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Abstract

In this note, we use recent zero duality results arising from Monotropic Pro-
gramming problem for analyzing consistency of the convex feasibility problem in
Hilbert spaces. We characterize consistency in terms of the lower semicontinuity
of the infimal convolution of the associated support functions.
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1 Introduction

The Convex Feasibility Problem (CFP), consisting of finding a point in the inter-
section of a finite family of closed and convex sets C1, . . . , Cm in a Hilbert space H,
recasts numerous problems in mathematics and physical sciences. Many iterative
methods have been studied and proved to converge to a point in the intersection pro-
vided it is nonempty. However, in applications it may not be a priori clear whether or
not the intersection is nonempty. Hence, our aim is to analyse the feasibility problem
for sets that may have an empty intersection.

It is well-known that the m-set CFP in a Hilbert space H is equivalent to a simpler
problem involving two convex and closed sets in the cartesian product Hm consisting
of m copies of H, with the additional advantage that one of these sets is a linear
subspace (see, e.g., [1]). Namely, it can be shown that

∩m
i=1Ci �= ∅ ⇐⇒ C̄ ∩D �= ∅,
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where C̄ := {(x1, · · · , xm) ∈ Hm : xi ∈ Ci, i = 1, . . . ,m} = C1 × C2 × . . . × Cm, the
cartesian product of the sets, and D := {(x1, · · · , xm) ∈ Hm : x1 = x2 = · · · = xm},
the closed diagonal subspace of Hm. The product space Hm is a Hilbert space in
which the scalar product, the norm, and the distance, can be defined in a standard
form using the scalar product, the norm, and the distance provided by H, respectively.

Therefore, in our analysis we can assume that we are dealing with the convex
feasibility problem involving only two (possibly disjoint) closed convex sets.

In our analysis, we will pose the convex feasibility problem as a monotropic pro-
gramming problem. Monotropic programming consists of a class of convex optimiza-
tion problems wherein duality results are as powerful as those known for linear pro-
grams. The early signs of research on monotropic programs appear on the seminal
works of Minty [7] and Rockafellar [8, 9, 10]. In its more general setting, this problem
is formulated as follows.

inf
m∑
i=i

fi(xi) subject to (x1, · · · , xm) ∈ S, (P)

where fi : Xi → R = [−∞,+∞] are proper and convex functions defined on separated
locally convex spaces Xi, i = 1, · · · ,m, and S ⊆ ∏m

i=1 Xi is a closed linear subspace
such that S ∩∏m

i=1 domfi �= ∅. Problem (P) is called the extended monotropic pro-
gramming problem. We then use Fenchel duality to pose the dual problem. Under
some constraint qualifications, we will be able to study both the consistent (i.e, when
the intersection of the sets is not empty), and the inconsistent case. The dual problem
of (P) is:

inf
m∑
i=i

−f ∗
i (x

∗
i ) subject to (x∗

1, · · · , x∗
m) ∈ S⊥, (D)

where f ∗(x∗) := supx∈X{〈x∗, x〉− f(x)} is the Fenchel conjugate of f at x∗ ∈ X∗ and
S⊥ = {x∗ ∈ X∗ : 〈x∗, x〉 = 0, ∀x ∈ S} is the orthogonal subspace of S, being X∗

the topological dual space of a separated locally convex space X, endowed with the
weak∗ topology.

Denoting the optimal objective values of (P) and (D) by v(P ) and v(D), respec-
tively, the situation v(P ) = v(D) is called zero duality gap. Not all convex problems
have zero duality gap. Rockafellar was the first to prove a zero duality gap result
for the original class of monotropic programs when each space Xi is R (see [9, 10]),
by using a variant of the ε-descent method. More recently, Bertsekas [3] generalized
this result to extended monotropic programs in which the Xi’s are finite-dimensional
spaces. In [3], the fi’s are assumed to be lower semicontinuous in domfi, for all
i = 1, · · · ,m, and the set

S⊥ +
m∏
i=1

∂εfi(xi), (1.1)
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is assumed to be closed, ∀ε > 0 and ∀(x1, · · · , xm) ∈ ∏m
i=1 domfi

⋂
S, where ∂εfi

denotes the ε-subdifferential of fi. Afterwards, Boţ and Csetnek [4] showed that each
fi has to be lower semicontinuous in the whole space (otherwise the statement is
false) and extended Bertsekas’ result to the general case, under weaker topological
assumptions.

The aim of the present paper is to present a reformulation of the CFP as an
instance of problem (P), and use the resulting dual problem (D) to identify cases on
empty or non-empty intersection.

Our paper is organized as follows. In Section 2 we present the basic definitions
and results, including the dual reformulation of the CFP. In the last section, Section
3, we show how the dual problem provides us information on the intersection of the
sets, under a constraint qualification. More precisely, in Section 3.2, the original two-
set CFP is posed as a monotropic programming problem. Section 3.3 is devoted to
prove the zero duality gap, strong duality and the optimality conditions for such a
monotropic problem. In section 3.4 disjointness of the sets is analyzed in terms of the
optimal value of the dual problem, getting a characterization by means of the lower
semicontinuity of the infimal convolution of the support function of the sets. Focusing
on the most critical case, when the distance of the sets is 0, in section 3.5 we provide
information about the consistency regarding the dual solutions. In the last Section
3.6, the set of solutions is characterized in both the consistent and inconsistent case.

2 Preliminaries
This section collects the mathematical setting, as well as some definitions and results
to be used in the sequel. For more details about these and other well-known notions
see, for instance, [2]. Let us establish the notation used throughout the paper. From
now on, we are focusing on the framework of a Hilbert space H with norm denoted
by ‖ · ‖ and scalar product denoted by 〈·, ·〉. The unit ball of H is denoted by
B := {x ∈ H : ‖x‖ ≤ 1}.

For a subset C of H, we denote by clC, intC, Bd C, the closure, the interior
and the boundary of the set C, respectively. The indicator function of C is denoted
as ιC(x) := 0 if x ∈ C and ιC(x) := +∞ otherwise. The support function of C
is σC(v) := sup

y∈C
〈v, y〉, for any v ∈ H. The normal cone operator of C at x is

NC(x) :=
{
x∗ ∈ X∗ : sup

c∈C
〈c− x, x∗〉 ≤ 0

}
if x ∈ C and NC(x) := ∅ otherwise. If

C is nonempty and convex, the recession cone of C, denoted as recC is the set

recC := {y ∈ H : ∀ x ∈ C and ∀ t ≥ 0, we have x+ t y ∈ C}.
Given a subspace S, the orthogonal subspace is S⊥ := {v ∈ H : 〈v, x〉 = 0, ∀x ∈ S}.
Denote by R−− := (−∞, 0), R+ := [0,+∞) and R := [−∞,+∞].
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Let f : H → R be a function with domain dom f := {x ∈ H : f(x) < +∞} and
epigraph epi f := {(x, r) ∈ H × R : f(x) ≤ r}. The Fenchel conjugate of f is the
function f∗ : H → R defined by

f ∗(v) := sup
x∈H

{〈v, x〉 − f(x)}.

The closure of f is the function cl f : X → R defined as the lower semicontinuous
hull of the function f , which has as epigraph cl epi f . Namely, cl f is the largest lower
semicontinuous function majorized by f , and cl f = lim infy→x f(y), ∀x ∈ H. Hence,
f is lower semicontinuous at x ∈ H if and only if cl f = f .

Given f proper, for ε ≥ 0, the ε-subdifferential of f is the set-valued operator
∂εf : H ⇒ H defined by

∂εf(x) :=

{
{v ∈ H | 〈v, y − x〉 − ε ≤ f(y)− f(x), for all y ∈ H} if f(x) ∈ R

∅ otherwise

When ε = 0, ∂0f(x) = ∂f(x) is the subdifferential of f at x.
For functions ψ1, ψ2 such that ψi : H → R, their infimal convolution is the function

(ψ1�ψ2) : H → R defined by(
ψ1�ψ2

)
z := inf

z1+z2=z

{
ψ(z1) + ψ2(z2)

}
. (2.1)

2.1 Separation of two convex sets

We recall here diverse notions of separation between two sets with the aim of analyzing
the different possible cases of CFP, according to the optimal value in the monotropic
programming dual program. Note that, in general, these notions do not require
disjointness of the sets.

Definition 2.1. Given C1 and C2 nonempty sets in a Hilbert space, a hyperplane
H is said to separate C1 and C2 if C1 is contained in one of the closed half-spaces
defined by H, while C2 lies in the opposite closed half-space; in other words, C1 and
C2 are separated if there exist v ∈ H, ‖v‖ = 1, and δ ∈ R such that

C1 ⊆ H≤
v,δ := {x ∈ H : 〈v, x〉 ≤ δ},

C2 ⊆ H≥
v,δ := {x ∈ H : 〈v, x〉 ≥ δ},

where the sets on the right-hand side denote the half-spaces corresponding to the
separating hyperplane, denoted by

Hv,δ := {x ∈ H : 〈v, x〉 = δ}.
This separation is said to be:
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• proper if C1 and C2 are not contained in H;

• nice if the hyperplane H is disjoint from C1 or C2;

• strict if the hyperplane H is disjoint from both C1 and C2;

• strong if there exist ε > 0 such that C1 + εB is contained in one of the open
half-spaces bounded by H and C2+εB is contained in the other open half-space,
where B is the unit ball; that is,

C1 + εB ⊆ H<
v,δ := {x ∈ H : 〈v, x〉 < δ},

C2 + εB ⊆ H>
v,δ := {x ∈ H : 〈v, x〉 > δ}.

The standard (or basic) separation theorem asserts that C1 and C2, two nonempty
convex sets such that the interior of C1 is nonempty, int C1 �= ∅, are properly separated
if and only if

(int C1) ∩ C2 = ∅.
This result is true in any topological vector space. See for instance [11].

We recall now a lemma from [5], originally written for a Banach space.

Lemma 2.2. Let C and D be closed convex subsets of H. Then C ∩ D �= ∅ if and
only if (0,−1) �∈ cl (epi σC + epi σD).

3 Duality Properties for problems (P ) and (D)

In this section we recall the duality properties for problems (P ) and (D). The first
focus of this section is on zero duality gap, which entails equality of the optimal values
of the primal and dual problem, respectively.

3.1 Zero duality gap

In the following theorem, Boţ and Csetnek establish zero duality gap for the primal-
dual problems (P)–(D) (i.e., v(P ) = v(D)), under the assumption that the set given
in (1.1) is closed. As mentioned in the introduction, Bertsekas provided a similar
result in the setting of Euclidean spaces (see [3, Proposition 4.1]). We quote next [4,
Theorem 3.2].

Theorem 3.1 (Boţ and Csetnek [4]). Let Xi be separately locally convex spaces,
fi : Xi → R := [−∞,+∞] proper and convex functions, i = 1, · · · ,m, S ⊆ ∏m

i=1 Xi

a linear closed subspace such that
∏m

i=1 dom fi ∩ S �= ∅ and g :
∏m

i=1 Xi → R defined
by g(x1, · · · , xm) =

∑m
i=1 fi(xi). Suppose further that cl fi, i = 1, · · · ,m, are proper
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functions and g(x) = cl g(x) for all x ∈ dom cl g ∩ S. If for all (x1, · · · , xm) ∈∏m
i=1 dom fi ∩ S and all ε > 0 the set (1.1) is closed, then v(P ) = v(D).

If the functions fi are lower semicontinuous on Xi, i = 1, · · · ,m, then the topo-
logical assumptions regarding the functions cl fi in Theorem 3.1 are fulfilled (see [4]).

3.2 Duality for CFP

Let C1 and C2 be two closed convex sets in a Hilbert space H whose intersection may
be empty. In general, the CFP, written as

find x ∈ C1 ∩ C2, (3.1)

may not have a solution. Thus we pose an optimization problem that allows to find
the best substitute for a point in the intersection, the so-called best approximation
solution. A natural way to find such best approximation solution is to solve the
following optimization problem:

inf
x∈H

dC1(x) + dC2(x). (O)

Remark 3.2. Unlike the CFP, problem (O) always has a finite optimal value, as long
as each of the sets is nonempty. Indeed, it is easy to check that the optimal value
of (O) is exactly the distance between C1 and C2, d(C1, C2) (which is finite when
C1 �= ∅ �= C2). Indeed, for any x1 ∈ C1 and x2 ∈ C2, set z = αx1 + (1 − α)x2 ∈ H,
for some α ∈ (0, 1). Hence ‖x1 − z‖+ ‖x2 − z‖ = ‖x1 − x2‖, and

inf
x∈H

dC1(x) + dC2(x) ≤ dC1(z) + dC2(z)

≤ ‖x1 − z‖+ ‖x2 − z‖ = ‖x1 − x2‖.
Then

inf
x∈H

dC1(x) + dC2(x) ≤ d(C1, C2).

The opposite inequality follows from the triangular inequality.
To introduce duality, we write Problem (O) as an instance of the monotropic

programming problem. Namely, consider the “diagonal” subspace S := {(x, y) ∈ H2 :
x = y}, and write Problem (O) as

inf
(x,y)∈S

dC1(x) + dC2(y). (P )

The objective function in this problem consists of the sum of the terms f1 := dC1(·)
and f2 := dC2(·). Both f1, f2 : H → R are convex and continuous everywhere, and
are functions of the separate variables x and y, respectively.
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Following [3] (see also problem (D) in the introduction), the primal problem (P )
has for dual:

sup
(v,w)∈S⊥

− d∗C1
(v)− d∗C2

(w), (D)

where S⊥ denotes the orthogonal subspace of S and d∗Ci
is the Fenchel conjugate of

dCi
, i = 1, 2. It is straightforward to see that

S⊥ = {(v, w) ∈ H2 : v + w = 0}. (3.2)

It is well-known that, for a convex set C, the conjugate function of the distance
function is

d∗C(v) = σC(v) + ıB(v), (3.3)

where σC(·) is the support function of C, and ıB(·) is the indicator function of the
unit ball B of H.

3.3 Strong duality and Optimality Conditions

Let H2 := H ×H be the product of two Hilbert spaces. Consider the following pair
of primal-dual problems arising in the context of Fenchel duality.

thisspace! inf
(x,y)∈H2

f(x, y) + g(x, y), (P0)

and
thisspace! sup

(v,w)∈H2

−f ∗(v, w)− g∗(−v,−w). (D0)

To derive strong duality (i.e., existence of a dual solution) and first order optimality
conditions for our primal-dual problems (P ) and (D), we will use [2, Proposition
15.22 and Theorem 19.1], respectively. For convenience of the reader, we quote these
results next, after adapting them to our particular context. To state one of these, we
need the definition of core of a set.

Definition 3.3. Let C be a convex subset of H, the core of C is

core(C) := {x ∈ C : cone(C − x) = H},

where cone(C − x) denotes the smallest cone containing the set C − x.

The following result is [2, Proposition 15.22], and establishes strong duality for
(P0) and (D0).
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Proposition 3.4. Let f, g : H2 → R be proper, convex and lsc functions such that

0 ∈ core(dom g − dom f).

Then
inf
x∈H2

f(x) + g(x) = − min
v∈H2

f ∗(v) + g∗(−v),

i.e., the optimal values of (P0) and (D0) coincide, and (D0) has a solution.

The theorem we quote next is [2, Theorem 19.1], and establishes first order opti-
mality conditions for (P0) and (D0).

Theorem 3.5. Let f, g : H2 → R be proper, convex and lsc functions such that
dom g ∩ dom f �= ∅. Let (x1, x2) ∈ H2, and let (v1, v2) ∈ H2. Then the following are
equivalent:

(i) (x1, x2) solves (P0), and (v1, v2) solves (D0), with the same optimal values.

(ii) (v1, v2) ∈ ∂f(x1, x2) and −(v1, v2) ∈ ∂g(x1, x2).

The following technical lemma connects the optimal values and solutions of (P0)−
(D0) with those of (P )− (D) in section 3.2.

Lemma 3.6. With the notation used in problems (P) and (D), define f : H2 → R

as f(x, y) := dC1(x) + ιS(x, y), and g : H2 → R as g(x, y) := dC2(y). The following
hold.

(a)
inf

(x,y)∈S
dC1(x) + dC2(y) = inf

(x,y)∈H2
f(x, y) + g(x, y),

(b) (z1, z2) ∈ S solves (P ) if and only if (z1, z2) solves (P0).

(c)
sup

(v,w)∈S⊥
−d∗C1

(v)− d∗C2
(w) = sup

(v,w)∈H2

−f ∗(v, w)− g∗(−v,−w), (3.4)

(d) (u,−u) ∈ H2 solves (D) if and only if (0, u) solves (D0).

Proof. The proof of (a) follows directly from the definitions. The proof of (b) follows
directly from (a). For parts (c) and (d), we note that a direct calculation yields
f ∗(v1, v2) = d∗C1

(v1 + v2) and

g∗(v1, v2) =

{
d∗C2

(v2) if v1 = 0,

+∞ if v1 �= 0.
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Hence, if we have

−f ∗(u, w)− g∗(−u,−w) > −∞ =⇒ u = 0. (3.5)

This implies that

supu∈H −f ∗(0, u)− g∗(0,−u) = sup(w,u)∈H2 −f ∗(w, u)− g∗(−w,−u) =: v(D0),

where the equality between the supremums follows from (3.5). On the other hand,
by definition, we have

v(D0) = sup
u∈H

−f ∗(0, u)− g∗(0,−u) = sup
u∈H

−d∗C1
(u)− d∗C2

(−u) = v(D),

and thus (c) is proved. Assume now that u is such that −d∗C1
(u)− d∗C2

(−u) = v(D).
Then (u,−u) solves (D) and the above expression implies that

(0, u) ∈ Argmax (v,w)∈H2 − f ∗(v, w)− g∗(−v,−w).

The proof is complete.

We can now use these results to derive the following first order optimality condi-
tions for our primal dual problems. We point out that, even though the result stated
in the next proposition is well-known, we include the details here for convenience of
the reader.

Proposition 3.7. Problems (P ) and (D) satisfy the zero duality gap property, and
the dual problem always has a solution. In this situation, (x, y) is a solution of
Problem (P ) and (u, v) is a solution of Problem (D), if and only if (x, y) and (u, v)
verify the following properties:

(x, y) ∈ S, u ∈ ∂dC1(x), v ∈ ∂dC2(y), and (u, v) ∈ S⊥.

Proof. The fact that zero duality gap holds for the above primal-dual pairs follows
from Theorem 3.1 (or Proposition 3.4). Indeed, each Ci is closed, and the functions
fi = dCi

: H → R+, i = 1, 2, are continuous. Thus the functions fi satisfy the
assumptions of Theorem 3.1. Moreover, since every function fi is real-valued, the ε-
subdifferential ∂εfi(xi), i = 1, 2, xi ∈ H, is a nonempty and weakly compact set. Thus
the set (1.1) is weakly closed. Since every weakly closed convex set is closed for the
strong topology, we have that all hypotheses in Theorem 3.1 hold. Therefore, (P ) and
(D) have the same optimal value. To verify strong duality, it is enough to check that
the assumptions of Proposition 3.4 hold for a suitable choice of f and g. Indeed, take
f : H2 → R defined as f(x1, x2) := dC1(x1) + ιS(x1, x2), where S := {(x, x) : x ∈ H}
nonempty. Take g : H2 → R defined as g(x1, x2) := dC2(x2). We can write

dom g − dom f = H2 − S = H2,
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Hence we have core(dom g−dom f) = H2 and we are in conditions of the Proposition
3.4, and therefore there exists (v1, v2) ∈ H2 such that

−(f ∗(v1, v2) + g∗(−v1,−v2)) = inf
(x1,x2)∈H2

f(x1, x2) + g(x1, x2).

The above equality entails strong duality, where (v1, v2) ∈ H2 is a dual solution and
(x1, x2) ∈ H2 is a primal one.

To complete the proof, assume that (x, y) ∈ S is a primal solution and (u, v) ∈ S⊥

is a dual one, therefore, y = x and v = −u. By Lemma 3.6(b)(d), we have that (x, x)
solves (P0) and (0, u) solves (D0). Now using the latter fact in Theorem 3.5 we deduce
that (0, u) ∈ ∂f(x, x) and (0,−u) ∈ ∂g(x, x). Since f is the sum of two functions,
one of which has full domain, the subdifferential sum formula holds, and hence we
have

(0, u) ∈ ∂f(x, x) = NS(x, x) + ∂dC1(x)× {0}
= S⊥ + ∂dC1(x)× {0}
= {(z + w,−z) : w ∈ ∂dC1(x), z ∈ H},

where we also used (3.2). In a similar way, we have

(0,−u) ∈ ∂g(x, x) = {0} × ∂dC2(x).

The last equality gives −u ∈ ∂dC2(x). This fact, used in the expression for the
subgradient of f gives u = −z and

0 = z + w = −u+ w, with w ∈ ∂dC1(x),

and hence w = u ∈ ∂dC1(x). Altogether, we obtained that if (x, y) is a solution of
Problem (P ) and (u, v) is a solution of Problem (D) then, clearly (x, y) ∈ S and
(u, v) ∈ S⊥, and u ∈ ∂dC1(x) and v ∈ ∂dC2(y).

To prove the converse implication, if there exist (x, y) ∈ S and (u, v) ∈ S⊥ such
that u ∈ ∂dC1(x) and v ∈ ∂dC2(y), therefore −u ∈ ∂dC2(x), and let us prove that
(x, x) is a solution of Problem (P ) and (u,−u) is a solution of Problem (D). First,
we have that

(0, u) = (−u+ u, u)

= (−u, u) + (u, 0)

∈ S⊥ + ∂dC1(x)× {0}
= ∂f(x, x).

Since (0,−u) ∈ {0}× ∂dC2(x), by the equivalence in Theorem 3.5 we have that (x, x)
solves (P0) and (0, u) solves (D0). Then by Lemma 3.6(b)(d) we prove that (x, x) is
a solution of (P ) and (u,−u) is a solution of (D). This completes the proof.
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3.4 Consistency of CFP and the optimal dual values

In this section, we study all the possible cases for the set C1 ∩ C2 in terms of the
optimal value of the dual problem. From (3.3) and the fact that the support function
of a set is homogenous of degree 1, we write the dual problem (D) as:

sup
v∈H

− d∗C1
(v)− d∗C2

(−v) = sup
v∈H

− [σC1(v) + ıB(v)]− [σC2(−v) + ıB(−v)]

= sup
‖v‖≤1

− σC1(v)− σC2(−v)

= max
t∈[0,1]

t

(
sup
‖v‖=1

− σC1(v)− σC2(−v)

)

= max
t∈[0,1]

t

(
− inf
‖v‖=1

σC1(v) + σC2(−v)

)

= −min
t∈[0,1]

t

(
inf

‖v‖≤1
σC1(v) + σC2(−v)

)
(3.6)

For t > 0, denote by Φ(t) := inf
‖v‖≤t

σC1(v) + σC2(−v). Since all functions involved are

positively homogeneous and 0 belongs to the constraint set, it is direct to check that
0 ≥ Φ(t) = tΦ(1) for all t > 0. Altogether, the above expression becomes

sup
v∈H

− d∗C1
(v)− d∗C2

(−v) = −min
t∈[0,1]

{tΦ(1)} =

{
−Φ(1)(> 0) if Φ(1) < 0,

0 if Φ(1) = 0.
(D′)

Indeed, the optimal value in (3.6) will be always greater than, or equal to zero.

The expression in (D′) indicates that, by studying the different values of Φ(1),
we can obtain information about the set C1 ∩ C2. We make this fact precise in the
following result.

Proposition 3.8. Let Φ(1) = inf‖v‖≤1 {σC1(v) + σC2(−v)} be defined as in (D′).

1. If Φ(1) < 0, then C1 ∩ C2 = ∅. In this situation, C1 and C2 are strongly
separated. This situation is equivalent to 0 /∈ cl (C2 − C1).

2. If Φ(1) = 0, then this situation is equivalent to 0 ∈ cl (C2 − C1). We can have
two possible cases:

2.1 If (σC1�σC2)(·) is lower-semicontinuous at 0 we have C1 ∩C2 �= ∅. Equiv-
alently, 0 ∈ (C2 − C1).

2.2 If (σC1�σC2)(·) is not lower-semicontinuous at 0 we have C1 ∩ C2 = ∅.
In this situation, there exists a closed hyperplane separating the sets, and
this separation may not be proper. This situation is equivalent to 0 ∈
Bd (C2 − C1) \ (C2 − C1).
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Proof. We start by relating Φ with the infimal convolution of the support functions.
We can write

(σC1�σC2)(0) = infv∈H {σC1(v) + σC2(−v)}
= inft>0 inf‖v‖≤t {σC1(v) + σC2(−v)}
= inft>0 tΦ(1).

(3.7)

1. Φ(1) < 0. The above expression yields (σC1�σC2)(0) = −∞. This implies that

cl (σC1�σC2)(0) ≤ (σC1�σC2)(0) = −∞. (3.8)

Recall from [12, Theorem 2.2(e)] that

epi cl (σC1�σC2) = cl (epi σC1 + epi σC2).

Combining this fact with (3.8) we deduce that (0,−1) ∈ cl (epi σC1 + epi σC2)
and Lemma 2.2 yields C1 ∩ C2 = ∅. To show the strong separation, fix a > 0
such that Φ(1) < −a < 0. Hence there exists a nonzero u such that ‖u‖ ≤ 1 for
which

σC1(u) < −a− σC2(−u).

Because the functions are positively homogeneous and u is not zero, we can
assume ‖u‖ = 1. The above inequality translates directly into strong separation
of the sets. By the zero duality gap property, this case entails d(C1, C2) > 0,
which is equivalent to 0 /∈ cl (C2 − C1).

2. Φ(1) = 0. Using again the zero duality gap property, this case entails d(C1, C2) =
0. Equivalently, 0 ∈ cl (C2 − C1)

By (3.7) we have that (σC1�σC2)(0) = 0. Now we consider two cases.
Case 2.1: (σC1�σC2)(·) is lower-semicontinuous at 0. In this case, we have that
the infimal convolution coincides with its closure at 0, i.e.,

cl (σC1�σC2)(0) = (σC1�σC2)(0) = 0.

So (0,−1) �∈ epi (cl (σC1�σC2)) and the lemma yields C1 ∩ C2 �= ∅. In this case,
the primal problem has a solution z ∈ C1 ∩C2. Since the problem is consistent,
we do not analyze the separation of these sets and we clearly have 0 ∈ (C2−C1).
Conversely, if 0 ∈ (C2 − C1) we can write,

cl (σC1�σC2) = (σ∗
C1

+ σ∗
C2
)∗ = (ιC1∩C2)

∗ = σC1∩C2 ,

where we used in the first equality a classical property (see, e.g., [12, Theorem
3.2(c)]) and the fact that all involved functions are proper. Hence,

cl (σC1�σC2)(0) = σC1∩C2(0) = 0 ≤ (σC1�σC2)(0) = 0.
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Which implies that (σC1�σC2) is lower-semicontinuous at 0. Therefore, this case
is characterized by the fact that 0 ∈ (C2 − C1).

Case 2.2: (σC1�σC2)(·) is not lower-semicontinuous at 0. In this situation, the
infimal convolution must be strictly greater than its closure at 0, i.e.,

cl (σC1�σC2)(0) < (σC1�σC2)(0) = 0.

This means that there exists a < 0 such that (0, a) ∈ epi cl (σC1�σC2). The set
epi cl (σC1�σC2) is a closed cone because the function (σC1�σC2) is sublinear.
Indeed, the epigraph of cl (σC1�σC2), being the closure of epi (σC1�σC2), is a
closed cone too. Consequently, we must have

(0,−1) ∈ epi (cl (σC1�σC2)) = cl (epi σC1 + epi σC2), (3.9)

and hence C1 ∩ C2 = ∅ with d(C1, C2) = 0. Let us study the separation prop-
erties for this case. Since for v = 0 we have 0 = σC1(v) + σC2(−v), the infimal
convolution is exact at 0 and {0} ⊂ Argmin ‖v‖≤1 {σC1(v) + σC2(−v)}. We claim
that we cannot have Argmin ‖v‖≤1 {σC1(v) + σC2(−v)} = {0}. Indeed, this im-
plies that for every v such that ‖v‖ �= 0 we must have

s(v) := σC1(v) + σC2(−v) > 0.

Hence, for every v such that ‖v‖ �= 0, σC1(v) ∈ R and σC2(−v) ∈ R, we can
write

(v, σC1(v)) + (−v, σC2(−v)) = (0, σC1(v) + σC2(−v)) ⊂ epi (σC1) + epi (σC2).

This implies that

({0} × R) ∩ (epi (σC1) + epi (σC2)) ⊂ {0} × [0,+∞). (3.10)

By (3.9) we have that (0,−1) ∈ cl (epi (σC1) + epi (σC2)). Altogether, for every
t ∈ (0, 1) we have

(1− t)(0,−1) + t(0, s(v)) ∈ epi (σC1) + epi (σC2). (3.11)

Take 0 < t < 1/(s(v) + 1) we will have

t− 1 + t s(v) = t(s(v) + 1)− 1 < 1− 1 = 0,

which, together with (3.11), yields

(0, t(s(v) + 1)− 1) ∈ (epi (σC1) + epi (σC2)) ∩ {0} × (−∞, 0),
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contradicting (3.10). Hence our claim is true and we must have
Argmin ‖v‖≤1 {σC1(v) + σC2(−v)} � {0}. Fix a nonzero
u ∈ Argmin ‖v‖≤1 {σC1(v) + σC2(−v)}. For this u we will have

σC1(u) = −σC2(−u) =: b.

Because the functions are positively homogeneous and u is not zero, we can
assume ‖u‖ = 1. The above equality translates directly into separation of the
sets by the hyperplane Hu,b. This separation may be improper if one of the sets
is contained in the hyperplane.

To complete the proof, let us prove that, in this case, 0 ∈ Bd (C2 − C1) \ (C2 −
C1). Indeed, in this case we have 0 ∈ cl (C2 − C1) with 0 /∈ (C2 − C1), which
yields 0 ∈ Bd (C2 − C1) \ (C2−C1). Conversely, if 0 ∈ Bd (C2 − C1) \ (C2−C1)
then we have d(C1, C2) = 0 and hence by zero duality gap we are in the case
Φ(1) = 0. So (σC1�σC2)(0) = 0. We must show that (σC1�σC2)(·) is not lsc
at 0. Indeed, if this is not the case, then by the previous case we must have
0 ∈ (C2 −C1). Since we assumed that 0 ∈ Bd (C2 − C1) \ (C2 −C1), we cannot
have (σC1�σC2)(·) lsc at 0.

It may not be easy to determine whether or not (σC1�σC2) is lsc at 0. The following
corollary provides a geometric condition for this to hold.

Corollary 3.9. Assume that (σC1�σC2)(0) > −∞. Then the function (σC1�σC2) is
proper, and the following statements are satisfied and equivalent:

(i) C1 ∩ C2 �= ∅,
(ii) (σC1�σC2) is lsc at 0,

(iii) {0} × R ∩ epi (σC1�σC2) = {0} × R+

Consequently, if epi σC1 + epi σC2 is closed, then C1 ∩ C2 �= ∅.
Proof. From (3.7) we see that the properness assumption (σC1�σC2)(0) > −∞ yields
Φ(1) = 0, and hence (σC1�σC2)(0) = 0. This implies that for every u ∈ dom (σC1�σC2)
we must have (σC1�σC2)(u) > −∞. Indeed, the fact that (0, 0) = (0, (σC1�σC2)(0)) ∈
epi (σC1�σC2), together with the definition of recession cone imply that the direction
y := (0,−1) ∈ H × R does not belong to the recession cone of the epigraph. Indeed,
if (0,−1) ∈ rec (epi (σC1�σC2)), we must have

{0} × R ⊂ epi (σC1�σC2),
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because (0, 0) belongs to the epigraph. This inclusion contradicts the properness
assumption. Hence y := (0,−1) ∈ H ×R is not in the recession cone of the epigraph.
Equivalently, the epigraph contains no vertical lines.

Furthermore, the fact that (σC1�σC2)(0) = 0, by definition of epigraph, implies
statement (iii). And (iii) implies (i) because, by Lemma 2.2, (0,−1) �∈ epi (σC1�σC2)
is equivalent to C1 ∩ C2 �= ∅. The equivalence between (i) and (ii) follows from case
2.1 in Proposition 3.8.

Finally, the closedness of the sum of the epigraphs yields the lsc of the infimal
convolution in the whole space, so we can use (ii) implies (i) to obtain the last state-
ment.

3.5 Consistency of CFP and the dual solutions

By Proposition 3.7 we know that (D) always has a solution. If the optimal value of
(D) is positive, then we know by Proposition 3.8 that CFP has no solution because
the sets are strongly separated. The critical case is when v(D) = 0, since in this case
we may or may not be in the consistent case. The following result gives us information
about consistency of the CFP when v(D) = 0.

Corollary 3.10. Consider the (nonempty) set of solutions of (D), and assume that
v(D) = 0. The following hold.

(a) If v = 0 is the unique solution to the dual problem (D) then we must have
C1 ∩ C2 �= ∅. Conversely, if C1 ∩ C2 �= ∅ then the dual problem has for unique
solution v = 0.

(b) The dual problem (D) has multiple solutions if and only if C1 ∩C2 = ∅. In this
situation, every nonzero dual solution induces a possibly improper separation of
the sets.

Proof. First, the set of solutions of (D) is not empty by Proposition 3.7. Let us prove
part (a). If v = 0 is a solution of (D), the optimal value is d(C1, C2) = 0. By part 2
of the proof of Proposition 3.8, we are in the case in which Φ(1) = 0 and the infimal
convolution (σC1�σC2)(·) is lsc at 0. As in the proof of case 2.1 in Proposition 3.8,
this is equivalent to having C1 ∩ C2 �= ∅. Conversely, if v(D) = 0 we are in the case
Φ(1) = 0. By Corollary 3.9 and the fact that C1∩C2 �= ∅ we deduce that (σC1�σC2)(·)
is lsc at 0, and by case 2.1 this implies that (D) has v = 0 as its unique solution.
For proving part (b) we use Proposition 3.8 again. Indeed, note that the case in
which there are multiple solutions of (D) is the case in which (σC1�σC2)(·) is not lsc
at 0, and this implies that C1 ∩ C2 = ∅ by the proof of part 2.2 in Proposition 3.8.
Conversely, if C1 ∩ C2 = ∅, since v(D) = 0 we must be in case 2.2. The proof of
case 2.2 shows that the set Argmax ‖v‖≤1 − σC1(v) − σC2(−v) cannot be only v = 0.
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The last assertion in (b) follows from the proof of part 2.2 in Proposition 3.8. This
completes the proof.

Remark 3.11. As mentioned above, the critical case Φ(1) = 0 = v(D), considered in
Case 2 of Proposition 3.8, cannot be analyzed using only primal information. Namely,
in this case we may have either a consistent or an inconsistent case. An infinite dimen-
sional example of two disjoint closed affine sets which cannot be properly separated
can be found in [2, Example 3.41]. Since the sets are disjoint, by Corollary 3.9, these
examples correspond to the case in which the corresponding infimal convolution is
not lsc at 0. By Corollary 3.10, the set of dual solutions is not a singleton.

3.6 Consistency of CFP and the primal solutions

In this section, we assume that problem (P ) has a solution, and we study all possible
cases for the set C1 ∩ C2 in terms of the location of the solutions. Recall, that, for a
closed convex set C ⊆ H, the subdifferential of the distance function dC is given by
(see [6])

∂dC(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x ∈ intC,

NC(x) ∩ B if x ∈ Bd C,
x− PC(x)

‖x− PC(x)‖ if x /∈ C,

where PC(x) is the metric projection of x onto C.
The following lemma characterizes the set of solutions of (P ) for both the consis-

tent and inconsistent case.

Lemma 3.12. Given C1, C2 two sets, we always have.

(a) infx∈H ‖PC1(x)− PC2(x)‖ = d(C1, C2).

(b) The set of solutions of (P ) is the set

sol(P ) = {x ∈ H : d(C1, C2) = ‖PC1(x)− PC2(x)‖}.

Proof. The proof of (a) follows easily from the definitions. Indeed, it is clear that

inf
x∈H

‖PC1(x)− PC2(x)‖ ≥ d(C1, C2)

On the other hand, we have, for all y ∈ H,

inf
x∈H

‖PC1(x)−PC2(x)‖ ≤ ‖PC1(y)−PC2(y)‖ ≤ ‖PC1(y)−y‖+‖y−PC2(y)‖ = dC1(y)+dC2(y).
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Taking infimum on the right hand side we deduce that

inf
x∈H

‖PC1(x)− PC2(x)‖ ≤ inf
y∈H

dC1(y) + dC2(y) = d(C1, C2),

as wanted. We proceed to prove part (b). We will show that both sets coincide, and
this clearly covers the case in which either set is are empty. Denote by E the set in
the right-hand side. We start by showing that, if (P ) has solutions, then all solutions
belong to E, and thus E is not empty. Fix x a solution of (P ).

If x �∈ C1 ∪ C2 then by Proposition 3.7 and the expression for the subdifferential
of the distance function, there exists a nonzero v ∈ H such that

v =
x− PC1(x)

‖x− PC1(x)‖
=

−x+ PC2(x)

‖x− PC2(x)‖
.

It is a matter of simple algebra to show that in this case x is a convex combination
of PC1(x) and PC2(x), and this yields

d(C1, C2) = d(x, C1) + d(x, C2) = ‖x− PC1(x)‖+ ‖x− PC2(x)‖ = ‖PC1(x)− PC2(x)‖,
where we used the fact that x ∈ [PC1(x), PC2(x)] in the third equality. The last
expression implies that x ∈ E.

Assume now that x ∈ C1 ∪ C2, say, x ∈ C1. In this case, we have x = PC1(x) and
hence

d(C1, C2) = d(x, C1) + d(x, C2) = 0 + ‖x− PC2(x)‖ = ‖PC1(x)− PC2(x)‖.
Therefore, x ∈ E also in this case.

Conversely, assume that x ∈ E. We can write

d2(C1, C2) = d2(x, C1) + d2(x, C2) + 2d(x, C1)d(x, C2)

= ‖PC1(x)− PC2(x)‖2
= ‖PC1(x)− x+ x− PC2(x)‖2
= ‖PC1(x)− x‖2 + ‖x− PC2(x)‖2 + 2〈PC1(x)− x, x− PC2(x)〉,

where we used the fact that x ∈ E in the second equality. The above expression
simplifies to

‖PC1(x)− x‖ ‖x− PC2(x)‖ = 〈PC1(x)− x, x− PC2(x)〉,
which can only happen when there exists t > 0 such that PC1(x)−x = t(x−PC2(x)).
It is again a matter of simple algebra to deduce from the latter fact that x is a convex
combination of PC1(x) and PC2(x). Altogether, we have

d(C1, C2) = ‖PC1(x)− PC2(x)‖ = ‖x− PC1(x)‖+ ‖x− PC2(x)‖ = d(x, C1) + d(x, C2),
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where we used the fact that x ∈ E in the first equality, and the fact that x ∈
[PC1(x), PC2(x)] in the second equality. The expression above implies that the set of
solutions of (P ) is not empty and x solves (P ). The proof of the lemma is complete.

As mentioned above, if d(C1, C2) > 0 the CFP is inconsistent. We consider next
the critical case d(C1, C2) = 0. The following corollary combines Corollary 3.9 and
Lemma 3.12.

Corollary 3.13. Assume that d(C1, C2) = 0. In this situation, the following state-
ments are equivalent.

(i) (P ) has no solutions.

(ii) 0 ∈ cl(C1 − C2) \ (C1 − C2).

(iii) σC1�σC1 is not lsc at 0.

(iv) C1 ∩ C2 = ∅
(v) {0} × R−− ∩ epi (σC1�σC2) �= ∅.

Proof. The equivalence between (i) and (ii) follows from Lemma 3.12. Indeed, the
lemma shows that (P ) has solutions if and only if 0 ∈ (C1 − C2). The equivalence
between (ii) and (iv) is trivial. The equivalence between (iii), (iv) and (v) follows
directly from Corollary 3.9.
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