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The current work is the second of the series of three papers devoted to the study 
of asymptotic dynamics in the following parabolic–elliptic chemotaxis system with 
space and time dependent logistic source,

{
∂tu = Δu− χ∇ · (u∇v) + u(a(x, t) − ub(x, t)), x ∈ R

N ,

0 = Δv − λv + μu, x ∈ R
N ,

(0.1)

where N ≥ 1 is a positive integer, χ, λ and μ are positive constants, and the functions 
a(x, t) and b(x, t) are positive and bounded. In the first of the series, we studied 
the phenomena of pointwise and uniform persistence, and asymptotic spreading in 
(0.1) for solutions with compactly supported or front like initials. In the second of 
the series, we investigate the existence, uniqueness and stability of strictly positive 
entire solutions of (0.1). In this direction, we prove that, if 0 ≤ μχ < infx,t b(x, t), 
then (0.1) has a strictly positive entire solution, which is time-periodic (respectively 
time homogeneous) when the logistic source function is time-periodic (respectively 
time homogeneous). Next, we show that there is positive constant χ0, depending on 
N , λ, μ, a and b such that for every 0 ≤ χ < χ0, (0.1) has a unique positive entire 
solution which is uniform and exponentially stable with respect to strictly positive 
perturbations. In particular, we prove that χ0 can be taken to be infx,t b(x,t)

2μ when 
the logistic source function is either space homogeneous or the function (x, t) �→
b(x,t)
a(x,t) is constant. We also investigate the disturbances to Fisher-KKP dynamics 
caused by chemotactic effects, and prove that

sup
0<χ≤χ1

sup
t0∈R,t≥0

1
χ
‖uχ(·, t + t0; t0, u0) − u0(·, t + t0; t0, u0)‖∞ < ∞

for every 0 < χ1 < binf
μ

and every uniformly continuous initial function u0, with 
infx u0(x) > 0, where (uχ(x, t + t0; t0, u0), vχ(x, t + t0; t0, u0)) denotes the unique 
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classical solution of (0.1) with uχ(x, t0; t0, u0) = u0(x), for every 0 ≤ χ < binf .
© 2018 Elsevier Inc. All rights reserved.

1. Introduction and statement of the main results

Chemotaxis, the ability for micro-organisms to respond to chemical signals by moving along the gradient 
of the chemical substance, plays important roles in a wide range of biological phenomena (see [4,20,23]), and 
accordingly a considerable literature is concerned with its mathematical analysis. We consider the following 
parabolic–elliptic chemotaxis system on RN with space–time dependent logistic source,

{
∂tu = Δu− χ∇ · (u∇v) + u(a(x, t) − b(x, t)u), x ∈ R

N ,

0 = Δv − λv + μu, x ∈ R
N ,

(1.1)

where u(x, t) and v(x, t) denote mobile species density and chemical density functions, respectively, χ is 
a positive constant which measures the sensitivity with respect to chemical signals, a(x, t) and b(x, t) are 
positive functions and measure the self growth and self limitation of the mobile species, respectively. The 
constant μ is positive and the term +μu in the second equation of (1.1) indicates that the mobile species 
produce the chemical substance over time. The positive constant λ measures the degradation rate of the 
chemical substance. System (1.1) is a space–time logistic source dependant variation of the celebrated 
parabolic–elliptic Keller–Segel chemotaxis systems (see [17,18]).

Note that (1.1) is a particular case of the following chemotaxis model,
{
∂tu = Δu− χ∇ · (u∇v) + u(a(x, t) − b(x, t)u), x ∈ Ω,

τvt = Δv − λv + μu, x ∈ Ω
(1.2)

complemented with certain boundary conditions if Ω ⊂ R
N is a bounded domain, where τ ≥ 0 is a nonneg-

ative constant link to the speed of diffusion of the chemical substance. Note that when τ = 0 and Ω = R
N

in (1.2), we recover (1.1). Hence, (1.1) models the situation where the chemoattractant defuses very quickly 
and the underlying environment is very large.

It is well known that chemotaxis systems present very interesting dynamics. Indeed, when τ > 0, N = 2, 
a(x, t) ≡ b(x, t) ≡ 0 and (1.2) is considered on a ball centered at origin associated with homogeneous 
Neumann condition, Herrero and Velàzquez [10] proved the existence of solutions which blow up at finite 
time. Under these assumptions but τ = 0, Jäger and Lauckhaus [15] obtained similar results. Similar results 
were established by Nagai in [21]. We also refer the reader to [8,9,12,16,32–34] (and the references therein) 
for some other works on the finite-time blow up of solutions of (1.2). We refer the reader to [2] and the 
references therein for more insights in the studies of chemotaxis models.

When a(x, t) > 0 and b(x, t) > 0, it is known that the blow-up phenomena may be suppressed to some 
extent. Indeed, if a(x, t) and b(x, t) are positive constant functions, τ = 0 and λ = μ = 1, it is shown 
in [28] that if either N ≤ 2 or b > N−2

N χ, then for every nonnegative Hölder’s continuous initial u0(x), 
(1.2) on bounded domain complemented with Neumann boundary condition possesses a unique bounded 
global classical solution (u(x, t; u0), v(x, t; u0)) with u(x, 0; u0) = u0(x). Furthermore, if b > 2χ, then the 
trivial steady state (ab , 

a
b ) is asymptotically stable with respect to nonnegative and non-identically zero 

perturbations. These results have been extended by the authors of the current paper, [24], to (1.1) on RN

when a(x, t) and b(x, t) are constant functions. The work [24] also studied some spreading properties of 
solutions to (1.1) with compactly supported initials. Recently, several studies have been concerned with 
establishing adequate conditions on the chemotaxis sensitivity χ and other parameters in (1.2) to ensure 
the existence of time global solutions and the stability of equilibria solutions. In this regard, we refer to 
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[13,14,22,27,30,31]. The feature of solutions of (1.2) in the presence of logistic type sources still remains a 
very interesting problem. Indeed, despite such superlinear absorption terms, it seems to be that blow-up 
still is possible. The works [33] should be mentioned in this direction. It is also worth to note that bounded 
solutions may exhibit colorful dynamics, characterized by the emergence of arbitrarily large densities in the 
flavor of [36], and further results of this type have been achieved in [16]. When a(x, t) and b(x, t) are constant 
positive functions, τ = 1 and λ = μ = 1, it is shown in [35] that it is enough for bχ to be sufficiently large to 
prevent finite time blow up of classical solutions and to guarantee the stability of the constant equilibrium 
solution (ab , 

a
b ).

Thanks to the space and time dependence of the underlying environments in many biological systems, it 
is very important to understand the dynamics of the chemotaxis systems with space and time dependent 
logistic source. Note that, when χ = 0, the study of (1.2) reduces to the study of the following equation

∂tu = Δu + u(a(x, t) − b(x, t)u), x ∈ Ω (1.3)

complemented with boundary conditions if Ω ⊂ R
N is a bounded domain, which is called the Fisher-KPP 

equation in literature due to the pioneering works by Fisher ([5]) and Kolmogorov, Petrowsky, Piscunov 
([19]). The literature about the study of (1.3) is quite huge. In a very recent work [13], the authors studied the 
dynamics of (1.2) on bounded domains with Neumann boundary conditions and with space–time dependent 
logistic source.

The objective of the series of three papers is to study the asymptotic dynamics in the chemotaxis system 
(1.1) on the whole space with space and time dependent logistic source. In the first of the series, we studied 
the phenomena of pointwise and uniform persistence, and asymptotic spreading in (1.1) for solutions with 
compactly supported or front like initials. In this second part of the series, we investigate the existence, 
uniqueness and stability of strictly positive entire solutions of (1.1). In the rest of the introduction, we 
introduce notations and standing assumptions, recall some results established in the first part of the series 
([25]), and state the main results of the current part.

1.1. Notations and standing assumptions

For every x ∈ R
N , let |x|∞ = max{|xi| | i = 1, · · · , N} and |x| =

√
|x1|2 + · · · + |xN |2. For every x ∈ R

N

and r > 0 we define B(x, r) := {y ∈ R
N | |x − y| < r}. For every function w : R

N × I → R, where 
I ⊂ R, we set winf(t) := infx∈RN w(x, t), wsup(t) := supx∈RN w(x, t), winf = infx∈RN ,t∈I w(x, t) and wsup =
supx∈RN ,t∈I w(x, t). In particular, for every nonnegative u0 ∈ Cb

unif(RN ), we set u0 inf = infx∈RN u0(x) and 
u0 sup = supx∈RN u0(x) = ‖u0‖∞, where

Cb
unif(RN ) = {u ∈ C(RN ) |u(x) is uniformly continuous in x ∈ R

N and sup
x∈RN

|u(x)| < ∞}

equipped with the norm ‖u‖∞ = supx∈RN |u(x)|. For any 0 ≤ ν < 1, let

Cb,ν
unif(R

N ) = {u ∈ Cb
unif(RN ) | sup

x,y∈R,x �=y

|u(x) − u(y)|
|x− y|ν < ∞}

with norm ‖u‖Cb,ν
unif

= supx∈R
|u(x)| + supx,y∈R,x �=y

|u(x)−u(y)|
|x−y|ν . Hence Cb,0

unif(RN ) = Cb
unif(RN ).

In what follows we shall always suppose that the following hypothesis holds:

(H) a(x, t) and b(x, t) are uniformly Hölder continuous in (x, t) ∈ R
N × R with exponent 0 < ν < 1 and

0 < inf
x∈RN ,t∈R

min{a(x, t), b(x, t)} ≤ sup
N

max{a(x, t), b(x, t)} < ∞.

x∈R ,t∈R
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Let t0 ∈ R and T > t0. We say that (u(x, t), v(x, t)) is a classical solution of (1.1) on [t0, T ) if 
(u(·, ·), v(·, ·)) ∈ C(RN × [t0, T )) ∩C2,1(RN × (t0, T )) and satisfies (1.1) for (x, t) ∈ R

N × (t0, T ) in the clas-
sical sense. When a classical solution (u(x, t), v(x, t)) of (1.1) on [t0, T ) satisfies u(x, t) ≥ 0 and v(x, t) ≥ 0
for every (x, t) ∈ R

N × [t0, T ), we say that it is nonnegative. A global classical solution of (1.1) on [t0, ∞)
is a classical solution on [t0, T ) for every T > 0. We say that (u(x, t), v(x, t)) is an entire solution of (1.1)
if (u(x, t), v(x, t)) is a global classical solution of (1.1) on [t0, ∞) for every t0 ∈ R. For given uniformly 
continuous function u0 and t0, T ∈ R with T > t0, if (u(x, t), v(x, t)) is a classical solution of (1.1) with 
u(x, t0) = u0(x) for all x ∈ R, we denote it as (u(x, t; t0, u0), v(x, t; t0, u0)) and call it the solution of 
(1.1) with initial function u0(x) at time t0. We shall also use the notation (uχ(x, t; t0, u0), vχ(x, t; t0, u0)) to 
emphasis on the dependence of solutions to (1.1) on the parameter χ ≥ 0.

1.2. Results established in the first part

As it is mentioned in the above, in the first part of the series ([25]), we studied the phenomena of pointwise 
and uniform persistence, and asymptotic spreading in (1.1) for solutions with compactly supported or front 
like initials. Among others, the following theorems are proved in [25].

Theorem 1.1 (Global existence). [25, Theorem 1.1] Suppose that χμ ≤ binf , then for every t0 ∈ R

and nonnegative function u0 ∈ Cb
unif(Rn) \ {0}, (1.1) has a unique nonnegative global classical solution 

(u(x, t; t0, u0), v(x, t; t0, u0)) satisfying

lim
t↘0

‖u(·, t0 + t; t0, u0) − u0‖∞ = 0.

Moreover, it holds that

‖u(·, t + t0; t0, u0)‖∞ ≤ ‖u0‖∞easupt. (1.4)

Furthermore, if

(H1) : binf > χμ

holds, then the following hold.

(i) For every nonnegative initial function u0 ∈ Cb
unif(RN ) \ {0} and t0 ∈ R, there holds

0 ≤ u(x, t + t0; t0, u0) ≤ max{‖u0‖∞,
asup

binf − χμ
} ∀ t ≥ 0, ∀x ∈ R

N , (1.5)

and

lim sup
t→∞

‖u(·, t + t0; t0, u0)‖∞ ≤ asup

binf − χμ
. (1.6)

(ii) For every u0 ∈ Cb
unif(RN ) with infx∈RN u0(x) > 0 and t0 ∈ R, there holds

ainf

bsup
≤ lim sup

t→∞
sup
x∈RN

u(x, t + t0; t0, u0), lim inf
t→∞

inf
x∈RN

u(x, t + t0; t0, u0) ≤
asup

binf
. (1.7)

(iii) For every positive real number M > 0, there is a constant K1 = K1(ν, M, a, b) such that for every 
u0 ∈ Cb

unif(RN ) with 0 ≤ u0 ≤ M , we have

‖v(·, t + t0; t0, u0)‖C1,ν
unif(RN ) ≤ K1, ∀ t0 ∈ R, ∀ t ≥ 0. (1.8)
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Theorem 1.2. [25, Theorem 1.2]

(i) (Pointwsie persistence) Suppose that (H1) holds. Then pointwise persistence occurs in (1.1), that is, for 
any u0 ∈ Cb

unif(RN ) with infx∈RN u0(x) > 0 (such u0 is called strictly positive), there exist positive real 
numbers m(u0) > 0 and M(u0) > 0 such that

m(u0) ≤ u(x, t + t0; t0, u0) ≤ M(u0) ∀ t0 ∈ R and t > 0. (1.9)

(ii) (Uniform persistence) Suppose that (H1) holds. If, furthermore,

(H2) : binf > (1 + asup

ainf
)χμ

holds, then uniform persistence occurs in (1.1), that is, there are 0 < m < M < ∞ such that for any 
t0 ∈ R and any positive initial function u0 ∈ Cb

unif(RN ) with infx∈R u0(x) > 0, there exists T (u0) > 0
such that

m ≤ u(x, t + t0; t0, u0) ≤ M ∀ t ≥ T (u0), ∀x ∈ R
N , ∀ t0 ∈ R.

In particular, for every strictly positive initial u0 ∈ Cb
unif(RN ) (i.e. u0 ∈ Cb

unif(RN ) with u0 inf > 0) and 
ε > 0, there is Tε(u0) > 0 such that such that the unique classical solution (u(x, t + t0; t0, u0), v(x, t +
t0; t0, u0)) of (1.1) with u(·, t0; t0, u0) = u0(·) satisfies

M − ε ≤ u(x, t + t0; t0, u0) ≤ M + ε, ∀t ≥ Tε(u0), x ∈ R
N , ∀ t0 ∈ R (1.10)

and

μM

λ
− ε ≤ v(x, t + t0; t0, u0) ≤

μM

λ
+ ε, ∀t ≥ Tε(u0), x ∈ R

N , ∀ t0 ∈ R (1.11)

where

M := (binf − χμ)ainf − χμasup

(bsup − χμ)(binf − χμ) − (χμ)2 >
ainf − χμasup

binf−χμ

bsup − χμ
(1.12)

and

M := (bsup − χμ)asup − χμainf

(bsup − χμ)(binf − χμ) − (χμ)2 <
asup

binf − χμ
. (1.13)

Furthermore, the set

Iinv := {u ∈ Cb
unif(RN ) : M ≤ u0(x) ≤ M, ∀x ∈ R

N} (1.14)

is a positively invariant set for solutions of (1.1), in the sense that for every t0 ∈ R and u0 ∈ Iinv, we 
have that u(·, t + t0; t0, u0) ∈ Iinv for every t ≥ 0.

Remark 1.1. Using the pointwise persistence established in Theorem 1.2 (i) it can be shown that for any 
0 < χ < binf

μ and u0 ∈ Cb
unif(RN ) with u0 inf > 0, there holds

lim sup ‖u(·, t + t0; t0, u0)‖∞ ≤ asup − χμm(u0)
,

t→∞ binf − χμ
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where the limit is uniform in t0 ∈ R. This result will be useful when studying asymptotic dynamics of 
solutions of (1.1) associated to strictly positive initial.

Theorem 1.3 (Asymptotic spreading). [25, Theorem 1.3]

(1) Suppose that (H1) holds. Then for every t0 ∈ R and every nonnegative initial function u0 ∈ Cb
unif(RN )

with nonempty compact support supp(u0), we have that

lim
t→∞

sup
|x|≥ct

u(x, t + t0; t0, u0) = 0, ∀c > c∗+, (1.15)

where

c∗+(a, b, χ, λ, μ) := 2√asup + χμ
√
Nasup

2(binf − χμ)
√
λ
. (1.16)

(2) Suppose that

(H3) : binf >

⎛
⎜⎝1 +

(
1 +

√
1 + Nainf

4λ

)
asup

2ainf

⎞
⎟⎠χμ. (1.17)

Then for every t0 ∈ R and nonnegative initial function u0 ∈ Cb
unif(RN ) with nonempty support supp(u0), 

we have that

lim inf
t→∞

inf
|x|≤ct

u(x, t + t0; t0, u0) > 0, ∀0 ≤ c < c∗−(a, b, χ, λ, μ), (1.18)

where

c∗−(a, b, χ, λ, μ) := 2
√

ainf −
χμasup

binf − χμ
− χ

μ
√
Nasup

2
√
λ(binf − χμ)

. (1.19)

1.3. Main results of the current part

Assume (H1). By Theorems 1.1 and 1.2, for any t0 ∈ R and strictly positive u0 ∈ Cb
unif(RN ),

0 < lim inf
t→∞

inf
x∈RN

u(x, t + t0; t0, u0) ≤ lim sup
t→∞

sup
x∈RN

u(x, t + t0; t0, u0) < ∞.

Naturally, it is important to know whether there is a strictly positive entire solution, that is, an entire solution 
(u+(x, t), v+(x, t)) of (1.1) with infx∈RN ,t∈R u+(x, t) > 0. It is also important to know the uniqueness and 
stability of strictly entire positive solutions of (1.1) (if exist). We have the following result on the existence 
of strictly positive entire solutions.

Theorem 1.4 (Existence of strictly positive entire solutions). Suppose that (H1) holds. Then (1.1) has a 
strictly positive entire solution (u+(x, t), v+(t, x)). Moreover, the following hold.

(i) Any strictly positive entire solution (u+(x, t), v+(x, t)) of (1.1) satisfies

ainf

bsup
≤ sup

(x,t)∈RN×R

u+(x, t) ≤ asup

binf − χμ
. (1.20)
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(ii) If (H2) holds, then any strictly positive entire solution (u+(x, t), v+(x, t)) of (1.1) satisfies

M ≤ u+(x, t) ≤ M, ∀x ∈ R
N , ∀t ∈ R, (1.21)

where M and M are given by (1.12) and (1.13), respectively.
(iii) If there is T > 0 such that a(x, t + T ) = a(x, t) and b(x, t + T ) = b(x, t) for very x ∈ R

N , t ∈ R, then 
(1.1) has a strictly positive entire solution (u+(x, t), v+(x, t)) satisfying (u+(x, t + T ), v+(x, t + T )) =
(u+(x, t), v+(x, t)) for every x ∈ R

N , t ∈ R.
(iv) If a(x, t) = a(x) and b(x, t) = b(x), then (1.1) has a strictly positive steady state solution.

Remark 1.2.

(i) Theorem 1.4 (i) provides explicit lower and upper bounds for the supremum of all positive entire 
solutions. This lower bound is in fact achieved in the case that the functions a(x, t) and b(x, t) are 
constant.

(ii) Theorem 1.4 (ii) shows that if (H2) holds, then the explicit lower bound and upper bound for all 
positive entire solutions coincide with the lower bound and upper bound of the attraction region given 
by Theorem 1.2 (ii).

We have the following result on the uniqueness and stability of positive entire solutions of (1.1).

Theorem 1.5 (Uniqueness and stability of strictly positive entire solutions). There is χ0 > 0 such that when 
0 ≤ χ < χ0, there is αχ > 0 such that (1.1) has a unique strictly positive entire solution (u+

χ (x, t), v+
χ (x, t))

which is uniformly and exponentially stable with respect to strictly positive perturbations in the sense that 
for any u0 ∈ Cb

unif(R) with u0 inf > 0, there is M > 0 such that

‖u(·, t + t0; t0, u0) − u+
χ (·, t + t0)‖∞ ≤ Me−αχt, ∀t ≥ 0, ∀ t0 ∈ R (1.22)

and

‖v(·, t + t0; t0, u0) − v+
χ (·, t + t0)‖∞ ≤ μ

λ
Me−αχt, ∀t ≥ 0, ∀ t0 ∈ R, ∀ t0 ∈ R. (1.23)

Furthermore, if the logistic function f(x, t, u) = (a(x, t) − b(x, t)u)u is either space homogeneous or is 
of form f(x, t, u) = b(x, t)(κ − u)u, κ > 0, then χ0 can be taken to be χ0 = binf

2μ , and u+
χ (x, t) = u+

0 (t), 
0 < χ < χ0, is the only stable positive entire solution of the Fisher-KKP equation, (1.3).

Remark 1.3.

(i) If we suppose that the logistic function is space homogeneous (resp. the function RN×R � (x, t) �→ a(x,t)
b(x,t)

is constant), Theorem 1.5 establishes the stability of the unique space homogeneous (resp. space–time 
homogeneous) strictly positive entire solution of (1.1) when the chemotaxis sensitivity satisfies 0 <
χ < binf

2μ . Furthermore, this results goes beyond the stability of the constant equilibrium given by 
Theorem 1.2 (ii) when the logistic source is constant, and show that all positive solutions of (1.1)
converge exponentially to (ab , 

μa
λb ) when 0 < χ < binf

2μ . It should be noted that the hypothesis 0 < χ < binf
2μ

is weaker than hypothesis (H2).
(ii) It is worth mentioning that the techniques developed to prove Theorem 1.5 can be adopted to study the 

uniqueness and stability of positive entire solution of (1.1), when (1.1) is studied on bounded domains 
with Neumann boundary conditions. Hence the same result is true in this later case. In particular, the 
uniqueness and stability of the unique constant equilibrium solution of (1.1), when studied on bounded 
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domains with Neumann boundary conditions and a(x,t)
b(x,t) ≡ constant, under the hypothesis 0 < χ < binf

2μ
improves [13, Theorem 1.4 (2)] in this case.

(iii) Let χ0 be given by Theorem 1.5. One can prove that for every,

0 < χ < min
{
χ0,

binf

μ

(
1 +

(
1 +

√
1 + Nainf

4λ
)
asup

2ainf

)−1}
,

it holds that

lim
t→∞

sup
|x|≤ct

|u(x, t + t0; t0, u0) − u+
χ (x, t)| = 0, ∀0 ≤ c < c∗−(a, b, χ, λ, μ),∀ t) ∈ R

whenever u0 ∈ Cb
unif(RN ) is nonnegative with nonempty compact support supp(u0), where the constant 

c∗−(a, b, χ, λ, μ) is given by Theorem 1.3.
(iv) Incorporating space and/or time dependence on the logistic source f(x, t, u) = u(a(x, t) −b(x, t)u) adds 

new challenges in the study of the dynamics of solutions of (1.1). In particular, the existence of strictly 
positive entire solutions of (1.1) is very nontrivial to prove when a and b depend on both t and x (note 
that if a and b are constants, then it follows directly that (u, v) = (ab , 

μ
λ

a
b ) is a strictly positive entire 

solution). Also strictly positive entire solutions may depend on the chemotaxis sensibility coefficient 
χ > 0 when the logistic source function depends on time and space. This dependence makes the study 
of the stability of positive entire solutions much more difficult than the case that a and b are constants 
and requires completely new ideas. Our first step in handling this problem is to first derive some a 
priori estimates on the space C1-norm of positive entire solutions which leads to the definition of the 
constant χ0 in Theorem 1.5. Next for χ < χ0, by developing a new iterative techniques, a kind of 
“eventual comparison principle” at each step, we show that the ratio of the solution of (1.1) with a 
strictly positive initial function and a strictly positive entire solution can not be really far away from 
the constant 1 uniformly in the space variable as the time variable becomes arbitrarily large. Based on 
this result, in the third step we completes the proof of the result, which also requires new ideas. It is 
worth mentioning that the techniques developed towards the proof of Theorem 1.5 can be applied for 
more general problems.

We conclude with the following results on the disturbances to Fisher-KPP dynamics caused by weak 
chemotactic effects. In this direction we have the following result.

Theorem 1.6. Assume (H1). Let (u+
χ (x, t), v+

χ (x, t)) denotes strictly positive entire solution of (1.1) with 
0 ≤ χ < binf

μ . Then it holds that

sup
t∈R

‖u+
χ (·, t) − u+

0 (·, t)‖∞ ≤
χμasupu

+
0 supK

(binf − χμ)binfu
+
0 inf

, (1.24)

where K :=
(
2 +

√
N√
λ

supt∈R
‖∇ ln(u+

0 (·, t))‖∞
)
. Furthermore, we have that

sup
0<χ≤χ1

sup
t0∈R

1
χ

(
sup
t≥0

‖uχ(·, t + t0; t0, u0) − u0(·, t + t0; t0, u0)‖∞
)
< ∞, (1.25)

for every 0 < χ1 < binf
μ and every u0 ∈ Cb

unif(RN ) with u0 inf > 0.

Remark 1.4. It follows from Theorem 1.6 that

lim
+
‖u+

χ (·, t) − u+
0 (·, t)‖∞ = 0
χ→0
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uniformly in t ∈ R. Furthermore, for every u0 ∈ Cb
unif(RN ), with u0 inf > 0, it holds that

lim
χ→0+

‖uχ(·, t + t0; t0, u0) − u0(·, t + t0; t0, u0)‖∞ = 0,

uniformly in t ≥ 0 and t0 ∈ R.

The rest of the paper is organized as follows. In section 2, we present some preliminary lemmas. In 
Section 3, we study the existence of strictly positive entire solutions and prove Theorem 1.4. We investigate 
in section 4 the uniqueness and stability of strictly positive entire solution and prove Theorem 1.5. The 
proof of Theorem 1.6 is also given in section 4.

2. Preliminary lemmas

Lemma 2.1. Suppose that (H1) holds. Then for every T > 0, t0 ∈ R, and for every nonnegative initial 
function u0 ∈ Cb

unif(RN ), there holds that

inf
x∈RN

u(x, t + t0; t0, u0) ≥ u0 infe
t(ainf−bsup‖u0‖∞eTasup ), ∀ 0 ≤ t ≤ T. (2.1)

In particular for every T > 0 and for every nonnegative initial u0 ∈ Cb
unif(RN ) satisfying ‖u0‖∞ ≤ MT :=

ainfe
−asupT

bsup
, we have that

inf
x∈RN

u(x, t + t0; t0, u0) ≥ inf
x∈RN

u0(x), ∀ 0 ≤ t ≤ T, ∀ t0 ∈ R. (2.2)

Proof. See [25, Lemma 3.1]. �
Lemma 2.2. Assume that (H1) holds. Let u0 ∈ Cb

unif(RN ), {u0n}n≥1 be a sequence of nonnegative functions 
in Cb

unif(RN ), and let {t0n}n≥1 be a sequence of real numbers. Suppose that 0 ≤ u0n(x) ≤ M := asup
binf−χμ

and {u0n}n≥1 converges locally uniformly to u0. Then there exist a subsequence {t0n′} of {t0n}, func-
tions a∗(x, t), b∗(x, t) such that (a(x, t + t0n′), b(x, t + t0n′)) → (a∗(x, t), b∗(x, t)) locally uniformly as 
n′ → ∞, and u(x, t + t0n′ ; t0n′ , u0n′) → u∗(x, t; 0, u0) locally uniformly in (x, t) as n′ → ∞, where 
(u∗(x, t; 0, u0), v∗(x, t; 0, u0) is the classical solution of

⎧⎪⎪⎨
⎪⎪⎩
ut(x, t) = Δu(x, t) − χ∇ · (u(x, t)∇v(x, t)) + (a∗(x, t) − b∗(x, t)u(x, t))u(x, t), x ∈ R

N

0 = (Δ − λI)v∗(x, t) + μu∗(x, t), x ∈ R
N

u∗(x, 0) = u0(x), x ∈ R
N .

Proof. See [25, Lemma 3.2]. �
Lemma 2.3. Assume that (H1) holds. For every M > 0, ε > 0, and T > 0, there exist L0 = L(M, T, ε) � 1
and δ0 = δ0(M, ε) such that for every initial function u0 ∈ Cb

unif(RN ) with 0 ≤ u0 ≤ M and every L ≥ L0,

u(x, t + t0; t0, u0) ≤ ε, ∀ 0 ≤ t ≤ T, t0 ∈ R, ∀ |x|∞ < 2L (2.3)

whenever 0 ≤ u0(x) ≤ δ0 for |x|∞ < 3L.

Proof. See [25, Lemma 3.3]. �
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Lemma 2.4. Assume that (H1) holds. For fixed T > 0, there is 0 < δ∗0(T ) < M+ = asup
binf−χμ + 1 such that for 

any 0 < δ ≤ δ∗0(T ) and for any u0 with δ ≤ u0 ≤ M+,

δ ≤ u(x, T + t0; t0, 0, u0) ≤ M+ ∀ x ∈ R
N , ∀ t0 ∈ R. (2.4)

Proof. See [25, Lemma 3.5]. �
While we referred to [25] for the proof of Lemma 2.4, for the sake of clarity in the arguments in the proof 

of our main result in next section, it is convenient to point out some fundamental results developed in its 
proof. Let a0 = ainf

3 , DL := {x ∈ R
N : |xi| < L ∀ i = 1, · · · , N}, and consider the PDE

{
ut − Δu− a0u = 0, x ∈ DL

u = 0 x ∈ ∂DL

(2.5)

and its corresponding eigenvalue problem

{
−Δu− a0u = σu, x ∈ DL

u = 0 x ∈ ∂DL.
(2.6)

There is L0 > 1 such that the principal eigenvalue of (2.6), denoted by σL, is negative for every L ≥ L0. 
Moreover a principal eigenfunction, φL, associated to the principal eigenvalue σL can be chosen such that 
0 < φL(x) < φ(0) = 1 for all x ∈ DL \ {0} (see [25]). Moreover for every 0 < ε0 � 1, there is 0 < δ0 � 1
such that for any u0 ∈ Cb

unif(RN ) with 0 ≤ u0 ≤ M+ and u0(x) < δ0 for |xi| ≤ 3L, i = 1, 2, · · · , N ,

0 ≤ λv(x, t; t0, x0, u0) ≤
a0

2χ, |∇v(x, t; t0, x0, u0)| <
ε0
2χ for t0 ≤ t ≤ t0 + 1, x ∈ DL, x0 ∈ R

N (2.7)

provided that L � 1 (see [25]).
Next we consider the following related periodic-perturbation of (2.5),

{
ut − Δu− bε(x, t)∇u− a0u = 0, x ∈ DL

u = 0 x ∈ ∂DL,
(2.8)

with |bε(x, t)| ≤ ε, bε(x, t + 1) = bε(x, t), and its corresponding periodic eigenvalue problem

⎧⎪⎪⎨
⎪⎪⎩
ut − Δu− bε(x, t)∇u− a0u = σu, x ∈ DL, 0 < t < 1,
u(x, t) = 0, x ∈ ∂DL, 0 < t < 1,
u(x, 0) = u(x, 1), x ∈ DL.

(2.9)

We suppose that bε(x, t) is 1-periodic in t ∈ R, that is, bε(x, t + 1) = bε(x, t) for all x ∈ DL, and t ∈ R, and 
let UL,bε(t, τ), τ < t, denote the solution operator of (2.8) on Lp(DL), N � p < ∞. For, τ < t, the evolution 
operator UL,ε(t, τ) is a compact and strongly positive operator on W 2,p

0 (DL) := {u ∈ W 2,p(DL) : u =
0 on ∂DL}. Letting KL,bε := UL,bε(1, 0), which is compact and strongly positive, thus its spectrum radius 
rL,ε, is positive. By Krein–Rutman Theorem, rL,ε is an eigenvalue of KL,ε with a corresponding positive 
eigenfunction uL,ε. It is well known that σε

L := − ln(rL,ε) is the principal eigenvalue of (2.9) with positive 
1-periodic eigenfunction φL,ε(t) = etσL,εUL,bε(t, 0)uL,ε (see [11]). Note that UL(t)(φL) = e−tσLφL, where 
UL(t) denotes the solution operator of (2.5). It follows that KL(φL) = UL(1)(φL) = e−σLφL, which implies 
that rL ≥ e−σL . By perturbation theory for parabolic equations, we have that UL,bε(1, 0) → UL(1) as 
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‖bε‖C(D̄L×[0,1]) → 0. Thus, there is 0 < ε0(L) � 1 such that rL,ε ≥ e−
σL
2 whenever ‖bε‖C(D̄L×[0,1]) ≤ ε0(L). 

Hence

σL,ε = − ln(rL,ε) ≤
σL

2
< 0, 0 < ε < ε0(L).

Note that UL,bε(t, τ)φL,ε(τ) = e−(t−τ)σL,εφL,ε(t). Thus for every nonnegative initial u0 ∈ C(DL) with 
‖u0‖∞ > 0, we have that

sup
x∈DL,τ<t

|(UL,bε(t, τ)u0)(x)| = ∞, ∀ ‖bε‖C(D̄L×[0,1]) < ε0(L). (2.10)

3. Existence of strictly positive entire solutions

In this section, we study the existence of strictly positive entire solutions and prove Theorem 1.4.

Proof of Theorem 1.4. Let T > 0 be fixed and δ0 := δ∗0(T ) and M+ = asup
binf−χμ + 1 be given in Lemma 2.4. 

It follows from Lemma 2.4 that

δ0 ≤ u(x, T − kT ;−kT, u0) ≤ M+, x ∈ R
n, k ≥ 1, δ0 ≤ u0 ≤ M+. (3.1)

Thus, it follows by induction and uniqueness of solution that

δ0 ≤ u(x, nT − kT ;−kT, u0) ≤ M+, x ∈ R
n, k ≥ 1, n ≥ 1, δ0 ≤ u0 ≤ M+. (3.2)

Let uk
n(x) := u(x, −nT ; −kT, δ0) for all x ∈ R

n, and k ≥ n ≥ 0. Then by a priori estimates for parabolic 
equations (see [6]), the sequence {uk

0}k≥1 has a locally uniformly convergent subsequence {uk′
0 }k≥1 to some 

u∗ with u∗ ∈ Cν
unif(Rn) for 0 < ν < 1. Let u+(x, t) = u(x, t; 0, u∗) for every x ∈ R

n and t ≥ 0. We claim 
that u+(·, ·) has a backward extension. Indeed, by uniqueness of solution of (1.1), for every 1 ≤ n ≤ k′, we 
have that

uk′

0 (·) = u(·, 0;−nT, u(·,−nT ;−k′T, δ0)) = u(·, 0;−nT, uk′

n ). (3.3)

Similarly as above, for every n ≥ 1, there is a function u∗
n ∈ Cb

unif(Rn) and a subsequence {uk′
n

n }k≥1 of {uk′
n }

with uk′
n

n → u∗
n locally uniformly as k′n → ∞.

Since uk′
n

0 → u∗ for each n ≥ 1 locally uniformly, it follows from (3.3) and Lemma 2.2 that

u∗(·) = u(·, 0;−nT, u∗
n).

Therefore

u+(x, t) = u(x, t; 0, u∗) = u(x, t; 0, u(·, 0;−nT, u∗
n)) = u(x, t;−nT, u∗

n) (3.4)

for all x ∈ R
N and t ≥ 0. Note that we have used the uniqueness of solutions of (1.1) given by Theorem 1.1

to derive the last equality in (3.4). Since u(·, t; −nT, u∗
n) is defined for all t ≥ −nT , then it follows from 

(3.4) that u+(x, t) has extension to RN × [−nT, ∞) for every n ∈ N. Therefore, u+(x, t) has a backward 
extension on RN ×R. Note that (3.2) implies that δ0 ≤ u∗ ≤ M+. Thus, by Theorem 1.2(i) and Lemma 2.1, 
we obtain that 0 < infx,t u+(x, t) ≤ supx,t u

+(x, t) ≤ M+. Hence (u+(x, t), v+(x, t)) is a positive entire 
solution of (1.1).
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(i) Suppose that (u+(x, t), v+(x, t)) is a strictly positive entire solution of (1.1). Assume u+
sup < ainf

bsup
. Let 

T > 0 such that ainf > easupT bsupu
+
sup. It follows from (2.1) that for every x ∈ R

N , t ∈ R, we have

u+(x, t) = u+(x, t; t− T, u+(·, t− T )) ≥ eT (ainf−bsup‖u+(·,t−T )‖∞easupT ) inf
y∈RN

u+(y, t− T ),

which implies that

u+
inf ≥ u+

infe
T (ainf−easupT bsupu

+
sup).

This is impossible since ainf −easupT bsupu
+
sup > 0. Thus, we must have u+

sup ≥ ainf
bsup

. Hence the first inequality 
in (1.20) holds.

Note that

u(t− t0;u+
inf) ≤ u+(x, t) ≤ u(t− t0;u+

sup),∀ t0 ∈ R, t ≥ t0, x ∈ R
N , (3.5)

where u(t; u+
inf) solves

{
d
dtu = u(ainf − χμu+

sup − (bsup − χμ)u), t > 0
u(0) = u+

inf ,

and u(t; u+
sup) solves

{
d
dtu = u(asup − χμu+

inf − (binf − χμ)u), t > 0
u(0) = u+

sup.

Note also that

lim
t0→−∞

u(t− t0;u+
inf) =

(ainf − χμu+
sup)+

bsup − χμ
, lim

t0→−∞
u(t− t0;u+

sup) = (asup − χμu+
inf)+

binf − χμ
. (3.6)

Hence, it follows from (3.5) and (3.6) that

(ainf − χμu+
sup)+

bsup − χμ
≤ u+

inf and u+
sup ≤ (asup − χμu+

inf)+
binf − χμ

. (3.7)

The second inequality of (3.7) implies that u+
sup ≤ asup

binf−χμ . This is the second inequality in (1.20). (i) thus 
follows.

(ii) Since 0 < u+
inf ≤ u+

sup, (3.7) implies that

(binf − χμ)ainf − χμasup ≤
(
(binf − χμ)(bsup − χμ) − (χμ)2

)
u+

inf (3.8)

and

(
(binf − χμ)(bsup − χμ) − (χμ)2

)
u+

sup ≤ (bsup − χμ)asup − χμainf (3.9)

Since (H2) holds and u+
inf > 0, it follows from (3.8) that (binf − χμ)(bsup − χμ) − (χμ)2 > 0. Thus (1.21)

follows from (3.8) and (3.9).



R.B. Salako, W. Shen / J. Math. Anal. Appl. 464 (2018) 883–910 895
(iii) Let δ∗0(T ) be given by Lemma 2.4 and E(T ) := {u ∈ Cb
unif(RN ) | δ∗0(T ) ≤ uinf ≤ usup ≤ ainf

bsup−χμ}
endowed with the open compact topology. Lemma 2.4 implies that the map PT : E(T ) � u0 �→ u(·, T ; 0, u0) ∈
E(T ) is well defined. Note that E(T ) is a closed bounded convex subset of Cb

uinf(RN ) endowed with the open 
compact topology. Let {u0n}n≥1 ⊂ E(T ) and u0 ∈ E(T ) such that u0n → u0 uniformly on every compact 
subset of RN . For every n ≥ 1, we have

ut(·, ·; 0, u0n) = Δu− χ∇v(·, ·;u0n) · ∇u + (a− χλv(·, ·; 0, u0n) − (b− χμ)u)u, t > 0

and Theorem 1.1 (ii) gives

sup
0≤t≤T,n≥1

‖v(·, t; 0, u0n)‖C1,ν
unif(RN ) < ∞. (3.10)

Since u0n → u0 locally uniformly, it follows from Lemma 2.2 that there is a subsequence {(u(·, ·; 0, u0n′),
v(·, ·; 0, u0n′))}n≥1 of {(u(·, ·; 0, u0n), v(·, ·; 0, u0n))}n≥1 and a function (u, v) ∈ C2,1(RN × (0, ∞)) such that 
(u(·, ·; 0, u0n′), v(·, ·; 0, u0n′)) → (u, v) locally uniformly in C2,1(RN × (0, ∞)). Moreover, (u, v) satisfies Δv−
λv + μu = 0 and {

ut = Δu− χ∇v · ∇u + (a− χλv − (b− χμ)u)u, 0 < t ≤ T

u(0) = u0.

Thus (u(x, t), v(x, t)) = (u(x, t; 0, u0), v(x, t; 0, u0)) for every x ∈ R
N , t ∈ [0, T ]. This implies that 

u(·, T ; 0, u0n′) → u(·, T ; 0, u0) locally uniformly. Hence PT is continuous.
Next let {u0n}n≥ ∈ E(T ) be given. It follows from (3.10) and a priori estimate for parabolic equations 

that

sup
n

‖u(·, T ; 0, u0n)‖Cν(RN ) < ∞.

Thus {u(·, T ; 0, u0n)}n≥1 has a convergent subsequence in the open compact topology in E(T ). Hence 
PT is a compact map. Therefore, Schauder’s fixed theorem implies that there is u∗ ∈ E(T ) such that 
u(·, T ; 0, u∗) = u∗. Clearly (u(·, ·; 0, u∗), v(·, ·; 0, u∗)) is a T -periodic solution of (1.1) and can be extended 
uniquely to a positive entire solution.

(iv) For every n ≥ 1, let Tn = 1
n and u0n ∈ Cb

unif(RN ), such that (u(x, t; u0n), v(x, t; u0n)) is a positive 
Tn-periodic solution of (1.1) with ainf

bsup
≤ sup(x,t) u(x, t; u0n) ≤ asup

binf−χμ .

Claim 1: There is L � 1 such that

inf
n≥1,x0∈RN

sup
|x|<L

u0n(x + x0) > 0. (3.11)

Let a0 = ainf
3 and L0 � 1 be fixed such that the principal eigenvalue λL of (2.6) is negative for every L ≥

L0. Note that for every nonnegative uniformly continuous function u0(x) in DL, L ≥ L0, with ‖u0‖L∞(DL) >

0, we have that ‖u(·, t; u0)‖∞ → ∞, as t → ∞, where u(x, t; u0) solves the initial-boundary problem 
(2.5). Hence, by (2.10), for ever L ≥ L0, there is ε0(L) > 0 such that if supx∈DL,0≤t≤1 |bε0(x, t)| ≤ ε0, 
bε0(x, t + 1) = bε0(x, t) for every x ∈ DL, t ≥ 0, then for every nonnegative continuous function u0(x) on 
DL with ‖u0‖L∞(DL) > 0, we have that

sup
x∈DL,t>0

(UL,bε0(L)(t; 0)u0)(x) = ∞, (3.12)

where Ubε (L),L(x, t; 0)u0 solves the initial boundary value problem (2.8) (with T = 1).

0
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Taking T = 1, M = asup
binf−χμ and ε = min{ ainf

3(χλ+bsup−χμ) , ε0(L0)}, it follows from Lemma 2.3 and inequal-
ities (2.3) and (2.7) that there is L1 > L0 and δ0 > 0 such that for every L ≥ L1

u(x, t+t0;u0) < ε, v(x, t+t0; t0, u0) < ε, and |∇v(x, t+t0; t0, u0)| ≤ ε ∀ 0 ≤ t ≤ 1, ∀ x ∈ DL (3.13)

whenever 0 ≤ u0(x) ≤ δ0 for |x| ≤ 3L, i = 1, · · · , N . Suppose that there is some n ≥ 1 and x0 ∈ R
N , such 

that

sup
|x|∞<3L1

u0n(x + x0) < δ0. (3.14)

Thus, since (u(x, t; 0, u0n), v(x, t; 0, u0n)) is Tn-periodic with Tn ≤ 1, it follows from (3.13) that

ut(, ·; 0, u0n) = Δu(·, ·; 0, u0n) − χ(∇v∇u)(·, ·; 0, u0n) + u(a− (b− χμ)u− χλv)

≥ Δu(·, ·; 0, u0n) − χ(∇v∇u)(·, ·; 0, u0n) + ainf

3 u(·, ·, 0, u0n), |x− x0| < L1, t ≥ 0.

Therefore, by comparison principle for parabolic equations, since L1 ≥ L0, we have that

u(x + x0, t; 0, u0n) ≥ Ubε0 ,L0(x, t; 0)u0n|DL0
, ∀ |x|∞ < L1, ∀t ≥ 0 (3.15)

where u0n|DL0
denotes the restriction of u0n on DL0 and bε0(x, t) = ∇v(x + x0, t; 0, u0n) for every x ∈

DL0 , t ≥ 0. It follows from (3.12) and (3.15) that supx,t u(x, t; 0, u0n) = ∞, which is a contradiction. Hence 
claim 1 follows.

By a priori estimate for parabolic equations, we might suppose that u0n → u∗ ∈ Cb
unif(RN ) in the open 

compact topology. Let u+(x, t) = u(x, t; 0, u∗).

Claim 2: u+(x, t) = u∗(x) for every x ∈ R
N , and t ≥ 0.

Without loss of generality, let us suppose that u0n → u∗ in the open compact topology. Let x ∈ R
N and 

t > 0 be fixed. For every n ≥ 1, we have that

u+(x, t) − u∗(x) = u(x, t; 0, u∗) − u(x, t; 0, u0n)︸ ︷︷ ︸
I1,n(x,t)

+u(x, t; 0, u0n) − u(x, [nt]Tn; 0, u0n)︸ ︷︷ ︸
I2,n(x,t)

+ u(x, [nt]Tn; 0, u0n) − u∗︸ ︷︷ ︸
I3,n(x,t)

. (3.16)

Since u(x, t; 0, u0n) is Tn-periodic, then

I3,n(x, t) = u0n(x) − u∗(x) → 0, as n → ∞

in open compact topology. It follows from the variation of constant formula that

I2,n(x, t) = −χ

t−[nt]Tn∫
0

e(t−[nt]Tn−s)(Δ−I)∇(u(x, s + [nt]Tn; 0, u0n)∇v(x, s + [nt]Tn; 0, u0n))ds

︸ ︷︷ ︸
I1
2,n(x,t)

+
t−[nt]Tn∫

0

e(t−[nt]Tn−s)(Δ−I) (((a + 1 − bu)u)) (x, s + [nt]Tn; 0, u0n)ds

︸ ︷︷ ︸
I2
2,n(x,t)
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Since ‖u0n‖∞ ≤ M , there is a constant C depending only on M such that

|I1
2,n(x, t)| ≤ C

t−[nt]Tn∫
0

(t− [nt]Tn − s)− 1
2 e−(t−[nt]Tn−s)ds ≤ C(t− [nt]Tn) 1

2 → 0, as n → ∞,

and

|I2
2,n(x, t)| ≤ C

t−[nt]Tn∫
0

e−(t−[nt]Tn−s)ds = C(1 − e−(t−[nt]Tn)) → 0, as n → ∞.

Hence I2,n(x, t) → 0 as n → ∞ in the open compact topology. Since u0n → u∗ in the open compact 
topology, then by Lemma 2.2, we have that I1,n(x, t) → 0 as n → ∞ in open compact topology. Therefore, 
we conclude from (3.16) that u+(x, t) = u∗(x), which complete the proof of Claim 2.

Next, it follows from Claim 1 that there L � 1 such that

inf
x0∈RN

sup
|x|∞≤L

u∗(x + x0) > 0. (3.17)

Suppose by contradiction that u∗
inf = 0. Then there is a sequence {xn}n≥1 such that u∗(xn) → 0 as n → ∞. 

Let un(x) = u∗(x + xn) for every n ≥ 1. By a prior estimate for parabolic equations, as above, we may 
suppose that un → ũ in the open compact topology of RN and ũ is a steady solution of (1.1). Furthermore, 
(3.17) implies that ‖ũ‖∞ > 0. Hence by comparison principle for parabolic equations, we that ũ(0) > 0. But 
ũ(0) = limn→∞ u∗(xn) = 0, which impossible. Thus u∗

inf > 0. Therefore u∗(x) is a positive steady solution 
of (1.1). �
4. Uniqueness and stability of strictly positive entire solutions

In this section we study the uniqueness and stability of strictly positive entire solutions of (1.1) and 
prove Theorem 1.5 and Theorem 1.6. First, we study these questions for general logistic type source function 
f(x, t, u) = u(a(x, t) −b(x, t)u), and prove that there is a positive constant χ0 such that for every 0 ≤ χ < χ0, 
(1.1) has a unique exponentially stable positive entire solution. Next, we examine two frequently encountered 
cases of logistic source in the literature, mainly space independent logistic source function f0(x, t, u) =
u(a(t) −b(t)u) and logistic source function of the form f1(x, t, u) = b(x, t)(κ −u)u, κ > 0, and derive explicit 
lower bound for χ0. In this section we shall always assume that (H1) holds, so that pointwise persistence 
phenomena occurs in (1.1) (see Theorem 1.2 (i)). Furthermore, for every initial function u0 ∈ Cb

unif(RN )
with infx u0(x) > 0 and every initial time t0 ∈ R, it follows from Remark 1.1 that there exists T1(u0) � 1
such that the unique nonnegative global classical solution (u(x, t + t0; t0, u0), v(x, t + t0; t0, u0)) of (1.1) with 
(u(x, t0; t0, u0) = u0(x) satisfies

0 < m(u0) ≤ u(x, t + t0; t0, u0) ≤
asup

binf − χμ
, ∀ t ≥ T1(u0), ∀ x ∈ R

N , ∀ t0 ∈ R. (4.1)

Henceforth, we shall always suppose that 0 < u0 inf ≤ u0 sup ≤ a
binf−χμ . Note that, by a variation of constant 

formula, we have that



898 R.B. Salako, W. Shen / J. Math. Anal. Appl. 464 (2018) 883–910
u(·, t + t1 + t0; t0, u0) = T (t)u(·, t1 + t0; t0, u0) − χ

t∫
0

T (t− s)∇ · (u∇v)(·, s + t1 + t0; t0, u0)ds

+
t∫

0

T (t− s)((a + 1 − ub)u)(·, s + t1 + t0; t0, u0))ds, (4.2)

where {T (t)}t≥0 denotes the analytic semigroup generated by Δ − I on X := Cb
unif(RN ). We let Xβ , 

0 < β ≤ 1, stands for the fractional power spaces associated to I −Δ. Thus, it holds that (see [7]) X 1
2+β is 

continuously embedded in Cb,1
unif(RN ) with

‖∇u‖Cb
unif(RN ) ≤

√
NΓ(β)√

πΓ(1
2 + β)

‖u‖
X

1
2 +β , ∀ u ∈ Xβ+ 1

2 , ∀ 0 < β <
1
2 , (4.3)

‖u‖Cb
unif(RN ) ≤ ‖u‖Xβ , ∀ u ∈ Xβ , ∀ 0 < β < 1, (4.4)

and

‖T (t)u‖Xβ ≤ Cβt
−βe−t‖u‖∞, ∀ t > 0, ∀ u ∈ Xβ , ∀ 0 < β < 1. (4.5)

The next Lemma provides an a priori bound on the sup-norm of gradient of positive entire solutions to 
(1.1).

Lemma 4.1. There is a positive constant C independent of χ, a, b, λ and μ such that for any positive entire 
solution (u+

χ (x, t), v+
χ (x, t)) of (1.1), it holds that

‖∇u+
χ (·, t + t0)‖∞ ≤ C 3

4

√
NΓ(1

4)
√
πΓ(3

4 )
M0e

−tt−
3
4
(
1 + CM2t

1
4
)
e2t

(
Γ( 1

4 )M2
)4
, ∀t0 ∈ R, ∀t > 0, (4.6)

where M0 = asup
binf−χμ and M1 = 2asup + 1 + χμM0 and M2 := C 3

4

(
χμNΓ( 1

4 )√
πλΓ( 3

4 )M0 + M1

)
and C 3

4
is given by 

(4.5).

Proof. Observe from (4.2) that for every t > 0 and t0 ∈ R, u+
χ (·, t + t0) can be written as

u+
χ (·, t + t0) = T (t)u+

χ (·, t0) − χ

t∫
0

T (t− s)(∇u+
χ · ∇v+

χ )(s + t0)ds

+
t∫

0

T (t− s)
(
(a + 1 − χλv+

χ − (b− χμ)u+
χ )u+

χ

)
(s + t0)ds. (4.7)

Note from [25, Lemma 2.2] and (1.20), that ‖∇v+
χ (·, t + t0)|∞ ≤ μ

√
N√
λ
‖u+

χ (·, t + t0)‖∞ ≤ μ
√
N√
λ
M0. Thus, it 

follows from (4.5) and (4.3) that

‖χ
t∫

0

T (t− s)(∇u+
χ · ∇v+

χ )(s + t0)ds‖
X

3
4

≤
χμ

√
NC 3

4
M0√

λ

t∫
e−(t−s)

(t− s) 3
4
‖∇u+

χ (·, s + t0)‖∞ds
0
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≤
χμNΓ(1

4)C 3
4
M0√

πλΓ(3
4 )

t∫
0

e−(t−s)

(t− s) 3
4
‖∇u+

χ (·, s + t0)‖∞ds.

Similarly since λ‖v+
χ (·, t + tτ )‖∞ ≤ χμ‖u+

χ (·, t + tτ )‖∞ ≤ χμM0, using (4.4) and (4.5), we obtain

‖
t∫

0

T (t− s)
(
(a + 1 − χλv+

χ − (b− χμ)u+
χ )u+

χ

)
(·, s + t0)ds‖

X
3
4

≤C 3
4

(
asup + 1 + χλ sup

τ
‖v+

χ (·, τ)‖∞ + (bsup − χμ) sup
τ

‖u+
χ (·, τ)‖∞

) t∫
0

e−(t−s)

(t− s) 3
4
‖u+

χ (·, s + t0)‖∞ds

≤C 3
4

(
2asup + 1 + χμM0

) t∫
0

e−(t−s)

(t− s) 3
4
‖u+

χ (·, s + t0)‖∞ds.

Therefore, we have from (4.7) that

‖etu+
χ (·, t + t0)‖

X
3
4
≤ C 3

4
M0t

− 3
4 + C 3

4

(χμNΓ(1
4 )√

πλΓ(3
4)

M0 + M1

)
︸ ︷︷ ︸

:=M2

t∫
0

es‖u+
χ (·, s + t0)‖∞
(t− s) 3

4
ds.

Therefore, it follows from [1, Theorem 3.1.1] that there is C > 0 such that

‖etu+
χ (·, t + t0)‖

X
3
4
≤C 3

4
M0t

− 3
4
(
1 + CM2t

1
4
)
e2t

(
Γ( 1

4 )M2
)4
.

Combining this with (4.3), we obtain (4.6). The Lemma is thus proved. �
Remark 4.1. It follows from Lemma 4.1 that

‖∇u+
χ (·, t)‖∞ = ‖∇u+

χ (·, 1 + (t− 1))‖∞ ≤ C 3
4

√
NΓ(1

4 )
√
πΓ(3

4 )
M0e

−1(1 + CM2
)
e2

(
Γ( 1

4 )M2
)4
, ∀t ∈ R,

where C, M0, M1 and M2 are given by Lemma 4.1 whenever (u+
χ (x, t), v+

χ (x, t)) is a positive entire solution 
of (1.1). Therefore, by setting

C0(χ) := sup{‖∇u+
χ (·, t)‖∞, t ∈ R, (u+

χ (x, t), v+
χ (x, t)) is a positive entire solution of (1.1)}, (4.8)

we have that C0(χ) < ∞ for every 0 < χ < binf
μ . Moreover taking C1(χ) = 1 + C0(χ)

√
N

u+
χ inf

√
λ

, it follows from 

(1.21) that

lim
χ→0+

χμC1(χ)u+
χ sup

(binf − χμ)u+
χ inf

= 0,

for any positive entire solution (u+
χ (x, t), v+

χ (x, t)) of (1.1). Thus, we introduce the following definition

χ0 := sup{χ ∈ (0, binf

μ
) : ∀ 0 < χ̃ < χ, ∃ (u+

χ̃ , v
+
χ̃ ) satisfying

χ̃μC1(χ̃)u+
χ̃ sup

(binf − χ̃μ)u+
χ̃ inf

< 1 }. (4.9)
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Lemma 4.2. For given u0 ∈ Cb
unif(RN ) and positive entire solution (u+

χ (x, t), v+
χ (x, t)) of (1.1) we let

U(x, t + t0; t0, u0) := u(x, t + t0; t0, u0)
u+
χ (x, t + t0)

and V (x, t + t0; t0, u0) := v(x, t + t0; t0, u0)
v+
χ (x, t + t0)

.

Then U(x, t + t0; t0, u0) satisfies

Ut = ΔU +∇U · ∇(2 ln(u+
χ )−χv) +χ

(
λ(v+

χ − v) +∇ ln(u+
χ ) · ∇(v+

χ − v)
)
U + (b−χμ)u+

χU(1−U). (4.10)

In particular, if u+
χ (x, t) = u+

χ (t), that is, u+
χ is space independent, then

Ut = ΔU − χ∇U · ∇v +
(
χλ(1 − V )U + (b− χμ)U(1 − U)

)
u+
χ (t). (4.11)

Proof. We have that

Ut = 1
(u+

χ )2
(
u+
χ

(
Δu− χ∇ · (u∇v) + (a− bu)u

)
− u

(
Δu+

χ − χ∇ · (u+
χ∇v+

χ ) + (a− bu+
χ )u+

χ

))
= 1
u+
χ

(
Δu− UΔu+

χ − χ
(
∇ · (u∇v) − U∇ · (u+

χ∇u+
χ )

))
+ bu+

χU(1 − U)

=ΔU + 2∇U · ∇ ln(u+
χ ) − χ

u+
χ

(
∇ · (u∇v) − U∇ · (u+

χ∇u+
χ )

)
+ bu+

χU(1 − U).

On the other, we have

∇ · (u∇v) − U∇ · (u+
χ∇v+

χ ) =∇u · ∇v + Uu+
χΔv − U∇u+

χ · ∇v+
χ − Uu+

χΔv+

=Uu+
χΔ(v − v+

χ ) + U∇u+
χ · ∇(v − v+

χ ) + u+
χ∇U · ∇v

=λUu+
χ (v − v+

χ ) + μ(u+
χ )2U(1 − U) + U∇u+

χ · ∇(v − v+
χ )

+ u+
χ∇U · ∇v.

Hence, (4.10) holds. (4.11) follows directly from (4.10). �
We note that, to show the stability of the positive entire solution u+

χ (x, t), it is enough to show that 
‖U(·, t + t0; t0, u0) − 1‖∞ → 0 as t → ∞. We first prove the following Theorem, which will be useful for the 
proof of our main result in this section.

Theorem 4.3. For every ε > 0, u0 ∈ Cb
unif(RN ) satisfying 0 < u0 inf ≤ u0 sup ≤ asup

binf−χμ , and n ≥ 1, there is 
Tε,n > 0 such that

‖U(·, t + t0; t0, u0) − 1‖∞ ≤
( χμC1(χ)u+

sup

(binf − χμ)u+
χ inf

)n asup

(binf − χμ)u+
χ sup

+ ε, ∀ t ≥ Tn,ε, t0 ∈ R, (4.12)

where C1(χ) := 1 + C0(χ)
√
N

u+
χ inf

√
λ

and C0 is given by (4.8). Furthermore, if u+
χ (x, t) = u+

χ (t) is space independent, 
then Tε,n can be chosen such that

‖U(·, t + t0; t0, u0) − 1‖∞ ≤
( χμ

binf − χμ

)n asup

(binf − χμ)u+
χ inf

+ ε, ∀ t ≥ Tn,ε, t0 ∈ R. (4.13)
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Proof. The proof of this theorem is divided in two parts. In the first part, we shall give the proof of the 
general case. Next, in the second part, we consider the proof of the particular cases.

Since, by [25, Lemma 2.2], ‖∇(v− v+
χ )(·, t + t0; t0, u0)‖∞ ≤ μ

√
N√
λ
‖(u − u+

χ )(·, t + t0; t0, u0)‖∞ and ‖λ(v−
v+
χ )(·, t + t0; t0, u0)‖∞ ≤ μ‖(u − u+

χ )(·, t + t0; t0, u0)‖∞ for every t ≥ 0, we have from Remark 4.1 that

‖(λ(v − v+
χ ) + ∇ ln(u+

χ ) · ∇(v − v+
χ ))(·, t + t0; t0, u0)‖∞

≤
(
1 + C0(χ)

√
N

u+
χ inf

√
λ

)
︸ ︷︷ ︸

=C1(χ)

μ‖(u− u+
χ )(·, t + t0; t0, u0)‖∞

≤μC1(χ)u+
χ sup(t + t0)‖(U − 1)(·, t + t0; t0, u0)‖∞, ∀ t ≥ 0, (4.14)

where C0(χ) is given by (4.8). Observe that from Theorem 1.1 (i) and Theorem 1.4 (i) that

‖u(·, t + t0; t0, u0) − u+
χ ‖∞ ≤ asup

binf − χμ
, ∀t ≥ 0, ∀ t0 ∈ R

Thus it follows from the first inequality in (4.14) that

‖(λ(v − v+
χ ) + ∇ ln(u+

χ ) · ∇(v − v+
χ ))(·, t + t0; t0, u0)‖∞ ≤ μC1(χ)asup

binf − χμ
, ∀t ≥ 0, ∀ t0 ∈ R.

This combined with (4.10) yields that

Ut ≤ ΔU + ∇U · ∇(2 ln(u+
χ ) − χv) + χμC1(χ)asup

binf − χμ
U + (b− χμ)u+

χU(1 − U), (4.15)

and

Ut ≥ ΔU + ∇U · ∇(2 ln(u+
χ ) − χv) − χμC1(χ)asup

binf − χμ
U + (b− χμ)u+

χU(1 − U). (4.16)

Let U1(t) denotes the solutions of the ODE⎧⎨
⎩

dU
dt = −χμC1(χ)asup

binf−χμ U + (binf − χμ)u+
χ infU(1 − U)

U(0) = min{ u0 inf
u+
χ sup

, 1}

and U1(t) denotes the solutions of the ODE
⎧⎨
⎩

dU
dt = χμC1(χ)asup

binf−χμ U + (binf − χμ)u+
χ infU(1 − U)

U(0) = max{u0 sup
u+
χ inf

,
(binf−χμ)u+

χ inf+
χμC1(χ)asup

binf−χμ

(binf−χμ)u+
χ inf

}.

Thus, it follows from comparison principle for ODE’s that

U1(t) ≥ 1 +
χμC1(χ)asup

binf−χμ

(binf − χμ)u+
χ inf

and 0 < U1(t) ≤ 1 ∀ t ≥ 0. (4.17)

Furthermore, it holds that

lim
t→∞

U1(t) =
(
1 −

χμC1(χ)asup
binf−χμ

(b − χμ)u+

)
+

and lim
t→∞

U1(t) = 1 +
χμC1(χ)asup

binf−χμ

(b − χμ)u+ . (4.18)

inf χ inf inf χ inf
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We claim that

U1(t) ≤ U(x, t + t0; t0, u0) ≤ U1(t), ∀ x ∈ R,∀ t ≥ 0, ∀ t0 ∈ R. (4.19)

Indeed, by setting

L+
1 (U) := ΔU + χμC1(χ)asup

binf − χμ
U + (b(x, t + t0) − χμ)u+

χU(1 − U)

and

L−
2 (U) := ΔU − χμC1(χ)asup

binf − χμ
U + (b(x, t + t0) − χμ)u+

χU(1 − U),

it follows from (4.17) that

dU1

dt
− L+

1 (U1) = ((binf − χ)u+
χ inf − (b(x, t + t0) − χμ)u+

χ )U1(1 − U1) ≥ 0 (4.20)

and

dU1
dt

− L−
1 (U1) = ((binf − χ)u+

χ inf − (b(x, t + t0) − χμ)u+
χ )U1(1 − U1) ≤ 0. (4.21)

Therefore, using (4.15), (4.16), (4.20), (4.21), and comparison principle for parabolic equations, we deduce 
that (4.19) holds. Thus, it follows from (4.18) and (4.19) that for every ε > 0 there is T1,ε � 1 such that

1 −
χμC1(χ)asup

binf−χμ

(binf − χμ)u+
χ inf

− ε ≤ U(x, t + t0; t0, u0) ≤ 1 +
χμC1(χ)asup

binf−χμ

(binf − χμ)u+
χ inf

+ ε, ∀ t ≥ T1,ε, ∀ x ∈ R
N , t0 ∈ R,

which is equivalent to

‖U(·, t + t0; t0, u0) − 1‖∞ ≤
χμC1(χ)asup

binf−χμ

(binf − χμ)u+
χ inf

+ ε, ∀ t ≥ T1,ε, ∀ t0 ∈ R.

This completes the proof of (4.12) for the case n = 1. Next, let us suppose as induction hypothesis that 
(4.12) holds up some n ≥ 1. We show that (4.12) also holds for n + 1. Indeed, using the last inequality in 
(4.14), we may suppose that for every 0 < ε̃ � 1,

‖(λ(v − v+
χ ) + ∇ ln(u+

χ )∇(v − v+
χ ))(·, t + t0; t0, u0)‖∞

≤C1(χ)μu+
χ sup(t + t0)‖(U − 1)(·, t + t0; t0, u0)‖∞

≤μC1(χ)u+
χ sup(t + t0)

( χμC1(χ)u+
sup

(binf − χμ)u+
χ inf

)n asup

(binf − χμ)u+
χ sup

+ ε̃, ∀ t ≥ Tn,ε̃, x ∈ R
N , t0 ∈ R,

(4.22)

for some Tn,ε̃ � 1. Therefore, similar arguments as in the case of n = 1 from (4.15) to (4.21) by replacing 

the expression μC1(χ)asup
binf−χμ with μC1(χ)u+

χ sup

(
χμC1(χ)u+

sup
(binf−χμ)u+

χ inf

)n
asup

(binf−χμ)u+
χ sup

+ ε̃, yield that

‖U(·, t + t0; t0, u0) − 1‖∞ ≤
χC1(χ)μu+

χ sup

(
χμC1(χ)u+

sup
(binf−χμ)u+

χ inf

)n
asup

(binf−χμ)u+
χ sup

+ ε̃

(b − χμ)u+ + ε̃

inf χ inf
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=
asup

(
χμC1(χ)u+

sup
(binf−χμ)u+

χ inf

)n+1

(binf − χμ)u+
χ sup

+
(

1 + 1
(binf − χμ)u+

χ inf

)
ε̃, ∀ t ≥ Tn+1,ε̃, ∀ t0 ∈ R,

for some Tn+1,ε̃ � 1. Which shows that (4.12) also holds for n + 1.
If u+

χ (x, t) = u+
χ (t), then using (4.11) instead of (4.10) in the proof of the general case given above, (4.15)

and (4.16) become

Ut ≤ ΔU − χ∇U∇v +
(
χμ‖V − 1‖∞U + (b− χμ)U(1 − U)

)
u+
χ (t), (4.23)

and

Ut ≥ ΔU − χ∇U∇v +
(
− χμ‖V − 1‖∞U + (b− χμ)U(1 − U)

)
u+
χ (t). (4.24)

Observe that ‖V (·, t + t0; t0, u0) − 1‖∞ ≤ asup
(binf−χμ)u+

χ inf
for every t ≥ 0, t0 ∈ R. Hence, by considering U1(t)

and U1(t) solutions of the ODEs⎧⎨
⎩

dU
dt =

(
− χμ

asup
(binf−χμ)u+

χ inf
U + (binf − χμ)U(1 − U)

)
u+
χ (t + t0)

U(0) = min{ u0 inf
u+
χ sup

, 1}

and ⎧⎨
⎩

dU
dt =

(
χμ

asup
(binf−χμ)u+

χ inf
U + (binf − χμ)U(1 − U)

)
u+
χ (t + t0)

U(0) = max{u0 sup
u+
χ inf

, 1 +
(

χμ
binf−χμ

)
asup

(binf−χμ)u+
χ inf

},

similar arguments as those used in the general case, (4.17)-(4.21), yield that (4.13) also holds. This completes 
the proof of the Theorem. �
Remark 4.2. We note that the type of comparison principles arguments used in the proof Theorem 4.3 have 
been used in the literature to study the stability of constant equilibria solution of some chemotaxis models 
(see [3,24,26,29]). However, the arguments as presented in these works can not be directly applied to (1.1)
due to the heterogeneity of the underlying source functions. Hence, a very careful and nontrivial refinement 
of the technique is required to handle the stability of the positive entire solutions of (1.1) in the general 
heterogeneous media.

We now present the proof of Theorem 1.5, which is based on the previous result.
Let Ũ(x, t; t0, u0) = U(x, t; t0; u0) − 1 and Ṽ (x, t; t0, u0) = V (x, t; t0, u0) − 1. Then it follows from (4.10)

that Ũ(x, t; t0, u0) satisfies

Ũt =ΔŨ + ∇Ũ · ∇(2 ln(u+
χ ) − χv) − (b(x, t) − χμ)u+

χ (t)Ũ

+ χU
(
λ(v − v+

χ ) + ∇ ln(u+
χ ) · ∇(v − v+

χ )
)
− (b(x, t) − χμ)u+

χ Ũ
2.

(4.25)

Let Φχ(t, s) be the solution operator in Cb
unif(RN ) of

ut = Δu + ∇u · ∇(2 ln(u+
χ ) − χv) − (b(x, t) − χμ)u+

χu. (4.26)

Thus, by the comparison principle for parabolic equations, we have

‖Φχ(t, s)‖ ≤ e−(t−s)(binf−χμ)u+
χ inf , ∀ t− s ≥ 0. (4.27)
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Proof of Theorem 1.5. We shall give the proof of the general case. The proof of the particular case follows 
similar arguments. We suppose that 0 < χ < χ0, where χ0 is given by (4.9). Hence, by definition of χ0, 
there is a positive entire solution of (1.1) (u+

χ (x, t), v+
χ (x, t)) satisfying

(H̃) :
χμC1(χ)u+

χ sup

(binf − χμ)u+
χ inf

< 1.

Exponential stability of (u+
χ (x, t), v+

χ (x, t)): By Theorem 4.3 we may suppose that there are tn � 1 with 
0 < tn < tn+1, such that

‖Ũ(·, t + t0; t0, u0)‖∞ = ‖U(·, t + t0; t0, u0) − 1‖∞ ≤ 2
( χμC1(χ)u+

sup

(binf − χμ)u+
χ inf

)n

, ∀ t ≥ tn, t0 ∈ R. (4.28)

By the variation of constant formula, it follows from (4.25) that for every t ≥ 0,

Ũ(·, t + tn + t0; t0, u0) = I1,n(t; t0) + χI2,n(t; t0) − I3,n(t, t0), (4.29)

where

I1,n(t, t0) := Φχ(t + tn + t0; tn + t0)Ũ(·, tn + t0; t0, u0),∀t ≥ 0, ∀ n ≥ 1,

I2,n(t, t0) :=
t∫

0

Φχ(t + tn + t0, s + tn + t0)
(
U
(
λ(v − v+

χ ) + ∇ ln(u+
χ ) · ∇(v − v+

χ )
))

(·, s + tn + t0)ds,

and

I3,n(t, t0) :=
t∫

0

Φχ(t + tn + t0, s + tn + t0)(b− χμ)u+
χ Ũ

2(·, s + tn + t0)ds.

Next, it follows from (4.28) and (4.27) that for every n ≥ 1, t0 ∈ R, and t ≥ 0,

‖Φχ(t + tn + t0; tn + t0)Ũ(·, tn + t0; t0, u0)‖∞ ≤e−t(binf−χμ)u+
χ inf‖Ũ(·, tn + t0; t0, u0)‖∞

≤ 2
( χμC1(χ)u+

sup

(binf − χμ)u+
χ inf

)n

︸ ︷︷ ︸
:=K1,n

e−t(binf−χμ)u+
χ inf . (4.30)

Next, for every 0 ≤ s ≤ t, n ≥ 1, and t0 ∈ R, we have

‖Φχ(t + tn + t0, s + tn + t0)((U
(
λ(v − v+

χ ) + ∇ ln(u+
χ ) · ∇(v − v+

χ ))(s + tn + t0)
)
‖∞

≤e−(t−s)(binf−χμ)u+
χ inf‖

(
U
(
λ(v − v+

χ ) + ∇ ln(u+
χ ) · ∇(v − v+

χ )
))

(s + tn + t0)‖∞

≤
(
1 + 2

( χμC1(χ)u+
sup

(binf − χμ)u+
χ inf

)n)‖(λ(v − v+
χ ) + ∇ ln(u+

χ ) · ∇(v − v+
χ )

)
(s + tn + t0)‖∞

e(t−s)(binf−χμ)u+
χ inf

≤
(
1 + 2

( χμC1(χ)u+
sup

(binf − χμ)u+
χ inf

)n)(
1 + C0(χ)

√
N

u+
χ inf

√
λ

)
μ‖(u− u+

χ )(s + tn + t0)‖∞e−(t−s)(binf−χμ)u+
χ inf

≤
(
1 + 2

( χμC1(χ)u+
sup

(binf − χμ)u+
χ inf

)n)(
1 + C0(χ)

√
N

u+
χ inf

√
λ

)
μu+

χ sup︸ ︷︷ ︸
‖Ũ(·, s + tn + t0)‖e−(binf−χμ)u+

χ inf(t−s)

(4.31)
:=K2,n
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We also have

‖Φχ(t + tn + t0, s + tn + t0)(b− χμ)u+
χ Ũ

2(·, s + tn + t0)‖∞

≤2 (bsup − χμ)u+
χ sup

( χμC1(χ)u+
sup

(binf − χμ)u+
χ inf

)n

︸ ︷︷ ︸
:=K3,n

‖Ũ(·, s + tn + t0)‖∞e−(t−s)(binf−χμ)u+
inf . (4.32)

Thus, it follows from (4.29), (4.30), (4.31), and (4.32) that

‖Ũ(·, t + tn + t0; t0, u0)‖∞

≤K1,ne
−(binf−χμ)t + (χK2,n + K3,n)

t∫
0

e−(t−s)(binf−χμ)u+
χ sup‖Ũ(·, s + tn + t0; t0, u0)‖∞ds,

which is equivalent to

et(binf−χμ)u+
χ sup‖Ũ(·, t + tn + t0; t0, u0)‖∞

≤K1,n + (χK2,n + K3,n)
t∫

0

es(binf−χμ)u+
χ sup‖Ũ(·, s + tn + t0; t0, u0)‖∞ds, ∀ t ≥ 0.

Therefore, by Grownwall’s inequality, we obtain that

et(binf−χμ)u+
χ sup‖Ũ(·, t + tn + t0; t0, u0)‖∞ ≤ K1,ne

(χK2,n+K3,n)t, ∀ t ≥ 0.

That is

|Ũ(·, t + tn + t0; t0, u0)‖∞ ≤ K1,ne
−
(
(binf−χμ)u+

χ sup−χK2,n−K3,n
)
t, ∀ t ≥ 0. (4.33)

By (H̃), we have

lim
n→∞

K1,n = lim
n→∞

K3,n = 0 and lim
n→∞

K2,n =
(
1 + C0(χ)

√
N√

λu+
χ inf

)
μu+

χ sup = μC1(χ)u+
χ sup.

Since (H̃) holds, then there is n0 � 1 such that

αχ := sup
n≥n0

((binf − χμ)u+
χ sup − χK2,n −K3,n) > 0

This combined with (4.33) yield that

‖u(·, t + tn0 + t0; t0, u0) − u+
χ (t + tn0 + t0)‖∞ ≤ u+

χ supK1,n0e
−tαχ ∀ t ≥ 0,

which implies that (u+
χ (x, t), v+

χ (x, t)) is exponentially stable.

Uniqueness of (u+
χ (x, t), v+

χ (x, t)): Let (ũ+
χ (x, t), ̃v+

χ (x, t)) be a positive entire solution of (1.1). Then, since 
0 < ũ+

χ inf ≤ ũ+
χ sup < ∞, it follows from the exponential stability of (u+

χ (x, t), v+
χ (x, t)) that there is a 

positive constant K depending only on ũ+ , ̃u+
χ sup, u

+ , and u+
χ sup, such that
χ inf χ inf
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‖ũ+
χ (·, t) − u+

χ (·, t)‖∞
=‖ũ+

χ (·, n + (t− n); t− n, u+
χ (·, t− n)) − u+

χ (·, n + (t− n); t− n, u+
χ (·, t− n))‖∞

≤Ke−nαχ , ∀ n ≥ 1.

Letting n → ∞ in the last inequality yields that u+
χ (x, t) ≡ ũ+

χ (x, t). This completes the proof of Theo-
rem 1.5. �

Next, we present the proof of Theorem 1.6.

Proof of Theorem 1.6. The proof of this result follows from the arguments used in the proof of Theorem 4.3. 
So, lengthy detail will be avoided.

(i) Let U(x, t) = u+
χ (x,t)

u+
0 (x,t) for x ∈ R

N and t ∈ R. Then, it follows from similar arguments leading to (4.10), 
that U(x, t) satisfies

Ut = ΔU + ∇U · ∇(2 ln(u+
0 ) − χv+

χ ) − χU
(
Δv+

χ + ∇ ln(u0) · ∇v+
χ

)
+ b(x, t)u+

0 (x, t)U(1 − U). (4.34)

Observe that

‖
(
Δv+

χ + ∇ ln(u0) · ∇v+
χ

)
(·, t)‖∞ ≤‖Δv(·, t)‖∞ + ‖

(
∇ ln(u0) · ∇v+

χ

)
(·, t)‖∞

≤2μ‖u+
χ (·, t)‖∞ + ‖∇ ln(u+

0 (·, t))‖∞‖∇v+
χ (·, t)‖∞

≤μ
(
2 +

√
N√
λ

sup
t∈R

‖∇ ln(u+
0 (·, t))‖∞

)
‖u+

χ (·, t)‖∞

≤
(
2 +

√
N√
λ

sup
t∈R

‖∇ ln(u+
0 (·, t))‖∞

)
︸ ︷︷ ︸

:=K

μasup

binf − χμ
.

Thus, the last inequality combined with (4.34) yields that

Ut ≤ ΔU + ∇U · ∇(2 ln(u+
0 ) − χv+

χ ) + χμasupK

binf − χμ
U + b(x, t)u+

0 (x, t)U(1 − U), x ∈ R
N , t ∈ R, (4.35)

and

Ut ≥ ΔU + ∇U · ∇(2 ln(u+
0 ) − χv+

χ ) − χμasupK

binf − χμ
U + b(x, t)u+

0 (x, t)U(1 − U) x ∈ R
N , t ∈ R. (4.36)

As in the proof of (4.19), letting U(t) denote the solution of the ODE⎧⎨
⎩

dU
dt = χμasupK

binf−χμ U + binfu
+
0 infU(1 − U), t > 0

U(0) = max{supx,t U(x, t),
binfu

+
0 inf+

χμasupK

binf−χμ

binfu
+
0 inf

},

it follows from (4.35) and comparison principle for parabolic equations that

U(x, t + t0) ≤ U(t), ∀ t ≥ 0, ∀ t0 ∈ R, ∀ x ∈ R
N . (4.37)

Observe that

lim
t→∞

U(t) =
binfu

+
0 inf + χμasupK

binf−χμ
+ .
binfu0 inf
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Thus, it follows from (4.37) that

U(x, t) ≤ lim
t0→−∞

U(t− t0) =
binfu

+
0 inf + χμasupK

binf−χμ

binfu
+
0 inf

, ∀ x ∈ R
N , ∀ t ∈ R. (4.38)

On the other hand, letting U(t) be the solution of the ODE

{
dU
dt = −χμasupK

binf−χμ U + binfu
+
0 infU(1 − U), t > 0

U(0) = min{infx,t U(x, t), 1},

it follows from (4.36) and comparison principle for parabolic equations that

U(x, t + t0) ≥ U(t), ∀ t ≥ 0, ∀ t0 ∈ R, ∀ x ∈ R
N . (4.39)

Observe also that

lim
t→∞

U(t) =
(binfu

+
0 inf −

χμasupK
binf−χμ )+

binfu
+
0 inf

.

Hence inequality (4.39) yields that

U(x, t) ≥ lim
t0→−∞

U(t− t0) =
(binfu

+
0 inf −

χμasupK
binf−χμ )+

binfu
+
0 inf

≥ 1− χμasupK

(binf − χμ)binfu
+
0 inf

, ∀ x ∈ R
N , t ∈ R. (4.40)

Therefore, it follows from (4.38) and (4.40) that

‖U(x, t) − 1‖∞ ≤ χμasupK

(binf − χμ)binfu
+
0 inf

, ∀ t ∈ R.

This implies that

‖u+
χ (x, t) − u+

0 (x, t)‖∞ ≤
χμasupu

+
0 supK

(binf − χμ)binfu
+
0 inf

, ∀ t ∈ R, x ∈ R
N .

Thus inequality (1.24) follows.
(ii) Next, we prove inequality (1.25). For, let u0 ∈ Cb

unif(RN ) with u0 inf > 0. Observe that ‖uχ(·, t +
t0; t0, u0)‖∞ ≤ max{u0 sup, 

asup
binf−χμ} for every t ≥ 0 and t0 ∈ R and ‖∇vχ(·, t + t0; t0, u0)|∞ ≤ μ

√
N√
λ
‖uχ(·, t +

t0; t0, u0)‖∞. Hence, for every t ≥ 0, t0 ∈ R, and 0 ≤ χ < binf , it follows from (4.2) that

‖uχ(·, t + t0; t0, u0) − u0(·, t + t0; t0, u0)‖∞

≤ χ

t∫
0

‖T (t− s)∇ · ((uχ∇vχ)(·, s + t0; t0, u0))‖∞ds

+
t∫

0

‖T (t− s)
(
(a + 1 + b(uχ − u0))(uχ − u0))

)
(·, s + t0; t0, u0)‖∞ds

≤ Nχ√
π

t∫
e−(t−s)
√
t− s

‖((uχ∇vχ)(·, s + t0; t0, u0))‖∞ds
0
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+
t∫

0

e−(t−s)‖
(
(a + 1 + b(uχ − u0))(uχ − u0))

)
(·, s + t0; t0, u0)‖∞

≤ Nχ
√
N√

πλ
max{u2

0 sup,
( asup

binf − χμ

)2
}

t∫
0

e−(t−s)
√
t− s

ds

+
(
asup + 1 + bsup max{u0 sup,

asup

binf − χμ
}
) t∫

0

‖(uχ − u0)(·, s + t0; t0, u0)‖∞

≤ χC1
√
t + C2

t∫
0

‖(uχ − u0)(·, s + t0; t0, u0)‖∞,

where C1 := 2N
√
N√

πλ
max{u2

0 sup, 
(

asup
binf−χμ

)2
} and C2 :=

(
asup + 1 + bsup max{u0 sup, 

asup
binf−χμ}

)
. Thus, by 

Grownwall inequality, we have that

‖uχ(·, t + t0; t0, u0) − u0(·, t + t0; t0, u0)‖∞ ≤ χC1
√
teC2t, ∀t ≥ 0, ∀ t0 ∈ R, ∀ 0 < χ < binf . (4.41)

In particular, taking t = 1, we obtain for every t0 ∈ R and 0 ≤ χ < binf ,

‖uχ(·, 1 + t0; t0, u0)
u0(·, 1 + t0; t0, u0)

− 1‖∞ ≤ 1
C3

‖uχ(·, 1 + t0; t0, u0) − u0(·, 1 + t0; t0, u0)‖∞ ≤ χ
C1e

C2

C3
, (4.42)

where C3 := inft≥t0,x∈RN ,t0∈R u0(x, t; t0, u0) > 0.
Taking χ = 0 in (4.2) and differentiating both sides with respect to space variable yield that

C4 := sup
t≥0,t0∈R

(
2 + N√

λ
‖∇ ln(u0(·, t + 1 + t0; t0, u0))‖∞

)

≤
(
2 + N

√
N√
λ

(e−1 + 1 + asup + bsup max{u0 sup,
asup

binf
}) max{u0 sup,

asup

binf
}
)
< ∞.

By setting U(x, t) = uχ(x,t+1+t0;t0,u0)
u0(x,t+1+t0;t0,u0) for x ∈ R

N and t ≥ 0, similar arguments leading to (4.37) and (4.39)
yield that

U(t) ≤ uχ(x, t + 1 + t0; t0, u0)
u0(x, t + 1 + t0; t0, u0)

≤ U(t), ∀ x ∈ R
N , ∀ t ≥ 0, t0 ∈ R, (4.43)

where U(t) and U(t) are solutions of the ODE’s

⎧⎨
⎩

dU
dt = −χμasupC4

binf−χμ U + binfC3U(1 − U), t > 0

U(0) = min
{(

1 − χC1e
C2

C3

)
+
,
(

binfC3−
χμasupC4
binf−χμ

binfC3

)
+

}
and

⎧⎨
⎩

dU
dt = χμasupC4

binf−χμ U + binfC3U(1 − U), t > 0

U(0) = max
{

1 + χC1e
C2

,
binfC3+

χμasupC4
binf−χμ

}
,
C3 binfC3
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respectively. Note that we have used (4.42) and comparison principle for parabolic equations to obtain 
(4.43). It is easy to see that U(0) ≤ U(t) and U(t) ≤ U(0) for every t ≥ 0. Therefore, it follows from 
inequality (4.43) that

U(0) ≤ uχ(x, t + 1 + t0; t0, u0)
u0(x, t + 1 + t0; t0, u0)

≤ U(0), ∀ x ∈ R
N , ∀ t ≥ 0, t0 ∈ R,

which implies that

‖uχ(·, t + 1 + t0; t0, u0) − u0(·, t + 1 + t0; t0, u0)‖∞

≤χmax
{
u0 sup,

asup

binf

}
max

{C1e
C2

C3
,

μasupC4

(binf − χμ)binfC3

}
, ∀ t ≥ 0, t0 ∈ R.

This combined with (4.41) yields (1.25). �
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