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Strong solutions to the equations of electrically conductive
magnetic fluids

Youcef Amirat* and Kamel Hamdache!

Abstract

We study the equations of flow of an electrically conductive magnetic fluid, when
the fluid is subjected to the action of an external applied magnetic field. The system
is formed by the incompressible Navier-Stokes equations, the magnetization relaxation
equation of Bloch type and the magnetic induction equation. The system takes into
account the Kelvin and Lorentz force densities. We prove the local-in-time existence of
the unique strong solution to the system equipped with initial and boundary conditions.
We also establish a blow-up criterion for the local strong solution.

2010 Mathematics Subject Classification: 35Q35, 76D05.
Key words and phrases: magnetic fluid, Navier-Stokes equations, magnetization relaxation
equation, induction equation, strong solution, blow-up criterion.

1 Introduction

Electrically conductive magnetic fluid models describe the dynamics of electromagnetic fine
particles having internal rotations in a carrier fluid. Many applications, with different model-
ing, are used in engineering sciences in view of their potential applications in clutches, valves,
actuators and also in bioengineering and medicine sciences. See [4, 20, 27| for example.

The model we are concerned in this work is described by the fluid velocity U, the magnetic
induction B, the electric induction D and the magnetization field M; the electric polarization
is assumed to be 0. The magnetic induction satisfies the state law B = po(H + M) where
H is the magnetic field and g is the magnetic permeability constant. The electromagnetic
fields satisfy the Maxwell equations while the magnetization obeys the Bloch equation. The
fluid velocity satisfies the incompressible Navier-Stokes equation with volume forces as the
Kelvin and Lorentz force densities.

Consider a laminar incompressible flow of a Newtonian and electrically conducting mag-
netic fluid under the influence of an applied external magnetic field. The fluid flows in a
bounded domain Q C R? with boundary 9. Let T' > 0 be a fixed time and Q7 = (0,7 x Q.
The electromagnetic fields satisfy the Maxwell equations where the displacement current is
neglected (|13, 14, 18, 27]):

OB +curlE =0, divB=0, (1)
J=olo(E+UAB), 2)
curl H = J. (3)
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Equations (1)-(3) are considered in (0,7) x R3, J is the electric current density, E is the
electric field, o is the electric conductivity and 1q is the characteristic function of Q. The
magnetization M obeys the equation

| 1
M + (U - V)M = SeurlU AM — —(M = xyuH) — I?OMA (MAH) inQp, (4

where t,, is the Brownian relaxation time, &, is the vortex (rotational) viscosity and xp,
denotes the total magnetic susceptibility. Equation (4), proposed by M.I. Shliomis [23],
is the magnetization relaxation equation of Bloch type, which takes account of rotational
Brownian motion. It follows from (2) and (3) that the electric field E satisfies

1
E+UAB=—curlH in Qp, (5)
o

then taking the curl of the above equation and using (1) we deduce that B satisfies the
equation

1
0¢B + curl (—Curl H) =cwrl (U A B) in Qr.
o
The fluid motion is governed by the incompressible Navier-Stokes equations
divU =0 in Qp,
p(OU + (U -V)U) — pAU + Vp = ugM - VH + %curl(M/\ H)+ JAB inQp,
where p is the pressure, p is the fluid density and p is the dynamical viscosity. The term
po(M - V)H represents the Kelvin body force due to magnetization, poM A H is the body
torque density which causes the magnetic nanoparticles and surrounding fluid to spin and
the term J A B represents the Lorentz force due to the induced electric current of magneto-
hydrodynamics (MHD).

We require the functions U, B and E to satisfy the following boundary conditions. For
the velocity we impose the no-slip boundary condition, namely

U=0 on (0,T) x 0.
We also impose the perfect conductor boundary condition
EAn=0, B-n=0 on (0,T) x 0, (6)
n being the unit outward normal vector to 9. It results from (5) and (6) that
cartlH An=0 on (0,T) x 00.

We thus obtain a boundary-value problem set in Qp for the velocity U, the pressure p, the
magnetic field H and the magnetization M formed by the equations

divB =0, divU =0, (7)
1 1
8tM+(U-V)M:§curlU/\M—t—(M—XmH)—f?OM/\(M/\H), (8)
0B + curl <lcurl H) = curl (U A B), 9)
o

p(BU + (U -V)U) — pAU + Vp = oM - VH + %curl (MAH)+JAB,  (10)



where

B = ug(H+ M) and J=curlH. (11)

System (7)—(11) is equipped with the boundary and initial conditions

B-n=0, carlHAn=0, U=0 on (0,7) x 09, (12)

U|t:0 = Uo, M|t:0 = Mo, B|t:0 = BO in Q. (13)

Before we can formulate our main result we need to introduce some notations. We assume
that € is a simply-connected bounded domain in R?, with smooth boundary 9. Let L9(£2)
and W#4(Q) (1 < ¢ < o0, s € R) be the usual Lebesgue and Sobolev spaces of scalar-valued
functions, respectively. When ¢ = 2, W*4(Q) is denoted by H*(Q2). By || - || and (-,")
we denote the L?-norm and its scalar product, respectively. The Hélder spaces C* (1)

(k €N, 0 < a < 1) are defined as the subspaces of C*(Q) consisting of functions whose k-th
order partial derivatives are Holder continuous with exponent a.. We set LI(2) = (L9(9))3,

W4(Q) = (W*9(Q))3, H(Q) = (H*(Q))? and CH*(Q,R3) = (C**(Q))3. We denote
by 2(2,R?) (resp. 2(Q,R3)) the space of infinitely differentiable functions with compact
support in Q (resp. Q) and valued in R®. We introduce the classical function spaces in the
theory of the Navier-Stokes equations (see [9, 10, 15, 16, 17, 25, 26]):

2:(Q) ={v e 2(Q,R3) : divo =0 in Q},

U = closure of Z,(R) in H'(Q),

Uy = closure of Z,(9) in L*(Q).

As is well known,
U={veH)): divo=0 inQ},
Uo:{vELZ(Q): divo=0inQ, v-n=0 on dQ},
UCUy cU = dual space of U when Uy is identified with its dual.

We also introduce the spaces

2,(Q)={C ¢ Z2(Q,R?) : divC=0inQ, C-n=0 on o0},
B = closure of Z,(Q) in H'(Q),
By = closure of Z,(Q) in L*(Q2).

We have

B={CeH(Q): divC=0inQ, C-n=0 ondQ},
By = Uy,
B C By c B = dual space of B.

1
Note that (fQ |Cu1r1(7|2das)§ defines a norm on B which is equivalent to that induced

by H'(2) on W, see |7, Chap. 7, Theorem 6.1]. Recall that v - n makes sense in H*%(GQ)
when v belongs to the space

H(div,Q) = {v € L*(Q) : divew € L*(Q)}



and we have the Stokes formula: Vv € H(div,Q), Vo € H(Q),
/ v-Veodr = —/ edivodz + (v-n,¢)sq,
Q Q

where (-, -)5q is the duality pairing between H -3 (0) and H > (0Q). Similarly, if v belongs
to the space
H(curl, Q) = {v € L*(Q) : curlv € L?(Q)},

then v has a tangential component v An € H_%(E)Q) and the following Green’s formula
holds:
Yw e HY(Q), /
Q
Without loss of generality, in the sequel we will suppose that p = ¢, =0 = pg = 1. For
notational convenience, we refer to Problem (7)—(13) to as problem (P). We assume that

curlv - wdr = / v-curlwdz + (v A n,w)aq.
Q

Up € H*(Q)N U, (14)
My € H2(Q), (15)
By € H*(Q) N B. (16)

Definition 1. We say that (U, M, H) is a strong solution of problem (P) if:
(i)
U € C([0,T);U NHA(Q)) N L0, T; HA(Q)) n Whe(0, T;1L2(Q)) N HY(0, T;U),
M € L°°(0, T; H*(Q)) n Wh*°(0, T;L3(Q)) N H(0, T; H' (Q)),
H e L0, T;H*(Q)) N Wh*(0,T;L2(Q)) N H(0,T; H(2)).

(i) The function M satisfies the problem

1 1 1

M=o = M.

(iii) The function H solves the problem

O H + curl?’H = curl (U A B) — ;M in Qp,
divB=0 inQr,

B-n=0, curtlHAn=0 on (0,T)x 09,
H|i=g = Hy = By — My in 2,

where B = H + M.

(iv) Equation (10), together with the incompressibility condition divU = 0 in Qp, holds
weakly, that is, for every v € U,

d
— U~vdm+/(U-V)U-vd$+u/VU-Vvdx
dt Jo 0 Q

1 . /
_/Q(M-V)H~vdx—l—2/9(0111"1(M/\H))-vdﬂc%—/Q(J/\B)-vdﬂc in 2'(]0,T),

Uli=o0 = Up.



(v) There exists p € L*(0,T; H*(Q)) such that equation (10) holds a.e. in Q.

Definition 2. A positive number T* is called a finite blow-up time of the strong solution
(U, M, H) of problem (P) if

J(t) < oo for 0 <t<T* and lim J(t) = +o0,
t—=T™
where the functional J(t) is defined by

J(t) = s (||U(S)||H2(Q) U ()| + 1M ()2 () + 1H () [z () + 1M ()| + ||Ht(8)|)
o 2 2 2 2
+/0 <||U<5>HH3(Q) + 11U (3) [l () + 11Me () [l ) + ||Ht<3)||H1(Q)> ds, t=0.
(17)

Our main result is:

Theorem 1. Under assumptions (14)—(16), there is a time Ty > 0 such that problem (P)
admits a unique strong solution (U, M, H) in Qp,. Moreover, if T* is a finite blow-up time

of (U, M, H), we have

N
/0 (IFU )]+ 1M () ey + 1 () lgeep) > s = +oo. (18)

To prove the local-in-time existence of a strong solution, we use a classical linearization
and iteration method, see for instance [6].

Assume that (U*, M* H?) is given, U* belongs to L>(0, T;U NH2(Q)) N L2(0, T; H3()),
oU* belongs to L>®(0,T;L2(Q)) N L20,T;U), M* € L>(0,T;H*Q)), oM* <
L>®(0,T;1L2(Q)), H* € L>=(0,T;H?(Q)) and 9, H* € L>°(0,T;L?*(Q)). We define the func-
tion M as the solution of the linearized hyperbolic equation

1 1 1
M + (U* - V)M — ZcutlU* A M + —M + —M A (M* A HY) = X580 Qp,  (19)

M|t:0 = M() in . (20)
Then we define H as the solution of

O H + curl2H = curl (U* A B) — ;M in Qr, (21)
divB =0 in Qp, (22)
B-n=0, culHAn=0 on (0,7) x 09, (23)
H|i—g = Hy = By — My in Q, (24)

where B = H+ M. Setting J = curl H, we define U as the solution of the linearized problem
1
8tU+(Uﬁ-V)U—uAU+Vp=M-VH+§curl(MAH)+J/\B in Qp,

U=0 on (0,T) x 04,

(25)
divU =0 in Qp, (26)
(27)
Uli=o = Uy in Q. (28)



For convenience, in the sequel, we refer to problem (19), (20) to as problem (Pj;), problem
(21)—(24) to as problem (Pg) and problem (25)—(28) to as problem (Py).

Using this approach by linearization we will construct a sequence (U™, M™, H™) of approx-
imate solutions to problem (7). Then we will derive some uniform bounds of the sequence
(U™, M™, H™) which allow to prove the convergence of the sequence to a strong solution of
problem (P). Our proof of the existence of a strong solution also provides a priori estimates
which allow to obtain the blow-up criterion (18). See Section 3.

Let us now mention some previous studies [1, 2, 3, 24]. These studies deal with the flow
of electrically nonconducting magnetic fluids. A differential system describing the motion of
an isothermal electrically nonconducting ferrofluid driven by an external magnetic field is
considered in [1]. The system reads

divU =0 in Qp,

tm 46,
curl H =0, divB =F in Qp,

(29)
1 |
atM+(U-V)M:§cur1UAM——(M—XmH)—ﬂMA(M/\H) in Qr, (30

(31)
p(OU + (U -V)U) — pAU + Vp = oM - VH + %curl (M AH) inQr, (32)

where F'is a given function in Q7 such that fQ Fdx =0, forall t € [0,T], and the boundary
and initial conditions are taken as

U=0 on (0,T) x 0Q, (33)
B-n=0 on (0,7) x 09, (34)
U‘t:() = Uy, M|t:0 = My in Q. (35)

Note that system (29)—(32) can be deduced from system (7)—(11) by taking J = 0 and
replacing the magnetic induction equation (9) by the magnetostatic equations (31) with
F = 0. We prove the local-in-time existence of the unique strong solution to problem
(29)—(35).

The paper [24] deals with the differential system formed by the equations (29), (30), (32)
posed in the whole domain R3 and coupled with the equations

curl H = 0, divB = —div Heyy in (0,7) x R, (36)

The authors study the Cauchy problem, they obtain a local-in-time existence result of a
strong solution, establish a blow-up criterion and a global-in-time existence result under
smallness assumptions on the data.

In [2] we are concerned with the model proposed by R.E. Rosensweig [19] to describe
the motion of a ferrofluid under the action of an external applied magnetic field. The state
variables are the fluid velocity U, the angular velocity w, the magnetization field M and
the magnetic field H. The differential system is formed by the Navier-Stokes equations, the
angular momentum equation, the magnetization equation and the magnetostatic equations.
The magnetization relaxation equation has the form

1
5‘tM+(U~V)M:w/\M—t—(M—XmH).

We prove the local-in-time existence of the unique strong solution to the differential system
equipped with initial and boundary conditions.



In the paper [3] we study the equations of flow and heat transfer in an electrically non-
conducting magnetic fluid, when the fluid is subjected to the action of an external applied
magnetic field. The system of equations is formed by the Navier-Stokes equations, the
magnetization relaxation equation of Bloch type, the magnetostatic equations and the tem-
perature equation. We prove the local-in-time existence of the unique strong solution to the
system equipped with initial and boundary conditions and establish a blow-up criterion for
the strong solution. We also prove the global-in-time existence of strong solutions, under
smallness assumptions on the initial data and the external magnetic field.

Regarding involved mathematical methods, we note that the mathematical analysis of
problem (P) requires more refined estimates, particularly for the magnetization M and the
magnetic field H, to that in [1, 2, 3, 24]. In [1, 2, 3, 24|, the magnetic field H is the solution
of (31) (or (36)), and the estimates on H follow straightforwardly from that on M. While for
problem (P) we need additional estimates of M to derive suitable estimates of H. Namely, we
establish estimates of M in L(0, T; H?(2))NW L0 (0, T;L2(Q))NH (0, T; H' (£2)), see Lem-
mas 2 and 3. These estimates allow to derive from the magnetic induction equation estimates
of H in the spaces L°°(0,T;H?(9)), W*(0,T;L%(Q)) and H*(0,T;H*(Q2)), see Lemma 4.
Lemma 5 is used to estimate the electromagnetic forces. Then we obtain estimates of U in
the spaces L>(0,T;H?(2)) N L2(0,T;H?(2)) and WL°(0,T;1L2(Q)) N H (0, T; H (), see
Lemma 6. Finally, note that our uniform estimates on the approximate solutions of problem
(P) provide estimates which allow to obtain the blow-up criterion (18), see Section 3.

There have been extensive mathematical studies on the solutions of the equations of
MHD viscous and resistive incompressible fluids. Global weak solutions and local strong
solutions have been constructed in [8]. Properties of weak and strong solutions have been
examined in [22]. Some sufficient conditions for regularity of weak solutions to the MHD
equations were obtained in [12]. Blow up criteria for smooth solutions of the incompressible
MHD equations were obtained, see for example [5].

Throughout the paper, C' indicates a generic constant that depends only on some bounds
of the physical data.

2 Study of problems (Py), (Py) and (Py)
2.1 Problem (Py)

Throughout the paper we will make frequent use of the Sobolev embedding;:
3r
3—r’
if 7 =3, then W (Q) < L7(Q) for any real number > 1, (37)
if » > 3, then Wh"(Q) — L>®(Q).

if 1 <r <3, then WH(Q) < L™ (), with * =

In particular, we will use estimates in the space L"(2) of functions of the type A A B and
AN (B A D). The Holder inequality gives

IAA Bliroy < IAlay | Bl
with ¢(r) = J’% if 2<r <6, and ¢(r) = 400 if » = 6. Observe that, for any 2 < r < 6,

Wh(Q) — LIT)(Q). (38)



Indeed, if 2 < 7 < 3 we have L™ (Q) — L40)(Q) (with 7* = 2) and in view of (37); we have

W (Q) < L™ (Q). If 3 < r < 6, according to (37), and (37),, we have W7 (Q) « LA")(Q).
The claim is proved. We deduce that

AN BllLr ) < CllAllLs )l Bllwr (o)
Employing the Holder inequality, (37), and (38), we have
AN (BA D)) < CllAllwr @)l Bllws @) | Dllwro)- (39)

Lemma 1. Problem (Py) has a wunique global-in-time strong solution M €
L0, T; H2(Q)) N HY0, T; H () N H?(0,T;1L2()). Moreover, the following estimates
hold:

t t
M@ + / IM($) L ds < C (IIMpo(n) + / V)L o ds) . (o)
t
IVM ()] )3 +/o VM (5)[lLr ()3 ds < Can (), (41)
IM(0)]) < Cas(t), (12)

forany2 <r <6 andte€ (0,T). The functions a1 and ay are given by

(®) =l exp (0 a(s)as).

with
t
al(t) = 9 My fyr s + / (I 0 Iy + [VHAS oy ) s
t
+ /O M) oy L3 sy 1V M5 | sy s
t
+ / 1M () L 1 M) s |V 5 sy s,
ai(t) = [[H () llwrs@) I VM* ()]l sy + 1M vy I VH* ()] s )3
T @) s + L.
and

az(t) = |U*(t) gz )| M (1) lwr o) + 1EF ()] + M (2)]]
+ | M) o) | M (8w [ HE (2)]-
Since VU* belongs to the space L2(0,T; CO’%(Q,RQ)) and M* A H' belongs to
L>(0,T;H?(2)), the existence, regularity and uniqueness of a solution to (19), (20) is
classical. For the proof of (40)-(42) we refer to [1] (Lemma 2).

Lemma 2. We have
t
1022, M (£)]|? +/0 1072, M(s)|? ds < Cas(t), (43)

foranyi,j=1,2,3 andt € (0,T). Here as is a function from L*°(0,T), depending only on
1U* | 20,03 00))» 1 Mollz(0y> 1M || ee o rwro@))s 1Moo, mmz@))s 1H Lo 0,112 (0)) -



Remark 1. The explicit formula of the function as is given in the following proof.

Proof. Differentiating equation (19) with respect to x; (1 < i < 3) yields

1 1 1
GtN+(Uﬁ~V)N—§cur1UﬁAN+EN/\(Mﬁ/\Hﬁ)+t—N:Z, (44)

T m

with N = 0, M, K* = 0, H*, N* = 0, M*, V* = 9,,U%, and
1 1 1
Z ="Kt (VE)M 4 ceurl VEA M — — M A (NFAHP) — — M A (M AKY). (45)
tm 2 4¢, 4&,
Then, differentiating equation (44) with respect to z; (1 < j < 3) we obtain

&N + (U*- V)N — %curlUﬁ AN + éﬁ A (MF A HY) + ti N=2zW4+23  (46)

T m

Here the tilde sign denotes the derivative with respect to x;, thus N = Oz; N, K= Oy Kﬁ
= 8%,‘/ , -, and

zW = —(U*- V)N + %curlﬁﬁ AN — %N/\ (M* A HP) — %N A (MF A HF)

T T

and Z®? = Z where Z is given by (45), that is

o~ . 1 —
7@ ZXmps (i )M — (VE V)M + el VEAM + Seurl VEA M

m

1 — 1 . 1 ~
— —MA(N*ANH — —MA(N*AHY) — —M A (N*AHF
1€ A (NFAHY) T A (N AHY) T A (NFAH?)

'8 T T

_ 1 fa gty L T ety L t A 7ot
5MA(MAK) 4§M/\(M/\K) 4£M/\(M/\K).

47‘ ' T

Multiplying equation (46) by N and integrating over (2 yields

LN + —||N||2 /(Z<1> + Z®). N da. (47)
2dt 0

The right-hand side is estimated as follows:

/ 70 N de
Q

- 1 _ _
S/ <(Uu-V)N|+§|curlUu/\N|) |N| dx
Q
1 —~ ~ ~
+—/ (|NA(MMH”)|+|NA(Mﬁ/\Hﬁ)|) |N| dz
457‘ Q
=Ji+ Jo. (48)

Cauchy-Schwarz’s inequality yields
Jp < C<||(ﬁﬁ V)N| + [lcurl U# A N||) VN

Using the Sobolev embedding we have

|- )IN|| < T s N < CIUF[pzoqen [TV
lewrl TF A NI| < fleurd 0¥ oyl IN ey < OO lwasca (IV] + VN



and applying the Young inequality we obtain
S < ClUF w2 (1IN + IVN?) -
Employing (39) we have

IN A A HY)| < ClLE oo VM wsays | (IN] + [VN),
IN A (MF A HF)|| < CIME o o) IVH | wsgayys (IN]+ VN,

hence

10

Jy<C (”HﬁHWLG(Q)||VMﬁ||(]LG(Q))3 + HMﬁ”WLG(Q)||VHu||(]L6(Q))3) (N2 + IV N2) -

We thus have
J1+Jo < Caj (|IN|* + [VN]?),

where a} is defined by

az(t) = [UF(0) lwes() + IHHF () llwro )| VMH ()]s 0yys
+ [ ME () .o o) |V HF (8) ] s apyo-

Employing the Holder inequality and the Sobolev embedding we also have

I(VE- V)M < CIU* lwas @) | M [ws oy,
|(VE- V)M < CllUH|lwes @)l VM],
lourl VE A M| < ClU*lgs | M 1652
lleurl VE A M| < CJ[U* Iy (0 M w165

and

1M A (N* A HF)|| < CIVM | s ayys | VMl ws s | HE s o,

1M A (N A HE)|| < OIIM [l 1M a2 0 L H [l 0

1M A (NEA B < ClIM [l Moo 1 o o),

1M A (MF A K| < OIM [lugsoqn | M ooy | HE s .
(MF A K| < ClIM s | M llwgo o | HF o)
(M* A KY)

MY A K| < Cl M [ e Ml ) | H a2 -

[|M A
1M A

Using the Young inequality we deduce that

/ Z® . Ndz| < C(|VN|?+d3),
Q

where a§ is defined by

a3 (t) = [|H* () |20y + 100 [fzs 0 | M () 3.0
+ 1M (1) 11,6 (0 | M) 2 0 | HH (D) 1.6
+ ||M(75)H%>v1,6(9)||Mu(t)”%wl,6(9)||Hu(t)||%12(9)~

(49)
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We deduce from (47)—(50) that

5 IV + IF1? < 0 (V1P + I9NIP) + ). 61

where a3(t) = ai(t) + 1. Let us introduce the quantities

R() Z H xlzrj H2 Z H xzx]MOHQ

i,j=1 5,j=1
Summing (51) over 4,5 = 1, 2,3 and using the inequality | N| < ||[VM]|| we obtain

1dR R

W + _C(a§R+a§||VMH2+a§)

and Gronwall’s inequality implies that

+ [(Ras <o (m+ [ @RGP +de) ) e ([ ),

hence (43) with

as(t) = <||M0|12HI2(Q) + (@) IVM () 4+ () ds) exp (o / Ca(s) ds).

Lemma 2 is proved. O
Lemma 3. We have

107, M(t)|| < Caa(t), (52)

M ()| < Cas (), (53)
for any i = 1,2,3 and t € (0,T). Here ayq is a function from L*(0,T), depending
only on ”Uﬁ”LOO(OTH?(Q))’ IM || oo 0,72 (), 1M oo (0,706 (02)) ”HﬁHL‘X’(OTWl@(Q)
while as belongs to L?(0,T), depending only on HUﬁHLz 0,75W26(Q))» HU 220,71 (02))
[ M| oo o, rwre()y, Ml Lo 0,m50.2(0)) ||MﬂHL°°(O,T,W1’6(Q) [ HE || oo (0,75w1-6(02))
1M | oo o120 1 HEl Lo 07120 -

Remark 2. The explicit formulae of the functions ay and as are given in the following proof.

Proof. Writing

1 1 1
GtN:f(Uﬁ~V)N+icurlUﬁ/\NfEN/\(Mﬁ/\H”)ft—NJrZ

with N = 9,,M, K* = 9,,H*, N* = 9,,M* V* = 9,,U*, and Z given by (45), we easily
deduce that (52) holds with
as(t) = |UH(0) (1M () g2 + IVM (@) + [ VH ()]
+ VM@)o o |1 HH ) o
+ 1M (@)l o I VMFE N HE ) [ws @
+ 1M (@)l o | MF(8) o) | VHEF (2) ]
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Differentiating equation (19) with respect to t gives
1 1
My =— (U} - V)M — (U*- V)M, + geurl U A M + geurl Ut A M,

1 1 1
— = (My — xmH) — — My A (MEAHYY — —M A (M A HY)
tm A€, 1€,

1
— M A (M AH
457‘ < t)

from which we deduce (53) with
as(t) = [UF ()l @M ()l + [1UA(0) oo | M(0) 10
+ M)+ THE O] + MM @) g | HH Ol o)
+ 1M (@) s oy | ME @)1 LEH () oy
o+ I (8) o ) 1 VP ) o ) 1T (8) -

Lemma 3 is proved. U

2.2 Problem (Py)

Lemma 4. Problem (Pg) has a unique global-in-time strong solution H € L>(0,T;H?(2))N
Whee(0, T;1L2(Q)) N HY(0, T; HY(Q)). Moreover, the following estimates hold for t € (0,T):

(i)

t
[P+ [ ewl H()? ds < ba(o) (54)
0
| H|l 20,01 () < C (lewrl H|| + | M]| 20, 7m1.(02))) » (55)
where
t
i) = (Il + [ (0 MO + M) s )
t
<o (4 [ N0y ds )
(i)
t
lcurl H(t)||? +/ [ Hy(s)||” ds < b(t), (56)
0
[H || oo 0, rm1 () < C (lewr] H| oo o 71.2(02)) + 1M || oo 07502 (92))) » (57)
where

t
ba(t) =2 /O (VT3 () e s 1B + 10%(5) e ) 1B () oy + M) 1) s

+ ||curlH0||2;
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(iii)
t
(|curl H(t)]|? +/ |curl 2H (s)]|* ds < bs(t), (58)
0
IH | r200.7:m2(0)) < C ([leurl®H|| + | M|l 20,752 (0)) » (59)
where
t
b3(t) :(chrl Ho||? —I—/ (C‘|Uu(8)||%w2,6(ﬂ)||CurlM(S)||2 + ||cur1Mt(s)||2)ds> X
0
t
X exp <t + C'/ ||Uﬁ(8)||%w2,6(g) ds);
0
(iv)
2 1 ! 2
[ He(t)]* + Z/ leurl Hy(s)||* ds < ba(t), (60)
0
| Hell 200,01 () < C (lewrl Hy|| + | Myl 20,711 62))) » (61)
where
t
2
b4 = (IO + [ (1056 @B o) + 10 mioy 1B
+ 3100017 ds ) exp (3,
with
H;(0) = —curl 2Hy + curl (U*(0) A By) — M;(0),
M;(0) = —(U*(0)V) My + %curl (U*(0) A My) — tiM0 — %Ma A (MP(0) A H*(0))
m T
+ SHH(0);
(v)
| H ()20 < C (HVU”(t)IIIIB(t)IIWA(Q) +1Be(t)]| + HM(t)HHQ(Q)) : (62)

Proof. We only need to prove the estimates.
(i) Multiplying equation (21) by H and integrating by parts yields

1d
——/|H|2d:c+/|curlH|2dx:/ (Uﬁ/\(H—l-M))murlde—/MtHd:c.
2dt Jo Q 0 Q

=1+ Is.
Using Cauchy-Schwarz and Young inequalities it holds that

|11]

IN

1U* e @ | H ([ curl H | + [[UF oo (s | M | [[curl H |

IN

1 1
Slleurl HI? + 2103 ey (12 + 1))



and
1 2 2
2] < S(H" + | Mell)-
We thus have

i/|H|2dx—|—/ curl H|? dx

< (1U¥ ey + 1) HHI? + WU M + M2
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Integrating over (0,¢) and using the Gronwall lemma we get (54). From the equality B =

H + M it holds that
lcurl B|| < ||curl H]|| + ||curl M|,

since div B = 0 in Qp and B-n =0 on (0,T) x 0%, it results that
| BllL2(0,rm1 () < Cllcurl B,

hence (55).
(i) We multiply equation (21) by Hy and integrate by parts to obtain

/ |Hy|? dx + 1i/ curl H|? do = / curl (Uﬁ A B) -Hydx —/ M H; dx.
Q 2dt Jq Q Q
=13+ 1y
In view of the vector identity
curl (U* A B) = (div B)U* — (divU*)B + (B - V)U* — (U* - V)B,
and the conditions div B = divU = 0, we have
curl (U* A B) = (B - V)U* — (U*- V)B.
We deduce that
1< SHHR + (1N o I BIP + 10 1B i) -
We also have
1) < 1B + 1
We thus have
%/Q|Ht2dx+ %%/kaurlfﬂzdx
< VU (Foe s IBIP + U o 0 B s + 11212
Integrating over (0,t) we deduce (56). Arguing as above we show that

B oo 0,11 02)) < C (leurl H| oo o, r02(0)) + 1M || oo 0,711 (02))) »
hence (57).

(63)
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(i4i) Multiplying equation (21) by curl?H and integrating by parts yields

1d

__/ |curlH\2dx+/ |Cur12H|2dx:/curl (Uﬁ/\B) -curl ?H dx

—/curlH~cur1Mt dz.
Q
=I5+ Is.

Using (63), the Cauchy-Schwarz inequality, the Sobolev embedding H'(Q) < L%(Q), the
equality B = H + M and the equivalence of norms in 5 we have

1151 < (19U ey I1BIl + 0% 0 IV B lewnt 21
< O ey lleur] B eurl *H]|
< CJU* iy (leurd H| + fleurl M) leurl *H]|

1
< lewl?H|? + CU|Gp0(q) (llewrl H|2 + fleurl M)
We also have 1 )
|Is| < 5||cur1H|\2 + §chr1Mt||2.

It results that

d
—/ |curlH|2d:z:+/ |curl 2H|? dx
< Newrl H (U gy +1) + CIUBymog leurl M2 + fleurd M2

Integrating over (0,¢) we deduce (58). Writing curl 2B = curl 2H + curl 2M, using Lemma 2,
the conditions div B =0 1in Qp and B-n =0 in (0,7) x 02, applying a classical regularity
result for curl 2 equations with a nonlhomogeneous boundary condition curl B xn = curl M x
n with curl M x n € L2(0,T;H 2(99)), see [11] and [21, Proposition 2.1], gives B €
L?(0,T;H?(Q)) and the following estimate
1Bll20.rs2(0y) < € (llewrl2H | + lowrl2M | + llewrl M| oy oo )

holds. We deduce that H € L2(0,T;H?(Q2)) and satisfies (59).

(iv) Differentiating equation (21) with respect to ¢, multiplying the resulting equation by
H; and integrating by parts yields

d 1
E/Q|Ht|2daz—|—§/ﬂ|curlHt|2dx
:/ (Uf/\BJrUﬁ/\Bt)-curlthxf/Mtrthx
Q Q
=1I;+ Ig.
We have
17] < Zlleurt Hl? + (10 ooyl Bllusoy + 10% oyl Bol) -

We also have 1
sl < 5 (I1Mu]* + 1| Hil?) -
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It results that

d 1
E/Q|Ht2d:v+z/ﬂ|curlHt|2dx

2 1
< (”Utu”]LG(Q)”BHH}(Q) + ||UﬁHIL°°(Q)||BtH> t3 (1M + | Hel|?) -

Integrating over (0,¢) and using the Gronwall Lemma we deduce (60). Writing curl B, =
curl Hy+curl My, we have ||curl By|| < ||curl Hy||+||curl M| and using the conditions div By =
0in Qr and By -n = 0 in (0,7) x 92 we get that B, € L?(0,T;H'(2)) and we have the
estimate

Bl 20,711 () < C ([lcurl Hy|| + [[curl Myl]) .

We deduce that H; € L*(0,T;H'(Q)) and we have (61).
(v) Using (63) and the Holder inequality we deduce from equation (21) that

lewrl*H ()| < [U*®) Lo (@ IV Bl wscys + 1BE L@ VU@ + | B()]]-
Using the Poincaré inequality and the Sobolev embeddings (37); and (37),, we obtain
leurl?H (8)[| < CVUF@)IIBE) llwra() + BB, ¢ € (0,T).

Since the right-hand side belongs to L°°(0,7), the function curl2H belongs to
L>®(0,T;1L%(Q)) which implies that curl?B € L°(0,T;L%(2)). Therefore H and B be-
long to L>(0,T;H?(9)) and satisfy (62). The proof of Lemma 4 is complete. O

Lemma 5. Let M be the solution of problem (Pyr), H the solution of problem (Pg) and
J=curlH. Then:

(i) (M-V)YH, MANH, curl (M AN H) and J X B satisfy, fort € (0,T),

(M - V) H ()|l ) < ClIM ()12l H () [ () (
M A H @)l o) < ClIM@)|a2 )| H 0)]lm20), (
l[eurl (M A H) ()|l ) < ClIM ()]s o) 1 H ()12, (66
[T A B()lr ) < ClIB@)Im2 o)l H ()12 (

(ii) [M A HJy, cutl[M A H)y, (M -V)H];, [J x B); satisfy, fort € (0,T),

1M A Hp (@) < C (IHH (@)l @ 1M (8 s @) + 1M (@) lwrs e [He @), (68)

[eurl [M A H]i()||ez-1() < CI[IM A He(2)]], (69)
I[(M - V) H (#)]ellm-1 () < C(IIIM A H: ()| + [|div My (8)[[| B() lwr.6(0))
+ C(IIH O N @) o) + [1H )l o) 1M () [11.(0)) » (70)
117 A Ble(®)ll-1) < C (IH:DIB®) Lo @) + I HeOIIVBE) [ w3 @)))
+ ClIBOJ () lLs (- (71)

Proof. The proofs of (i), (68) and (69) are easy, we use the Holder inequality and the Sobolev
embedding. To prove (70) we use the vector identity

(M-V)H =—curl(M NH) + (divM)B + (H - V)M,
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which by differentiation with respect to ¢ gives
(M -V)H]; = —curl [M A H]; + (div My)B + (div M) B, + (Hy - V)M + (H - V) M.

Estimating each term in the right-hand side gives (70). To show (71) we write, for any
wEU,

/Q[J/\B]t'wdCE:/Q[Jt/\B]-wdm—i—/Q[J/\Bt]-wdx

= /QHt . <(BV)w — (wV)B) dz + /chrlH < [By ANw) dzx,

from which follows

/Q[JAB]t'Wde S Hell 1Bl o[Vl + [[Hel [ VB s o))z [wllws (o

+ | Bell|lwllie o [leurl Hl[ps(q,

hence (71). The lemma is proved. d

2.3 Problem (Py)

Arguing as in [1] (Lemma 6) we prove the following result.

Lemma 6. Problem (Py) admits a unique global-in-time strong solution U satisfying:
(i)
U € C([0, TUNH*(Q)) N ([0, T];H () N L*(0,T; H(2));
(iz)
2 ! 2
U@+ [ 190G ds
t
<C <||Uo||2 +/0 (1M - H ()| + [M A H(s)|[* + [T A B(s)[*) dS) , te(0,T);
(iii)
t
VU@ + [ [IPds < Caie), te 0.1,
0
t
| 0@ ey ds < cax). te 0.7,
where

0:(t) = (IIVUo||2 s [ DHEI + et 0 7 )()]P) ds

t t
+f ||JAB<s>||2ds) exp (c JNLEEIEeS ds) |
0 0

t t
da(t) =/0 ||Ut(8)||2d5+HUﬁ(S)”]iOO(O,t;H%Q))/O IVU(s)II* ds

+/0 (1M - W) H (s)I* + leurl (M A H)(8)[[* + [|] A B(s)]?) ds;



(iv)
t
[OI + [ IV ds < Clad+ o), te 0.)
0
1U#)[f2(q) < Cda(t), te(0,T),
where dé, d% and dy are given by
di = | AU[I 2 () + 1UH0) [z 0 | VUOII* + [|(Mo - V) Hol|* + [|(Mo A Ho)||?
+ |Jeurl Hy A Bol|?,
t
di(t) = /0 (1M - V) H]() 510y + 11T A Ble(9) -1 (6)) ds
i 1
+ [ UM A BN s 0y s+ U gy | 10 ey
da(t) = |U(O)[1* + 1U*(0) 12y [ VU)|1* + [[(M - VY H ()]
+ [Jeurl (M A H)(#)|* + [|J A B(1)]%;
(v)

T T T
| 0y ds <€ [ 10Ny s+ C [ I0H oIV (3) oy s
T T
[ IOV ds+ € [ ewrl 01 A H)(6) o ds
0 0

T
+ c/ 1 A B(3) 2 gy .
0

3 Proof of Theorem 1

3.1 Approximate solutions

18

Set (U°, MY, H°) = (0,0,0). Assuming that the triplet (U™, M", H") is defined, let
(U™, ML H™F1) be the solution of problem (19)-(28) with (U*, M*¥, H*) replaced by

(U™, M™, H"). Thus M"*! satisfies

1 1 1
oM™ 4 (U™ V)M — FeurlU” A M Mt MU A (M A HTY)

tm 48,
_ Xm -
= t—H in Qr, (72)
M"™(0) = My in Q. (73)

The function H™t! satisfies

O H™ ! 4 curl 2H™ M = curl (U™ A B™™Y) — 9, M™™ in Qp,
divB"™ =0 in Qp,

B"™ . n=0, curlH"™ ' An=0 on (0,T) x 09,
H"™_o = Hy =By — My in,
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where B"t1 = g+l 4 M7+l The function U™t satisfies

8tUn+1 + (Un . V)Un+1) _ uAUnJrl + vanrl

1
= (M™th.ow)yH ! 4 Feurl (M™ A Y 4+ T A B in Q, (78)
divU™ =0 in Qp, (79)
U™ =0 on (0,7) x 0Q, U"0)=1Up in Q. (80)

The previous study of problems (Pys), (Pg) and (Py) shows that (U™, M1 g™+ is
well-defined by (72)—(80).

3.2 Uniform bounds

Let N be a large fixed integer and let us introduce an auxiliary function ®p defined on
(0,7) by

_ n+1 n+1 n+1
Py(t) = o AX, <osgglg)t (L+ VU ()] + 1M () 2oy + 1H™F (5)||H2(Q))> :

Arguing as in [1] (Lemmas 7, 8) and using Lemma 5 we prove the following result.

Lemma 7. We have

v [ o s <o e [ s ds (51)

e+ [ v < con (¢ [ ayods). (52)
for any 0 <n < N and t € (0,T).

Consider the Stokes system (for fixed ¢ € (0,7))
—p AU 4 vprtl =gl Qv =0 inQ, U™ =0 onoQ, (83)
where
G = —(Upt + (U V)UTT) + S
and S"*! is given by
ST = (M V) H 4 %curl (ML A HY ) 4 g A B

We have
[(M™ ) HY | < C|[M™H|poe (o [[VH™ ], (84)
[ A B < C (1M Lo ) + IH™ o)) IVH™ (85)

and

Jeurl (A1 A HY )| < C (1M ooy IVE™ | + L H oo o [VM™ ) (86)
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For the last inequality we used the identity

curl (Mn-‘rl A Hn+1> :(diV Hn-‘rl)Mn-‘rl o (diV Mn—i—l)Hn—‘rl
+ (Hn-H . V)Mn+1 _ (Mn—l-l . V)Hn+1.

Using the Sobolev embedding H?(Q2) < L>(Q2) we deduce from (84)—(86) that
IS™1) < CIH™ lazyl VM| + € (IM™ gz ) + 1™ gaqey) [VH ).
Similarly, using (64)-(67) and the Sobolev embedding H'() « L5(2) we show that
15" sy < C (IM™ M lmze) + IH™  lm2i)) 1H™ lwzq)-

Now applying the elliptic regularity results for the Stokes system (83), by using the
techniques in [1], we derive the estimates

10 Ol < C (U O] + VU@ IVU @) + 150, 67)

10 ()] 20y < C (U202 + 84,(1) (88)

10 (1) sy < C (INUR @01 + (U0 + 912(1)) (89)
t t

/0 J0™(5) 22 ds < Cexp (c /0 (s) ds) , (90)

for any 0 <n < N and ¢t € (0,7).

Lemma 8. We have

t t

t
M) o) < C exp (Cexp (c/o DR (s) d8>> , 2<r<6, (92)
t t
[ 1vaas <con (o [ ayoas) (93)
0 0

forany 0 <n < N andt € (0,T). Moreover,

t t
102, M) 2+ / 102, M1 (8)]2 ds < C exp (Cexp (o / @}V?(s)ds)), (04)

forany i, j =1,2,3, for any 0 <n < N and t € (0,T).

Proof. We show inequalities (91) and (92) by similar arguments to that used in [1]
(Lemma 9). Inequality (93) follows directly from (52), (82) and (88). Let us prove (94).
Arguing as in the proof of (43) we have

1072, M (1)1 + /H 2o, M (8) [P ds < Cas(t), (95)
with

as(t) = (1Ml + [ (@OITA G +ai0) s ) exp (€ [ o))
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and

az(t) = [ H" ()1 + 1T Ollfs @M ()15 g
+ M) s ) M7 () 2 ) | H () 1.6 0
+ M () G0 ) M (O s ) H™ ()32 )
az(t) = |U™(®)llwas(o) + [IH™ (&)o@ IV M™ ()]l ws (o)
+ [M™ () o) IVHE™ ()| ws@)ys + 1.

Using Young’s inequality we have
2 AP 1 ntl o4 o 2
az(t) < | 1Mollge(q) + ; §(a3) (5)+§||VM ()" +a3(s) | ds | x

X exp (C /0 t a3(s) ds). (96)

Using (82) and (89) we find that
t t
/ (a3)*(s)ds < Cexp (C’/ d2(s) ds) . (97)
0 0
According to Lemma 6 (v) we have
! 1oy )12
I 6 s
t t
SC/O U7 () lEp o d3+0/0 U™ () Iz 1T () 2 ) s
t t
+ 0/0 (M- V) H™(s) 15 ds + C/O lewrl (M™F A H™ ) (8) |1 () ds
t
e / 17 A B (8) B g .
0
Then, using (64)—(67), (82) and (88) it holds that
t t
/ HUn"'l(S)H]?{[?'(Q) ds < C'exp (C/ dL2(s) ds) . (98)
0 0
Using (92) and (98) we easily see that

/Ot a3(s)ds < Cexp <Cexp (C /Ot D2 (s) d5>> : (99)

It results from (96), (97) and (99) that

az(t) < Cexp (c exp <C /Ot D2 (s) ds>) :

This inequality, together with (95), implies (94). The lemma is proved. O
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Lemma 9. We have

t t

|H™ ()2 +/ |curl H" L (s)||? ds < Cexp (C exp <C’/ Y (s) ds)> ) (100)
0 0
¢ t

[|curl H™ L (#)||? —|—/ | H (s) || ds < Cexp <Cexp (C/ D (s) ds)) , (101)
0 0

t t
|curl ™ (#)|? +/ |curl 2H™ 1 (s)||2 ds < Cexp (C exp <C/ D2 (s) ds>) , (102)
0 0

¢ ¢
| HP (1)) +/ |curl H ™ (s)||? ds < Cexp <C exp (C/ dL2(s) ds)) ) (103)
0 0
for any0 <n < N andt € (0,T).
Proof. Multiplying equation (74) by H"*! yields the analogue of (54):
¢
|H™ L (1)]12 +/ |curl H 1 (s)||? ds < by (2),
0
with

b(t) = (|H0||2+ | 03P + 1351 ds) <

t
X exp <t+/0 ||Un(S)H]%oo(Q) d8>

Using the Sobolev embedding, (82) and (88), we obtain

1 1 t
J N0 Ry ds < C [ 07y ds < Cexp (o / <I>?v<s>ds>. (104)
0 0 0

Similar arguments, together with the inequality ||M"!(s)|| < ®x(s), imply that

t t
[ 107Gl )P ds < Coxp (€ [ @301 ). (105)
0 0

We deduce from equation (72) that

[MEFH < C (VUM s ) + M+ | H™))
+ CIM™ e oy | M s oy [1H™ |
< CPY;, (106)

Estimates (104)—(106) imply that

t
bi1(t) < Cexp (C exp (/ Y (s) ds))
0
and (100) follows.

Arguing as in the proof of (56) we have

t
Jeurl H' (1) + / P (s) |2 ds < balt),
0



23

with
ba(t) =2 | t (I Ol B+ 1076) | o
+ |Mt”+1(s)|2> ds + ||curl Hy||.
Using the Sobolev embedding W(Q) < L>(Q) we have

t
n+1 2 n+1 2 n 2
B 6) P ds < C gua 1B [ 107(5) ey s

t
/O IV U™ ()12
n+1 2 n+1 2
< O max, (|M" (s)[” + L H* T (s)]%)

t
[ 107 6 oy (107)
Using inequalities (89), (91) and (100), we deduce from (107) that

t t
/0 HVU”(S)||%LOO(Q))3||B"+1(3)H2ds < Cexp <Cexp (C’/O D (s) ds>> .

Similarly to (105) we show that

t t
/0 HUn(S)H]%OO(Q)HBnJrl(s)H]%Il(Q) ds < Cexp <C/0 Y (s) ds) .

We conclude, together with (106), that

bo(t) < Cexp <Cexp (C /Ot d2(s) ds>) ,

hence (101).
As for (58) we have

t
|curl H™H(#))? +/ |curl 2H™ 1 (5)||? ds < b3(t), (108)
0
with
t
b3(t) :(||cur1 Ho||? —l—/ (C’||U"(8)||\\2N2,6(Q)||curl M"™(s)|12 + ||curl M[L+1(s)||2)ds> X
0
t
X exp (t + C/ ||Un(3)||\2/\\12«,6(ﬂ) ds>.
0
We have
t t
[ 10 6 By lewrt )2 ds < € sup 1M By [ 107 6) B s
0 0<s<t 0
then, using (90) and (92) we deduce that

t t
/ ||U"(8)||\\2N2,6(Q)chrl M"™ 1 (s)||?ds < Cexp (Cexp (C/ dL2(s) ds)) .
0

0
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It results, together with (93), that

b3(t) < Cexp <Cexp (C /t d2(s) d5)> ,

0

hence (102).
Arguing as for (60) we derive the inequality

iR+ [ leurd H#(s)]2 ds < bat),
with
bt = (I 01+ [ t (007 e B4 6o
I B O+ IR ) ds) exp (5
and

H"(0) = —curl 2Hy + curl (Ug A By) — MT(0),

1 1 1
MP1(0) = —(UgV) My + Seurl (U A Mo) — —Mo — EMO A (Mo A Ho) + f—mHo.
m r m

We deduce from equation (74) and inequality (106) that

IHPHH < C (1H gz ) + VU HIB™  lws o + [1M74])
< CPy,. (109)

Using the Sobolev embedding, (82), (88), (106) and (109), we deduce that

t t
/O 10" ()2 | B (8)2 ds < © / 10" (3)11Ba gy (1M ()2 + [P (8)]2) dis

< Cexp <c/t<1>}v2(s) ds> :

0

We also have
t
/0 W07 () 2o 1B (5) 12 s

t
<C (max HM”+1(8)||]?_H1(Q) + max ||H"+1(s)|§ﬂl(9)> /0 VU (s)||* ds,

0<s<t 0<s<t
then, using the inequality (analogue of (57))
IH™ | poo 0.0 (0)) < C (lleurl H | oo 0. 72(00)) + IM™ | oo 0. 701 (02))) (110)

and estimates (82), (92) and (101) we obtain

t t
/ ||Utn(5)||i6(9)HB”‘*‘I(S)HES(Q) ds < Cexp (C exp <C/ P2(s) ds)) .
0 0



Similar calculations (see (53)) show that

t t
/ | Mt (s)||? ds < Cexp (/ oY ds) .
0 0
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Since ||H™(0)||> < C, we conclude that by(t) < Cexp (C’exp (C’fg DLR2(s) ds)), hence

(103). The proof of the lemma is finished.

Lemma 10. We have
t
IMPHL@))] < Cexp (cexp (c [ ok d)) |
0
t t
L™ (8) 220 + / IVEP(s)]|% ds < C exp <cexp (c / q);g(s)dS)),
0 0

t
JU™ (1) |2y < Cexp (Cexp (C/ DR (s) ds>> )

0
for any0 <n < N andt € (0,T).
Proof. Since (see (106))

1M @) < C (VUM (@) lwrs @) + 1M @)+ [H™ (1))
+ O ()l oy M () o o [ ()]

inequality (111) follows from (81), (92), (100).
In accordance with (61) we have

IH M 20, gy < C (lewrl HP Y+ 1M 20, (0))) -

Using (91), (93) and (103) we deduce that

t t
/ IVEP(s)[% ds < Cexp (Cexp (c/ B12(s) ds>> .
0 0

According to (62) we have

O

(111)
(112)

(113)

" () sy < C (IVUTONIB™ () llwrag) + I1BF O+ 1M (O [2(e)) - (114)

Using the Gagliardo-Nirenberg-Sobolev inequality
1 3
IVullLa) < ClIVUl Tl gy Yo € HA(9),
we have
1B (t) lwrag) < CIVB™@)ITIB" ()l fe g + CIIB™ (B L)

Inserting (115) in (114) and applying the Young inequality we obtain

(115)

™ (Ol 0y <C (IVU" OV B Ol + VU@ B™ Oy + 1B (1))

mn 1 n
+ C| M (1) g2 (o) + §||B () w2
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Since || B"1(t)[|lm2(q) < [[H™ ™ (t) lm20) + 1M (t) |lm2() and H'(2) < L*(Q) we obtain

I (1) Iz () <C (IVUTOIHB™ () 0y + VU OB (Ol 0 + 1BFH0)I)
+ O M ()] 0

Using (81), (92), (94), (101), (103), (110) and (111) we obtain
t
V(0 ey < Coxp (Cexp (c | 2% d)) |
0

Since (see (87))

I )=y < C (IUF O+ (IVU @) VU @)+ 15" (@0)1)

and
IS™ @) < CIH™ (1) sz [V M (1)
+C (1M Ol + [H" (O)]ze0) VA" (0],
inequality (113) follows from (81), (82), (92), (94) and (112). The lemma is proved. O

Lemma 11. There is a time T, > 0 such that

sup  ([[U™H () ]lez() + 1M (O llazo) + 1 H™ (1) lla2(0))
0<t<T.
T*
+/o (||U"+1(5)||1%13(Q) U () ey + 1M (5) | gy + ||HZL+1(8)||]%11(Q)> ds < C,
(116)

for any n > 0.

Proof. Tt results from estimates (81), (92), (94) and (112) that the function @ satisfies the
integral inequality

dy(t) < Cexp (Cexp (C /t D (s) ds)) :

0

We deduce as in [1| that there is a time Ty > 0 such that ®x(t) < C, for all t € (0,T).
Then, using (82), (93), (98), (103), (111) and (113), we easily derive (116). The prof of
Lemma 11 is complete. O

3.3 End of the proof of Theorem 1

(i) Ezistence and uniqueness. With the bound (116) one can easily show, following the
technique in [1], that the whole sequence (U™, M™, H™) converges to a limit (U, M, H) which
is the unique strong solution of problem (P) in Qr,.

(i1) Blow-up criterion. Suppose that T* < T and let us introduce the function

() =1+ VUMD + [IMB)l[m2(e) + [1H (1) [[12(0)-
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defined for 0 < ¢ < T™. Following the same arguments as in Section 3.2, one can establish
the following estimates (for ¢ € (0,7%*)):

U@y < Coxp (Coxp (€ [ @235 ).

t t
/ ||U(3)H1%13(Q) ds < Cexp <C’/ d12(s) d8> ,
0 0
t t
[ 10 R0y ds < con ([ a¥as).
0 0

IM () 2y < Cexp (oexp (o [ e "a12(s) )) ,
o) < Cop (Co (€ [ 026)05) ),

t t
I gy s < Cexo (€ [ 0¥y
0 0

t
||H(t)HH2(Q) < Cexp (Cexp (C’/ <I>12(s) ds>> ,
0
¢
1] < Coxp (Cex (¢ [ #25)as) )
0
t t
/ ||Ht(s)\|12ml(9) ds < Cexp <C exp <C’ P12 (5s) ds>) :
0 0
Combining these estimates we conclude that

J(t) < Cexp (C exp < <1>12 )) ,

where J is the functional defined by (17). The later estimate allows to conclude. The proof
of Theorem 1 is complete.

and

o]
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