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We consider a parametric Neumann problem with nonhomogeneous differential 
operator and critical growth. Combining variational methods based on critical point 
theory, with suitable truncation techniques and flow invariance arguments, we show 
that for all large λ, the problem has at least three nontrivial smooth solutions, two of 
constant sign (one positive, the other negative) and the third nodal. We also study 
the asymptotic behavior of all solutions obtained when λ converges to infinity. The 
interesting point is that we do not impose any restrictions to the behavior of the 
nonlinear term f at infinity. Our work unifies and sharply improves several recent 
papers.
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1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω, 1 < p < N , and p� = Np

N−p . In this paper we 
study the following nonlinear parametric Neumann problem:

{
−divA(x,∇u) + β(x) |u|p−2

u = λf(x, u) + g(x) |u|p
�−2

u in Ω,
∂u
∂n = 0 on ∂Ω,

(Pλ)

where A : RN → R
N is a continuous, strictly monotone map that satisfies certain regularity conditions. The 

precise hypotheses on the map are listed in the hypotheses H(a) below. These conditions incorporate in our 
framework many differential operators of interest such as the p-Laplacian. We stress that the differential 
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operator need not be homogeneous and this is a source of difficulties, especially when we look for nodal 
(that is, sign changing) solutions. In problem (Pλ), λ > 0 is a parameter and in the reaction f : Ω ×R→ R

and g : Ω → R are assumed to be continuous functions with g(x) ≥ 0 in Ω. Finally, we mention that the 
β ∈ L∞(Ω), β(x) ≥ 0 a.e. in Ω, β �= 0, and in the boundary condition n denotes the outward unit normal 
vector on ∂Ω. Our aim is to prove a multiplicity theorem for problem (Pλ) providing sign information for 
all solutions provided λ > 0 is sufficiently large.

Equations driven by nonhomogeneous differential operators have been widely investigated in the sub-
critical case by variational methods under Dirichlet [1,17,31–33], Neumann [2,13,16,19,23,25,29], or Robin 
[28] boundary condition. We mention that the works [2,13,17,19,23,29,32,33] produce nodal solutions. On 
the other hand, it is generally hard to handle nonlinear nonhomogeneous equations without the subcritical 
growth condition, and thus, the results in the direction are very rare (see [18,26,30]). In [18,30], the right 
hand side nonlinearity is assumed to be odd near zero, and the authors produced a whole sequence of distinct 
nodal solutions. Based on variational methods combining invariant sets of descending flow, Motreanu and 
Tanaka [26] obtained the existence of a positive solution, a negative solution and a sign-changing solution 
for equation (Pλ) with β = g = 0 if λ > 0 is sufficiently large. They assumed that problem (Pλ) admits an 
ordered pair of super and lower solution. In the present paper we prove a similar three-solutions-theorem 
for problem (Pλ) providing sign information for all solutions obtained. Moreover, we obtain the asymptotic 
behavior of the three solutions when λ converges to infinity. The interesting feature of our work here, is that 
in problem (Pλ) the nonlinearity f satisfies a superlinear growth condition just in a neighborhood of zero. 
By using variational methods together with suitable truncation techniques and flow invariance arguments, 
we are able to avoid restrictions on the behavior of the nonlinearity f at infinity. Then we can handle 
nonlinearities f(x, u) containing terms like |u|r−2

u and |u|r−2
ueu with p < r < ∞.

Throughout this paper, we assume that the map A and the function f satisfy the following hypotheses 
H(a) and H(f), respectively:

H(a). A(x, y) = h(x, |y|)y, where h(x, t) > 0 for all (x, t) ∈ Ω × (0, +∞), and

(i) A ∈ C0,ε
loc(Ω×R

N , RN ) ∩ C1(Ω × R
N \ {0}, RN ) with some 0 < ε ≤ 1;

(ii) there exist constants C1 > 0 and 1 < p < +∞ such that
∣∣∇yA(x, y)

∣∣ ≤ C1 |y| p−2 for every x ∈ Ω, and y ∈ R
N \ {0};

(iii) there exists C0 > 0 such that

(∇yA(x, y)ξ, ξ)RN ≥ C0 |y| p−2 |ξ|2 for every x ∈ Ω, y ∈ R
N \ {0} and ξ ∈ R

N ;

(iv) for all (x, y) ∈ Ω × R
N , we have

pG(x, y) ≥ (A(x, y), y)RN ,

where G(x, y) is the primitive of A(x, y), i.e., ∇yG(x, y) = A(x, y) for every x ∈ Ω, y ∈ R
N , and 

G(x, 0) = 0.

In the above hypotheses by |·| we denote the Euclidean norm in RN . And the notation ∇yA means the 
differential of the mapping A(x, y) with respect to the variable y ∈ R

N . Similar conditions are used widely 
in the literature (see, e.g., [1,9,24,25,31]).

H(f). f : Ω ×R → R is a continuous function with primitive F (x, t) =
∫ t

0 f(x, s)ds satisfying f(x, 0) = 0 for 
a.a. x ∈ Ω and
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(i) there exists τ ∈ (p, p�) such that limt→0
f (x,t)
|t|τ−2t

= 0 uniformly for a.a. x ∈ Ω;
(ii) there exists r ∈ (p, p�) with r > τ such that limt→0

F (x,t)
|t|r = ∞ uniformly for a.a. x ∈ Ω;

(iii) there exist μ ∈ (p, p�) and δ > 0 such that

0 < μF (x, t) ≤ tf(x, t) for a.a. x ∈ Ω and all 0 < t ≤ δ;

(iv) there exists m > 0 such that for a.a. x ∈ Ω, the function t �→ f(x, t) + m |t|p−2
t is nondecreasing on 

[−δ, δ], where δ is as in (iii).

The main result of this paper is the following (for the precise meaning of the notation refer to Section 2).

Theorem 1. Assume that hypotheses H(a) and H(f) hold. Then, there exists λ� > 0 such that for any λ ≥ λ�, 
problem (Pλ) admits at least three nontrivial smooth solutions

uλ,1 ∈ intC+, uλ,2 ∈ −intC+ and uλ,3 ∈ C1(Ω) nodal,

satisfying

lim
λ→+∞

‖uλ,i‖ = 0, i = 1, 2, 3.

Moreover, problem (Pλ) has extremal nontrivial constant sign solutions.

It is worth pointing out that similar results to ours with critical growth can be seen in [3,5,12,14]. In all 
these works, the nonlinearity f satisfies

lim
t→+∞

f(x, t)
tr−1 = 0 (1)

uniformly in x ∈ Ω, where r ∈ (p, p�). By using the well-known concentration-compactness principle of 
Lions, they derived the existence of a positive solution for all λ ≥ λ� with λ� > 0. In our results, we drop 
the hypothesis (1) and add two solutions (one negative, the other nodal). So our results can be considered 
as a significant extension of the above mention papers in the sense that we are considering only superlinear 
conditions in a neighborhood of the origin.

In the next section we recall various notions and results which will be used later. In Section 3, we prove 
the existence of two constant-sign solutions for problem (Pλ). Finally, in Section 4, we prove the existence 
of a nodal solution for problem (Pλ).

2. Mathematical background

In the analysis of problem (Pλ) in addition to the Sobolev space W 1,p(Ω), we will also use the Banach 
space C1(Ω). This is an ordered Banach space with positive cone C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}. 
This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

The inner product in RN and the usual norm in Ls(Ω) (1 ≤ s ≤ +∞) will be denoted by (·, ·)RN and ‖·‖s, 
respectively. In what follows the Sobolev space W 1,p(Ω) is endowed with the norm

‖u‖ =
(
‖∇u‖pp +

∫
|u(x)|p dx

) 1
p for all u ∈ W 1,p(Ω).
Ω
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Fixing s ∈ [1, p�], by the Sobolev Embedding Theorem, there exists a positive constant κs such that

‖u‖s ≤ κs ‖u‖ , u ∈ W 1,p(Ω). (2)

In the sequel, by |·|N we denote the Lebesgue measure on RN . Given x ∈ R, we set x± = max{±x, 0}. Then 
for u ∈ W 1,p(Ω), we define u±(·) = u(·)±. We know that

u± ∈ W 1,p(Ω), |u| = u+ + u− and u = u+ − u−.

Also, if h : Ω × R→ R is a measurable function (for example, a Carathéodory function), then we set

Nh(u)(·) = h(·, u(·)) for all u ∈ W 1,p(Ω).

Using the hypotheses H(a), we can easily prove the following lemma that summarizes some significant 
facts regarding the operator A.

Lemma 2. If hypotheses H(a) hold, then

(i) for all x ∈ Ω, y → A(x, y) is maximal monotone and strictly monotone;
(ii) for all (x, y) ∈ Ω × R

N , |A(x, y)| ≤ C1
p−1 |y|

p−1;
(iii) for all x ∈ Ω × R

N , (A(x, y), y)RN ≥ C0
p−1 |y|

p.

A straightforward consequence of the above Lemma, is the following result:

Lemma 3. If hypotheses H(a) hold, then for all (x, y) ∈ Ω × R
N we have

C0

p(p− 1) |y|
p ≤ G(x, y) ≤ C1

p(p− 1) |y|
p
.

Now, let V : W 1,p(Ω) → (W 1,p(Ω))� be the nonlinear map defined by

〈V (u), v〉 =
∫
Ω

(A(x,∇u),∇v)RN dx, for all u, v ∈ W 1,p(Ω). (3)

Here, 〈·, ·〉 denotes the duality pairing between W 1,p(Ω) and its dual (W 1,p(Ω))�. The following result 
mentioning an essential property of the differential operator divA(x, ∇(·)) corresponding to the map A is 
important for the proof of the Palais–Smale condition for the Euler functional associated to problem (Pλ).

Proposition 4. (See [15].) If hypotheses H(a) hold, then the nonlinear map V : W 1,p(Ω) → (W 1,p(Ω))�
defined by (3) is maximal monotone, strictly monotone and of type (S)+ (i.e., if wn → w weakly in W 1,p(Ω)
and

lim sup
n→∞

〈V (wn), wn − w〉 ≤ 0,

then wn → w in (W 1,p(Ω))�).

The following lemma can be found in [27, Lemma 4.11] and will be useful in the estimations that follow.
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Lemma 5. If β ∈ L∞(Ω), β ≥ 0 a.e. in Ω, and β �= 0, then there exists ξ0 > 0 such that

‖∇u‖pp +
∫
Ω

β |u|p dx ≥ ξ0 ‖u‖p for all u ∈ W 1,p(Ω).

This lemma leads to the introduction of

λ1 = inf
{‖∇u‖pp +

∫
Ω β |u|p dx

‖u‖pp
: u ∈ W 1,p(Ω), u �= 0

}
,

which is the first eigenvalue of
{
−Δpu(x) + β(x) |u(x)|p−2

u(x) = λ |u(x)|p−2
u(x), in Ω,

∂u
∂n = 0, on ∂Ω.

We know that λ1 is simple and is the only eigenvalue with eigenfunctions of constant sign. All the higher 
eigenvalues have nodal eigenfunctions. We denote by ϕ1 ∈ C+ \{0} the positive eigenfunction corresponding 
to λ1. Note that β ∈ L∞(Ω). It is also known that ϕ1 ∈ intC+ ∩ C1,α(Ω) for some α ∈ (0, 1) (see [36]).

Since hypotheses H(f)(i)–(iii) give the behavior of f just in a neighborhood of zero, the functional
∫
Ω

(λF (x, u)dx + 1
p�

g(x) |u|p
�

)dx

is not well defined in W 1,p(Ω). To overcome this difficulty, we use here a penalization technique in the spirit 
of the argument developed in [8] to obtain a new functional well defined in W 1,p(Ω). For this purpose, we 
first observe that hypotheses H(f)(i)–(ii) imply that for x ∈ Ω and |t| small,

∣∣f(x, t)
∣∣ ≤ ∣∣t∣∣τ−1

, F (x, t) ≤ 1
τ
|t|τ (4)

and

F (x, t) ≥ |t|r . (5)

It is clear that for |t| small,

|t|p
�

p�
≤ 1

τ
|t|τ . (6)

Now, let ρ(t) ∈ C1(R, [0, 1]) be an even cut-off function verifying tρ′(t) ≤ 0, |tρ′(t)| ≤ 2
σ and

ρ(t) =
{

1 if |t| ≤ σ,

0 if |t| ≥ 2σ,

where σ ∈ (0, δ2 ) is chosen such that (4)–(6) and H(f)(iii) hold for |t| ≤ 2σ. Using ρ, we define

F̃ (x, t) = ρ(t)F (x, t) + (1 − ρ(t)) |t|
τ

τ
, H̃(x, t) = ρ(t)g(x) |t|

p�

p�
+ (1 − ρ(t)) |t|

τ

τ

and f̃(x, t) = ∂ F̃ (x, t), ̃h(x, t) = ∂ H̃(x, t). We now introduce the following auxiliary problem
∂t ∂t
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{
−divA(x,∇u) + β(x) |u|p−2

u = λf̃(x, u) + h̃(x, u) in Ω,
∂u
∂n = 0 on ∂Ω.

(7)

Let Jλ : W 1,p(Ω) → R be the energy functional associated to problem (7), defined by

Jλ(u) =
∫
Ω

G(x,∇u)dx + 1
p

∫
Ω

β |u|p dx− λ

∫
Ω

F̃ (x, u)dx−
∫
Ω

H̃(x, u)dx, u ∈ W 1,p(Ω). (8)

Then Jλ ∈ C1(W 1,p(Ω), R), and the derivative of J is given by

〈J ′
λ(u), v〉 =

∫
Ω

(A(x,∇u),∇v)RN dx +
∫
Ω

β |u|p−2
uvdx− λ

∫
Ω

f̃(x, u)vdx−
∫
Ω

h̃(x, u)vdx (9)

for u, v ∈ W 1,p(Ω). Thus weak solutions of problem (7) are critical points of the functional Jλ on W 1,p(Ω). 
We note that critical points of Jλ with L∞ norm less than or equal to σ are also solutions of the original 
problem (Pλ).

In order to study the critical points of Jλ, we now recall an abstract critical point theorem. Let E be a 
real Banach space and J ∈ C1(E, R). We say that J satisfies the Palais–Smale condition ((PS) condition 
for short) if for every sequence {un} ⊂ E such that J(un) is bounded and J ′(un) → 0 as n → ∞, there 
exists a subsequence of {un} which is convergent in E.

Lemma 6. (Mountain pass lemma; see [34].) Let E be a real Banach space and J ∈ C1(E, R) with J(0) = 0
satisfy the (PS) condition. Suppose that

(i) there exist constants ρ > 0, a > 0 such that J(u) ≥ a for all u ∈ ∂Bρ, where Bρ = {u ∈ E : ‖u‖ < ρ}, 
∂Bρ denotes the boundary of Bρ;

(ii) there exists e ∈ E such that ‖u‖ > ρ and J(e) ≤ 0.

Then J possesses a critical value c ≥ a and

c = inf
h∈Γ

max
s∈[0,1]

J(h(s)),

where Γ = {h ∈ C([0, 1], E) : h(0) = 0, h(1) = e}.

3. Solutions of constant sign

In this section, first we establish the existence of at least two nontrivial constant sign smooth solutions 
(one positive and the other negative). Then we show that in fact we have “extremal” constant sign solutions, 
i.e., there exist a smallest nontrivial positive solution and a biggest nontrivial negative solution.

Lemma 7. Assume that H(f) be satisfied. Then

(i) there exists a constant C > 0 such that
∣∣f̃(x, t)

∣∣ ≤ C |t|τ−1
,

∣∣h̃(x, t)
∣∣ ≤ C |t|τ−1 for any x ∈ Ω and t ∈ R.

(ii) it holds that

0 < θF̃ (x, t) ≤ tf̃(x, t), 0 < θH̃(x, t) ≤ th̃(x, t) for any x ∈ Ω and t ∈ R\{0},
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where θ = min{μ, τ}.

Proof. It follows from the definition of f̃ that

tf̃(x, t) = tρ(t)f(x, t) + tρ′(t)
(
F (x, t) − |t|τ

τ

)
+ (1 − ρ(t)) |t|τ (10)

Since |tρ′(t)| ≤ 2
σ , by (4) we get 

∣∣f̃(x, t)
∣∣ ≤ C |t|τ−1. Similarly, we see that 

∣∣g(x)h̃(x, t)
∣∣ ≤ C |t|τ−1.

In order to (ii) we observe that

θF̃ (x, t) ≤ θ

μ
ρ(t)tf(x, t) + θ(1 − ρ(t)) |t|

τ

τ
≤ ρ(t)tf(x, t) + (1 − ρ(t)) |t|τ

(see (H(f)(iii)). This together with (10) implies that

θF̃ (x, t) − tf̃(x, t) ≤ −tρ′(t)
(
F (x, t) − |t|τ

τ

)
≤ 0

(see (4) and recall that tρ′(t) ≤ 0). Similarly, we see that 0 < θH̃(x, t) ≤ th̃(x, t). Thus, the proof the lemma 
is over. �

In order to show that solutions of penalized problem (7) are solutions of the original problem (Pλ), we will 
use the following L∞ estimate. From now on, it will be assumed that λ ≥ 1 (which is not very restrictive 
since we are looking for nontrivial solutions when λ is large). And we denote by C, C0, C1, , · · · positive 
(possibly different) constants which do not depend on λ.

Lemma 8. If u ∈ W 1,p(Ω) is a solution of problem (7), then u ∈ L∞(Ω) and there exists a constant 
C = C(τ, N, Ω) > 0 such that

‖u‖∞ ≤ Cλ
1

p�−τ ‖u‖
p�−p
p�−τ .

Proof. The proof relies on the Moser iteration technique (cf. [7,20]). Let u ∈ W 1,p(Ω) be a solution of 
problem (7). We can assume, without lost of generality, that u is nonnegative. Otherwise, we argue with 
the positive and negative parts of u separately. We define uT (x) := min{u(x), T} for T > 0. It is clear that 
0 ≤ uT ≤ u, ∇u∇uT ≥ 0 and 

∣∣∇uT

∣∣ ≤ ∣∣∇u
∣∣. For α > 1, we note ϕ = u

p(α−1)
T u and ψ = uα−1

T u. Then, by 
taking as test function ϕ and using Lemma 7, we have

∫
Ω

(A(x,∇u),∇ϕ)RN dx +
∫
Ω

β
∣∣u∣∣p−2

uϕdx = λ

∫
Ω

f̃(x, u)ϕdx +
∫
Ω

h̃(x, u)ϕdx

≤ 2λC
∫
Ω

uτ−pψpds. (11)

By Lemma 2 and the definition of uT , we have
∫
Ω

(A(x,∇u),∇ϕ)RN dx ≥ C0

p− 1

∫
Ω

u
p(α−1)
T

∣∣∇u
∣∣pdx + C0p(α− 1)

p− 1

∫
{u≤T}

up(α−1)∣∣∇u
∣∣pdx

≥ C0

p− 1

∫
u
p(α−1)
T

∣∣∇u
∣∣pdx. (12)
Ω
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Since 
∫
Ω β

∣∣u∣∣p−2
uϕdx ≥ 0, from (11) and (12) we see that

∫
Ω

u
p(α−1)
T

∣∣∇u
∣∣pdx ≤ λC1

∫
Ω

uτ−pψpds. (13)

By (11) and (12) again, we have
∫
Ω

β
∣∣u∣∣p−2

uϕdx ≤ 2λC
∫
Ω

uτ−pψpds. (14)

From (2), (13), (14) and Lemma 5, it follows the inequality

(∫
Ω

ψp�

dx
) p

p� ≤ C2
∥∥ψ∥∥p ≤ C3

∫
Ω

∣∣∇ψ
∣∣pdx + C3

∫
Ω

β
∣∣ψ∣∣pdx

≤ C3

∫
Ω

(
u
p(α−1)
T

∣∣∇u
∣∣p + (α− 1)pupu

p(α−2)
T

∣∣∇uT

∣∣p)dx + 2λCC3

∫
Ω

uτ−pψpds

≤ C4α
p

∫
Ω

u
p(α−1)
T

∣∣∇u
∣∣pdx + 2λCC3

∫
Ω

uτ−pψpds

≤ λC5α
p

∫
Ω

uτ−pψpdx

(since αp ≥ 1 and 1 + (α − 1)p ≤ αp for α ≥ 1). We now use Hölder’s inequality, with exponents p�

τ−p and 
p�

p�−(τ−p) , to obtain

(∫
Ω

ψp�

dx
) p

p� ≤ λC5α
p
(∫

Ω

up�

dx
) τ−p

p�
(∫

Ω

ψ
pp�

p�−(τ−p) dx
) p�−(τ−p)

p�

.

By (2), we obtain

∥∥ψ∥∥p
p� ≤ λC6α

p
∥∥u∥∥τ−p∥∥ψ∥∥p

γ� ,

where γ� = pp�

p�−(τ−p) . Considering α = 1 + p�−τ
p , we obtain

(∫
Ω

∣∣uα−1
T u

∣∣p�

dx
) p

p� ≤ λC6α
p
∥∥u∥∥τ−p

(∫
Ω

uαγ�

dx
) p

γ�

.

We now apply the Fatou’s lemma to the variable T to obtain

‖u‖αpαp� ≤ λC6α
p
∥∥u∥∥τ−p ‖u‖αpαγ�

and so

‖u‖αp� ≤
(
λC6α

p
∥∥u∥∥τ−p) 1

αp ‖u‖αγ� . (15)

Taking α0 = α and inductively αn+1 = p�αn

γ� for n = 0, 1, 2, · · · , and applying the previous processes for α1, 
by (15) we have
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‖u‖α1p� ≤
(
λC6α

p
1
∥∥u∥∥τ−p) 1

α1p ‖u‖α1γ�

≤
(
λC6α

p
1
∥∥u∥∥τ−p) 1

α1p
(
λC7α

p
∥∥u∥∥τ−p) 1

αp ‖u‖αγ�

≤
(
λC6

∥∥u∥∥τ−p) 1
αp+ 1

α1pα
1
αα

1
α1
1 ‖u‖p� .

Note that αn+1 = χαn, where χ = p�

γ� . An iterative process leads to

‖u‖αnp� ≤
(
λC6

∥∥u∥∥τ−p)σn
αp α

σn
α χ

ςn
α ‖u‖p� ,

where σn =
∑n

k=0 χ
−k and ςn =

∑n
k=0 kχ

−k. Since limn→∞ σn = p�

p�−γ� and limn→∞ ςn = γ�

p�−γ� , we let 
n → ∞ to conclude that

‖u‖∞ ≤
(
λC6

∥∥u∥∥τ−p) p�

αp(p�−γ�)α
p�

α(p�−γ�)χ
γ�

α(p�−γ�) ‖u‖ = Cλ
1

p�−τ ‖u‖
p�−p
p�−τ

and the proof the lemma is over. �
In the two following lemmas, we prove some well-known results from critical point theory for the energy 

functional Jλ defined by (8).

Lemma 9. Under the hypotheses of Theorem 1, the functional Jλ exhibits the mountain-pass geometry:

(i) there exist constants ρλ > 0, aλ > 0 such that Jλ(u) ≥ aλ for all ‖u‖ = ρλ.
(ii) let e = σ

2 ∈ W 1,p(Ω), then there exists λ0 ≥ 1 such that ‖e‖ > ρλ and Jλ(e) < 0 for all λ ≥ λ0.

Proof. It follows from Lemmas 3, 5 and 7 and (2) that

Jλ(u) ≥ C0

p(p− 1) ‖∇u‖pp + 1
p

∫
Ω

β |u|p dx− (λC3 + C4) ‖u‖ττ

≥ ‖u‖p (C5 − λC6 ‖u‖τ−p)

(recall that λ ≥ 1 and τ > p). Taking ρλ =
(

C5
2λC6

) 1
τ−p , we have

Jλ(u) ≥ aλ := C5

2 ρpλ > 0 for u ∈ W 1,p(Ω), ‖u‖ = ρλ.

Next we prove (ii). Since ρλ → 0 as λ → ∞, we get ‖e‖ > ρλ for λ large. By virtue of (5) and the 
definition of F̃ , we know that F̃ (x, e) ≥ |e|r for any x ∈ Ω. Then

Jλ(e) ≤ 1
p

∫
Ω

β |e|p dx− λ

∫
Ω

F̃ (x, e)dx ≤ C7 |e|p − λC8 |e|r ,

which implies that there exists λ0 ≥ 1 such that Jλ(e) < 0 for λ ≥ λ0. �
Lemma 10. If hypotheses H(a) and H(f) hold, then, for every λ > 0, the functional Jλ satisfies (PS) condition.

Proof. Let {un} ⊂ W 1,p(Ω) be such that d := supn∈N Jλ(un) < ∞, and J ′
λ(un) → 0 in W 1,p(Ω)� as n → ∞. 

For n sufficiently large, and by H(a)(iv) and Lemma 7, one has
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d + 1 + ‖un‖ ≥ Jλ(un) − 1
θ
〈J ′

λ(un), un〉

=
∫
Ω

G(x,∇un)dx + 1
p

∫
Ω

β |un|p dx− λ

∫
Ω

F̃ (x, un)dx

−
∫
Ω

H̃(x, un)dx− 1
θ

∫
Ω

(A(x,∇un),∇un)RN dx

− 1
θ

∫
Ω

β |un|p dx + λ

θ

∫
Ω

f̃(x, un)undx + 1
θ

∫
Ω

h̃(x, un)undx

≥ (1 − p

θ
)
∫
Ω

G(x,∇un)dx +
(1
p
− 1

θ

) ∫
Ω

β |un|p dx

≥ C1 ‖un‖p (16)

(see Lemmas 3 and 5). Therefore {un} is bounded in W 1,p(Ω). Passing if necessary to a suitable subsequence, 
we may assume that

un → u weakly in W 1,p(Ω) and un → u in Ls(Ω), (17)

where s ∈ [p, p�). Since |〈J ′
λ(un), v〉| ≤ εn ‖v‖ for all v ∈ W 1,p(Ω) with εn ↓ 0+, we have

∣∣〈V (un), un − u
〉

+
∫
Ω

(
β |un|p−2

un − λf̃(x, un) − h̃(x, un)
)
(un − u)dx

∣∣ ≤ εn ‖un − u‖ . (18)

From (17) and Lemma 7, it follows that

∫
Ω

(
β |un|p−2

un − λf̃(x, un) − h̃(x, un)
)
(un − u)dx → 0.

So, if in (18) we pass to the limit as n → ∞, then we obtain 〈V (un), un − u〉 → 0. This and Proposition 4
mean that {un} strongly converges to u in W 1,p(Ω). Therefore, Jλ satisfies (PS) condition for all λ > 0. �
Lemma 11. Let hypotheses H(a) and H(f) be satisfied. Let u ∈ W 1,p(Ω) be a critical point of Jλ. Then there 
exists C > 0, independent of λ, such that ‖u‖p ≤ CJλ(u).

Proof. Let u ∈ W 1,p(Ω) be a critical point of Jλ. Similarly to (16), we have C1 ‖u‖p ≤ Jλ(u), where C1 > 0
is independent on λ, and the proof the lemma is over. �
Lemma 12. Assume that hypotheses H(a) and H(f) hold. Then, there exists λ� > 0 such that for all λ ≥ λ�

problem (Pλ) has at least one nontrivial solution uλ ∈ C1(Ω) ∩ [−σ, σ] and limλ→+∞ ‖uλ‖ = 0, where 
[−σ, σ] = {u ∈ W 1,p(Ω) : −σ ≤ u(x) ≤ σ a.e. in Ω}.

Proof. Lemmas 9 and 10 guarantee that for any λ ≥ λ0 the energy functional Jλ satisfies all the assumptions 
of the Mountain Pass Lemma (see Lemma 6). Hence, for any λ ≥ λ0 there exists a nontrivial critical point 
uλ ∈ W 1,p(Ω) of Jλ with critical value cλ and

Jλ(0) = 0 < aλ ≤ cλ = inf max Jλ(h(s)),

h∈Γ s∈[0,1]
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where Γ = {h ∈ C([0, 1], E) : h(0) = 0, h(1) = e}. In order to get the estimate of the critical level cλ, we 
introduce the following energy functional

Iλ(u) =
∫
Ω

G(x,∇u)dx + 1
p

∫
Ω

β |u|p dx− λ

∫
Ω

|u|r dx, u ∈ W 1,p(Ω).

Let ϕλ(t) = tp

p ‖β‖∞ ‖e‖pp − λtr ‖e‖rr. We can obtain through straightforward calculations that

max
t≥0

ϕλ(t) = r − p

pr
r−

p
r−p ‖β‖

r
r−p
∞ ‖e‖

rp
r−p
p ‖e‖−

rp
r−p

r λ− p
r−p .

Then, using (8) and the fact e = σ
2 , we have

cλ ≤ max
t∈[0,1]

Jλ(te) ≤ max
t∈[0,1]

Iλ(te) ≤ max
t≥0

ϕλ(t) ≤ Cλ− p
r−p , (19)

where C > 0 is independent of λ ≥ 1. By virtue of (19) and Lemmas 8 and 11, we obtain

∥∥uλ

∥∥
∞ ≤ Cλ− p�−r

(p�−τ)(r−p) , (20)

where the exponent of λ is negative, so that there exists λ� ≥ λ0 such that Cλ− p�−r
(p�−τ)(r−p) ≤ σ for any 

λ ≥ λ�. Hence, uλ ∈ [−σ, σ] is a nontrivial solution of the original problem (Pλ), and the nonlinear regularity 
theory (see [21, Theorem 2]) implies that uλ ∈ C1(Ω). Using again (19) and Lemma 11, we conclude that 
limλ→+∞ ‖uλ‖ = 0. The proof is complete. �

As we already mentioned in the Introduction, our method of proof involves also truncation techniques. 
So, we introduce the following truncations:

Q+
λ (x, t) =

{
Qλ(x, t) if t > 0
0 if t ≤ 0

and Q−
λ (x, t) =

{
Qλ(x, t) if t < 0
0 if t ≥ 0,

where Qλ(x, t) := λF̃ (x, t) + H̃(x, t) (see Section 2), and consider the C1-functionals J±
λ : W 1,p(Ω) → R

defined for all u ∈ W 1,p(Ω) by

J±
λ (u) =

∫
Ω

G(x,∇u)dx + 1
p

∫
Ω

β |u|p dx−
∫
Ω

Q±
λ (x, u)dx.

Lemma 13. Assume that hypotheses H(a) and H(f) hold and λ ≥ λ� (λ� > 0 as in Lemma 12). Then 
problem (Pλ) has at least two nontrivial constant sign smooth solutions: uλ,1 ∈ intC+ ∩ [0, σ] and uλ,2 ∈
−intC+ ∩ [−σ, 0], with limλ→+∞ ‖uλ,i‖ = 0 for i = 1, 2.

Proof. First we produce the positive smooth solution. Arguing as in the proofs of Lemmas 9–12, we obtain 
the corresponding results for the functional J+

λ . So, using the Mountain Pass Lemma, we can find uλ,1 ∈
C1(Ω) ∩ [−σ, σ], uλ,1 �= 0 such that J ′

λ(uλ,1) = 0, thus

〈V (uλ,1), v〉 +
∫
Ω

β
∣∣uλ,1

∣∣p−2
uλ,1vdx =

∫
Ω

q+
λ (x, uλ,1)vdx, v ∈ W 1,p(Ω), (21)

where q+(x, t) = ∂ Q+(x, t). In (21), we choose v = −u− ∈ W 1,p(Ω). Using Lemmas 2 and 5, we have
λ ∂t λ λ,1



JID:YJMAA AID:20959 /FLA Doctopic: Partial Differential Equations [m3L; v1.194; Prn:2/01/2017; 13:41] P.12 (1-19)
12 T. He et al. / J. Math. Anal. Appl. ••• (••••) •••–•••
ξ1
∥∥u−

λ,1
∥∥p ≤ C0

p− 1
∥∥∇u−

λ,1
∥∥p
p

+
∫
Ω

β
∣∣u−

λ,1
∣∣pdx ≤

〈
V (uλ,1),−u−

λ,1
〉

+
∫
Ω

β
∣∣u−

λ,1
∣∣pdx = 0,

where ξ1 > 0, so uλ,1 ≥ 0, uλ,1 �= 0. Note that

−divA(x,∇uλ,1) + β |uλ,1|p−2
uλ,1 = λf(x, uλ,1) + g(x) |uλ,1|p

�−2
uλ,1 ≥ 0 a.e. in Ω, (22)

by hypothesis H(f)(iii). From the maximum principle of [24] (see also [9]) and (22), we get uλ,1 ∈ intC+ ∩
[0, σ]. By Lemma 12, we have that limλ→+∞ ‖uλ,1‖ = 0.

Similarly, working with the functional J−
λ and using the Mountain Pass Lemma, we show that for every 

λ ≥ λ�, problem (Pλ) has another solution uλ,2 ∈ −intC+ ∩ [−σ, 0] and limλ→+∞ ‖uλ,2‖ = 0. The proof is 
complete. �

In fact, we can show that there exist extremal constant sign solutions for problem (Pλ) with λ ≥ λ�, 
i.e., there is a smallest nontrivial positive solution u� ∈ intC+ and a biggest nontrivial negative solution 
v� ∈ −intC+.

Lemma 14. If hypotheses H(a) and H(f) hold and λ ≥ λ�, then problem (Pλ) admits a smallest nontrivial 
positive solution u� ∈ intC+ ∩ [0, σ] and a biggest nontrivial negative solution v� ∈ −intC+ ∩ [−σ, 0].

Proof. We do the proof for u�, the proof for v� being similar. Let

S+
λ = {u ∈ W 1,p(Ω) : u is a positive solution of problem (Pλ) with u ∈ [0, σ] ∩ intC+}.

Since λ ≥ λ�, using Lemma 13 we know that S+
λ �= ∅. Let C ⊆ S+

λ be a chain (i.e., a totally ordered subset 
of S+

λ ). From Dunford–Schwartz [11, p. 336], we know that we can find {un} ⊆ C such that

inf C = inf
n≥1

un.

Because of un ∈ S+
λ for every n ∈ N, we have 0 ≤ un ≤ σ and

V (un) + βup−1
n = λNf̃ (un) + Nh̃(un). (23)

Hence {un}n≥1 ⊆ W 1,p(Ω) is bounded. So, we may assume without loss of generality that

un → u weakly in W 1,p(Ω) and un → u in Lp(Ω). (24)

On (23) we act with un − u ∈ W 1,p(Ω), pass to the limit as n → ∞ and use (24). We immediately obtain

lim
n→∞

〈V (un), un − u〉 = 0.

This and Proposition 4 mean that {un} strongly converges to u in W 1,p(Ω). Using this fact we can pass 
again to the limit as n → ∞ in (23) which gives

V (u) + βup−1 = λNf̃ (u) + Nh̃(u).

Then by (24), u ∈ [0, σ] is a solution of problem (Pλ). We now show that u �= 0. Arguing indirectly, suppose 
that u = 0. We have un → 0 in W 1,p(Ω). Then hypothesis H(f)(i) implies that



JID:YJMAA AID:20959 /FLA Doctopic: Partial Differential Equations [m3L; v1.194; Prn:2/01/2017; 13:41] P.13 (1-19)
T. He et al. / J. Math. Anal. Appl. ••• (••••) •••–••• 13
∫
Ω

1
‖un‖ p

f̃(x, un)undx → 0 and
∫
Ω

1
‖un‖ p

h̃(x, un)undx → 0

(recall that un ∈ [0, σ], n ≥ 1). Acting on (23) with un

‖un‖p ∈ W 1,p(Ω) and passing to the limit as n → ∞, 
one gets, thanks to Lemmas 5 and 2,

0 < C ≤ 1
‖un‖p

( C0

p− 1

∫
Ω

|∇un|p dx +
∫
Ω

β |un|p dx
)

≤ 1
‖un‖p

(∫
Ω

(A(x,∇un),∇un)RN dx +
∫
Ω

β |un|p dx
)

= 1
‖un‖p

(
λ

∫
Ω

f̃(x, un)undx +
∫
Ω

h̃(x, un)undx
)

→ 0,

a contradiction. This proves that u �= 0. As before, via the nonlinear maximum principle (see [9,24]), we 
have that u ∈ intC+, and so u ∈ S+

λ . Since C is an arbitrary chain, from the Kuratowski–Zorn lemma we 
infer that S+

λ has a minimal element u� ∈ S+
λ . Note that S+

λ is downward directed, we obtain that u� is 
the smallest nontrivial positive solution of problem (Pλ). Similarly, we produce v� ∈ −intC+, the biggest 
nontrivial negative solution of problem (Pλ). �
4. Sign-changing solution

In this section by virtue of flow invariance arguments, we use the two extremal solutions u� ∈ intC+ and 
v� ∈ −intC+ obtained in Lemma 14 to produce sign-changing (nodal) solution for problem (Pλ). Throughout 
this section, we denote the set of critical points of Jλ by KJλ

, that is, KJλ
:=

{
u ∈ W 1,p(Ω) : J ′

λ(u) = 0
}
. For 

convenience, we denote {u ∈ W 1,p(Ω) : v�(x) ≤ u(x) ≤ u�(x) a.e. in Ω} by [v�, u�]. The sets intC1(Ω) [v�, u�]
and ∂C1(Ω) [v�, u�] are the interior and boundary of the order interval [v�, u�] in C1(Ω), respectively.

Consider the map T : W 1,p(Ω) → (W 1,p(Ω))� defined for all u, v ∈ W 1,p(Ω) by

〈T (u), v〉 =
∫
Ω

(A(x,∇u),∇v)RN dx +
∫
Ω

(β + m) |u|p−2
uvdx

with m > 0 as in hypothesis H(f) (iv). Then, the inverse T−1 : (W 1,p(Ω))� → W 1,p(Ω) of T exists and it is 
continuous (see [26, Proposition 9]). Let

Bλ(u) = T−1(qλ(·, u) + m |u|p−2
u) for u ∈ W 1,p(Ω), (25)

where qλ(·, t) = ∂
∂t (λF̃ (·, t) +H̃(·, t)) (see Section 2). Due to Lemma 7 and the Sobolev Embedding Theorem, 

Bλ is a compact operator (continuous and maps bounded sets into relatively compact sets) from W 1,p(Ω) →
W 1,p(Ω). Moreover, critical points of the energy functional Jλ correspond to fixed points of Bλ. From the 
regularity result in [21] we have Bλ(C1(Ω)) ⊆ C1(Ω).

Lemma 15. If hypotheses H(a) and H(f) hold, λ ≥ λ�, then Bλ(±C+ \ {0}) ⊆ (±intC+) and Bλ([v�, u�]) ⊆
[v�, u�].

Proof. We first do the proof for u ∈ C+ \ {0}. The proof is similar for u ∈ −C+ \ {0}. Let v = Bλ(u). We 
have v ∈ C1(Ω) and
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−divA(x,∇v) + (β(x) + m) |v|p−2
v = qλ(x, u) + m |u|p−2

u, in Ω.

As before, taking −v−as a test function, we obtain

C
∥∥v−∥∥p ≤

∫
Ω

(A(x,∇v),−∇v−)RN dx +
∫
Ω

(β(x) + m)
∣∣v−∣∣p dx

= −
∫
Ω

(qλ(x, u) + m |u|p−2
u)v−dx ≤ 0

(see Lemmas 2 and 5). Therefore v− = 0 a.e. in Ω. Evidently qλ(·, u) +m |u|p−2
u �= 0 in (W 1,p(Ω))�. Then 

v �= 0 due to v = T−1(qλ(·, u) + m |u|p−2
u). Consequently, v ∈ C+ \ {0} (see [21]). Note that

−divA(x,∇v) + (β(x) + m) |v|p−2
v = qλ(x, u) + m |u|p−2

u ≥ 0, in Ω. (26)

From the maximum principle of [24] (see also [9]) and (26), we get v = Bλ(u) ∈ intC+.
Next, we claim that Bλ(u0) ∈ [v�, u�] for every u0 ∈ [v�, u�]. Indeed, we have v0 := Bλ(u0) ∈ C1(Ω) and

V (v0) + (β(x) + m) |v0| p−2v0 = Nqλ(u0) + m |u0|p−2
u0. (27)

As before, on (27) we act with (v0 − u�)+ ∈ W 1,p(Ω). Then, using hypothesis H(f)(iv) and recalling that 
u� ∈ intC+ solves problem (Pλ), we have

〈
V (v0), (v0 − u�)+

〉
+

∫
Ω

(β(x) + m) |v0|p−2
v0(v0 − u�)+dx

=
∫
Ω

(qλ(x, u0) + m |u0|p−2
u0)(v0 − u�)+dx

≤
∫
Ω

(qλ(x, u�) + m |u�|p−2
u�)(v0 − u�)+dx

=
〈
V (u�), (u0 − u�)+

〉
+
∫
Ω

(β(x) + m) |u�| p−2u�(v0 − u�)+dx,

so

〈
V (v0) − V (u�), (v0 − u�)+

〉
+

∫
Ω

(β(x) + m)(|v0| p−2v0 − |u�| p−2u�)(v0 − u�)+dx ≤ 0

and thus |{v0 > u�}|N = 0, i.e. v0 ≤ u�. Similarly, acting on (27) with (v� − v0)+ ∈ W 1,p(Ω), we obtain 
v� ≤ v0. Therefore, v0 ∈ [v�, u�] and the claim holds. �

The proof of the following lemma can be shown by the argument in [4, Lemmas 3.7 and 3.8]. Thus, we 
omit the proof.

Lemma 16. Let λ ≥ λ�. Then, there exist ai = ai(λ) > 0 (i = 1, 2) such that for all u ∈ W 1,p(Ω),

(i) if 1 < p ≤ 2, then
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〈J ′
λ(u), u−Bλ(u)〉 ≥ a1 ‖u−Bλ(u)‖2 (‖u‖ + ‖Bλ(u)‖)p−2,

‖J ′
λ(u)‖ ≤ a2 ‖u−Bλ(u)‖p−1 ;

(ii) if p ≥ 2, then

〈J ′
λ(u), u−Bλ(u)〉 ≥ a1 ‖u−Bλ(u)‖p ,

‖J ′
λ(u)‖ ≤ a2 ‖u−Bλ(u)‖ (‖u‖ + ‖Bλ(u)‖)p−2.

We need to construct a special descending flow of Jλ. Since it is not assumed that Bλ is locally Lipschitz 
continuous, we first construct a locally Lipschitz continuous operator Aλ on X = W 1,p(Ω) \ KJλ

, which 
inherits the properties of Bλ. The next result follows from a similar argument as in [4, Lemma 4.1]; [26, 
Lemma 17] using the properties of Bλ described in Lemmas 15 and 16.

Lemma 17. Let λ ≥ λ�. Then, there exists a locally Lipschitz continuous operator Aλ : X → W 1,p(Ω) with 
the following properties:

(i) Aλ(±C+ \ {0}) ⊆ (±intC+) and Aλ([v�, u�]) ⊆ [v�, u�];
(ii) for all u ∈ X,

1
2 ‖u−Bλ(u)‖ ≤ ‖u−Aλ(u)‖ ≤ 2 ‖u−Bλ(u)‖ ;

(iii) for all u ∈ X and a1 as in Lemma 16,

〈J ′
λ(u), u−Aλ(u)〉 ≥ a1

2 ‖u−Bλ(u)‖2 (‖u‖ + ‖Bλ(u)‖)p−2 if 1 < p ≤ 2,

〈J ′
λ(u), u−Aλ(u)〉 ≥ a1

2 ‖u−Bλ(u)‖p if p ≥ 2.

For u ∈ X, we consider the following initial value problem in X:

{
dφλ(t,u)

dt = −φλ(t, u) + Aλ(φλ(t, u))
φλ(0, u) = u,

(28)

where λ ≥ λ�. By the theory of ordinary differential equations in Banach spaces, (28) has a unique solution 
in X, still denoted by φλ(t, u), with right maximal interval of existence [0, τ(u)). Note that Jλ(φλ(t, u)) is 
strictly decreasing in t ∈ [0, τ(u)) and therefore φλ(t, u)(0 ≤ t < τ(u)) is called a descending flow curve. 
The flow is given by

φλ(t, u) = e−tu +
t∫

0

e−(t−s)Aλ(φλ(s, u))ds for 0 ≤ t < τ(u). (29)

Definition 18. (See [22].) A nonempty subset M of W 1,p(Ω) is said to be positive invariant for the descending 
flow φλ if

{φλ(t, u) : 0 ≤ t < τ(u)} ⊆ M

for all u ∈ M \KJλ
.
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Lemma 19. If hypotheses H(a) and H(f) hold and λ ≥ λ�, then [v�, u�] and intC1(Ω) [v�, u�] are positive 
invariant for the flow φλ.

Proof. We first show that [v�, u�] is positive invariant for the flow φλ. We argue by contradiction. Thus, 
suppose that there exists u ∈ [v�, u�] \ KJλ

such that φλ(t, u) /∈ [v�, u�] for some t ∈ [0, τ(u)). Let 0 ≤
t1 < t2 < τ(u) be such that φλ(t1, u) ∈ ∂C1(Ω) [v�, u�] and φλ(t, u) /∈ [v�, u�] for t1 < t < t2. Note that 
ηλ(t) := φλ(t + t1, u) is a solution of

{
dηλ(t)

dt = −ηλ(t) + Aλ(ηλ(t)) 0 ≤ t < t2 − t1,

ηλ(0) = φλ(t1, u).

Moreover, the convexity of [v�, u�] and Lemma 17 (i) imply that for 0 ≤ s ≤ 1,

ηλ(0) + s(−ηλ(0) + Aλ(ηλ(0)) = (1 − s)ηλ(0) + sAλ(ηλ(0)) ∈ [v�, u�].

By Theorem 6.3 of [6], we know that there exists 0 < t3 < t2−t1 such that ηλ(t) = φλ(t +t1, u) ∈ [v�, u�] for 
0 ≤ t < t3. This is a contradiction. Therefore, for every u ∈ [v�, u�] \KJλ

, {φλ(t, u) : 0 ≤ t < τ(u)} ⊆ [v�, u�].
Next, we prove that intC1(Ω) [v�, u�] is positive invariant for the flow φλ. Let u0 ∈ intC1(Ω) [v�, u�], then 

{Aλ(φλ(t, u0)) : 0 ≤ t < τ(u0)} ⊆ [v�, u�]. By (29), we have

φλ(t, u0) = e−tu0 + (1 − e−t) lim
n→∞

1
n

n∑
k=1

Aλ

(
φλ(ln(1 + k

n
(et − 1)), u0)

)

(see [22, p. 272]). Exploiting the fact that [v�, u�] is closed and convex, we have that

w := lim
n→∞

1
n

n∑
k=1

Aλ

(
φλ(ln(1 + k

n
(et − 1)), u0)

)
∈ [v�, u�]

and

φλ(t, u0) = e−tu0 + (1 − e−t)w ∈ intC1(Ω) [v�, u�].

Therefore, intC1(Ω) [v�, u�] is positive invariant for the flow φλ. �
Lemma 20. If hypotheses H(a) and H(f) hold and λ ≥ λ�, then problem (Pλ) admits a sign-changing solution 
uλ,3 ∈ C1(Ω) with limλ→+∞ ‖uλ,3‖ = 0.

Proof. We introduce the following set:

D1 =
{
u ∈ C1(Ω) \KJλ

: φ(t, u) ∈ intC1(Ω) [v�, u�] for some t ∈ [0, τ(u))
}
∪ intC1(Ω) [v�, u�].

Evidently 0 ∈ D1, and by virtue of the continuity of u → φλ(t, u), we see that D1 is an open subset of 
C1(Ω).

Claim 1. D1 and ∂D1 are positive invariant for the flow φλ.

Proof. Let us first show that D1 is positive invariant for the descending flow φλ. Suppose by contradiction 
that there exist u ∈ D1 \KJλ

and t1 ∈ [0, τ(u)) such that φλ(t1, u) /∈ D1, then φλ(t, u) /∈ intC1(Ω) [v�, u�]
for every t1 ≤ t < τ(u). Due to u ∈ D1 \ KJλ

, there exists 0 ≤ t2 < τ(u) such that φλ(t2, u) ∈
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intC1(Ω) [v�, u�]. Recall that intC1(Ω) [v�, u�] are positive invariant for the flow φλ (see Lemma 19). Hence, 
φλ(t, u) ∈ intC1(Ω) [v�, u�] for every t2 ≤ t < τ(u), which is a contradiction.

Next, we prove that ∂D1 is positive invariant for the flow φλ. As in the proof of [22, Lemma 2.3], we argue 
by contradiction. So suppose that we can find u0 ∈ ∂D1\KJλ

and 0 < t0 < τ(u0) such that φλ(t0, u0) /∈ ∂D1. 
Then by the definition of D1, φλ(t0, u0) ∈ C1(Ω) \D1, where D1 is the closure of D1 in C1(Ω). Since D1
is positive invariant for the flow φλ and C1(Ω) \D1 is open, we can find a neighborhood U of u0 in C1(Ω)
such that, for any u1 ∈ U , φλ(t0, u1) ∈ C1(Ω) \D1. Taking u1 ∈ U ∩D1 and recalling that D1 is positive 
invariant for the flow φλ, we get a contradiction. This proves the Claim 1. �

Now let E2 = span{ϕ1, ϕ2}, where ϕ1 > 0, ϕ2 are the first and second eigenfunctions of the differen-
tial operator u → −Δpu + β(x)u, u ∈ W 1,p(Ω), corresponding respectively to the eigenvalues λ1, λ2 (see 
Section 2).

Claim 2. D1 ∩ E2 is a bounded set of E2 and infu∈∂D1 Jλ(u) > −∞.

Proof. By Lemma 7 (ii), we have

F̃ (x, t) ≥ C4 |t|θ − C5 for a.a. x ∈ Ω and all t ∈ R.

Hence, using Lemma 3 and the fact that all norms of a finite dimensional normed space are equivalent, we 
obtain that for any u ∈ S1 := {u ∈ E2 : ‖u‖ = 1},

Jλ(tu) ≤ C1 |t|p

p(p− 1) ‖∇u‖pp +
‖β‖∞ |t|p

p
‖u‖pp − λC4 |t|θ ‖u‖θθ − C6

≤ max
{ C1

p(p− 1) ,
‖β‖∞
p

}
|t|p − λC7 |t|θ − C6.

Thus Jλ(tu) → −∞ as |t| → ∞ uniformly in S1, being p < θ. Since Jλ is bounded from below on [v�, u�], 
we have c := infu∈[v�,u�] Jλ(u) > −∞. Note that for u ∈ D1, t → Jλ(φλ(t, u)) is decreasing. Then,

inf
u∈D1∩E2

Jλ(u) ≥ inf
u∈[v�,u�]∩E2

Jλ(u) ≥ c.

It follows that D1 ∩ E2 is a bounded set in E2.
From the definition of D1, we obtain that φλ(t, u) ∈ intC1(Ω) [v�, u�] for some t ∈ [0, τ(u)), where u ∈ D1. 

Then Jλ(u) ≥ Jλ(φ(t, u)) ≥ c for all u ∈ D1. This implies that Jλ(u) is bounded from below on D1. Let 
u0 ∈ ∂D1. Then we can find a sequence {un}n≥1 ⊆ D1 such that un → u0 and Jλ(un) → Jλ(u0). It follows 
that there exists n0 ≥ 1 such that Jλ(un) < Jλ(u0) + 1 for all n ≥ n0. But recall that Jλ(un) ≥ c for all 
n ≥ 1. Then infu∈∂D1 Jλ(u) ≥ c − 1. This proves the Claim 2. �

Now let

D2 =
{
u ∈ C1(Ω) \KJλ

: φ(t, u) ∈ intC+ for some t ∈ [0, τ(u))
}
∪ intC+.

Clear, D2 is open and 0 ∈ ∂D2. Note that intC+ is positive invariant for the flow φλ (see Lemma 17 (i) and 
(29)). We infer that D2 is also positive invariant for the flow φλ. Moreover, reasoning as in the Claim 1, we 
can show that ∂D2 is positive invariant for the flow φλ. Note that D1 ∩ E2 is a bounded neighborhood of 
0 in E2 (see Claim 2). We may assume that D1 ∩ E2 is connected. (Otherwise, we consider the connected 
component D′

1 ⊂ E2 of D1 ∩ E2, with (0, 0) ∈ D′
1, instead of D1 ∩ E2). By Lemma 2 of [10], ∂D1 ∩ E2

has a connected component Σ that intersects each one-sided ray in E2 through 0 and hence contains some 
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multiples of ±ϕ1 ∈ ±int C+ and intersects ∂D2. Since Σ ⊂ ∂D1 it follows that ∂D1 ∩ (±C+) �= Ø and 
∂D1 ∩ ∂D2 �= Ø. Then, we can define

c� = inf {Jλ(u) : u ∈ ∂D1 ∩ ∂D2} .

Due to Lemma 10 and Claim 2, we have that Jλ satisfies the (PS) condition and c� > −∞. Recall that ∂D1
is closed positive invariant for the flow φλ (see Claim 1). By Lemma 2 in [35], we can find

uλ,3 ∈ ∂D1 ∩ ∂D2 ∩KJλ
.

Note that uλ,3 ∈ C1(Ω) (see Lemma 12 and [21]). Because of uλ,3 ∈ ∂D1, we have uλ,3 �= 0. Also, since 
uλ,3 ∈ ∂D2 and ∂D2 ∩ (±C+ \ {0}) = ∅, we have uλ,3 /∈ int C+ ∪ (−int C+). So by virtue of the strong 
maximum principle of [24,36], uλ,3 cannot have constant sign and so uλ,3 is the desired sign-changing 
solution. Using Lemma 12, we deduce that limλ→+∞ ‖uλ,3‖ = 0. The proof is complete. �
Proof of Theorem 1. This proof is a immediate consequence of Lemmas 13, 14 and 20. �
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