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In this paper we provide several characterizations of Minkowski sets, i.e. closed, 
possibly unbounded, convex sets which are representable as the convex hulls of their 
sets of extreme points. The equality between the relative boundary of a closed convex 
set containing no lines and its Pareto-like associated set ensures the Minkowski 
property of the set. In two dimensions this equality characterizes the Minkowski 
sets containing no lines.
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1. Introduction

It is well-known that every closed convex subset of Rn which is not an affine variety or a closed half of an 
affine variety (flat or a closed halfflat in the terminology of [13, pp. 83, 84]) is the convex hull of its relative 
boundary [12, Theorem 18.4, p. 166]. In fact the relative boundary of the closed convex subsets of Rn can be 
decreased, sometimes properly, to some of its subsets which still elongate the given set. Indeed, every closed 
convex set is the convex hull of its primitive faces, i.e. the convex hull of its faces which are affine varieties 
or closed half of affine varieties (flats or closed halfflats) [13, Theorem 2.6.13, Corollary 2.6.14, p. 85]. If we 
restrict ourselves to the closed convex sets that contain no lines, such sets are representable as the convex 
hulls of their extreme points and their extreme half-lines [12, Theorem 18.7, p. 168], [13, Corollary 2.6.15, 
p. 86]. Going one step further towards compactness, every compact convex subset C of Rn can be represented 
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as C = conv ext C, where ext C stands for the set of extreme points of C, as the compact sets do not 
contain half-lines. In fact this is Minkowski’s theorem which was first proved by Minkowski in [10] (see also 
[2, Theorem 2.7.2]). In the infinite dimensional context a result of a similar flavour, due to Krein–Milman, 
works. Indeed, a compact subset K of a locally convex topological vector space can be represented as 
K = cl conv ext K (see e.g. [1, Theorem III.4.1]). An interesting application of the Krein–Milman theorem 
shows that L1(0, 1) is not isometric to the dual of a normed space as its unit ball has no extreme points 
at all (see e.g. [3, pp. 168, 169]).

In this paper we are interested about closed, possibly unbounded, sets which can be represented as the 
convex hull of their extreme points.

Definition 1.1. A closed convex subset C of Rn is said to be a Minkowski set if C = conv ext C.

We will use the following characterization of convexity in Rn:

Theorem 1.2. [7, p. 258] (see also [9, Theorem 1.1]). A subset C of Rn is convex if and only if for every 
x ∈ Rn \ C there exists an n × n matrix Ax such that Axy <L Axx for all y ∈ C.

Theorem 1.3. A closed convex subset C of Rn is a Minkowski subset of Rn if and only if C = cl conv ext C.

Proof. The only if statement is obvious. To prove the opposite implication, assume that C �= conv ext C, 
i.e. conv ext C � C, as the inclusion conv ext C ⊆ C is obvious, and consider x̄ ∈ C \ conv ext C and 
the set F := {x ∈ C | Ax = Ax̄}, where A is the matrix Ax̄ given by Theorem 1.2. Recall that F is a 
(nonempty) closed face of C (see [8, Theorem 2]) and ext F �= ∅ since F contains no lines (otherwise 
ext C would be empty, and hence the set C = conv ext C would be empty too). On the other hand 
F ∩ conv ext C = ∅ as Ay <L Ax̄ = Ax for all x ∈ F and all y ∈ conv ext C = ∅. Consequently 
ext F = ext F ∩ ext C ⊆ ext F ∩ conv ext C ⊆ F ∩ conv ext C = ∅, which shows that ext F = ∅, which is 
absurd. �

We present here several characterizations of Minkowski sets. One of the characterizations provides a proof 
for the Minkowski theorem. The equality between the relative boundary and the Pareto-like set associated 
with a closed convex set ensures the Minkowski property of the set. Recall that the Pareto-like set associated 
with an M -decomposable set with no lines is the smallest compact component in the Motzkin decompositions 
of the given set [5,11].

2. Examples of unbounded Minkowski sets

For unbounded Minkowski sets we rely on epigraphs of some lower semi-continuous convex functions. If 
f : Rn −→ R ∪ {∞} is a given function, we define its effective domain, its graph and its epigraph in the 
following way:

dom(f) = {z ∈ Rn : f(z) < ∞}

Graph(f) = {(x, f(x)) : x ∈ dom(f)}

epi(f) = {(x, r) ∈ Rn × R : r ≥ f(x)}.

Note that Graph(f) ⊂ epi(f) and π (epi(f)) = π(Graph(f)) = dom(f), where π : Rn × R −→ Rn stands 
for the projection. Recall also that f is lower semi-continuous (on Rn) if and only if its epigraph is closed 
in Rn × R (see e.g. [6, p. 78]).
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Observe that not all epigraphs of lower semi-continuous functions are Minkowski sets, as the example 
f : Rn −→ R, f(x) = ‖x‖ shows. However we shall prove the following:

Proposition 2.1. Let f : Rn −→ R ∪{∞} be a lower semi-continuous function whose effective domain dom(f)
is open.

1. If f is convex and dom(f) is bounded, then epi(f) is a Minkowski set.
2. If f is strictly convex on dom(f), then epi(f) is a Minkowski set.

In order to prove Proposition 2.1, we need the following:

Lemma 2.2. If f : Rn −→ R ∪ {∞} is a lower semi-continuous function whose effective domain dom(f) is 
open in Rn, then bd (epi(f)) = Graph(f).

Proof. We first observe that Graph(f) ⊆ epi(f) = cl (epi(f)) = int (epi(f)) ∪ bd (epi(f)). The inclusion 
Graph(f) ⊆ bd (epi(f)) follows due to the relation Graph(f) ∩ int (epi(f)) = ∅, i.e.

int (epi(f)) ⊆
(
Rn−1 × R

)
\ Graph(f). (1)

In order to justify the inclusion (1), we consider (p, q) ∈ int (epi(f)) and some open set U ⊆ dom(f) and 
open interval I ⊆ R with the properties (p, q) ∈ U × I ⊆ int (epi(f)). Consider now q′ ∈ I such that q′ < q

and observe that q > q′ ≥ f(p) as (p, q′) ∈ U × I ⊆ int (epi(f)). Thus (p, q) /∈ Graph(f).
For the opposite inclusion we observe the following relations:

bd (epi(f)) ⊆ cl (epi(f)) = epi(f)

= Graph(f) ∪ {(p, q) ∈ dom(f) × R : q > f(p)}

⊆ Graph(f) ∪ int (epi(f)) ;

(2)

the latter inclusion follows from

{(p, q) ∈ dom(f) × R : q > f(p)} ⊆ int (epi(f)) . (3)

The inclusion bd (epi(f)) ⊆ Graph(f) ∪ int (epi(f)), proved by the relations (2), shows that bd (epi(f)) ⊆
Graph(f), as bd (epi(f))∩int (epi(f)) = ∅. In order to justify the relation (3), we consider (p, q) ∈ dom(f) ×R

such that q > f(p), i.e. q − ε > f(p) for ε > 0 sufficiently small. The convexity of f ensures its continuity 
on dom(f) (see e.g. [4, Corollary 2.3, p. 12]) and therefore the existence of some open neighbourhood
U ⊆ dom(f) of p such that f(x) > q − ε, for all x ∈ U . Thus, the neighbourhood U × (q − ε, +∞) of (p, q)
is contained in epi(f), namely (p, q) ∈ int (epi(f)). �
Proof of Proposition 2.1. In both cases we only need to show, according to [13, Corollary 2.6.15], that the 
boundary of epi(f), i.e. Graph(f), has no half-lines.

(1) If h = (a, f(a)) + {(tp, tq) : t ≥ 0} would be a half-line in Graph(f), then (p, q) �= (0, 0) and 
f(a) + tq = f(a + tp), for all t ≥ 0. Thus a + tp ∈ dom(f) for every t ≥ 0. This shows that p = 0 due to 
the boundedness of dom(f) and f(a) + tq = f(a), for all t ≥ 0, i.e. q = 0 as well, a contradiction with the 
condition (p, q) �= (0, 0).

(2) The strict convexity of f implies that its graph Graph(f) = bd((epi(f)) contains no straight line 
segments and therefore no half-lines. In fact Graph(f) ⊆ ext (epi(f)) [6, Fact 5.3.3, p. 239]. On the other hand 
ext (epi(f)) ⊆ bd((epi(f)) = Graph(f), namely Graph(f) = bd((epi(f)) = ext (epi(f)) in this case. �



1198 J.E. Martínez-Legaz, C. Pintea / J. Math. Anal. Appl. 444 (2016) 1195–1202
Example 2.3. Let f : Rn −→ R ∪ {∞} be a lower semi-continuous function whose effective domain dom(f)
is open. The epigraph epi(f) of f is a Minkowski set if f is C1-smooth and the gradient of f is strictly 
monotone on dom(f); in particular, if f is C2-smooth and the Hessian matrices of f at all points of dom(f)
are positive definite. Indeed, in such a case f is strictly convex (see e.g. [6, Theorem 4.1.4]).

3. Characterizations of Minkowski sets

In this section we provide several characterizations of Minkowski sets, most of which involve the facial 
structure of the set.

Proposition 3.1. For a closed convex set C ⊆ Rn, the following statements are equivalent:

1. C is Minkowski.
2. There exists a smallest set S ⊆ Rn such that conv S = C.
3. There exists a minimal set S ⊆ Rn such that conv S = C.

In (2) and (3), one has S = ext C.

Proof. (1) =⇒ (2). Let S ⊆ Rn be such that conv S = C. By [12, Corollary 18.3.1], we have ext C ⊆
ext conv S ⊆ S, which, as C is Minkowski, shows that ext C is the smallest set S such that conv S = C.

Implication (2) =⇒ (3) is obvious.
(3) =⇒ (1). Let S be as in (3). By [12, Corollary 18.3.1], we have ext C = ext conv S ⊆ S. It will thus 

suffice to prove the opposite inclusion. Let x ∈ S, and suppose x /∈ ext C. Since

C = conv S = {(1 − λ) y + λx : y ∈ conv (S \ {x}) , λ ∈ [0, 1]} ,

there exist y, z ∈ conv (S \ {x}), λ, μ ∈ [0, 1[ and α ∈ ]0, 1[ such that x = (1 − α) ((1 − λ) y + λx) +
α ((1 − μ) z + μx). An easy computation shows that

x = (1 − α) (1 − λ)
(1 − α) (1 − λ) + α (1 − μ)y + α (1 − μ)

(1 − α) (1 − λ) + α (1 − μ)z ∈ conv (S \ {x}) ,

from which we deduce that

C = conv S = conv (conv (S \ {x}) ∪ {x}) = conv conv (S \ {x}) = conv (S \ {x}) ,

thus contradicting with the minimality of S. This proves the required inclusion S ⊆ ext C. �
The following lemma is an immediate consequence of [12, Theorem 18.2 and Corollary 18.1.3].

Lemma 3.2. The relative boundary of a closed convex set ∅ �= C ⊆ Rn is the union of the proper faces of C.

Proposition 3.3. A closed convex set C ⊆ Rn of dimension at least two is Minkowski if and only if all of its 
proper faces are Minkowski.

Proof. The direct statement is an immediate corollary of [12, Theorem 18.3]. For the opposite statement, 
denote by F(C) the collection of all faces of a given closed convex set C. Since F = conv ext F for every 
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F ∈ F∗(C) := F(C) \ {C}, it follows that F is neither an affine variety nor a closed half of such an affine 
variety and therefore, by [12, Theorem 18.4] and Lemma 3.2, one obtains:

C = conv rbd C = conv
(⋃

F∈F∗(C) F
)

= conv
(⋃

F∈F∗(C) conv ext F
)

= conv
(⋃

F∈F∗(C) ext F
)
.

Since a face of a face of a convex set is a face of the convex set itself [12, p. 163], it follows that the 
extreme points of all faces F ∈ F∗(C) are extreme points of C itself. In fact the union 

⋃
F∈F∗(C) ext F

covers the whole set of extreme points of C, as such extreme points are among the faces in F∗(C). Thus 
C = conv ext C. �
Theorem 3.4. For a closed convex set ∅ �= C ⊆ Rn, the following statements are equivalent:

1. C is Minkowski.
2. C contains no lines, and every one-dimensional face of C is a segment.
3. For every x ∈ C \ ext C there exists a straight line L ⊆ Rn such that L ∩ C is a line segment and 

x ∈ rint (L ∩ C).

Proof. (1) =⇒ (2). If C = ∅, then (ii) clearly holds. If C �= ∅, then we have ext C �= ∅, and hence C contains 
no lines (indeed, if C would contain a line L then for every x ∈ C the line through x parallel to C would 
be contained in C, which is impossible if x is an extreme point of C). Moreover, by Proposition 3.3, every 
one-dimensional face of C is a segment, since segments are obviously the only one-dimensional Minkowski 
sets.

(2) =⇒ (3). Let x ∈ C \ ext C. By [12, Theorem 18.2], we have x ∈ rint G for some face G of C. Since 
x /∈ ext C, the dimension of G is at least 1. By [12, Theorem 18.4], the point x lies on some open line segment 
]a, b[ joining two relative boundary points of G. Let L be the straight line that contains this segment. We 
obviously have [a, b] ⊆ L ∩ C. We will now prove that this inclusion actually holds as an equality. Assume, 
to the contrary, that there exists some y ∈ L ∩ C \ [a, b]. Without loss of generality, we can assume that 
a ∈ ]y, x[. Since G is a face of C, we have y ∈ G. But then, by [12, Theorem 6.1], it turns out that a ∈ rint G, 
which is a contradiction. We thus have L ∩ C = [a, b] and x ∈ ]a, b[ = rint (L ∩ C).

(3) =⇒ (1). Statement (i) clearly holds if C is either empty or a singleton, so we will assume that p, the 
dimension of C, is at least 1, and we will proceed by induction on p. If p = 1, statement (3) clearly implies 
that C is a line segment, and hence it is Minkowski. Assume that p > 1, and let x ∈ C. If x ∈ ext C, 
then obviously x ∈ conv ext C. If x /∈ C, then, by (3), there exists a straight line L ⊆ Rn such that L ∩ C

is a line segment [a, b] and x ∈ rint (L ∩ C) = ]a, b[. Clearly, a, b ∈ rbd C, since otherwise we could easily 
prove the nonemptiness of L ∩ C \ [a, b], thus obtaining a contradiction. Hence, by [12, Theorem 11.6], 
there exist non-trivial supporting hyperplanes H1 and H2 to C containing a and b, respectively. By [12, 
Corollary 18.1.3], the dimension of the exposed faces C ∩H1 and C ∩H2 are strictly smaller than p; hence, 
by the induction hypothesis, C ∩H1 and C ∩H2 are Minkowski, so that

x ∈ [a, b] = conv({a} ∪ {b}) ⊆ conv (conv ext (C ∩H1) ∪ conv ext (C ∩H2))

⊆ conv conv (ext (C ∩H1) ∪ ext (C ∩H2))

= conv (ext (C ∩H1) ∪ ext (C ∩H2)) ⊆ conv ext C.

We have thus proved that C ⊆ conv ext C, that is, C is Minkowski. �
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Remark 3.5.

1. Implication (2) =⇒ (1) is also a direct consequence of [12, Theorem 18.5].
2. A closed convex set which contains no lines and has no one dimensional faces is Minkowski.

Corollary 3.6 (Minkowski). Every compact convex subset of Rn is Minkowski.

Proof. This well known result follows immediately from Theorem 3.4 in two different ways, since a compact 
convex set C obviously satisfies Theorem 3.4(2) and Theorem 3.4(3). �
4. The role of the Pareto like sets in the setting of Minkowski sets

The Pareto-like set of a closed convex set ∅ �= C ⊂ Rn is

M(C) := {x ∈ C : (x− 0+C) ∩ C ⊆ x + 0+C} = {x ∈ C : (x− 0+C) ∩ C = x + lin C},

where 0+C = {y ∈ Rn : y + C ⊆ C} stands for the recession cone of C. Recall that 0+C is a convex cone 
[12, Theorem 18.1] and lin C := 0+C ∩ (−0+C) is a subspace of Rn called the lineality of C.

In this section we basically show that the relations ∅ �= M(C) = rbd C on a closed convex set C ⊆ Rn en-
sure the Minkowski property of the convex set. In dimension two, these relations characterize the Minkowski
property.

Remark 4.1. Let ∅ �= C ⊆ Rn be a closed convex set.

1. The equality v + C = C holds for every v ∈ lin C [13, Theorem 2.5.7].
2. C contains no lines if and only if lin C is trivial. Indeed, according to [13, Theorem 2.5.8], if lin C is 

trivial, then C contains no lines. Conversely, if C contains no lines, then, by 1, the subspace lin C is 
trivial.

Remark 4.2. Let ∅ �= C ⊆ Rn be a closed unbounded convex set.

1. If x ∈ rbd C and y ∈ 0+C, then either x + R∗
+y ⊆ rint C or x + R∗

+y ⊆ rbd C, where R∗
+ stands 

for (0,+∞). Indeed, if x0 = x + t0y ∈ rint C for some t0 > 0, then, according to [12, Theorem 8.3, 
p. 52], one has x0 + (0,+∞) y ⊆ rint C, and, according to [12, Theorem 6.1, p. 36], the half-open 
segment ]x, x0] := {(1 − λ)x + λx0 : 0 < λ ≤ 1} is also contained in rint C. Consequently, one obtains 
x + (0,+∞) y = ]x, x0] ∪ (x0 + (0,+∞) y) ⊆ rint C ∪ rint C = rint C.

2. For x ∈ rbd C, the following relations are equivalent:
(a) (x + 0+C) ∩ rbd C = {x}.
(b) (x + 0+C) \ {x} ⊆ rint C.

Remark 4.3. The inclusion M(C) ⊆ rbd C holds whenever 0+C is not a subspace or, equivalently, the set 
C ∩ (lin C)⊥ is unbounded. Note that the equivalence between the boundedness of C ∩ (lin C)⊥ and the 
quality of 0+C to be a subspace follows from [5, Lemma 5]. On the other hand, if M(C) ∩ rint C �= ∅, 
then −0+C ⊆ 0+C, which is equivalent to 0+C being a subspace, as lin C = 0+C in such a case. Indeed, 
if x ∈ M(C) ∩ rint C and u ∈ 0+C ⊆ −x + aff(C), then x − tu ∈ rint C ⊆ C for some t > 0 small enough. 
Therefore x − tu ∈ (x − 0+C) ∩C ⊆ x +0+C, which shows that −tu ∈ 0+C, i.e. −u ∈ 0+C or, equivalently, 
u ∈ −0+C.

Proposition 4.4. Let ∅ �= C ⊆ Rn be a closed convex set. Then M(C) + lin C = M(C).
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Proof. Since 0 ∈ lin C, we have M(C) ⊆ M(C) + lin C. To prove the opposite inclusion, let y ∈ M(C)
and l ∈ lin C. We have (y + l − 0+C) ∩ C = (y − 0+C) ∩ C ⊆ y + 0+C = y + l + 0+C, which shows that 
y + l ∈ M(C). �
Proposition 4.5. If ∅ �= C ⊆ Rn is a closed convex set, then M(C) = M(C ∩ (lin C)⊥) + lin C.

Proof. Recall that C can be represented as C = C∩(lin C)⊥+lin C [12, p. 65], which shows that x ∈ M(C)
can be represented (in a unique way) as x = y + l, where y ∈ C ∩ (lin C)⊥ and l ∈ lin C. We need to show 
that x ∈ M(C) if and only if y ∈ M(C ∩ (lin C)⊥), i.e.

(x− 0+C) ∩ C = x + lin C ⇐⇒
(
y − 0+C ∩ (lin C)⊥

)
∩ C = {y}.

By considering the translation ϕ−l of vector −l, we obtain

(y + l − 0+C) ∩ C = y + l + lin C ⇔ ϕ−l ((y + l − 0+C) ∩ C) = ϕ−l(y + l + lin C)

⇔ ϕ−l (y + l − 0+C) ∩ ϕ−l(C) = ϕ−l(y + lin C)

⇔ (y − 0+C) ∩ C = y + lin C

⇔ (y − 0+C) ∩ C ∩ (lin C)⊥ = (y + lin C) ∩ (lin C)⊥

⇔ (y − 0+C) ∩ (y − (lin C)⊥) ∩ C = {y}

⇔
(
y − 0+C ∩ (lin C)⊥

)
∩ C = {y}.

Thus the equality M(C) = M(C ∩ (lin C)⊥) + lin C is now completely proved. �
Proposition 4.6. If ∅ �= C ⊆ Rn is a closed convex set, then rbd C + lin C = rbd C.

Proof. Since 0 ∈ lin C, we only have to prove the inclusion rbd C + lin C = rbd C. Let x ∈ rbd C and 
v ∈ lin C. We have x + v ∈ C, and if we had x + v ∈ rint C then, since x − v ∈ C, by [12, Theorem 6.1], we 
would have x ∈ rint C, which is a contradiction. Hence x + v ∈ rbd C. �
Proposition 4.7. Let ∅ �= C ⊆ Rn be a closed convex set which contains no lines. Then ∅ �= M(C) = rbd C

if and only if C is unbounded and (x + 0+C) ∩ rbd C = {x}, for every x ∈ rbd C.

Proof. Assume that ∅ �= M(C) = rbd C. The unboundedness of C is obvious, as for closed convex and 
bounded sets one has M(C) = C. If (x + 0+C) ∩ rbd C �= {x} for some x ∈ rbd C, consider x �= y ∈
(x +0+C) ∩ rbd C, namely y = x +u for some 0 �= u ∈ 0+C. This shows that x = y−u ∈ (y−0+C) ∩ rbd C. 
Thus y ∈ rbd C \M(C) as (y − 0+C) ∩ rbd C �= {y}.

Conversely, assume that C is unbounded and M(C) �= rbd C. Consider x ∈ rbd C\M(C), i.e. (x −0+C) ∩
C �= {x}. If x �= y ∈ (x −0+C) ∩C, then y = x −u for some 0 �= u ∈ 0+C. Thus x = y+u ∈ (y+0+C) ∩rbd C. 
We only need to show that y ∈ rbd C, since this implies that (y + 0+C) ∩ rbd C = {y} and hence x = y, 
which is a contradiction. Assume that y ∈ rint C. Since 0+(rint C) = 0+C [12, p. 52], it follows that 
y + 0+C = y + 0+(rint C) ⊆ rint C, a contradiction to x ∈ (y + 0+C) ∩ rbd C. �
Proposition 4.8. Let C ⊂ Rn be a closed convex set containing no lines such that dim(C) ≥ 2. If ∅ �=
M(C) = rbd C, then C is a Minkowski set.

Proof. Indeed, in such a case, by [12, Theorem 18.4] and [5, Lemma 8], we have C = conv rbd C =
conv M(C) = conv ext C. �
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The converse statement of Proposition 4.8 is not true, as the following example shows:

Example 4.9. If C = {(x, y, z) ∈ R3 : z ≥ x2 + y2 and y ≤ 1}, then one can easily see that C is a Minkowski 
set and the points (u, v, w) ∈ C satisfying w > u2 + v2 and v = 1 are in bd C \M(C).

However, in the two dimensional case the converse statement of Proposition 4.8 is valid for unbounded 
closed convex sets.

Proposition 4.10. Let C be a two dimensional unbounded closed convex set. If C is a Minkowski set, then 
∅ �= M(C) = rbd C.

Proof. Assume that rbd C \M(C) �= ∅ and consider x ∈ rbd C \M(C). Since x /∈ M(C), it follows that 
(x − 0+C) ∩ C �= {x}. Consider x �= y ∈ (x − 0+C) ∩ C, namely y = x − u for some 0 �= u ∈ 0+C. Observe 
that y belongs to the relative boundary of C since otherwise we would obtain, taking into account that 
0+(rint C) = 0+C [12, p. 52], the relations x = y + u ∈ rint C + 0+C = rint C + 0+(rint C) ⊆ rint C, a 
contradiction to x ∈ rbd C. In fact the whole half-line [yx := y +R+(x − y) is, according to Remark 4.1(1), 
contained in the relative boundary of C, as x = y + 1 · (x − y) ∈ rbd C. Thus, by Lemma 3.2, the half-line 
[yx is contained in a proper face of C, which can only be one dimensional, as the dimension of the whole 
set is two. This face cannot be a segment as it is unbounded, a contradiction with the characterization of 
Minkowski sets provided by Theorem 3.4(2). �
Corollary 4.11. A two dimensional unbounded closed convex set C containing no lines is a Minkowski set if 
and only if ∅ �= M(C) = rbd C.

Corollary 4.12. For every two dimensional unbounded face C of a Minkowski set one has ∅ �= M(C) = rbd C.

Proof. We only need to combine here Propositions 3.3 and 4.10. �
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