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We develop a class of n-point iterative methods with optimal 2n order of convergence 
for solving nonlinear equations. Newton’s second order and Ostrowski’s fourth order 
methods are special cases corresponding to n = 1 and n = 2. Eighth and sixteenth 
order methods that correspond to n = 3 and n = 4 of the class are special cases 
of the eighth and sixteenth order methods proposed by Sharma et al. [25]. The 
methodology is based on employing the previously obtained (n − 1)-step scheme 
and modifying the n-th step by using rational Hermite interpolation. Unlike that 
of existing higher order techniques the proposed technique is attractive since it 
leads to a simple implementation. Local convergence analysis is provided to show 
that the iterations are locally well defined and convergent. Theoretical results are 
verified through numerical experimentations. The performance is also compared 
with already established methods in literature. It is observed that new algorithms 
are more accurate than existing counterparts and very effective in high precision 
computations.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Multipoint iterative methods for solving nonlinear equation f(x) = 0, were initially studied in Ostrowski’s 
book [19] and then they appeared extensively in Traub’s book [29] and in recently published book by Petković 
et al. [21]. These methods are of great practical importance since they overcome the theoretical limits of 
one-point iterative methods regarding the computational order and efficiency. The multipoint methods were 
mainly introduced with the objective to achieve as high as possible order of convergence using a fixed 
number of function evaluations, which is closely connected to the optimal order of convergence in the sense 
of the Kung–Traub hypothesis. Kung and Traub [15] conjectured that multipoint methods without memory 

* Corresponding author.
E-mail addresses: jrshira@yahoo.co.in (J.R. Sharma), iargyros@cameron.edu (I.K. Argyros), deepak.babbi@gmail.com

(D. Kumar).
http://dx.doi.org/10.1016/j.jmaa.2016.12.051
0022-247X/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2016.12.051
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:jrshira@yahoo.co.in
mailto:iargyros@cameron.edu
mailto:deepak.babbi@gmail.com
http://dx.doi.org/10.1016/j.jmaa.2016.12.051


JID:YJMAA AID:20991 /FLA Doctopic: Applied Mathematics [m3L; v1.194; Prn:30/12/2016; 11:24] P.2 (1-21)
2 J.R. Sharma et al. / J. Math. Anal. Appl. ••• (••••) •••–•••
based on n + 1 function evaluations have the order of convergence at most 2n. Multipoint methods with 
this property are called optimal methods.

The construction of multipoint iterative methods is mainly done by following two techniques, one is 
by using the weight functions and the second is by interpolation. The application of rational Hermite 
interpolation has been investigated by a number of authors including Ostrowski [19], Traub [29], Jarratt 
and Nudds [11] and Tornheim [28]. In particular, Ostrowski proposed a two-point method of optimal fourth 
order in which a rational function of order [1/1], i.e. a linear fraction

y(x) = (x− xi) + a

b(x− xi) + c
, (1)

is fitted at three points, two of which are coincident. Thus, a step in the iteration consists of matching f
and y at two points xi and wi, where wi = xi−f(xi)/f ′(xi) is the Newton’s point, and f ′ and y′ at xi only. 
The next approximation being given by zero of iteration function (1). In this way the following iterative 
method was obtained {

wi = xi − f(xi)
f ′(xi) ,

xi+1 = xi − f(wi)−f(xi)
f(wi)f ′(xi)−f(xi)f [xi,wi]f(xi), i = 0, 1, 2, . . .

(2)

where x0 is an initial approximation closer to a root (say, x∗) and f [·, ·] is first order divided difference. 
The error equation of this method is given as

ei+1 = A2(A2
2 −A3)e4

i + O(e5
i ), (3)

wherein ei = xi − x∗ and Ak = (1/k!)f (k)(x∗)/f ′(x∗), k = 2, 3.
In recent years, based on Ostrowski or Ostrowski-like optimal two-point fourth order methods many 

researchers have developed multipoint methods of optimal higher order of convergence using various tech-
niques (see [3–7,9,10,13,14,16–18,20,23–27,30,31]). A more extensive list of references as well as a survey on 
progress made on the class of multipoint methods may be found in the recent book by Petković et al. [21].

Motivated by optimization considerations, here we derive a simple yet efficient class of n-point methods 
possessing optimal convergence order 2n. The procedure is based on the simple application of rational 
approximants of different order at each step. Well-known classical Newton’s and Ostrowski’s methods are 
special cases of the class corresponding to n = 1 and n = 2. Eighth order and sixteenth order methods which 
correspond to n = 3 and n = 4 of the class are special cases of the eighth and sixteenth order methods 
proposed by Sharma et al. [25]. Analysis of the three-point eighth order and four-point sixteenth order 
methods finally pave the way for introducing the general n-point family. Numerical examples are considered 
to check the performance of new algorithms and to verify the theoretical results. Computational results 
including the elapsed CPU-time, confirm the efficient and robust character of the algorithms.

The rest of the paper is organized as follows. In Section 2, the three-point eighth order and four-point 
sixteenth order methods are presented and their convergence is discussed. The general n-point family is 
introduced in Section 3. Local convergence analysis of the general family is presented in Section 4. In 
Section 5, some numerical examples are considered to verify the theoretical results and to compare the 
performance of proposed schemes with some existing optimal methods. Concluding remarks are given in 
Section 6.

2. Optimal eighth and sixteenth order methods

In what follows, we will present the methods of optimal eighth and sixteenth order of convergence. The 
methodologies are based on Ostrowski’s method (2) and further developed by using rational approximants 
of order [1/(n − 1)], n = 3, 4.
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2.1. The eighth order method

We derive a three-point optimal eighth order scheme based on the two-point Ostrowski’s method (2). Let 
us write the Ostrowski’s method as {

wi = xi − D1
Δ1

f(xi),
zi = xi − D2

Δ2
f(xi),

(4)

where Dn and Δn (n = 1, 2) are defined as follows

D1 = 1, Δ1 = f ′(xi), D2 =
∣∣∣∣1 f(xi)
1 f(wi)

∣∣∣∣ , Δ2 =
∣∣∣∣ f ′(xi) f(xi)
f [xi, wi] f(wi)

∣∣∣∣ .
In order to obtain an approximation xi+1 to a root we proceed as follows. Consider the rational approx-

imant of order [1/2]

y(x) = (x− xi) + a

b(x− xi)2 + c(x− xi) + d
, (5)

such that

y(xi) = f(xi), y′(xi) = f ′(xi), y(wi) = f(wi), y(zi) = f(zi). (6)

From (5) and first condition of (6), it follows that

a = d f(xi). (7)

Assuming that the next approximation xi+1 is obtained from the zero of (5), then y(xi+1) = 0. Thus, from 
(5) and (7) we obtain

xi+1 = xi − d f(xi). (8)

Using (7) in (5) and applying the last three conditions of (6), we have the system
⎧⎪⎨
⎪⎩

d f ′(xi) + c f(xi) = 1,
d f [xi, wi] + c f(wi) + b f(wi)(wi − xi) = 1,
d f [xi, zi] + c f(zi) + b f(zi)(zi − xi) = 1.

(9)

In order to find the unknown d in (8), we solve the system (9) by Cramer’s rule. Thus, we have that

d = D3

Δ3
, (10)

where D3 and Δ3 are the determinants of order 3 given as

D3 =

∣∣∣∣∣∣
1 f(xi) 0
1 f(wi) f(wi)(wi − xi)
1 f(zi) f(zi)(zi − xi)

∣∣∣∣∣∣ [OperateC3 → C3 + xi C2] =

∣∣∣∣∣∣
1 f(xi) xif(xi)
1 f(wi) wif(wi)
1 f(zi) zif(zi)

∣∣∣∣∣∣ ,

Δ3 =

∣∣∣∣∣∣
f ′(xi) f(xi) 0
f [xi, wi] f(wi) f(wi)(wi − xi)
f [x , z ] f(z ) f(z )(z − x )

∣∣∣∣∣∣ [OperateC3 → C3 + xi C2] =

∣∣∣∣∣∣
f ′(xi) f(xi) xif(xi)
f [xi, wi] f(wi) wif(wi)
f [x , z ] f(z ) z f(z )

∣∣∣∣∣∣ .
i i i i i i i i i i i
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Then, combining (8) and (10), we get

xi+1 = xi −
D3

Δ3
f(xi). (11)

Thus, we have presented a three-point method based on Ostrowski’s method (4) and then followed by (11)
obtained by using rational Hermite interpolation. We state the following theorem to show the eighth order 
convergence of scheme (11).

Theorem 1. Let f : D ⊂ R → R be a sufficiently differentiable function. If f has a simple zero x∗ ∈ D and 
x0 is sufficiently close to x∗, then the method defined by (11) is of order eight.

Proof. For the proof of theorem readers are referred to the paper [25]. In [25], Sharma et al. obtained a 
class of eighth order methods based on King’s one-parameter (a) family of two-point methods. The method 
(11) is a special case for a = 0 of the improved King’s family of eighth order methods. Following the proof 
as given in [25], the error equation of (11) can be written as

ei+1 = A2
2(A2

2 −A3)(A3
2 − 2A2A3 + A4)e8

i + O(e9
i ), (12)

where Ak = (1/k!)f (k)(x∗)/f ′(x∗), k = 2, 3, 4.
This shows the eighth order convergence. �

Remark 1. The scheme (11) defines a three-point eighth order method which utilizes four function evalua-
tions, namely f(xi), f(wi), f(zi) and f ′(xi). This scheme is, therefore, optimal in the sense of Kung–Traub 
hypothesis [15].

2.2. The sixteenth order method

Based on the proposed three-point optimal eighth order scheme, we now derive a four-point optimal 
sixteenth order method. Thus, consider the eighth order scheme (11), which is now expressed as

⎧⎪⎨
⎪⎩

wi = xi − D1
Δ1

f(xi),
zi = xi − D2

Δ2
f(xi),

ui = xi − D3
Δ3

f(xi).
(13)

In order to find the approximation xi+1 to a root we consider the rational approximant of order [1/3] given 
as

y(x) = (x− xi) + λ

μ(x− xi)3 + ν(x− xi)2 + ξ(x− xi) + η
, (14)

where the parameters λ, μ, ν, ξ and η are to be determined by imposing the conditions

y(xi) = f(xi), y′(xi) = f ′(xi), y(wi) = f(wi), y(zi) = f(zi), y(ui) = f(ui). (15)

Employing first condition of (15) in (14), we find that

λ = ηf(xi). (16)

Assuming that the next approximation xi+1 is obtained from the zero of (14), which implies y(xi+1) = 0. 
Thus, from (14) and (16) we obtain
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xi+1 = xi − ηf(xi). (17)

Using (16) in (14) and then imposing last four conditions of (15), we obtain the system of corresponding 
equations as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η f ′(xi) + ξ f(xi) = 1,
η f [xi, wi] + ξ f(wi) + ν f(wi)(wi − xi) + μ f(wi)(wi − xi)2 = 1,
η f [xi, zi] + ξ f(zi) + ν f(zi)(zi − xi) + μ f(zi)(zi − xi)2 = 1,
η f [xi, ui] + ξ f(ui) + ν f(ui)(ui − xi) + μ f(ui)(ui − xi)2 = 1.

(18)

Solving the above system for η by Cramer’s rule, we have that

η = D4

Δ4
, (19)

where

D4 =

∣∣∣∣∣∣∣
1 f(xi) 0 0
1 f(wi) f(wi)(wi − xi) f(wi)(wi − xi)2
1 f(zi) f(zi)(zi − xi) f(zi)(zi − xi)2
1 f(ui) f(ui)(ui − xi) f(ui)(ui − xi)2

∣∣∣∣∣∣∣ [OperateC3 → C3 + xi C2]

=

∣∣∣∣∣∣∣
1 f(xi) xif(xi) 0
1 f(wi) wif(wi) f(wi)(wi − xi)2
1 f(zi) zif(zi) f(zi)(zi − xi)2
1 f(ui) uif(ui) f(ui)(ui − xi)2

∣∣∣∣∣∣∣ [OperateC4 → C4 − x2
i C2 + 2xi C3]

=

∣∣∣∣∣∣∣
1 f(xi) xif(xi) x2

i f(xi)
1 f(wi) wif(wi) w2

i f(wi)
1 f(zi) zif(zi) z2

i f(zi)
1 f(ui) uif(zi) u2

i f(ui)

∣∣∣∣∣∣∣ ,

Δ4 =

∣∣∣∣∣∣∣
f ′(xi) f(xi) 0 0
f [xi, wi] f(wi) f(wi)(wi − xi) f(wi)(wi − xi)2
f [xi, zi] f(zi) f(zi)(zi − xi) f(zi)(zi − xi)2
f [xi, ui] f(ui) f(ui)(ui − xi) f(ui)(ui − xi)2

∣∣∣∣∣∣∣ [OperateC3 → C3 + xi C2]

=

∣∣∣∣∣∣∣
f ′(xi) f(xi) xif(xi) 0
f [xi, wi] f(wi) wif(wi) f(wi)(wi − xi)2
f [xi, zi] f(zi) zif(zi) f(zi)(zi − xi)2
f [xi, ui] f(ui) uif(ui) f(ui)(ui − xi)2

∣∣∣∣∣∣∣ [OperateC4 → C4 − x2
i C2 + 2xi C3]

=

∣∣∣∣∣∣∣
f ′(xi) f(xi) xif(xi) x2

i f(xi)
f [xi, wi] f(wi) wif(wi) w2

i f(wi)
f [xi, zi] f(zi) zif(zi) z2

i f(zi)
f [xi, ui] f(ui) uif(zi) u2

i f(ui)

∣∣∣∣∣∣∣ .

Combining (17) and (19), we obtain the iterative formula

xi+1 = xi −
D4

Δ4
f(xi). (20)

The scheme (20) defines a four-point iterative method with the base as three-point scheme (13). In the 
following theorem we prove the sixteenth order of convergence of this scheme.

Theorem 2. Let f : D ⊂ R → R be a sufficiently differentiable function. If f has a simple zero x∗ ∈ D and 
x0 is sufficiently close to x∗, then the method defined by (20) is of order sixteen.
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Proof. The method (20) is a special case for a = 0 of improved King’s family of sixteenth order methods 
developed in [25]. Therefore, for the proof readers are referred to the paper [25]. However, the error equation 
showing sixteenth order convergence of (20) is given as

ei+1 = A4
2(A2

2 −A3)2(A3
2 − 2A2A3 + A4)(A4

2 − 3A2
2A3 + A2

3 + 2A2A4 −A5)e16
i + O(e17

i ), (21)

where Ak = (1/k!)f (k)(x∗)/f ′(x∗), k = 2, 3, 4, 5. �
Remark 2. It is clear that the method (20) requires five function evaluations viz. f(xi), f(wi), f(zi), f(ui)
and f ′(xi) per iteration and possesses sixteenth order of convergence. Thus, the method is optimal according 
to Kung–Traub hypothesis.

3. The general optimal order family

The above approach of employing previously obtained scheme and then generating the new step by using 
rational Hermite interpolation can be applied to obtain a generalized n-point scheme of optimal order 2n. 
The rational approximant is such that its numerator is a linear function whereas denominator is a polynomial 
of degree n − 1. Thus, to obtain the general step of n-point scheme consider the rational approximant of 
order [1/(n − 1)],

y(x) = (x− xi,1) + a0

a1(x− xi,1)n−1 + a2(x− xi,1)n−2 + · · · + an−1(x− xi,1) + an
, (22)

where a0, a1, . . . , an are n + 1 parameters to be determined. In order to find these parameters consider the 
sequence of iterates {xi,k}nk=1 such that

y(xi,k) = f(xi,k), k = 1, 2, 3, . . . , n (23)

and

y′(xi,1) = f ′(xi,1). (24)

Employing the condition y(xi,1) = f(xi,1) in (22), we find that

a0 = anf(xi,1). (25)

Assume that the approximation xi,n+1 is obtained from the zero of (22), which implies that y(xi,n+1) = 0. 
Then, from (22) and (25) we obtain

xi,n+1 = xi,1 − anf(xi,1). (26)

Applying the remaining conditions of (23) and (24) in (22), we obtain the system of equations as
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

anf
′(xi,1) + an−1f(xi,1) = 1,

anf [xi,1, xi,2] +
(
an−1 + an−2(xi,2 − xi,1) + · · · + a1(xi,2 − xi,1)n−2)f(xi,2) = 1,

anf [xi,1, xi,3] +
(
an−1 + an−2(xi,3 − xi,1) + · · · + a1(xi,3 − xi,1)n−2)f(xi,3) = 1,

...
anf [xi,1, xi,n] +

(
an−1 + an−2(xi,n − xi,1) + · · · + a1(xi,n − xi,1)n−2)f(xi,n) = 1.

(27)

Solving the above system for an by Cramer’s rule, we have that
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an = Dn

Δn
, (28)

wherein Dn and Δn are n-th order determinants expressed as

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣

1 f(xi,1) 0 0 . . . 0
1 f(xi,2) f(xi,2)(xi,2 − xi,1) f(xi,2)(xi,2 − xi,1)2 . . . f(xi,2)(xi,2 − xi,1)n−2

1 f(xi,3) f(xi,3)(xi,3 − xi,1) f(xi,3)(xi,3 − xi,1)2 . . . f(xi,3)(xi,3 − xi,1)n−2

1 f(xi,4) f(xi,4)(xi,4 − xi,1) f(xi,4)(xi,4 − xi,1)2 . . . f(xi,4)(xi,4 − xi,1)n−2

...
...

...
...

. . .
...

1 f(xi,n) f(xi,n)(xi,n − xi,1) f(xi,n)(xi,n − xi,1)2 . . . f(xi,n)(xi,n − xi,1)n−2

∣∣∣∣∣∣∣∣∣∣∣∣
operating C3 → C3 + (−1)2

(1
0
)
xi,1 C2

=

∣∣∣∣∣∣∣∣∣∣∣∣

1 f(xi,1) xi,1f(xi,1) 0 . . . 0
1 f(xi,2) xi,2f(xi,2) f(xi,2)(xi,2 − xi,1)2 . . . f(xi,2)(xi,2 − xi,1)n−2

1 f(xi,3) xi,3f(xi,3) f(xi,3)(xi,3 − xi,1)2 . . . f(xi,3)(xi,3 − xi,1)n−2

1 f(xi,4) f(xi,4)xi,4 f(xi,4)(xi,4 − xi,1)2 . . . f(xi,4)(xi,4 − xi,1)n−2

...
...

...
...

. . .
...

1 f(xi,n) xi,nf(xi,n) f(xi,n)(xi,n − xi,1)2 . . . f(xi,n)(xi,n − xi,1)n−2

∣∣∣∣∣∣∣∣∣∣∣∣
operating C4 → C4 + (−1)3

(2
0
)
x2
i,1 C2 + (−1)2

(2
1
)
xi,1 C3

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 f(xi,1) xi,1f(xi,1) x2
i,1f(xi,1) . . . 0

1 f(xi,2) xi,2f(xi,2) x2
i,2f(xi,2) . . . f(xi,2)(xi,2 − xi,1)n−2

1 f(xi,3) xi,3f(xi,3) x2
i,3f(xi,3) . . . f(xi,3)(xi,3 − xi,1)n−2

1 f(xi,4) xi,4f(xi,4) x2
i,4f(xi,4) . . . f(xi,4)(xi,4 − xi,1)n−2

...
...

...
...

. . .
...

1 f(xi,n) xi,nf(xi,n) x2
i,nf(xi,n) . . . f(xi,n)(xi,n − xi,1)n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

...

operating Cn → Cn + (−1)n−1(n−2
0
)
xn−2
i,1 C2 + (−1)n−2(n−2

1
)
xn−3
i,1 C3

+ . . . + (−1)n−(n−2)(n−2
n−3

)
xi,1 Cn−1

=

∣∣∣∣∣∣∣∣∣∣∣

1 f(xi,1) xi,1f(xi,1) . . . xn−2
i,1 f(xi,1)

1 f(xi,2) xi,2f(xi,2) . . . xn−2
i,2 f(xi,2)

1 f(xi,3) xi,3f(xi,3) . . . xn−2
i,3 f(xi,3)

...
...

...
. . .

...
1 f(xi,n) xi,nf(xi,n) . . . xn−2

i,n f(xi,n)

∣∣∣∣∣∣∣∣∣∣∣
, n ≥ 2,

Δn =

∣∣∣∣∣∣∣∣∣∣

f ′(xi,1) f(xi,1) 0 . . . 0
f [xi,1, xi,2] f(xi,2) f(xi,2)(xi,2 − xi,1) . . . f(xi,2)(xi,2 − xi,1)n−2

f [xi,1, xi,3] f(xi,3) f(xi,3)(xi,3 − xi,1) . . . f(xi,3)(xi,3 − xi,1)n−2

...
...

...
. . .

...
f [xi,1, xi,n] f(xi,n) f(xi,n)(xi,n − xi,1) . . . f(xi,n)(xi,n − xi,1)n−2

∣∣∣∣∣∣∣∣∣∣
operating as in the case of Dn

=

∣∣∣∣∣∣∣∣∣

f ′(xi,1) f(xi,1) xi,1f(xi,1) . . . xn−2
i,1 f(xi,1)

f [xi,1, xi,2] f(xi,2) xi,2f(xi,2) . . . xn−2
i,2 f(xi,2)

...
...

...
. . .

...
f [xi,1, xi,n] f(xi,n) xi,nf(xi,n) . . . xn−2

i,n f(xi,n)

∣∣∣∣∣∣∣∣∣
, n ≥ 2.

Thus, we can write the general n-point scheme as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi,1 = xi, i ≥ 0,
xi,2 = xi,1 − D1

Δ1
f(xi,1),

xi,3 = xi,1 − D2
Δ2

f(xi,1),
xi,4 = xi,1 − D3

Δ3
f(xi,1),

...
xi,n+1 = xi+1 = xi,1 − Dn

Δn
f(xi,1),

(29)

where x0,1 = x0 is given starting point and n ∈ N .
The determinants Dn and Δn can easily be computed through first column. The expansion of Dn through 

first column is given by

Dn =

∣∣∣∣∣∣∣∣∣

f(xi,2) xi,2f(xi,2) . . . xn−2
i,2 f(xi,2)

f(xi,3) xi,3f(xi,3) . . . xn−2
i,3 f(xi,3)

...
...

. . .
...

f(xi,n) xi,nf(xi,n) . . . xn−2
i,n f(xi,n)

∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣

f(xi,1) xi,1f(xi,1) . . . xn−2
i,1 f(xi,1)

f(xi,3) xi,3f(xi,3) . . . xn−2
i,3 f(xi,3)

...
...

. . .
...

f(xi,n) xi,nf(xi,n) . . . xn−2
i,n f(xi,n)

∣∣∣∣∣∣∣∣∣

+ · · · · · · + (−1)n−1

∣∣∣∣∣∣∣∣∣

f(xi,1) xi,1f(xi,1) . . . xn−2
i,1 f(xi,1)

f(xi,2) xi,2f(xi,2) . . . xn−2
i,2 f(xi,2)

...
...

. . .
...

f(xi,n−1) xi,n−1f(xi,n−1) . . . xn−2
i,n−1f(xi,n−1)

∣∣∣∣∣∣∣∣∣
= f(xi,2)f(xi,3) · · · f(xi,n)V (xi,2, xi,3, . . . , xi,n) − f(xi,1)f(xi,3) · · · f(xi,n)V (xi,1, xi,3, . . . , xi,n)

+ · · · · · · + (−1)n−1f(xi,1)f(xi,2) · · · f(xi,n−1)V (xi,1, xi,2, . . . , xi,n−1),

where V denotes Vandermonde’s determinant. For example, the determinant V (xi,2, xi,3, . . . , xi,n) is given 
by

V (xi,2, xi,3, . . . , xi,n) =

∣∣∣∣∣∣∣∣∣∣

1 xi,2 x2
i,2 . . . xn−2

i,2
1 xi,3 x2

i,3 . . . xn−2
i,3

...
...

...
. . .

...
1 xi,n x2

i,n . . . xn−2
i,n

∣∣∣∣∣∣∣∣∣∣
=

n∏
k, l=2
l<k

(xi,k − xi,l).

Thus, we have

Dn =
n∑

j=1
(−1)j−1

n∏
k=1
k �=j

f(xi,k)
n∏

k, l=1
k, l �=j
l<k

(xi,k − xi,l).

Similarly, the expansion of Δn is given as

Δn = f [xi,1, xi,1] f(xi,2)f(xi,3) · · · f(xi,n)V (xi,2, xi,3, . . . , xi,n) − f [xi,1, xi,2] f(xi,1)f(xi,3) · · · f(xi,n)

× V (xi,1, xi,3, . . . , xi,n) + · · · + (−1)n−1f [xi,1, xi,n] f(xi,1)f(xi,2) · · · f(xi,n−1)V (xi,1, xi,2, . . . , xi,n−1)

=
n∑

j=1
(−1)j−1f [xi,1, xi,j ]

n∏
k=1
k �=j

f(xi,k)
n∏

k, l=1
k, l �=j
l<k

(xi,k − xi,l),

wherein f [xi,1, xi,1] = f ′(xi,1).
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From now on, we use the following short form of (29)
{

xi,1 = xi, i ≥ 0,
xi,k+1 = xi+1 = xi,1 − Dk

Δk
f(xi,1), k = 1, 2, . . . , n, (30)

where D1 = 1, Δ1 = f ′(xi,1), and Dj and Δj (j ≥ 2) are the leading principal minors of Dn and Δn, 
respectively.

Remark 3. Note that the first step of general scheme (30) is the well-known Newton’s scheme. The first two 
steps are the steps of Ostrowski’s scheme. Similarly, the first three and four steps are that of eighth and 
sixteenth order schemes derived in previous section.

4. Local convergence analysis

The local convergence analysis that follows is based on some scalar functions and parameters. Let L0 > 0, 
L > 0, b > 0, b0 > 0 and M > 0 be given parameters. Define functions g2, p2 and hp2 on the interval [0, 1

bL0
)

by

g2(t) = bLt

2(1 − bL0t)
,

p2(t) = b

(
L0

2
(
1 + g2(t)

)
+ bM2g2(t)

1 − bL0t
2

)
t,

hp2(t) = p(t) − 1

and parameter rA by

rA = 2
b(2L0 + L) . (31)

Then, we have 0 < rA, g2(rA) = 1 and 0 ≤ g2(t) < 1 for each t ∈ [0, rA), hp2(0) = −1 and hp(t) → ∞ as 
t → 1

bL0

−. It then follows from the intermediate value theorem that function hp has zeros in the interval 
(0, 1

bL0
). Denote by rp2 the smallest such zero.

Moreover, define functions g3 and h3 on the interval [0, rp2) by

g3(t) = 1
2(1 − bL0t)

(
L + Mδ2(t)γ1(t)t

)
t

and

h3(t) = g3(t) − 1, (32)

where δ2(t) = b2

t
(
1− bL0t

2
)(

1−p2(t)
) , γ1(t) = L0M

2

(
5g2(t) + 3

)
. Then, we get that h3(0) = −1 and h3(t) → +∞

as t → r−p2
. Denote by r3 the smallest zero of function h3 in the interval (0, rp2).

Furthermore, for each m = 4, 5, . . . , n + 1, define functions gm and hm on the interval [0, rmγ2
) by

gm(t) = 1
2(1 − bL0t)

(
Lt + bMγ3(t)

1 − γ2(t)

)

and



JID:YJMAA AID:20991 /FLA Doctopic: Applied Mathematics [m3L; v1.194; Prn:30/12/2016; 11:24] P.10 (1-21)
10 J.R. Sharma et al. / J. Math. Anal. Appl. ••• (••••) •••–•••
hm(t) = gm(t) − 1, (33)

where

γ2(t) = b(L0t + b0)
m∑
j=1

2jM jtj , γ3(t) = L0

m∑
j=1

2j+1M jtj+1.

Finally, we have that hm(0) = −1 < 0 and hm(t) → ∞ as t → (rmγ2
)−, where rmγ2

is the smallest positive 
zero of function hγ2 . Denote by rm the smallest zero of function hm on the interval (0, ̄r).

Define the radius of convergence r by

r = min{rA, ri}, i = 3, 4, . . . , n + 1. (34)

Then, we have that

0 < r ≤ rA <
1

bL0
, (35)

0 ≤ gi(t) < 1, i = 2, 3, . . . , n + 1, (36)

0 ≤ p2(t) < 1 (37)

and

0 ≤ γ2(t) < 1 for each t ∈ [0, r). (38)

Let U(v, δ) and Ū(v, δ) stand, respectively for the open and closed balls in R with center v ∈ R and of 
radius δ > 0. Let also L(R, R) stand for the space of linear functions from R into R. A mapping f [x, y] :
D2 → L(R, R) is called a first order divided difference at the point (x, y) ∈ D2, if f [x, y](x −y) = f(x) −f(y)
for each (x, y) ∈ D2 with x �= y. Moreover, if function f is differentiable at x ∈ D, then f [x, x] = f ′(x). 
Furthermore, f [·, ·] is called a first order divided difference on D2 if f [·, ·] is a first order divided difference 
for each (x, y) ∈ D2.

Next, we present the local convergence analysis of method (30) using the preceding notation.

Theorem 3. Let f : D ⊂ R → R be a differentiable function and f [x, y] : D2 → L(R, R) be a first order 
divided difference on D2. Suppose that there exist x∗ ∈ D, L0 > 0, b > 0, b0 > 0 such that for each x ∈ D:

f(x∗) = 0, f ′(x∗) �= 0, |f ′(x∗)| ≤ b0, |f ′(x∗)−1| ≤ b (39)

and

|f ′(x) − f ′(x∗)| ≤ L0|x− x∗|. (40)

Moreover, suppose there exist L > 0, M > 0 such that for each x, y ∈ D0 = D ∩ U(x∗, 1
bL0

)

|f ′(x) − f ′(y)| ≤ L|x− y|, (41)

|f ′(x)| ≤ M, (42)

|Δ − f ′(x∗)| ≤ |Δ| (43)

and
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Ū(x∗, r) ⊆ D, (44)

where Δ is the continuous form of Δn and r is the radius of convergence defined by (34). Then, sequence 
{xn} generated for x0 ∈ U(x∗, r) − {x∗} is well defined, remains in U(x∗, r) for each n = 0, 1, 2, . . . and 
converges to x∗. Moreover the following estimates hold

|xi,2 − x∗| ≤ g2(|xi,1 − x∗|)|xi,1 − x∗| ≤ |xi,1 − x∗| < r (45)

|xi,3 − x∗| ≤ g3(|xi,2 − x∗|)|xi,2 − x∗| ≤ |xi,2 − x∗| (46)

and

|xi,m − x∗| ≤ gm(|xi,m−1 − x∗|)|xi,m−1 − x∗| ≤ |xi,m−1 − x∗|, (47)

where the “g” functions are defined previously. Furthermore, for T ∈ [r, 2
bL0

) the limit point x∗ is the only 
solution of equation f(x) = 0 in D1 = D ∩ U(x∗, T ).

Proof. We shall show using mathematical induction that the sequence {xn} is well defined and convergent 
to x∗ so the estimates (45)–(47) hold.

Let i = 0. By hypotheses (35), (39), (40) and x0 ∈ U(x∗, r) − x∗, we have that

b|f ′(x0,1) − f ′(x∗)| = b|f ′(x0) − f ′(x∗)| ≤ bL0|x0 − x∗| ≤ bL0r < 1. (48)

It follows from (48) and the Banach lemma on invertible functions [1] that f ′(x0,1) �= 0,

|f ′(x0,1)−1| ≤ b

1 − bL0|x0,1 − x∗| (49)

and x0,2 is well defined. Then, we have by the first substep of method (30) that

x0,2 − x∗ = x0,1 − x∗ − f ′(x0,1)−1f(x0,1). (50)

Using (34), (36), (39), (41), (49) and (50), we get in turn that

|x0,2 − x∗| ≤ |f ′(x0)−1|
∣∣∣

1∫
0

(
f ′(x∗ + θ(x0,1 − x∗)) − f ′(x0,1)

)
(x0,1 − x∗)dθ

∣∣∣
≤ bL|x0,1 − x∗|2

2(1 − bL0|x0,1 − x∗|) = g2(|x0,1 − x∗|)|x0,1 − x∗| ≤ |x0,1 − x∗| < r, (51)

which shows (45) and x0,2 ∈ U(x∗, r).
We can write by (39)

f(x0,1) − f(x∗) =
1∫

0

f ′(x∗ + θ(x0,1 − x∗))(x0,1 − x∗)dθ. (52)

Notice that x∗ + θ(x0,1 − x∗) ∈ U(x∗, r), since |x∗ + θ(x0,1 − x∗) − x∗| = θ|x0,1 − x∗| < r.
Then by (42) and (52), we get that

|f(x0,1| ≤ M |x0,1 − x∗|. (53)
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We must show the existence of x0,3. To achieve this, notice that we can rewrite D2
Δ2

as

D2

Δ2
=

1 − f(x0,2)
f(x0,1)

A2
, (54)

where A2 = f [x0,1, x0,2] − f(x0,2)
f(x0,1)f

′(x0,1) for f(x0,1) �= 0 (if f(x0,1) = 0, then x0,1 = x∗ and the iteration is 
terminated). By (40) we have that

∣∣(f ′(x∗)(x0,1 − x∗))−1(f(x0,1) − f(x∗) − f ′(x∗)(x0,1 − x∗))
∣∣ ≤ bL0

2 |x0,1 − x∗| < bL0

2 r < 1, (55)

by the choice of r. Hence, f(x0,1) �= 0 and

|f(x0,1)−1| ≤ b

|x0 − x∗|
(
1 − bL0

2 |x0 − x∗|
) . (56)

Next, we show that A2 �= 0. We have in turn by (34), (35), (37), (40) (51), (53) and (55) that

b
∣∣∣f [x0,1, x0,2] − f ′(x∗) − f(x0,2)

f(x0,1)
f ′(x0,1)

∣∣∣ ≤ bL0

2 (|x0,1 − x∗| + |x0,2 − x∗|) + bM2|x0,2 − x∗|
|x0,1 − x∗|

(
1 − bL0

2 |x0,1 − x∗|
)

≤ b

(
L0

2 (1 + g2(|x0,1 − x∗|)) + M2g2(|x0,1 − x∗|)
1 − bL0

2 |x0,1 − x∗|

)

= p2(|x0 − x∗|) < p2(r) < 1. (57)

Hence, A2 �= 0 and

|A−1
2 | ≤ b

1 − p2(|x0 − x∗|) , (58)

so x0,3 is well defined. Then, we have that

∣∣∣∣D2

Δ2

∣∣∣∣ ≤ b
(
1 + | f(x0,2

f(x0,1) |
)

1 − p2(|x0 − x∗|) ≤
b
(
1 + M |x0,2−x∗|

|x0,1−x∗|
(
1− bL0

2 |x0,1−x∗|
))

1 − p2(|x0,1 − x∗|) ≤
b
(
1 + Mg2(|x0,1−x∗|)

1− bL0
2 |x0,1−x∗|

)
1 − p2(|x0,1 − x∗|)

≤
b
(
1 + Mg2(r)

1− bL0
2 r

)
1 − p2(r)

. (59)

It follows from (59) that Δ2 �= 0 and

|Δ−1
2 | ≤ δ2(|x0,1 − x∗|). (60)

We can write by the second substep of method (30) for i = 0:

x0,3 − x∗ = x0,1 − x∗ − f ′(x0,1)−1f(x0,1) + f ′(x0,1)−1(Δ2 − f ′(x0,1)D2)Δ−1
2 f(x0,1). (61)

Using (40), (51) and (53) we get in turn that
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|Δ2 − f ′(x0,1)D2| = |(f ′(x0,1) − f ′(x∗))f(x0,2) + (f ′(x∗) − f [x0,1, x0,2])f(x0,1)

+ (f ′(x∗) − f ′(x0,1))f(x0,2) + (f ′(x0,1) − f ′(x∗))f(x0,1)|

≤ ML0|x0,1 − x∗||x0,2 − x∗| + L0M

2

(
|x0,1 − x∗| + |x0,2 − x∗|

)
|x0,1 − x∗|

+ L0M |x0,1 − x∗||x0,2 − x∗| + L0M |x0,1 − x∗||x0,1 − x∗| ≤ γ1(r)|x0,1 − x∗|2. (62)

Then, by (34), (35), (36), (51), (60) and (62), we obtain in turn that

|x0,3 − x∗| ≤ bL|x0,1 − x∗|2
2(1 − bL0|x0,1 − x∗|) + Mδ2(r)γ1(r)|x0,1 − x∗|3

1 − bL0|x0,1 − x∗|

= g3(|x0,1 − x∗|)|x0 − x∗| ≤ |x0 − x∗| < r, (63)

which shows (46) and x0,3 ∈ U(x∗, r). It follows from (43) that Δm �= 0, m = 3, 4, . . . , n +1, since otherwise 
f ′(x∗) = 0 contradicting (33). If the iterates are equal to each other, then Δm = 0 but then iterate x0,m = x∗, 
so the iteration has been terminated. In view of (38), (40), (42) and (43), we also get in turn that

b|Δm − f ′(x∗)| ≤ b
∣∣∣ m∑
j=1

(−1)j−1(f [x0,1, x0,j ] − f ′(x∗))
m∏

k=1
k �=j

f(x0,k)
m∏

k,l=1
k,l �=j
l<k

((x0,k − x∗) + (x∗ − x0,l))

+
m∑
j=1

(−1)j−1f ′(x∗)
m∏

k=1
k �=j

f(x0,k)
m∏

k,l=1
k,l �=j
l<k

((x0,k − x∗) + (x∗ − x0,l))
∣∣∣

≤ b

(
L0

2

m∑
j=1

(−1)j−1(|x0,1 − x∗| + |x0,j − x∗|)Mm
m∏

k,l=1
k,l �=j
l<k

(|x0,k − x∗| + |x0,l − x∗|)

+
m∑
j=1

(−1)j−1b0M
m

m∏
k,l=1
k,l �=j
l<k

(|x0,k − x∗| + |x0,l − x∗|)
)

≤ γ2(|x0,1 − x∗|) < γ2(r) < 1. (64)

Hence, we get

|Δ−1
m | ≤ 1

1 − γ2(|x0,1 − x∗|) . (65)

Let

Em = Δm − f ′(x0,1)Dm. (66)

Then using (66), we have as in (64) that

|Em| =
∣∣∣ m∑
j=1

(−1)j−1
[
(f [x0,1, x0,j ] − f ′(x∗)) + (f ′(x∗) − f ′(x0,1))

] m∏
k=1
k �=j

f(x0,k)
m∏

k,l=1
k,l �=j
l<k

(x0,k − x0,l)
∣∣∣

≤ γ3(|x0,1 − x∗|). (67)
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Then, we have as in (61) that

|x0,m − x∗| = |x0,1 − x∗ − f ′(x0,1)−1f(x0,1) + f ′(x0,1)−1(Δm − f ′(x0,m)Dm)Δ−1
m f(x0,m)|

≤ bL|x0,1 − x∗|2
2(1 − bL0|x0,1 − x∗|) + bMγ3(|x0,1 − x∗|)|x0,1 − x∗|

(1 − bL0|x0,1 − x∗|)(1 − γ2(|x0,1 − x∗|)
= gm(|x0,1 − x∗|)|x0,1 − x∗| < |x0,1 − x∗| < r, (68)

which shows (47) and x0,m ∈ U(x∗, r). In particular, we have that

|x1 − x∗| < |x0 − x∗|. (69)

By simply replacing x0,1, x0,2, . . . , x0,n+1 by xμ,1, xμ,2, . . . , xμ,n+1, μ = 1, 2, . . . we complete the induction.
In view of the estimate

|xm+1 − x∗| ≤ C |xm − x∗| < r, C = gm(|x0,1 − x∗|) ∈ [0, 1), (70)

we deduce that limm→∞ xm = x∗ and xm+1 ∈ U(x∗, r).
Finally, to show the uniqueness part, let Q =

∫ 1
0 f ′(y∗+θ(x∗−y∗))dθ for some y∗ ∈ D1 = D∩U(x∗, 2

bL0
). 

Then, using (39) and (40), we get that

b|Q− f ′(x∗)| ≤ bL0

2 T < 1. (71)

It follows from (71) that Q �= 0. Then, from the identity, 0 = f(x∗) − f(y∗) = Q(x∗ − y∗), we conclude that 
x∗ = y∗. �
Remark 4. (a) In view of (40) condition (42) can be dropped and replaced by M(t) = 1 + bL0t or simply 
by M = 2, since t ∈ [0, 1

bL0
).

(b) It follows from (35) that the radius of convergence r cannot be larger than the radius of convergence 
for Newton’s method rA defined by (31). The radius of convergence rA is found by Argyros in [1,2] that 
improves upon the radius of convergence given independently by Traub [29] and Rheinboldt [22]

rTR = 2
3bL1

, (72)

where L1 is the Lipschitz constant on the whole domain D. Notice however that

L ≤ L1. (73)

Consequently, since L0 ≤ L1, we have that

rTR ≤ rA. (74)

Hence, our ball is the largest if L0 < L1 or L < L1. For an example, let us consider the equation f(x) =
ex − 1 = 0 on D = Ū(0, 1). Since x∗ = 0, we have L0 = e − 1, L = e

1
L0 , b0 = b = 1 and L1 = e, so 

L0 < L < L1. From (31) and (72), it follows that

rTR = 0.2452 . . . < 0.3827 . . . = rA.

(c) The convergence order is found next by using Taylor expansions and hypotheses reaching up to the 
n +1-th derivative. These hypotheses limit the applicability of method (30). As a motivational example, let 
us define function f on D = [−1/2, 5/2] by
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f(x) =
{

x3lnx2 + x5 − x4, x �= 0,
0, x = 0.

Then, we have that

f ′′′(x) = 6 lnx2 + 60x2 − 24x + 22.

Then function f ′′′(x) is not bounded on D. However, the results of Theorem 3 can apply for L0 = L = 441
and M = 6. Notice that the order of convergence can be found without using the Taylor expansion using 
the COC as well as the ACOC (see [12,32]).
(d) Hypothesis (43) can be replaced by

b |Δ − f ′(x∗)| ≤ q < 1 for some q ∈ [0, 1). (75)

Then Δ �= 0, since otherwise 1 ≤ q < 1, which is a contradiction. Define γ̄2(t) = q. Then, the conclusions of 
Theorem 3 hold with (75) and the new γ̄2 replacing (43) and the old γ2, respectively.

Below we obtain the optimal convergence order of general scheme.

Theorem 4. Let f : D ⊂ R → R be a sufficiently differentiable function. Suppose that the hypotheses of 
Theorem 3 hold. Then the n-point family (30) converges to x∗ with at least 2n-th order.

Proof. According to Theorem 3 the method (30) is well defined and converges to x∗. Let ei,1 = xi,1 −
x∗, ei,2 = xi,2 − x∗, . . . , ei,n = xi,n − x∗ be the errors in the i-th iteration. In order to find the error of the 
family (30), first we write error equations of the schemes of convergence order 2, 4, 8 and 16 in the more 
systemic forms.

The error equation of one-point scheme, which is well-known Newton’s iteration, is given by

ei,2 = C1e
2
i,1 + O(e3

i,1), (76)

where C1 = A2.
The error equation of two-point scheme (i.e. Ostrowski’s iteration) using (3) can be written as

ei,3 = C2C1e
22

i,1 + O(e5
i,1), (77)

where C2 is the determinant of Toeplitz matrix of order 2 defined as

C2 =
∣∣∣∣A2 1
A3 A2

∣∣∣∣ .
In view of (12) the error equation for three-point eighth scheme can be expressed as

ei,4 = C3C2C
2
1e

23

i,1 + O(e9
i,1), (78)

where C3 is the determinant of Toeplitz matrix of lower Hessenberg form of order 3 defined as

C3 =

∣∣∣∣∣
A2 1 0
A3 A2 1
A4 A3 A2

∣∣∣∣∣ .
From (21) the error equation for four-point sixteenth order scheme of the family (30) can be reproduced as
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ei,5 = C4C3C
2
2C

22

1 e24

i,1 + O(e17
i,1), (79)

where C4 is the determinant of Toeplitz matrix of lower Hessenberg form of order 4 and given as

C4 =

∣∣∣∣∣∣∣
A2 1 0 0
A3 A2 1 0
A4 A3 A2 1
A5 A4 A3 A2

∣∣∣∣∣∣∣ .

The above process can be easily generalized to write the error equation of n-point family (30). Thus, we 
can write

ei,n+1 = ei+1 = CnCn−1C
2
n−2C

22

n−3 · · ·C2n−3

2 C2n−2

1 e2n

i,1 + O(e2n+1

i,1 ). (80)

Here Cn, Cn−1 etc. are the determinants of Toeplitz matrices of lower Hessenberg form of order indicated 
by subscript index. In particular, the determinant Cn is given as

Cn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A2 1 0 . . . 0 0

A3 A2 1
. . . . . . 0

A4 A3 A2
. . . . . .

...
...

...
. . . . . . . . . 0

An An−1 An−2
. . . A2 1

An+1 An An−1 . . . . . . A2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The error equation (80) shows the 2n-th order of convergence. �
Remark 5. (a) Note that the family (30) requires n +1 function evaluations, namely f(xi,1), f(xi,2), f(xi,3),
. . . , f(xi,n) and f ′(xi,1) per iteration and possesses convergence order 2n. Thus, it is optimal in the sense 
of Kung–Traub hypothesis.
(b) General families of n-point Newton type iterative methods of optimal order of convergence 2n have 
also been presented in [20,31]. First step of these schemes is the Newton or Newton-type step, whereas, in 
each subsequent step first derivative is approximated by using Hermite interpolation. The present family is, 
therefore, completely different and hence new.

5. Numerical results

In order to demonstrate the convergence behavior and to check the validity of theoretical results of the 
new methods, here we perform numerical tests. For demonstration let us choose the eighth order (11) and 
sixteenth order (20) methods, which are now denoted by N8 and N16, respectively. We also compare the 
methods with some existing optimal order methods. For example, the eighth order methods proposed by 
Bi–Wu–Ren [4], Thukral [26], Thukral–Petković [27], Cordero–Torregrosa–Vassileva [7] and Khan–Fardi–
Sayevand [13], and sixteenth order method by Geum–Kim [10]. These methods are given as follows:

Bi–Wu–Ren Method (BWR8):

wi = xi −
f(xi)
f ′(xi)

,

zi = wi −
2f(xi) − f(wi) f(wi)

′ ,
2f(xi) − 5f(wi) f (xi)
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xi+1 = zi −
f(xi) + (γ + 2)f(zi)

f(xi) + γf(zi)
f(zi)

f [zi, wi] + f [zi, xi, xi](zi − wi)
,

where γ ∈ R and f [zi, xi, xi] = f [zi,xi]−f ′(xi)
zi−xi

.
Cordero–Torregrosa–Vassileva Method (CTV8):

wi = xi −
f(xi)
f ′(xi)

,

zi = xi −
f(xi) − f(wi)
f(xi) − 2f(wi)

f(xi)
f ′(xi)

,

xi+1 = ui −
3(β2 + β3)(ui − zi)

β1(ui − zi) + β2(wi − xi) + β3(zi − xi)
f(zi)
f ′(xi)

,

where βi ∈ R (i = 1, 2, 3), β2 + β3 �= 0 and ui = zi − f(zi)
f ′(xi)

(
f(xi)−f(wi)
f(xi)−2f(wi) + 1

2
f(zi)

f(wi)−2f(zi)

)2
.

Khan–Fardi–Sayevand Method (KFS8):

wi = xi −
f(xi)
f ′(xi)

,

zi = wi −
f2(xi)

f2(xi) − 2f(xi)f(wi) + ωf2(wi)
f(wi)
f ′(xi)

,

xi+1 = zi −
1

1 + νq2
i

f(zi)
K − C(wi − zi) −D(wi − zi)2

,

where ω, ν ∈ R, qi = f(zi)
f(xi) , D = f ′(xi)−H

(xi−wi)(xi−zi) −
H−K

(xi−zi)2 , C = H−K
(xi−zi) −D(xi + wi − 2zi),

H = f(xi)−f(wi)
xi−wi

, K = f(wi)−f(zi)
wi−zi

.

Thukral Method (T8):

wi = xi −
f(xi)
f ′(xi)

,

zi = xi −
f(xi)2 + f(wi)2

f ′(xi)(f(xi) − f(wi))
,

xi+1 = zi −
((

1 + μ2
i

1 − μi

)2

− 2μ2
i − 6μ3

i + f(zi)
f(wi)

+ 4 f(zi)
f(xi)

)
f(zi)
f ′(xi)

,

where μi = f(wi)
f(xi) .

Thukral–Petković Method (TP8):

wi = xi −
f(xi)
f ′(xi)

,

zi = wi −
f(xi) + bf(wi)

f(xi) + (b− 2)f(wi)
f(wi)
f ′(xi)

,

xi+1 = zi −
[
φ(t) + f(zi)

f(wi) − af(zi)
+ 4f(zi)

f(xi)

]
f(zi)
f ′(xi)

,

where a, b ∈ R, φ(t) = 1 + 2t + (5 − 2b)t2 + (12 − 12b + 2b2)t3 and t = f(wi) .
f(xi)
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Geum–Kim Method (GK16):

yi = xi −
f(xi)
f ′(xi)

,

zi = yi −Kf (ui)
f(yi)
f ′(xi)

,

si = zi −Hf (ui, vi, wi)
f(zi)
f ′(xi)

,

xi+1 = si −Wf (ui, vi, wi, ti)
f(si)
f ′(xi)

,

where

Kf (ui) = 1 − 9u2
i

1 − 2ui − 4u2
i

, Hf (ui, vi, wi) = 1 + 2ui

1 − vi − 2wi
,

Wf (ui, vi, wi, ti) = 1 + 2ui

1 − vi − 2wi − ti
+ G(ui, vi, wi),

G(ui, vi, wi) = −6u3
i vi + 6w2

i − 4u4
i (3vi + 17wi) + ui(2v2

i + 4v3
i + wi − 2w2

i ),

ui = f(yi)
f(xi)

, vi = f(zi)
f(yi)

, wi = f(zi)
f(xi)

, ti = f(si)
f(zi)

.

For comparison let us consider Kepler’s equation

f(x) = x− α sin(x) −K = 0,

where 0 ≤ α < 1 and 0 ≤ K ≤ π.
A numerical study, for different values of α and K has been performed in [8]. Using (39)–(42), we get 

L = L0 = L1 = α, M = 1 + α, b0 = 1 − α cos(x∗), b = 1
b0

. As a specific numerical example, let us 
take α = 0.9 and K = 0.1. In this case the solution is x∗ = 0.63084352756315343 . . . . Therefore, we have, 
L = L0 = L1 = 0.9, M = 1.9, b0 ≈ 0.2732 and b ≈ 3.6600.

Next, we shall determine the convergence radius r, say for n = 4, so that we can choose initial points 
from the convergence ball U(x∗, r). According to (34), we must compute rA, r3, r4 and r5. From (31), 
we obtain rA ≈ 0.2024. The parameter r3 is the smallest zero of h3(t) expressed in (32). Thus, solving 
h3(t) = g3(t) − 1 = 0, we get the smallest zero r3 ≈ 0.0230. The parameters r4 and r5 are the smallest zeros 
of hm(t), m = 4, 5, expressed in (33). Thus, solving hm(t) = gm(t) − 1 = 0 taking m = 4, 5, we get the 
corresponding zeros as r4 ≈ 0.0861 and r5 ≈ 0.0858. Then, by (34)

r = min{rA, r3, r4, r5} = min{0.2024, 0.0230, 0.0861, 0.0858} = 0.0230.

Theorem 3 guarantees the convergence of method (30) to x∗ = 0.63084352756315343 . . . provided that 
x0 ∈ U(x∗, r). This condition yields very close initial approximation. We solve the Kepler’s equation by 
selecting different initial approximations even from the outside of our convergence ball. For the parameters 
used in BWR8, CTV8, KFS8, TP8 we choose the same values as considered by the respective authors in 
their numerical work. To verify the theoretical order of convergence, we calculate the computational order 
of convergence COC using the formula [12]

COC = log|f(xi)/f(xi−1)|
,
log|f(xi−1)/f(xi−2)|
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Table 1
Comparison of performance of methods.

Methods |x2 − x1| |x3 − x2| |x4 − x3| i COC CPU-time
x0 = −1
BWR8 (γ = 1) 667.09 651.72 1.01 8 8.000 1.9937
CTV8 (β1 = 0, β2 = 1, β3 = 0) 2.79 1.23(−1) 3.62(−8) 6 8.000 1.4602
KFS8 (ω = 1, ν = 1) 6.73(−1) 5.44(−10) 1.38(−74) 5 8.000 1.1722
T8 2.25(−1) 3.55(−5) 6.81(−35) 5 8.000 1.0639
TP8 (a = 0, b = 0) 5.30(−1) 2.43(−3) 1.77(−20) 6 8.000 1.4274
N8 1.60(−1) 4.26(−8) 1.31(−61) 5 8.000 0.5887
GK16 Failure – – – – –
N16 1.18(−1) 1.77(−18) 1.17(−287) 4 16.000 0.4898

x0 = 0
BWR8 (γ = 1) 3.32(−2) 1.79(−12) 1.64(−94) 5 8.000 1.2168
CTV8 (β1 = 0, β2 = 1, β3 = 0) 9.96(−5) 3.99(−33) 3.36(−260) 4 8.000 0.9563
KFS8 (ω = 1, ν = 1) 2.81(−2) 6.07(−13) 3.33(−98) 5 8.000 1.1575
T8 14.76 1.52(−1) 2.69(−6) 6 8.000 1.2636
TP8 (a = 0, b = 0) 8.01(−2) 4.71(−8) 3.54(−58) 5 8.000 1.1591
N8 9.20(−5) 6.16(−35) 2.52(−276) 4 8.000 0.4832
GK16 1.43(7) 6.62(5) 1.65(5) 12 16.000 2.8017
N16 8.66(−9) 1.72(−132) 2.79(−2110) 4 16.000 0.4281

x0 = 1.5
BWR8 (γ = 1) 3.46(−3) 3.26(−20) 1.98(−156) 5 8.000 1.2324
CTV8 (β1 = 0, β2 = 1, β3 = 0) 6.35(−3) 1.36(−18) 6.20(−144) 5 8.000 1.2527
KFS8 (ω = 1, ν = 1) 7.44(−3) 1.63(−17) 8.99(−135) 5 8.000 1.1606
T8 2.74(−2) 7.27(−12) 2.11(−88) 5 8.000 1.0577
TP8 (a = 0, b = 0) 1.93(−2) 2.49(−13) 2.18(−100) 5 8.000 1.1653
N8 2.28(−3) 8.21(−24) 2.50(−187) 5 8.000 0.5211
GK16 2.17(−3) 1.08(−38) 1.32(−603) 4 16.000 0.8908
N16 2.22(−7) 6.05(−110) 2.31(−1751) 4 16.000 0.4886

x0 = 2.2
BWR8 (γ = 1) 1.78(−3) 1.59(−22) 6.19(−175) 5 8.000 1.2215
CTV8 (β1 = 0, β2 = 1, β3 = 0) 4.91(−2) 1.55(−11) 1.75(−87) 5 8.000 1.2324
KFS8 (ω = 1, ν = 1) 4.97(−2) 5.27(−11) 1.07(−82) 5 8.000 1.1744
T8 1.30(−1) 8.88(−7) 1.05(−47) 5 8.000 1.1012
TP8 (a = 0, b = 0) 1.09(−1) 1.27(−7) 1.01(−54) 5 8.000 1.2223
N8 3.25(−2) 3.57(−15) 3.15(−118) 5 8.000 0.6252
GK16 1.41(−2) 1.59(−25) 6.57(−393) 4 16.000 0.9148
N16 3.32(−4) 3.74(−59) 6.64(−1877) 4 16.000 0.5578

x0 = 3.5
BWR8 (γ = 1) 1.59(−1) 1.75(−7) 1.35(−54) 5 8.000 1.9114
CTV8 (β1 = 0, β2 = 1, β3 = 0) 6.67(−1) 2.39(−3) 5.64(−22) 6 8.000 2.1674
KFS8 (ω = 1, ν = 1) 1.17(−1) 3.47(−8) 3.82(−60) 5 8.000 1.8143
T8 2.66(−1) 1.01(−4) 2.83(−31) 5 8.000 1.6115
TP8 (a = 0, b = 0) 2.58(−1) 4.36(−5) 1.94(−34) 5 8.000 1.7995
N8 1.19(−1) 5.48(−10) 9.76(−77) 5 8.000 0.7284
GK16 2.86(−3) 7.35(−37) 2.89(−574) 4 16.000 1.3650
N16 7.02(−3) 4.80(−38) 1.37(−600) 4 16.000 0.6528

taking into consideration the last three approximations in the iterative process. In numerical results, we 
also include CPU time (measured in seconds) used in the execution of program which is computed by the 
Mathematica command “TimeUsed[ ]”.

The absolute errors |xi+1 − xi| in the first three iterations are displayed in Table 1, where a(−b) denotes 
a × 10−b and a(b) denotes a × 10b. The necessary iterations (i), the computational order of convergence 
COC and the mean elapsed CPU-time (CPU-time) are also presented in the table. The necessary iterations 
(i) and the CPU-time are calculated by selecting |xi+1 − xi| + |f(xi)| < 10−200 as the stopping criterion. 
Mean CPU-time is calculated by taking the mean of 100 performances of each program.

From the numerical results displayed in Table 1, we can observe that, in general, the accuracy in numerical 
values of approximations to the root by the present algorithms N8 and N16 is higher than the existing 
algorithms. Calculated values of the computational order of convergence COC also verify the theoretical 
order of convergence proved in Section 2. From the values of last column we can observe that the new 
methods utilize less computing time in the execution of program than the existing methods of same nature. 
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This verifies the highly efficient nature of the present methods. In fact, speaking about the highly efficient 
nature of some iterative method, we mean that the iterative method uses the smallest CPU-time. Similar 
numerical experimentations, carried out for a number of problems of different type, confirmed the above 
conclusions to a large extent.

6. Conclusions

Based on the optimal two-point fourth order Ostrowski’s scheme, we have developed a three-point method 
of optimal order eight for solving nonlinear equations. Then, based on this three-point method a four-point 
method of optimal sixteen order is developed. In both the methods the new step for obtaining approximation 
to a root is generated by using rational Hermite interpolation. This approach of employing previously 
obtained scheme and generating the new step by using rational Hermite interpolation is applied to obtain 
a generalized n-point scheme of optimal order 2n. The rational approximant is such that its numerator is a 
linear function whereas denominator is a polynomial of degree n − 1, that means, the rational approximant 
of order [1/(n − 1)]. For example, in case of three-point scheme this approximant is of order [1/2]. It has 
been seen that Newton’s and Ostrowski’s methods are special cases corresponding to n = 1 and n = 2.

The proposed methods are compared with existing optimal order methods through numerical experimen-
tation. Superiority of presented methods over the existing methods is corroborated by numerical results 
including CPU-time utilized in the execution of program. Finally, we conclude that the methods presented 
in this paper are preferable to other recognized optimal methods because of simple design and better com-
putational efficiency.
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