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A random vector X = (X1, . . . , Xn) with the Xi taking values in an arbitrary 
measurable space (S, S ) is exchangeable if its law is the same as that of 
(Xσ(1), . . . , Xσ(n)) for any permutation σ. We give an alternative and shorter proof 
of the representation result (Jaynes [6] and Kerns and Székely [9]) stating that the 
law of X is a mixture of product probability measures with respect to a signed 
mixing measure. The result is “finitistic” in nature meaning that it is a matter 
of linear algebra for finite S. The passing from finite S to an arbitrary one may 
pose some measure-theoretic difficulties which are avoided by our proof. The mixing 
signed measure is not unique (examples are given), but we pay more attention to the 
one constructed in the proof (“canonical mixing measure”) by pointing out some 
of its characteristics. The mixing measure is, in general, defined on the space of 
probability measures on S; but for S = R, one can choose a mixing measure on R

n.
© 2016 Published by Elsevier Inc.

1. Introduction

The first result that comes to mind when talking about exchangeability is de Finetti’s theorem concerning 
sequences X = (X1, X2, . . .) of random variables with values in some space S and which are invariant under 
permutations of finitely many coordinates. This remarkable theorem [7, Theorem 11.10] states that the law 
of such a sequence is a mixture of product measures: let S∞ be the product of countably many copies of S
and let π∞ be the product measure on S∞ with marginals π ∈ P(S) (the space of probability measures 
on S); then
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P(X ∈ ·) =
∫

P(S)

π∞(·) ν(dπ),

for a uniquely defined probability measure ν which we call a mixing (or directing) measure.
In Bayesian language, this says that any exchangeable random sequence is obtained by first picking a 

probability distribution π from some prior (probability distribution on the space of probability distributions) 
and then letting the Xi to be i.i.d. with common law π. As Dubins and Freedman [5] show, de Finetti’s 
theorem does not hold for an arbitrary measurable space S. Restrictions are required. One of the most 
general cases for which the theorem does hold is that of a Borel space S, i.e., a space which is isomorphic 
(in the sense of existence of a measurable bijection with measurable inverse) to a Borel subset of R. Indeed, 
one of the most elegant proofs of the theorem can be found in Kallenberg [8, Section 1.1] from which it 
is evident that the main ingredient is the ergodic theorem and that the Borel space is responsible for the 
existence of regular conditional distributions.

For finite dimension n, however, things are different. Let S be a set together with a σ-algebra S , and let 
X1, . . . , Xn be measurable functions from a measure space (Ω, F ) into (S, S ). Under a probability measure 
P on (Ω, F ), assume that X = (X1, . . . , Xn) is such that σX := (Xσ(1), . . . , Xσ(n)) has the same law as 
(X1, . . . , Xn) for any permutation σ of {1, . . . , n}, i.e., that P(σX ∈ B) = P(X ∈ B) for all B ∈ S n, 
where S n is the product σ-algebra on Sn. In such a case, we say that X is n-exchangeable (or simply 
exchangeable).

Example 1. Simple examples show that a finitely exchangeable random vector may not be a mixture of 
product measures. For instance, take S = {1, . . . , n}, with n ≥ 2, and let X = (X1, . . . , Xn) take values in 
Sn such that P(X = x) = 1/n! when x = (x1, . . . , xn) is a permutation of (1, . . . , n), and P(X = x) = 0
otherwise. Clearly, X is n-exchangeable. Suppose that the law of X is a mixture of product measures. Since 
the space of probability measures P(S) can naturally be identified with the set Σn := {(p1, . . . , pn) ∈ R

n :
p1, . . . , pn ≥ 0, p1 + · · · + pn = 1}, the assumption that the law of X is a mixture of product measures 
is equivalent to the following: there is a random variable p = (p1, . . . , pn) with values in Σn such that 
P(X = x) = E[P(X = x|p)], where P(X = x|p) = px1 · · · pxn

for all x1, . . . , xn ∈ S. But then, for all 
i ∈ S, 0 = P(X1 = · · · = Xn = i) = E[pni ], implying that pi = 0, almost surely, for all i ∈ S, an obvious 
contradiction.

However, Jaynes [6] showed that (for the |S| = 2 case) there is mixing provided that signed measures are 
allowed; see equation (1) below. Kerns and Székely [9] observed that the Jaynes result can be generalized to 
an arbitrary measurable space S, but the proof in [9] requires some further explicit arguments. In addition, 
[9] uses a non-trivial algebraic result without a proof. Our purpose in this note is to give an alternative, 
shorter, and rigorous proof of the representation result (see Theorem 1 below) but also to briefly discuss 
some consequences and open problems (Theorem 2 and Section 4). An independent proof of an algebraic 
result needed in the proof of Theorem 1 is presented in Appendix A as Theorem 3. To the best of our 
knowledge, the proof is new and, possibly, of independent interest.

Theorem 1 (Finite exchangeability representation theorem). Let X1, . . . , Xn be random variables on some 
probability space (Ω, F , P) with values in a measurable space (S, S ). Suppose that the law of X =
(X1, . . . , Xn) is exchangeable. Then there is a signed measure ξ on P(S)

P(X ∈ A) =
∫

P(S)

πn(A) ξ(dπ), A ∈ S n, (1)

where πn is the product of n copies of π ∈ P(S).
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We stress that the theorem does not ensure uniqueness of ξ.

Example 2. To see this in an example, consider Example 1 with n = 2, that is, let S = {1, 2} and let 
X = (X1, X2) take values (1, 2), (2, 1), (1, 1), (2, 2) with probabilities 1/2, 1/2, 0, 0, respectively. We 
identify P(S) with the interval [0, 1], via π{1} = p, π{2} = 1 − p, for π ∈ P(S). We give three different 
signed measures that can be used in the representation.

(i) Let ξ be the signed measure on [0, 1] defined by

ξ = −1
2δ0 −

1
2δ1 + 2δ1/2.

Then P(X1 = 1, X2 = 2) =
∫
[0,1] p(1 − p) ξ(dp) = 1/2 = P(X1 = 2, X1 = 1), while P(X1 = 1, X2 = 1) =∫

[0,1] p
2 ξ(dp) = 0 = P(X1 = 2, X2 = 2).

(ii) Let

ξ = −5
8δ0 −

5
8δ1 + 9

8δ1/3 + 9
8δ2/3.

Again, 
∫
[0,1] p(1 − p) ξ(dp) = 1/2, 

∫
[0,1] p

2 ξ(dp) =
∫
[0,1](1 − p)2 ξ(dp) = 0.

(iii) Let ξ be a signed measure with density

f(p) := −7
2 · 1p≤1/3 or p≥2/3 + 10 · 11/3<p<2/3.

We can easily see that 
∫ 1
0 f(p)dp = 1, 

∫ 1
0 p2f(p)dp = 0, 

∫ 1
0 p(1 − p)f(p)dp = 1/2.

Remark 1. The difference between this situation and the one in de Finetti’s setup is that a finitely exchange-
able random vector (X1, . . . , Xn) is not necessarily extendible to an infinite sequence (X1, . . . , Xn, Xn+1, . . .)
that is exchangeable. (See Examples 3 and 4 below.) If it were, then the signed measure ξ could have been 
chosen as a probability measure (and would then have been unique). The question of extendibility of an 
n-exchangeable (X1, . . . , Xn) to an N -exchangeable (X1, . . . , XN ), for some N > n (possibly N = ∞) is 
treated in the sequel paper [10] that strongly uses the framework and results of the present paper. Assuming 
such extendibility, Diaconis and Freedman [3,4] show that the total variation distance of an n-exchangeable 
probability measure on Sn from the set of mixtures of product probability measures is at most n(n − 1)/N
when S is an infinite set (and at most 2|S|n/N if S is finite).

When S = R, it is possible to say more than in Theorem 1:

Theorem 2. Let (X1, . . . , Xn) be an n-exchangeable random vector in Rn, endowed with the Borel σ-algebra. 
Then there is a bounded signed measure η(dθ1, . . . , dθn), such that P(X ∈ A) =

∫
Rn πn

θ1,...,θn
(A) η(dθ1, . . . ,

dθn), where πθ1,...,θn is an element of P(S) depending measurably on the n parameters (θ1, . . . , θn).

2. Preliminaries and notation

We make use of the following notations and terminology in the paper. If S is a set with a σ-algebra S , 
then P(S) is the set of probability measures on (S, S ). The space P(S) is equipped with the σ-algebra 
generated by sets of the form {π ∈ P(S) : π(B) ≤ t}, B ∈ S , t ∈ R. We shall write P(S, S ) if we wish 
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to emphasize the role of the σ-algebra.4 Similarly, M (S) or M (S, S ) will be the space of bounded signed 
measures, equipped with a σ-algebra as above. In particular, M (P(S)) is the space of bounded signed 
measures on P(S, S ). A random measure on S is a measurable mapping from Ω into P(S) and a random 
signed measure on P(S) is a measurable mapping from Ω into M (P(S)). The measure ξ in Theorem 1 is 
an element of M (P(S)). The delta measure δa at a point a ∈ S is, as usual, the set function δa(B) := 1a∈B , 
B ⊂ S. A finite point measure is a finite linear combination of delta measures where the coefficients are 
nonnegative integers. We let N (S) be the set of finite point measures on S and Nn(S) the set of point 
measures ν such that ν(S) = n. The symbol (ν)! is defined as

(ν)! :=
∏
a∈S

ν{a}!

where ν{a} is the value of ν at the singleton {a} and where the product is over the support of ν (0! := 1). 
The symbol S n stands for the product σ-algebra on Sn. If π ∈ P(S) then πn ∈ P(Sn) is the product 
measure of π with itself, n times. If x = (x1, . . . , xn) ∈ Sn then the type of x is the element εx of Nn(S)
defined by

εx :=
n∑

i=1
δxi

.

The set Sn(ν) ⊂ Sn is defined by, for ν ∈ Nn(S),

Sn(ν) := {y ∈ Sn : εy = ν}.

It is a finite set with cardinality

(
n

ν

)
:= n!

(ν)! .

We let uν be the uniform probability measure on Sn(ν), that is,

uν =
(
n

ν

)−1 ∑
z∈Sn(ν)

δz.

If S is too coarse, then Sn(ν) may not belong to S n. This is not a problem when S is, say, the Borel 
σ-algebra of a Hausdorff space, but we wish to prove the result without any topological assumptions. 
Moreover, notice that

Sn =
⋃

ν∈Nn(S)

Sn(ν), (2)

since y ∈ Sn(εy) for all y ∈ Sn. The sets in the union are pairwise disjoint because Sn(ν) ∩ Sn(ν′) = ∅

if ν and ν′ are distinct elements of Nn(S). If σ is a permutation of {1, . . . , n} and x ∈ Sn, then σx :=
(xσ(1), . . . , xσ(n)).

4 In other words, when we write P(S, S ), we mean that P(S) is given the σ-algebra generated by sets {π ∈ P(S) : π(B) ≤ t}, 
B ∈ S , t ∈ R.
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3. Proof of the finite exchangeability representation theorem

By exchangeability, for any B ∈ S n,

P(X ∈ B) = 1
n!

∑
σ

P(σX ∈ B) = E
1
n!

∑
σ

δσX(B) = EUX(B)

where the sum is taken over all permutations σ of {1, . . . , n}, and where

Ux := 1
n!

∑
σ

δσx, x ∈ Sn.

Notice that the map x �→ Ux is a measurable function from (Sn, S n) into P(Sn, S n), and, since X is a 
measurable function from (Ω, F ) into (Sn, S n), we have that UX is a random element of P(Sn, S n). The 
mean measure EUX is the probability law of X.

Forgetting temporarily that our original space is S, consider a finite set T and let Q be an exchangeable 
probability measure on T . Then, for all ν ∈ Nn(T ), Q assigns the same value to every singleton of Tn(ν). 
Hence

Q =
∑

ν∈Nn(T )

Q(Tn(ν))uν , (3)

where uν is the uniform probability measure on Tn(ν). In particular, let Q = πn, where π ∈ P(S). It is 
easy to see (multinomial distribution) that

πn(Tn(ν)) =
(
n

ν

)
πν ,

where πν :=
∏

a∈T π{a}ν{a} (adopting the convention 00 = 1). Specialize further by letting π = λ/n where 
λ ∈ Nn(T ). Canceling a factor, (3) gives

λn =
∑

ν∈Nn(T )

(
n

ν

)
λν uν . (4)

Let W be a matrix with entries W (λ, ν) :=
(
n
ν

)
λν , λ, ν ∈ Nn(T ). This is essentially the multinomial Dyson 

matrix; see (A.1) in Appendix A and the discussion therein. Let M be the inverse of W ; see (A.2) in 
Appendix A. From (A.2) and (4) we have

uν =
∑

λ∈Nn(T )

M(ν, λ)λn. (5)

This is an equality between measures on Tn.
Specialize further by letting T = [n] := {1, . . . , n}. Fix x = (x1, . . . , xn) ∈ Sn. Define ϕx : [n] → S by 

ϕx(i) = xi, i = 1, . . . , n. This induces a linear map M ([n]) → M (S), also denoted by ϕx, by the formula 
ϕx(δi) = δϕx(i) = δxi

, i ∈ [n], and extended by linearity: ϕx(
∑n

i=1 ciδi) =
∑n

i=1 ciϕx(δi). Define ϕn
x :

[n]n → Sn by ϕn
x(i1, . . . , in) = (ϕx(i1), . . . , ϕx(in)). This again induces a linear map M ([n]n) → M (Sn), 

also denoted by ϕn
x , by the formula ϕn

x(δj) = δϕn
x (j), j ∈ [n]n, and extended by linearity. We can then easily 

show that ϕn
x(μ1 × · · · × μn) = ϕx(μ1) × · · · × ϕx(μn) for any μ1, . . . , μn ∈ M ([n]). Let now νn be the 

measure on [n] with νn{i} = 1, i = 1, . . . , n. Let Nn(n) := Nn([n]). Then (5) yields
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uνn
=

∑
λ∈Nn(n)

Mn(λ)λn,

where Mn(λ) := M(νn, λ). It is easy to see that

uνn
= 1

n!
∑
σ

δσι = U ι,

where ι := (1, . . . , n) and where the sum is taken over all permutations σ of [n]. The last two displays are 
equalities between measures on {1, . . . , n}n.

For each x ∈ Sn define

ψx :=
∑

λ∈Nn(n)

nnMn(λ)δϕx(λ/n), (6)

a signed measure on P(S). We are going to show that

(i)
∫

P(S) τ
nψx(dτ) = Ux,

(ii) x �→ ψx is a measurable map S → M (P(S)).

To show (i), observe, directly from the definition of ψx, that∫
P(S)

τnψx(dτ) =
∑

λ∈Nn(n)

nnMn(λ)ϕx(λ/n)n. (7)

But ϕx(λ/n)n = ϕn
x((λ/n)n) = n−nϕn

x(λn) and so

∫
P(S)

τnψx(dτ) =
∑

λ∈Nn(n)

Mn(λ)ϕn
x(λn) = ϕn

x

⎛⎝ ∑
λ∈Nn(n)

Mn(λ)λn

⎞⎠ = ϕn
x(uνn

) = ϕn
x(U ι)

= 1
n!

∑
σ

ϕn
x(δσι) = 1

n!
∑
σ

δϕn
x(σι) = 1

n!
∑
σ

δσx = Ux. (8)

To show (ii), we first observe that ϕx(λ/n) =
∑n

i=1
λi

n δxi
and that the maps x �→ δxi

, Sn → P(S), 
are measurable. It then follows that x �→ ϕx(λ/n), Sn → P(S), is measurable. Also, the map μ �→ δμ, 
P(S) → M (P(S)), is measurable. Since composition of measurable functions is measurable, we have that 
x �→ δϕx(λ/n) is a measurable function from S into M (P(S)).

Since x �→ ψx is measurable we have that ψX is a random element of M (P(S)) and thus ξ := EψX

is a well-defined element of M (P(S)). Note that ψX is also bounded so there is no problem with taking 
the expectation. On the other hand, since UX =

∫
P(S) τ

nψX(dτ), a.s., and since EUX is the probability 
distribution of X, the assertion (1) follows with ξ = EψX .

4. Additional results and applications

4.1. Proof of Theorem 2

By (6), the integration on the left-hand side of (8) actually takes place over the set {ϕx(λ/n) : λ ∈ Nn(n)}; 
since ϕx(λ/n) = 1ϕx(λ) and ϕx(λ) ∈ Nn(S) when λ ∈ Nn(n), it follows that it suffices to integrate over 
n
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1
nNn(S) := { 1

nλ : λ ∈ Nn(S)} ⊂ P(S). Let S = R. Then 1
nNn(R) is a measurable subset of P(R). Then, 

for any Borel subset B of Rn,

P(X ∈ B) =
∫

1
nNn(R)

τn(B) ξ(dτ).

We can write Nn(R) =
⋃n

d=1 Nn,d(R) where Nn,d(R) is the set of all point measures ν on R with total mass 
equal to n and support of size d. The set Nn,n(R) can be identified with all (x1, . . . , xn) ∈ R

n such that 
x1 < · · · < xn. This is an open cone C. Each of the other sets, Nn,d(R), d = 1, . . . , n − 1, corresponds to a 
particular subset of the boundary of C. Therefore, we can replace the integration by integration on a cone 
of Rn. �

This result tells us that in order to represent an n-exchangeable random vector in Rn as an integral 
against an unknown signed measure we may as well search for a signed measure on a space of dimension 
n rather than on the space P(R). Of course, we chose S = R in Theorem 2 as a matter of convenience. 
A similar result can be formulated more generally.

4.2. A more explicit formula for the mixing measure ψx

We claim that ψx, defined by (6), also is given by

ψx =
∑

λ∈Nn(T )

nnM(εx, λ) δλ/n, (9)

for any finite set T such that x1, . . . , xn ∈ T .
Indeed, if we temporarily denote the right-hand side of (9) by ψ′

x, then, using (5),

∫
P(S)

τn ψ′
x(dτ) =

∑
λ∈Nn(T )

nnM(εx, λ) (λ/n)n = uεx = Ux, (10)

where the last equality follows from the definitions. By (10) and (8),∫
P(S)

τn ψ′
x(dτ) =

∫
P(S)

τn ψx(dτ). (11)

Now note that if λ ∈ N (n), then ϕx(λ/n) ∈ 1
nN (T ), cf. Section 4.1, and thus the measures ψx and ψ′

x

both are supported on 1
nN (T ). Moreover, the measures uν , ν ∈ N (T ), are linearly dependent and form 

thus a basis in a linear space of dimension |N (T )|. By (4) and (5), the measures λn, λ ∈ N (T ), span 
the same space, so they form another basis and are therefore linearly independent. Hence, the measures 
τn, τ ∈ 1

nN (T ), are linearly independent. Consequently, the equality (11) implies that ψ′
x = ψx, as 

claimed.
In particular, we can in (9) always choose T = Tx := {x1, . . . , xn}.

4.3. The canonical mixing measure

This is the particular signed measure ξ constructed as the mean measure of the random signed measure 
ψX , given by (6).
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For example, let n = 2. An easy computation of the matrix W and its inverse M when T = {1, 2} shows 
that M2(λ) := M(ν2, λ) = −1/8, 1/2, −1/8 when λ = 2δ1, δ1 + δ2, 2δ2, respectively. So, we have

ψ(X1,X2) = −1
2δδX1

− 1
2δδX2

+ 2δ(δX1+δX2 )/2. (12)

Hence,

ξ = 2P((δX1 + δX2)/2 ∈ ·) − P(δX1 ∈ ·). (13)

We can also use the formula (9) for ψX , taking T = TX . Let d(X) be the cardinality of the set 
{X1, . . . , Xn}. On the event {d(X) = d}, for some d ∈ {1, . . . , n}, the variable λ in the summation in 
(9) ranges over a set of cardinality 

(
n+d−1

n

)
.

For example, let again n = 2, assume that the event {d(X) = 2} = {X1 
= X2} is measurable and 
let p := P(d(X) = 2). On the event {d(X) = 1}, we have TX = {X1} and so N2(TX) = {2δX1}. Hence 
ψX = δδX1

. On the event {d(X) = 2}, we obtain (12). This yields the formula, obviously equivalent to (13),

ξ = (1 − p)P(δX1 ∈ · | d(X) = 1) − pP(δX1 ∈ · | d(X) = 2)

+ 2pP((δX1 + δX2)/2 ∈ · | d(X) = 2).

4.4. Moment functional

The k-th moment functional of a mixing signed measure ξ is defined by

Ck(B1, . . . , Bk) :=
∫

P(S)

π(B1) · · ·π(Bk) ξ(dπ).

If k ≤ n, then, from (1),

Ck(B1, . . . , Bk) = P(X ∈ B1 × · · · ×Bk).

This means that any mixing measure ξ will have the same Ck for all k ≤ n. But if k > n, then Ck(B1, . . . , Bk)
may be negative and will depend on the choice of ξ. For the canonical ξ, we have, using (6),

Ck(B1, . . . , Bk) = E

∑
λ∈Nn(TX)

nnM(εX , λ)(λ/n)(B1) · · · (λ/n)(Bk)

= E

∑
λ∈Nn(TX)

M(εX , λ)λ(B1) · · ·λ(Bk).

4.5. Laplace functional

Define next the Laplace functional of the canonical mixing measure ξ by

Λ(f) := ξ

[
exp

⎛⎝−
∫
S

f(a)π(da)

⎞⎠]
=

∫
P(S)

e−
∫
S
f(a)π(da) ξ(dπ),

for f : S → R+ measurable. We obtain
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Λ(f) = E

∫
P(S)

e−
∫
S
f(a)π(da) ψX(dπ) = E

∑
λ∈Nn(n)

nnMn(λ) e− 1
n

∫
S
fdϕx(λ/n)

= E

∑
λ∈Nn(n)

nnMn(λ) e− 1
n

∑n
i=1 λif(xi).

(14)

For example, if n = 2, by the values of M2(λ) in Section 4.3 and symmetry,

Λ(f) = 2E
[
e−f(X1)/2e−f(X2)/2

]
− Ee−f(X1).

4.6. Extendibility

It is easy to see that an n-exchangeable random vectors may not be extendible to an N -exchangeable 
random vector (see Remark 1). Here are two easy examples.

Example 3. As in Example 2, with S = {1, 2}, the random variable (X1, X2) taking values in S2, such that 
P(X = (1, 2)) = P(X = (2, 1)) = 1/2, cannot be extended to an exchangeable random variable (X1, X2, X3)
with values in S3.

Example 4. Let (X1, X2) be a Gaussian vector with EX1 = EX2 = 0, EX2
1 = EX2

2 = 1 + ε, ε ∈ (0, 1), 
EX1X2 = −1. If this were extendible to an exchangeable vector (X1, X2, X3), then we would have had 

EX1X3 = EX2X3 = −1. An easy calculation shows that the matrix 

(1 + ε −1 −1
−1 1 + ε −1
−1 −1 1 + ε

)
is not positive 

definite when ε < 1, and thus fails to be the covariance matrix of (X1, X2, X3).

In [10] we give a necessary and sufficient condition for extendibility.

4.7. Some applications

Consider the following statement.

Lemma 1. Let (S, S ) be a measurable space, n a positive integer, and f : Sn → R a bounded measurable 
function such that 

∫
Sn f(x1, . . . , xn)P (dx1) · · ·P (dxn) = 0 for any probability measure P on (S, S ). Then ∫

Sn fdQ = 0 for any exchangeable probability measure Q on Sn.

Although this can be proven by other methods, it follows immediately from Theorem 1.
For a more practical application, we refer to the paper of Kerns and Székely [9] for an application of 

Theorem 1 to the Bayesian consistency problem. In situations where one has a fixed number n of unordered 
samples, one can refer to de Finetti’s theorem in order to prove consistency of standard Bayesian estimators. 
The theorem assumes that the samples come from random vectors that are infinitely extendible (otherwise, 
de Finetti’s theorem does not hold). As pointed out in [9], the result of Theorem 1 still allows proving 
Bayesian consistency.

For a practical application of the representation result to the Bayesian properties of normalized maximum 
likelihood, see Barron, Ross and Watanabe [1].

4.8. Open problems

Estimate the size (in terms of total variation) of the signed measure ξ in the representation (1). How 
does this behave as a function of the dimension n? What is the best bound?
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While this paper deals with a probability measure on Sn that is invariant under all n! permutations of 
coordinates, it is natural to ask if there is a representation result for measures that are invariant under a 
subgroup of the symmetric group.
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Appendix A. Invertibility of the multinomial Dyson matrix

Let T be a finite set, say T = {1, . . . , d}. With the notation established in the introduction,

W (λ, ν) :=
(
n

ν

)
λν , λ, ν ∈ Nn(T ). (A.1)

The matrix [n−nW (λ, ν)] on Nn(T ) is referred to as the multinomial Dyson matrix [13]. In fact, n−nW (λ, ν)
is the 1-step transition probability of a multitype Wright–Fisher Markov chain with state space Nn(T ). This 
chain is defined as follows (see, e.g., [2]). There is a population of always constant size n. Individuals in this 
population are of different types; the set of types is T . Given the vector λ = (λ1, . . . , λd) of type counts 
of the population currently, select an individual at random and copy its type; do this selection n times, 
independently. Then the probability that the vector of type counts changes from λ to ν is exactly equal 
to n−nW (λ, ν). Shelton et al. [13] show that the matrix W is invertible, i.e., that there is a matrix M on 
Nn(T ) such that ∑

λ∈Nn(T )

M(ν, λ)W (λ, ν′) = 1ν=ν′ , ν, ν′ ∈ Nn(T ). (A.2)

The inverse matrix M can be expressed explicitly in terms of sums involving binomial coefficients and signed 
Stirling numbers of the first kind [11, eq. (25)]. If n = d and ν =

∑n
i=1 δi, then M(ν, λ) is explicitly known 

for all λ ∈ Nn(T ) [12, Theorem 4.1].
For a direct proof of the invertibility of W that avoids explicit computations we proceed as follows. The 

columns of W are linearly independent if and only if the only numbers c(λ), λ ∈ Nn(T ), for which

∑
λ

c(λ)
(
n

ν

)
λν = 0, for all ν ∈ Nn(T )

are zero. But the last display is equivalent to

0 =
∑
ν

xν
∑
λ

c(λ)
(
n

ν

)
λν =

∑
λ

c(λ)(λ1x1 + · · · + λdxd)n, for all x = (x1, . . . , xd) ∈ R
d.

Invertibility of W thus follows from:

Theorem 3. Let d, n be positive integers. Let Nn(d) be the set of all λ = (λ1, . . . , λd) where the λi are 
nonnegative integers such that 

∑d
i=1 λi = n. Then the polynomials

pλ(x) := (λ1x1 + · · · + λdxd)n, λ ∈ Nn(d),

are linearly independent and form a basis for the space Pn(d) of homogeneous polynomials of degree n in 
x1, . . . , xd.
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Proof. Note that {xλ = xλ1
1 · · ·xλd

d : λ ∈ Nn(d)} is a basis in Pn(d). Let Qn(d) be the linear subspace 
of Pn(d) spanned by {pλ, λ ∈ Nn(d)}. We will show that Qn(d) = Pn(d). The substitution xi �→ xi + xd, 
i = 1, . . . , d − 1, shows that the Qn(d) is isomorphic to the subspace Q̂n(d) ⊂ Pn(d) spanned by the 
polynomials

p̂λ(x1, . . . , xd) := (λ1x1 + · · · + λd−1xd−1 + nxd)n, λ ∈ Nn(d).

For 0 ≤ j ≤ n, denote by Pn,j(d) the subspace of Pn(d) consisting of polynomials that have degree in xd

at most j. Note that Pn,0(d) = Pn(d − 1) and Pn,n(d) = Pn(d). Let Δh be the difference operator acting 
on functions f(t) of one real variable t by Δhf(t) := f(t + h) − f(t). It is easy to see that, for all integers 
k ≥ 1,

Δh1 · · ·Δhk
f(t) =

k∑
r=0

(−1)r
∑

I⊂{1,...,k}
|I|=r

f
(
t +

∑
α∈I

hα

)
. (A.3)

Using (A.3) with f(t) = tn and induction on k we easily obtain

Δh1 · · ·Δhk
{tn} = (n)k h1 · · ·hkt

n−k + rh1,...,hk
(t), k = 1, . . . , n, (A.4)

where t �→ rh1,...,hk
(t) is a polynomial of degree ≤ n − k − 1, whereas (h1, . . . , hk, t) �→ rh1,...,hk

(t) is a 
homogeneous polynomial of degree n. The meaning of (A.4) for k = n is that

Δh1 · · ·Δhn
{tn} = n!h1 · · ·hn. (A.5)

Let (i1, . . . , ik) be a sequence with values in {1, . . . , d − 1}. Using (A.3) with f(t) = tn and then setting 
t = nxd and h1 = xi1 , . . . , hk = xik we obtain

Δxi1
· · ·Δxik

{tn}
∣∣
t=nxd

=
k∑

r=0
(−1)r

∑
I⊂{1,...,k}

|I|=r

(nxd +
∑
α∈I

xiα)n, 1 ≤ k ≤ n.

For I ⊂ {1, . . . , k}, we have (nxd +
∑

α∈I xiα)n = p̂λ(x1, . . . , xd) where λj is the number of terms of the 
sequence (i1, . . . , ik) that are equal to j, j = 1, . . . , d. This implies that (recall that Q̂n(d) is spanned by 
{p̂λ, λ ∈ Nn(d)}) the function (x1, . . . , xd) �→ Δxi1

· · ·Δxik
{tn}

∣∣
t=nxd

is a polynomial in d variables that 
belongs to Q̂n(d). Using this observation in (A.4) and (A.5) we obtain

nn−k (n)k xi1 · · ·xikx
n−k
d = Δxi1

· · ·Δxik
{tn}

∣∣
t=nxd

− rxi1 ,...,xik
(nxd)

∈ Q̂n(d) + Pn,n−k−1(d), 1 ≤ k ≤ n− 1, (A.6)

n!xi1 . . . xin = Δxi1
· · ·Δxin

{t}
∣∣
t=nxd

∈ Q̂n(d). (A.7)

Since every polynomial on Pn,n−k(d) is a linear combination of the monomials appearing in the left-hand 
side of (A.6), (A.6) implies

Pn,n−k(d) ⊂ Q̂n(d) + Pn,n−k−1(d), 1 ≤ k ≤ n− 1.

Similarly, every polynomial on Pn,0(d) is a linear combination of monomials as in the left-hand side of (A.7), 
and thus (A.7) implies

Pn,0(d) ⊂ Q̂n(d).
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The last two displays imply that Pn,n−1(d) ⊂ Q̂n(d). Since every polynomial in Pn(d) is a linear combination 
of the monomial xn

d and a polynomial in Pn,n−1(d), it follows that Pn(d) ⊂ Q̂n(d) and so the proof is 
completed. �
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