101), (103), (110) and (111) we obtain

‖Hn+1(t)‖H2(Ω) ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12
N (s) ds

))
,

Since (see (87))

‖Un+1(t)‖H2(Ω) ≤ C
(‖Un+1

t (t)‖+ ‖∇Un(t)‖2 ‖∇Un+1(t)‖+ ‖Sn+1(t)‖)
and

‖Sn+1(t)‖ ≤C‖Hn+1(t)‖H2(Ω)‖∇Mn+1(t)‖
+ C

(‖Mn+1(t)‖H2(Ω) + ‖Hn+1(t)‖H2(Ω)

) ‖∇Hn+1(t)‖,

inequality (113) follows from (81), (82), (92), (94) and (112). The lemma is proved.

Lemma 11. There is a time T∗ > 0 such that

sup
0≤t≤T∗

(‖Un+1(t)‖H2(Ω) + ‖Mn+1(t)‖H2(Ω) + ‖Hn+1(t)‖H2(Ω)

)
+

ˆ T∗

0

(
‖Un+1(s)‖2

H3(Ω) + ‖Un+1
t (s)‖2

H1(Ω) + ‖Mn+1
t (s)‖2

H1(Ω) + ‖Hn+1
t (s)‖2

H1(Ω)

)
ds ≤ C,

(116)

for any n ≥ 0.

Proof. It results from estimates (81), (92), (94) and (112) that the function ΦN satisfies the
integral inequality

ΦN (t) ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12
N (s) ds

))
.

We deduce as in [1] that there is a time T∗ > 0 such that ΦN (t) ≤ C, for all t ∈ (0, T∗).
Then, using (82), (93), (98), (103), (111) and (113), we easily derive (116). The prof of
Lemma 11 is complete.

3.3 End of the proof of Theorem 1

(i) Existence and uniqueness. With the bound (116) one can easily show, following the
technique in [1], that the whole sequence (Un,Mn, Hn) converges to a limit (U,M,H) which
is the unique strong solution of problem (P) in ΩT� .
(ii) Blow-up criterion. Suppose that T � < T and let us introduce the function

Φ(t) = 1 + ‖∇U(t)‖+ ‖M(t)‖H2(Ω) + ‖H(t)‖H2(Ω).
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defined for 0 < t < T �. Following the same arguments as in Section 3.2, one can establish
the following estimates (for t ∈ (0, T �)):

‖U(t)‖H2(Ω) ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12(s) ds

))
,

ˆ t

0
‖U(s)‖2

H3(Ω) ds ≤ C exp

(
C

ˆ t

0
Φ12(s) ds

)
,

ˆ t

0
‖Ut(s)‖2H1(Ω) ds ≤ C exp

(
C

ˆ t

0
Φ8(s) ds

)
,

and

‖M(t)‖H2(Ω) ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12(s) ds

))
,

‖Mt(t)‖ ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12(s) ds

))
,

ˆ t

0
‖Mt(s)‖2H1(Ω) ds ≤ C exp

(
C

ˆ t

0
Φ8(s) ds

)
,

‖H(t)‖H2(Ω) ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12(s) ds

))
,

‖Ht(t)‖ ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12(s) ds

))
,

ˆ t

0
‖Ht(s)‖2H1(Ω) ds ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12(s) ds

))
.

Combining these estimates we conclude that

J(t) ≤ C exp

(
C exp

(
C

ˆ t

0
Φ12(s) ds

))
,

where J is the functional defined by (17). The later estimate allows to conclude. The proof
of Theorem 1 is complete.
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