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of a similar formula for the stable rank of C∗(G), as well as some estimates on the 
ideal generated by the projections in C∗(G).
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1. Introduction

The stable rank of C∗-algebras was introduced independently in [7] and [15], and subsequently, its self-
adjoint version, called real rank, was introduced in [6], where it was proved among other things that the 
condition of positive real rank is equivalent to the fact that the linear span of projections is not dense in 
the C∗-algebra under consideration. Much information has been obtained on the real rank of C∗-algebras of 
locally compact groups, and yet some problems remained open so far. In the present note we answer some 
of these problems, based on the method of coadjoint orbits of exponential solvable Lie groups, particularly 
on the results of [8] (see also the monograph [12] for background information on that method).

First, there is the problem of investigating the set of projections in C∗(G) for any exponential Lie group G. 
We recall that by definition an exponential Lie group is any Lie group whose exponential map expG : g → G

is bijective, and this condition implies that G is a solvable Lie group. Examples of exponential Lie groups 
include the connected, simply connected, nilpotent Lie groups, for which it was established in [16, Thm. 4]
that their C∗-algebras contain no nonzero projections. The existence of projections has been left open so far 
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for general exponential Lie groups, whose C∗-algebras are not always liminary. It is well known that if G is 
the (ax + b)-group, then C∗(G) contains non-trivial projections. We provide more precise information on 
this phenomenon in Theorem 4.4 and Remark 4.7 below.

The next problem is motivated by the problem above and by related investigations in [17]: Compute 
the real rank RR(C∗(G)) for any exponential Lie group G. See also [1], where an answer was provided in 
particular for nilpotent Lie groups.

The answer to this problem is given in Theorem 3.5, and the analogous result on stable ranks is given in 
Theorem 5.4, which also fills some gaps in the literature (see Remark 5.5).

2. Preliminaries

Definition 2.1. Let A be any unital C∗-algebra, and for any integer n ≥ 1 denote by Ln(A) the set of all 
n-tuples (a1, . . . , an) ∈ An with Aa1 + · · · + Aan = A. We also denote Asa := {a ∈ A | a = a∗}.

The stable rank of A is defined by

tsr(A) := min{n ≥ 1 | Ln(A) is dense in An}

with the usual convention min ∅ = ∞. The real rank of A is similarly defined by

RR(A) := min{n ≥ 0 | Ln+1(A) ∩ (Asa)n+1 is dense in (Asa)n+1}.

For any non-unital C∗-algebra, its real rank and its stable rank are defined as the real rank, respectively 
the stable rank, of its unitization.

Remark 2.2. The real rank of a C∗-algebra was introduced in [6] as a noncommutative version of the covering 
dimension of a topological space. In this sense, it was established in [6, Prop. 1.1] that if X is any compact 
Hausdorff space, then the real rank of the commutative C∗-algebra C(X) is equal to the covering dimension 
of X.

On the other hand, by [6, Thm. 2.6], the real rank of some C∗-algebra A is zero if and only if every 
self-adjoint element in A is the limit of a sequence of self-adjoint elements with finite spectra. Therefore, 
if A contains no projections, then its real rank is ≥ 1, and this points out the connection between the two 
problems in the Introduction.

The combination of [3, Thm. 4.11] (C∗-algebras of nilpotent Lie groups are special solvable) with the 
following proposition gives a short proof of one of the main results of [1] in the special case of Lie groups, 
namely that RR(C∗(G)) = dim(g/[g, g]) for any connected, simply connected, nilpotent Lie group G. This 
equality will be extended in Theorem 3.5 to all exponential Lie groups, using however a different approach, 
because the C∗(G) in that case might not be liminary. We refer to [3, Defn. 2.9] for the definition of special 
solvable C∗-algebras.

Proposition 2.3. Let A be any liminary, solvable C∗-algebra with a special solving series

{0} = J0 ⊆ J1 ⊆ · · · ⊆ Jn = A

with Jj/Jj−1 
 C0(Γj , K(Hj)) for j = 1, . . . , n. Then RR(A) = dim Γn.

Proof. The C∗-algebra A is liminary, hence it follows by [5, Cor. 3.7] that RR(A) = max{RR(Jj/Jj−1) |
j = 1, . . . , n}. On the other hand, for j = 1, . . . , n − 1, we have dimHj = ∞, hence RR(C0(Γj , K(Hj)) ≤ 1
by [2, Prop. 3.3]. However dimHn = 1, hence Jn/Jn−1 
 C0(Γn) and then it follows by [6, Prop. 1.1] that 
RR(Jn/Jn−1) = dim Γn ≥ 1, since Γn is homeomorphic to a vector space. Hence the assertion follows. �
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3. Real rank for exponential Lie groups

In this section we obtain one of our main results (Theorem 3.5), which gives a formula for computing 
RR(C∗(G)) in terms of the Lie algebra g, for any exponential Lie group G. We must mention that the 
spectra finite-dimensionality hypotheses in Lemmas 3.1–3.2 are crucial for the conclusion of these lemmas, 
and we need Lemma 3.4 in order to check that these hypotheses are satisfied in the setting of the proof of 
Theorem 3.5.

Lemma 3.1. Let A be any separable C∗-algebra with continuous trace, for which all its irreducible represen-
tations are infinite-dimensional. If moreover dim Â < ∞, then RR(A) ≤ 1.

Proof. It follows by [4, Cor. IV.1.7.22] that A is stable, hence there exists a ∗-isomorphism A 
 A ⊗ K, 
where K is the C∗-algebra of compact operators on some separable infinite-dimensional Hilbert space. On 
the other hand, by [2, Prop. 3.3], one has RR(A ⊗K) ≤ 1, and then RR(A) ≤ 1 as well. �
Lemma 3.2. Let A be any separable C∗-algebra with an ideal J that is a continuous trace C∗-algebra with 
dim(Ĵ ) < ∞, and such that all irreducible representations of J are infinite dimensional. Then RR(A) =
max{RR(J ), RR(A/J )}.

Proof. This is a special case of [5, Thm. 3.12(ii)]. �
Proposition 3.3. Let A be any separable C∗-algebra with a family of closed two-sided ideals

{0} = J0 ⊆ J1 ⊆ · · · ⊆ Jn = A

where for each j = 1, . . . , n, Jj/Jj−1 has continuous trace, with its spectrum of finite covering dimension, 
and all its irreducible representations are infinite dimensional. Then

RR(A) = max{RR(Jj/Jj−1) | j = 1, . . . , n}.

Proof. We proceed by induction on n. The case n = 1 is obvious. If we assume n ≥ 2 and the assertion 
already proved for n − 1, then, using the family of closed two-sided ideals

{0} = J1/J1 ⊆ J2/J1 ⊆ · · · ⊆ Jn/J1 = A/J1

of A/J1 for which (Jj/J1)/(Jj−1/J1) 
 Jj/Jj−1 has Hausdorff spectrum, for j = 2, . . . , n, then the 
induction hypothesis implies

RR(A/J1) = max{RR(Jj/Jj−1) | j = 2, . . . , n}.

On the other hand, by Lemma 3.2 we have RR(A) = max{RR(J1), RR(A/J1)}, hence we directly obtain 
the assertion for n, and this completes the proof. �
Lemma 3.4. Let X be a metric space and A a locally closed subset of X. Then dimA ≤ dimX.

Proof. The set A is locally closed, hence there are sets D ⊆ X, F ⊆ X, with D open and F closed such 
that A = D ∩ F .

On the other hand D is an Fσ set in the metric space X, that is, there is a countable family of closed 
subsets Fn, n ≥ 0, such that D = ∪n≥1Fn. Hence A = ∪n≥1(Fn∩F ), and from [14, Prop. 3.1.5, Thm. 3.2.5]
it follows that dimA ≤ supn≥1 dim(Fn ∩ F ) ≤ dimX. �
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Theorem 3.5. For every exponential Lie group G with its Lie algebra g, we have

RR(C∗(G)) = dim(g/[g, g]).

Proof. Denoting A := C∗(G), it follows by [8, Cor. 3.2] that there exists a family of closed two-sided ideals 
{0} = J0 ⊆ J1 ⊆ · · · ⊆ Jn = A where Jj/Jj−1 is a separable continuous trace C∗-algebra whose irreducible 

representations are infinite-dimensional and for which Σj := ̂Jj/Jj−1 is homeomorphic to a semi-algebraic 

subset of g∗ for j = 1, . . . , n − 1. Moreover A/Jn−1 
 C0([g, g]⊥), hence Σn := Â/Jn−1 is homeomorphic to 
the vector space [g, g]⊥ 
 (g/[g, g])∗ 
 g/[g, g]. Then Σj is a locally closed subset of g∗, hence it follows by 
Lemma 3.4 that dim Σj < ∞. Thus by Lemma 3.1 we obtain RR(Jj/Jj−1) ≤ 1 for j = 1, . . . , n − 1.

On the other hand, denoting r := dim(g/[g, g]), it follows that the one-point compactification of Σn is 
homeomorphic to the r-dimensional sphere Sr, hence the unitization of the C∗-algebra A/Jn−1 
 C0(Σn)
is ∗-isomorphic to C(Sr). Using [6, Prop. 1.1], we then obtain RR(A/Jn−1) = r = dim(g/[g, g]). Now, as an 
application of Proposition 3.3, we obtain RR(C∗(G)) = max{r, 1} = r, and this completes the proof. �
Corollary 3.6. Let G be any connected Lie group with its Lie algebra g. If the universal covering group of G
is an exponential Lie group, then RR(C∗(G)) ≤ dim(g/[g, g]).

Proof. Let p : G̃ → G be the universal covering map of G, so that we have a short exact sequence of Lie 
groups

1 → N → G̃ → G → 1

where N := Ker p is a discrete subgroup of the center of the exponential Lie group G̃. Then all the groups 
involved in the above short exact sequence are amenable even as discrete groups, and we then obtain a short 
exact sequence of C∗-algebras

0 → J → C∗(G̃) → C∗(G) → 0

for the ideal Ĵ = {[π] ∈ Ĉ∗(G̃) 
 ̂̃
G | N �⊂ Kerπ} of C∗(G̃). We then obtain

RR(C∗(G)) = RR(C∗(G̃)/J ) ≤ RR(C∗(G̃)) = dim(g/[g, g]).

The above inequality follows by [11, Thm. 1.4] (as in the proof of Lemma 3.2 above) and the final equality 
follows by Theorem 3.5 applied for G̃, taking also into account that the Lie algebra of G̃ is isomorphic to g. 
This concludes the proof. �
Remark 3.7. The inequality in Corollary 3.6 can be strict if G is not simply connected. For instance, if 
G = T := R/Z, then C∗(G) = c0(Z) has real rank zero by [6, Thm. 2.6((i) ⇔ (ii))], so RR(C∗(G)) = 0 <
1 = dim(g/[g, g]).

Some remarks on abelianization. Let A be any C∗-algebra and denote by J (A) its closed two-sided ideal 
generated by its subset of commutators span {[a, b] | a, b ∈ A}. Then A/J (A) is a commutative C∗-algebra, 
hence there exists a locally compact space ΓA (uniquely determined by A up to a homeomorphism) and 
a ∗-isomorphism A/J (A) 
 C0(ΓA), and thus we obtain the short exact sequence

0 → J (A) → A → C0(ΓA) → 0. (3.1)

A natural question is to estimate the real rank of A in terms of the covering dimension dim(Γ∗
A), where Γ∗

A
denotes the one-point compactification of ΓA. We always have that RR(A) ≥ dim(Γ∗

A), by (3.1) and [11, 
Thm. 1.4]. The interesting equality RR(A) = dim(Γ∗

A) holds for several C∗-algebras:
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• If A = C∗(G) for an exponential Lie group G, then RR(A) = dim(ΓA) = dim(Γ∗
A) by Theorem 3.5 and 

the short exact sequence in the proof of Theorem 4.4, which shows that ΓA = [g, g]⊥.
• If A is any AF-algebra, then RR(A) = 0 = dim(Γ∗

A). In fact, this follows since it is well known that the 
quotients of AF-algebras are AF-algebras, and a commutative C∗-algebra is an AF-algebra if and only 
if its spectrum is totally disconnected, hence its covering dimension is equal to zero.

• If A is the C∗-algebra generated by the Toeplitz operators with continuous symbols on the unit circle T
(equivalently, A is the C∗-algebra generated by the unilateral shift operator), then one has J (A) =
K(L2(T)) and ΓA = T, and it is known from [11, Cor. 1.13(i)] that RR(A) = 1 = dim(T).

It is clear that the equality RR(A) = dim(Γ∗
A) fails to be true in general. For instance, if A is a simple 

C∗-algebra, then J (A) = A, hence ΓA = ∅, and then dim(Γ∗
A) = 0; on the other hand, examples of simple 

C∗-algebras are known, having positive real rank (see [18, Thm. 10]). Nevertheless, if A is a C∗-algebra of 
real rank zero, we have that dim(Γ∗

A) = 0.

4. On projections in the C∗-algebras of exponential Lie groups

The main result of this section provides a kind of estimates on the size of the closed two-sided ideal 
generated by the projections in the C∗-algebra of an exponential Lie group G. That ideal is strictly smaller 
than C∗(G), as already noted in Remark 2.2.

Notation 4.1. For any C∗-algebra A we denote Gr(A) := {p ∈ A | p = p2 = p∗}.

Lemma 4.2. Let A be any C∗-algebra whose spectrum Â is a Hausdorff space. If no connected component 
of Â is compact, then Gr(A) = {0}.

Proof. Let p ∈ Gr(A) and Γ be any connected component of Â. Since Γ is not compact, it follows by 
[10, 3.3.7–9] that the function Γ → [0, ∞), [π] �→ ‖π(p)‖, is continuous and lim

Γ�[π]→∞
‖π(p)‖ = 0. But 

π(p) ∈ B(Hπ) is an orthogonal projection, hence ‖π(p)‖ ∈ {0, 1} for all [π] ∈ Γ. This implies that π(p) = 0
for all [π] ∈ Â, and then by [10, 2.7.3] we obtain p = 0, which completes the proof. �
Lemma 4.3. For any short exact sequence of C∗-algebras

0 → J → A Q→A/J → 0

if Gr(A/J ) = {0}, then Gr(J ) = Gr(A).

Proof. Since J ⊆ A, we have Gr(J ) ⊆ Gr(A). For the opposite inclusion, if p ∈ Gr(A) then Q(p) ∈
Gr(A/J ) = {0}, hence p ∈ J , and then p ∈ Gr(J ). �
Theorem 4.4. Let G be any exponential Lie group with its C∗-algebra A := C∗(G). We denote by J0 ⊂ A
the intersection of kernels of all characters of G extended to 1-dimensional ∗-representations of A. Then
Gr(A) = Gr(J0), and moreover J0 � A if dimG > 0.

Proof. It follows by the method of coadjoint orbits that we have a short exact sequence

0 → J0 → A → C0([g, g]⊥) → 0

where [g, g]⊥ = {χ ∈ g∗ | [g, g] ⊆ Kerχ} is the space of characters of the Lie algebra g. The vector space 
[g, g]⊥ has no compact connected components, hence we may use Lemma 4.3 to obtain Gr(A) = Gr(J0).
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Finally, since g is a solvable Lie algebra, it follows that [g, g] � g if dim g > 0, hence in this case 
[g, g]⊥ �= {0}, and the above short exact sequence implies J0 � A, which concludes the proof. �

The above Theorem 4.4 shows that nontrivial projections appear as soon as the group has open coadjoint 
orbits. The next proposition shows that there could be only a finite number of such orbits, and give a
description of them.

Proposition 4.5. Let G be any connected Lie group with its Lie algebra g and the duality pairing 〈·, ·〉 : g∗ ×
g → R. For any basis {X1, . . . , Xm} in g define the polynomial function

P : g∗ → R, P (ξ) := det(〈ξ, [Xj , Xk]〉)1≤j,k≤m.

Then the following assertions hold:

(i) If ξ ∈ g∗, then the coadjoint orbit Oξ := Ad∗
G(G)ξ is an open subset of g∗ if and only if P (ξ) �= 0.

(ii) The set of open coadjoint orbits of G is finite and their union is a Zariski open subset of g∗ which may 
be empty.

Proof. For Assertion (i) denote g(ξ) := {X ∈ g | 〈ξ, [X, ·]〉 = {0}}, the coadjoint isotropy subalgebra at ξ. 
Then the tangent space at ξ ∈ Oξ can be computed as Tξ(Oξ) = g/g(ξ), hence Oξ is an open subset of g if 
and only if g(ξ) = {0}, and this is equivalent to the condition that the bilinear map

g× g → R, (X,Y ) �→ Bξ := 〈ξ, [X,Y ]〉

be nondegenerate. As {X1, . . . , Xm} is a basis in g, this condition is further equivalent to P (ξ) �= 0.
For Assertion (ii), use Assertion (i) to see that the union of all open coadjoint orbits of G is P−1(R \{0}) =

{ξ ∈ g∗ | P (ξ) �= 0}, and this is a (maybe empty) Zariski open subset of g∗ since P : g∗ → R is a polynomial 
function.

To see that the set of open coadjoint orbits of G is finite, first note that every coadjoint orbit of G is path 
connected since G is path connected. Hence the open coadjoint orbits of G can be equivalently described as 
the path connected components of the algebraic set P−1(R \{0}). Then we may use for instance [9, Thm. 4.1], 
which says in particular that the set of all path components of any algebraic variety over R is finite, and 
this concludes the proof. �
Remark 4.6. It follows by [13, Thm. 2.7 and Rem. 2.8] that the solvable Lie groups of type HN that arise 
from Iwasawa decompositions of complex semisimple Lie groups (that is, Borel subgroups) may have at 
most one open coadjoint orbit, and such an open orbit exists if and only if −1 belongs to the corresponding 
Weyl group.

Remark 4.7 (Theorem 4.4 is sharp). Let us resume the notation of Theorem 4.4 and assume that the set Σ0
of open coadjoint orbits of G is nonempty. Then Σ0 is a finite set and J0 contains a closed ideal J00 of A
which is ∗-isomorphic to a direct sum of |Σ0| copies of the C∗-algebra K of compact operators on a separable 
infinite-dimensional complex Hilbert space, hence Gr(J00) �= {0}.

Moreover, the specific example of the (ax + b)-group shows that we may have J00 = J0, hence in this 
case Gr(A) = Gr(J0) = Gr(J00) �= {0}.

5. On the stable rank

In this section we briefly indicate how the line of reasoning that leads to Theorem 3.5 could be modified 
in order to compute the stable rank of C∗(G) for any exponential Lie group G. This problem has been raised 
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in [15, Question 4.14]: If G is a Lie group, how does one compute tsr(C∗(G)) in terms of the structure of G? 
It was mentioned already in [15, Ex. 4.13] that if G is the (ax + b)-group, then tsr(C∗(G)) = 2.

Remark 5.1. For any compact space X we have

tsr(C(X)) = 1 + [(dimX)/2] (5.1)

by [15, Prop. 1.7]. For any C∗-algebra A and a separable infinite-dimensional complex Hilbert space H we 
have

tsr(A⊗K(H)) ≤ 2 (5.2)

by [15, Thm. 6.4]. Also, for any closed two-sided ideal J ⊆ A we have

tsr(A) ≥ max{tsr(J ), tsr(A/J )} (5.3)

by [15, Thm. 4.3–4.4].

Remark 5.2. In the setting of Lemma 3.2, one has tsr(A) ≤ max{2, tsr(A/J )}, by [5, Thm. 3.12(i)].

Remark 5.3. Using Remark 5.2 above, one can prove by a similar method that, in the setting of Proposi-
tion 3.3, one has tsr(A) ≤ max{2, tsr(A/Jn−1)}.

Theorem 5.4. For every exponential Lie group G with its Lie algebra g, if we denote r := dim(g/[g, g]), then

tsr(C∗(G)) =
{

1 if and only if G = R,

1 + max{[r/2], 1} otherwise.

Proof. We resume the notation from the proof of Theorem 3.5. By Remark 5.3 and Remark 5.1 we obtain

tsr(A/Jn−1) ≤ tsr(A) ≤ max{2, tsr(A/Jn−1)}.

By [17, Lemma 3.7] we have that tsr(A) = 1 if and only if G = R. Assume that tsr(A) ≥ 2. We have that 
A/Jn−1 
 C0([g, g]⊥), hence tsr(Jn/Jn−1) = [r/2] + 1 by (5.1). Then, using also that max{1 + a, 1 + b} =
1 + max{a, b} for all a, b ∈ R, the conclusion follows directly. �
Remark 5.5. The formula provided by Theorem 5.4 agrees with [17, Thm. 3.9] in the case of exponential Lie 
groups. However, the proof of [17, Thm. 3.9] seems to be incomplete because it is based on [17, Lemma 3.2], 
whose proof requires the hypothesis on the finite-dimensionality of spectra of the continuous-trace algebras. 
A similar issue was pointed out at the top of [1, page 100].
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