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1. Introduction

Let O C R™ be a bounded smooth domain with regular boundary I' := 90 and outward normal unit
vector v; we also fix a terminal time 7' > 0. We fix a nonlinear operator diva(x, Vy) of Leray—Lions type,
and we consider the following controlled nonlinear diffusion equation with dynamical boundary conditions:

dy(t,z) = diva(z, Vy) dt + bdw(t, z), (t,xz) € (0,T) x O;
dy(t,f) = [—a(f, Vy) V= 7(& y(t,f)u(t,f))] dt + Edw(t,f), (taf) € (07T) X F; (1)
y(07x) = yO(x)a re0.

w and W are independent infinite dimensional Wiener processes with values in L?(0Q) and L?(T"), respectively.
We assume that u is an admissible control acting on the boundary and we study the problem of minimizing
the cost functional
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T
J(u) :=E / /K(x,y(s,sr:))dx—i—/f(f,y(s,f%u(s,f))d& ds (2)
0 O r

+E | [ oz, y(T,z))de+ | (& y(T,¢))dé
/ /

Equations of the form (1), called fully parabolic boundary value problem in the seminal paper of Escher
[16], have been considered also in the stochastic setting, see e.g. Chueshov and Schmalfuf [8], Bonaccorsi
and Ziglio [7] and Barbu, Bonaccorsi and Tubaro [3]. Such problems are used to describe a wide variety of
physical processes, among which we mention heat propagation in a plasma gas, population dynamics and
other nonlinear diffusive phenomena (e.g., see [9]). It should be noticed that boundary conditions of the form
prescribed in (1) are of a non-standard type; nevertheless, dynamical boundary conditions, i.e. involving
formally a time derivative of the solution on the boundary are used as a model in several physical systems,
see the paper [19] for a derivation and a physical interpretation in the case of the heat equation; further
applications are given to heat transfer in a solid imbedded in a moving fluid [32, §7.2], surface gravity waves
in oceanic models ([12], [13], [28]), as well as in fluid dynamics [31], phase separation phenomena [14], and
this list is far from being exhaustive.

In our setting, existence for the solution of equation (1) is proven in [7] or [3] via an operatorial approach
which allows to rewrite the system as a stochastic differential equation in the product space H(O) x L*(T').
A similar approach was recently developed for a class of deterministic parabolic equation with Wentzell
boundary conditions in [4].

Our objective is to control such a system through the boundary, considering that in practice it is easier to
implement boundary control than distributed parameter controls (see [10] for a discussion about the subject).
Such control problems have been widely studied in the deterministic literature (see [25]) and have been
addressed in the stochastic case as well (see [15], [20], [24], [27], [10]). With regard to dynamical boundary
conditions, we mention that an associated control problem have already been addressed by Bonaccorsi,
Confortola, Mastrogiacomo [6], following the backward SDEs (BSDEs, for short) approach introduced by
Fuhrman and Tessitore in [18] in an abstract setting. We emphasize that in general the above papers concern
one-dimensional domains.

The present article deals with the control problem from a different point of view. We will follow the
maximum principle approach, which has been introduced by Pontryagin and his group in the 1950’s in order
to establish necessary conditions of optimality for deterministic controlled systems. Towards the extension
to the stochastic controlled systems one difficulty is that the adjoint equation becomes a linear BSDE,
especially for stochastic PDEs (SPDEs), in which case the respective BSDE can be seen as a backward
SPDE (BSPDE, for short). Several papers are devoted to the study of maximum principles for SPDEs; see,
e.g., [5], [23], [29]. Stochastic maximum principle for SPDEs with noise and control on the boundary was
established by Guatteri [21] and Guatteri and Masiero [22], in the case of an interval in R. Their treatment,
based on semigroup theory, is different from ours; in this paper we deal with variational solutions for the
controlled system, as well as for the adjoint equation.

The paper is organized as follows. In section 2, we introduce some notations and recall some preliminary
results concerning the well-posedness of the state equation. Section 3 is devoted to the derivation of necessary
and sufficient optimality conditions in the form of a maximum principle. In order to achieve this, we use the
duality between the adjoint equation and the variation equation. We will first analyze the adjoint equation,
for which we give an existence theorem based on a result of Marquez-Durdn and Real [26] concerning BSDEs
in a variational framework. Then, the variation equation is obtained by using a linear perturbation of the
control. In section 4, we prove directly the existence of an optimal control under the assumption that the
coefficient 7 depends linearly on the control.
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2. Preliminaries

Let O C R™ be a bounded domain which is sufficiently regular (see, e.g. [1], Remark 7.45 or [11]). On
O we introduce the standard Sobolev space H'(O); on the boundary I' ;= 90O we consider the fractional
order Sobolev space

=

HY(T) = yeLQ(F)|//—|g(|§2:§/(|§/) dedg’ < +o00
r r

endowed with the norm

_ ey 2 )
193 = Vil + [ [ e e a1 ).

&l"
rr
The following result of compactness' of the injection will be useful later:
H? (I') < L*(I"), compactly.

It is well-known that for a smooth domain O, the trace operator 7 : H'(O) — L*(T'), with the property
that 7(y) = y|r, Vy € H(O) N C(O), is well-defined. Moreover, the range of 7 is actually H2 (') and

173 gy < K Il o) » Yy € H'(O)

for some constant K depending only on O.
In what follows we suppose that the domain O is bounded and smooth. We introduce the “pivot” space
H := L?(0) x L*(T") endowed with the natural inner product

<(y7 g)7 (ylu g/)>H = <y7y/>L2((’)) + <Q7QI>L2(F) ’ (yu g)a (y/u gl) S H

and norm ||-|| ;. Let us consider the Banach space

V= {(y,g) e H'(O)x H:(T) | j = T(y)};

endowed with the norm

1@, Dl = 1VYll 20y + 19l 2(r) -

The embedding V' — H is compact; this property will be used in the proof of Theorem 4.1. Furthermore,
the space V is isomorphic to H(Q) and it is densely embedded in H. Let V* be the dual space of V, with
the dualization denoted v« (-,-),,. We fix the Gelfand triple V' C H C V* (the last formal inclusion implies
that v- (z,y), = (2,y)y for every y €V and z € H).

Let U be a convex, closed subset of an Euclidian space R™. On the coefficients of the equation we impose
the following conditions:

(Ag) a: O x R" — R" is a Carathéodory function” with a(z,-) € C}(R";R"), dz-a.e. on O;

1 An operator is compact if it maps bounded sets into precompact sets.
2 Le., a(z,-) is continuous for every € O and a(-,¢) is measurable for every ¢ € R™.
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there exist constants &, co > 0 and positive functions p € L*(0), p € L*(T') such that:

(A;) for almost all z € O and all ( € R™:
la(z, Q)] < colp(z) + [C]),
[Dea(z, Q)| < co;

(Az) for almost all z € O and all ( € R™:

(a(z,¢) —alz,n) - (¢ —n) = 61¢ —nl*;
(B) b: L*(0) — L*(O) and b : L*(T') — L*(T) are Hilbert-Schmidt linear operators;

(Co) v: T x R x U — R is a Carathéodory function with v(¢,-) € C*(R x U), dé-a.e. on T}
(Cy) for almost all € € T and all (y,u) € R x U:

17 (& g u)l < co (A(S) + 9] + [ul),
‘DQV(&gvu” < co,
[Duy (& 5 u)| < co (B(S) + [9]) 5

(Cq) for almost all £ € T and all (g,u) € R x U:

(V& Fou) =T ) G —F) = 8l5 -7

In order to give a functional setting for our equation, let S be the space of smooth functions

S:=A{(y,9) € C=(O) x C=(T) | § = ylr} -
We define an operator A : S x L?(T;U) — H C V* by

diva(x, Vy)

Ay, y,u) = (—a(§, Vy)-v—v(&y(t, &), u(t,§))

), (1, 5.u) € S x A(T;U).

An integration by parts, hypotheses (Ag), (A1), and the density of S in V' show that A can be extended to
a bounded non-linear operator on V x L?(T; U) with values in V*, again denoted by A, such that

V= <A(y7ﬂ7 u>7 (Z72)>V = - /a(x?Vy) -Vzdr — /7(€7g7u)gd€7
o r
for all (y,9), (z,2) € V and u € L*(T;U).

We also set B := <8 g), so that B is a Hilbert—Schmidt operator; we denote Lo(H) the space of

1/2
such operators, endowed with the norm [|T[, ) = (Z;L |Tej\2> , for an orthonormal basis (e;) of H.
Consider a H-cylindrical Wiener process, formally written

v\ (S ﬂé@)gi)
Wi(t) = = ,
W ( ) (zz’_l B2 ()2
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where {g} } and {g?} are orthonormal bases in L?(O) and L?(T), respectively, { 6,2};2211200 is a sequence of in-
dependent Brownian motions on (2, F,P) and {J:t}tzo is the filtration generated by { B 2::11’200, augmented
by the null sets of F.

Then, for yo = (yo0,%0) € H, the state equation (1) can be written as

yO+/A @+/BMV)teDT] (3)

Here we assume that u is an admissible control (or simply, control), i.e. a progressively measurable process
ue L? (Q x[0,T]; L*(T;U)). We will denote by U the space of all admissible controls.

Theorem 2.1. Under hypotheses (Ao)—(Az2), (B), (Co)—(C2), for every control u, there exists a unique solu-
tion Y¥ = (Y, Y") € L? (Q x [0, T]; V) of equation (3) such that Y* is a continuous, adapted process with
values in H. Moreover,

E sup [[Y“(t)||3 < 400
t€[0,T]

For the proof of this result the reader can refer to the book of Prévét and Rockner [30], where a general
result of existence and uniqueness for variational solutions was given. The task of verifying that the above
hypotheses are sufficient to place ourselves into their framework was already carried in [7].

The notion of solution for (3) that is used in Theorem 2.1 is that of variational solution as given in the
book by Prévot and Rockner [30, Definition 4.2.1]. Actually, this means that Y is an H-valued, adapted
process with an equivalent version that belongs to L? (2 x [0,T]; V) and satisfies the equation P-a.s.

Concerning the cost functional (2), on its coefficients we impose the following hypotheses (the functions
p and p were already introduced for the previous set of conditions):

(Fo) ¥ : O xR and % : I' x R are Carathéodory functions with t(z,-) € C'(R), dz-a.e. on O and
(€, ) € CY(R), dé-a.e. on T

there exist constants ¢y, cy > 0 such that:

(F1) for almost all z € O and all y € R:

for almost all £ € I and all § € R:
|[9(&,9)] < er(p(€)” + 171%),
| Dy (&, 9)| < er(p(€) + [7));

(Lo) £ : O xR and £ : T x R x U are Carathéodory functions with £(z,-) € C'(R), dz-a.e. on O and
{(E,-,) € CYR x U), dé-a.e. on T;
(Ly) for almost all x € O and all y € R:

0z, y)| < ca(p(@)? + JyI?),
|Dyl(z,y)| < c2(p(z) + yl),
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for almost all £ € T" and all (y,u) € R x U:

The cost functional can then be written as

J@y:E!/uY%mu@mpqu%ﬂJ, (@)

0

where L : H x L*(T;U) — R and ¥ : H — R are defined by
Ly, 5,u) = | Uz y(z))dz + [ €& H(E), u(€))dE;
]
W(p.) = [l @)+ [ D676,
o r

From now on, we will assume that conditions (Ag)—(Az), (B), (Co)—(C2), (Fo), (F1), (Lp) and (L;) are
in force.
Tt is easy to show that ¥ and L are Gateaux differentiable in y = (y,y) € H, with

Dy¥(y) = (Dyt(-,y()), Dgdb(,5(-))) 5
DyL(Y7 u) = (DTIZ(7 y())7 Dga" g()a u())) :
Also, A is Gateaux differentiable in y = (y,y) € V, with

% <(DyA) (Yau)(paﬁ)7 (275)>V = —/Dga(CC,vy)Vp -Vzdr — /D@’Y(gagau)ﬁZd& (pzp)a (Zag) ev.
] r

3. Maximum principle
3.1. The adjoint equation

We consider the following linear BSDE in V*:

T
P (t) = DyW(Y"(T)) + / (DyA)” (Y(s), u(s))P"(s) ds (5)

T

+/D@ww@mm¢—/qme@.

t

Theorem 3.1. For every control u, there exists a unique solution (P*, Q%) = (P*, P*,Q") € L* (2 x [0,T]; V)
x L% (Q x [0,T); La(H)) such that P“ is a continuous, adapted process with values in H.
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Proof. In order to prove this theorem, we will use a result of Marquez-Durdn and Real [26] which asserts
existence and uniqueness for general (non-linear) BSDEs in a variational setting. Let us now verify that the
hypotheses of Theorem 2.2 in [26] are fulfilled for the coefficients of our BSDE.

1. Final condition. The fact that Dy¥(Y*(T)) € L*(Q,Fr,P;H) is clearly implied by linear growth
condition on Dy and Dgz/;.
2. Measurability. Of course,

(DyA)" (Y",u)p + Dy L(Y*", u)

is a progressively measurable process with values in V* for every (p,q) € V x Lo(H).
3. Hemicontinuity. The mapping

A=y ((DyA)" (Y'(1), u(t)(p + AP'), 2),,

is continuous, for every (¢,p,p’) € [0,T] x V x V and z € V. Indeed, for p = (p,p), p’' = (p/,p’) and
z = (z,z), we have

ve ((Dy )" (YU(t), u(t))(p + Ap), 2),, = — / Dea(z, VY™())Vz - (Vp + AVp') da

O
— [ Dirle. 7@ u(0)z 0+ 30 de
r

and the conclusion follows from the Lebesgue’s dominated convergence theorem, by (A;) and (Cy).
4. Boundedness. By (L1), DyL(Y"(-),u(-)) € L* (2 x [0,T]; H). Moreover, by (A1) and (C;), for every
(t,p.0) € 0,T] x V x La(H), || (DyA)" (Y"(t),u(t))p|
5. Monotonicity. We have that

is bounded by cg.

V=

v ((DyA)" (Y"(1), u(t)p,p)y, = */Dga(x,VY“)Vp-Vpd:E - /Dm(éyuw(t)) Ip[* d¢ <0,
(@] T

for every (p,q) = (p,D,q) € V X Ly(H), dP x dt a.e., by assumptions (As) and (Cs).
6. Coercivity. There exist o > 0, A € R and a progressively measurable process C(-) € L' (Q x [0,T]) such
that

— v ((DyA)" (Y(t), u(t))p, p)y, — (Dy L(Y"(t),u(t)), B}y + APl + C() = a[[p]l5;

for every (p,q) € V x Lo(H), dP x dt a.e. Indeed, for p = (p,p), we have

— v+ ((DyA)" (Y"(t), u(t))p, p),, — (DyL(Y"(t),u(t)),p) ; = /Dca(%VY“(t))Vp -Vpdzx
@]

+ [ D€ 0,00 9 de — (Dy LY (1), (0). )
N

_ 1 1
>3 (IIVPl 720 + IBlZe) ) = 5 1Dy LOY (@) u®) 3 = 5 [P

2 1 2 3 12 N 2
>3 plly = 5 el = 56 (1o, DIl + 1Y Ol + lu®llzery ) - O
2 2
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8.2. The variational equation
We define the operator G : L? (I') x L?(T;U) x L>®(T';U) — H by

g(@u?f") = (O, _Du'y(Wg?u) ’ ﬁ) .

Let now v and v be two controls such that v — u is bounded; let, for 6 € [0, 1], u? := (1 — 0)u + Ov. Let
us denote, for simplicity, Y?, Y? and Y? instead of Y“e, v*’ and 57“9, respectively.

Proposition 3.2. The equation

t

Z(t) :/DyA(YU(sm(s))Z(s)dH/g(YU(sm(s),v(s)—u(s))ds, te0,T] (6)

0
has a unique variational solution Z that is a continuous, adapted process in H with Z € L* (Q x [0,T]; V).
Moreover, § (Y? —Y°) and § (Y?(T) = Y°(T)) converge weakly’ as 6 — 0 to Z and Z(T) in L*(Q x
[0,T]; V), respectively in L? ($; H).

Proof. We have, by It6’s formula,

t
E[[Y*®)[2 = lyol? - 2E //a(x,vye(s))-vye(s)dxds
0 O

t

—9E //7(5,Ya(s),ue(s))w(s)dgds + Bl t € 10,7],

0o T

therefore, by (A1)7 (AZ)v (Cl) and (C2)7

T
sup | sup EHYe(t)H;+E/|\Y9(t>|\idt < +o0. (7)
0elo,1] [tel0,T] )

Since, for any ¢ € [0, T,

1(Y?(t) — Y1) ||2 =-2 [a(z, VY?(s)) — a(z, VY?(s))] - [VY?(s) — VY'(s)] dxds

o—_ .
O —u

V(&Y (s),u’(s)) — (& YO(s),u(s))] [Y?(s) — YO(s)] déds,

|
o
T

we have, by the assumptions on a and -,

3 Recall that a sequence (ZO) of random variables taking values in a Hilbert space X converges weakly to Z in L2(Q,X) as

0 — 0 if for any random variable Z € L?(€, X) we have ]E<Z9, Z> —E(Z, Z>
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t
2 2
1?6 - Yo, + 25/ 1Y?(s) — Y(s)|
t
<=2 [ [ eV 65 = 26 V0. uo)] (V'(s) - VO(o) deds
0O I

)

SC@//[ﬁ(ﬁ)—i—‘Yo(s)H (YO(s) = Y°(s)) d¢ds
0T

1

/Dw(&YO(S),uw(S))d/\] (v(s) = u(s)) (YO(s) = Y°(s)) d€ds

0

t

<o [ (per + X)) s+ [ X'6) = Y3 ds
0 0

where C' > 0 is a constant whose value is allowed to change from line to line. Hence

Mz | +

0€[0,1] t€[0,T]

Elsup sup ||%(Y9() YO(t P

{sup /|| (Y1) ))Hf/ ds| < +oo. (8)

Then there exists a progressively measurable process Z € L2 (Q x [0, T); V) such that, at least on a subse-
quence:

o (Y% —Y?) converges weakly to Zas® —0in L2 (Q x [0,T);V);
e VY converges to VY a.e. as § — 0 on Q x [0,T] x O;
o Y converges to Y% a.e. as § — 0 on Q x [0,7] x I,

For z = (z,%2) € V with z € C} (O), we have

<Y9()6Y0 > // z, VY (s ;a(m VYY) o g ds 9)

-~

//75 V(s >>;”(€’Y0(S)’“(S))2d§ds

o

I
o
O —

Tlﬂ(s)—v(ye —YO)(s) Vzdzds — //TQ’Q(S)i(Yg _9}70)(8)%5(15

I
o\ﬁ_
—

T2%(s)(v(s) — u(s))zdéds — /Dw(& YO(s),u(s))(v(s) — u(s))zdg

V(Y9 —Y0)(s)

7 -Vzdxds

Dca(x, vY?(s)))

|
o _
O —
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t 50 5
-/ / Dy, 7). u(s) T e g,
0

where, for the sake of simplicity, we have denoted

[Dea(z, VY2(s) + AV(Y? = Y°)(s)) — Dea(z, VY(s))] dX;

1
-
T2%(s) == / [Dgy(€,Y(s) + AV = YO)(5),u™(5)) — Dyy(€,Y(5), u(s))] dA;
0
1
/ [Dury(€,Y0(s) + MY = YO)(5),u*(5)) = Duy (&, Y (s), u(s))] dX.
0

By the dominated convergence theorem and (8), since 7% and T2 are bounded, we have that

] [ 25 0] -

\z| dg ds] =

and

t
hm [//TZQ “
(VN

We also have that

3’95 v(s) —ul(s z S
EU!W(MKU () [2] de d

<CE

/T/|T” ) o1 (V0 = 7)(s)) dfds]

0

+CE

//V” meWW—WWD%4,

0

where p; is a smooth function defined on R such that 0 < p; <1, p1(y) =1 for |y] < 1 and p1(y) = 0 for
ly| > 2. Since, by (Cy),

T%(s)| pr (Y7 = YO)(5)) < C (p(&) + [Y(s

)

we have, by the dominated convergence theorem, that

;:%E[//W o ((7° =70 dsis| =

On the other hand, by (7) and (8),
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E / / T99(5)] (1= ) (V7 — VO)(s)) de ds

T
<CE // (&) + [YO(s)| + [Y2(9)]) Ly wo—y0)(s)|21) dE ds
o r
T 1/2 T 1/2
<c|E //1{‘(?940)(5)|21}d§ ds<C|E //|(}797§70)(s)|2 de ds < Co.
o r o r
Therefore,

0—0

T
lim E // |T3’9(s)| [v(s) — u(s)||z] d¢ds| = 0.
0T

Let Z €C([0,T]; L* (£;V*)) be defined by

t

Z(t) = /DyA(Y“(S)’U(S))Z(S) d8+/Q(Y“(8)’U(8),’U(S) —u(s))ds, t €[0,T7].
0

0

By the weak convergence of 5(Y? —Y?) to Z in L?(Q x [0,T]; V), the boundedness of w in

L*(Q; H) and the density of {(z,2) € V |z € C{(O)} in V, we can pass to the limit in relation (9) and
obtain that, for every t € [0,7], Z(t) € L*($; H) and w converges weakly to Z(t) in L?(Q; H).
This allows the identification

Z(t) = Z(t), a.e. t €[0,T],
from which we can infer that Z is a variational solution of equation (6).
The uniqueness of the solution of (6) is obtained by applying Theorem 4.2.4 in [30], for instance. A con-
sequence of the uniqueness is that the weak convergences stated inside this argument hold not only on a
subsequence, but on a whole right neighborhood of 0. O

3.3. Necessary conditions of optimality

In this section we will derive, in the form of a maximum principle, necessary conditions for an admissible
control to be optimal. Let us define the Hamiltonian H : V x L? (T;U) x V x La(H) — R by

H(y,u,p,q) = v+ (A(y,u), P)y + L(y,u) + tr(gB).
Theorem 3.3. Let u* be an optimal control. Then, a.s., d€ dt-a.e.,
[P (L ODAE T (16,0 (4,€) = D&, T (16,0 (1) - (v~ w'(£,) <0, W el (10)
Remark. This inequality is equivalent to

Ha (Y™ (£),u" (1), P (1), Q" (t);0(t) — u*(t)) > 0, Pdt-a.e., Yo € U2,
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where US? is the set of admissible controls v such that v — u* € L> (T'; R™), Pdt-a.e. and H,(y,u, p, q; w)
denotes the directional derivative of H with respect to u in the direction w (which exists if w € L> (T'; R™)
and u +w € L? (T;U)). This is known as the local form of the maximum principle.

Proof. As in the previous section, we will take first an arbitrary control v such that v — u* is bounded
and we will use the same notations u?, Y% Z, for 6 € [0,1]. We will also write P, @ instead of P, Qv
respectively. Let us apply Itd’s formula to P - Z:

(P(t).Z(1)) g =— [ v+ ((DyA)"(Y'(s),u"(s))P(s), Z(s)),, ds

Dy L(Y?(s),u*(s))Z(s) ds

+ [ v (DyA(Y (s),u” (9))Z(s) + G(YO(s),u" (), v(s) — u(s)), P(s)),, ds

O O °~—

—/(Z(S),Q(s) dW (s))y , Vt €[0,T7].
0

Therefore, letting ¢ = T and taking expectation, we get

T

E (D, w(Y(T)), Z(T)),, = /V* (G(VO(s),u* (), 0(s) — u*(5)), P(s)),, ds (11)

0

T
-E Dy L(Y°(s),u*(s))Z(s) ds
/

On the other hand, since u* is an optimal control, J(u*) < J(u?) for any 6 € (0,1), i.e.

T
E / (LOY?(1),u” () = LOY° (1), w* (1)) dt + (Y (T)) = ¥ (Y'(T))| >0,
0

which is equivalent to

(Y - YO)(t)

t
7 d

T 1
0 0 ~0 W
E O/ 0/ DyLIY"(£) + AY? — YO)(£), 1M (£))dA

+E //Lu(YO(t) FACY? — YO8, wM (1); w(t) — u* (£))dAdt

+E /Dy\I/(YO(T) +A(Y? - YO)(T))dAw > 0.

0
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Here, L, (y,u;w) denotes the directional derivative of L with respect to u in the direction w. Passing to the
limit as # — 0, by the weak convergence property stated in Proposition 3.2 and similar arguments as in its
proof, we obtain

T
E / [DyL(YO(t), w* (1)) Z(t) + Ly, (YO(t), u* (t);v(t) — u*(t)] dt p > —E (D, ¥ (Y°(T)), Z(T))
0

H-

Combining this inequality with relation (11), we derive

T
E /[V* (G(YO(s),u"(s), vu(s) — u'(5)), P(s))y, + Lu(YO(t), u* (£);0(t) — u*(t))] ds p >0,
0

T
e // [P(t7£)Du7(§7Y0(ta 5)7 U*(tvf)) - Dug(gv Yo(t,f)m*(t,f))] : (’U(t,f) - U*(tag)) dé- dt <0.
0T

Since the control v such that v — u* is bounded is chosen arbitrarily, we can infer easily that a.s., d¢dt-a.e.
[P(t, &) Dy (&, Y (1, €),u*(t,€)) — D l(&, YO, €),u*(,€)] - (v —u*(t,€)) <0, YweU. O
3.4. Sufficient conditions of optimality

In this section we show that condition (10) is, under some supplementary assumptions, sufficient for the
optimality of a given control.

Theorem 3.4. Let u* be a control satisfying (10). If the mappings ¥ and

Vx L*(T;U) - R
(y,u) = H(y,w, P (), Q" (¢))

are conver a.s., dt-a.e., then u* is optimal.
Remark. Under the above convexity hypothesis, (10) becomes equivalent to
w*(t) € argmin H(Y™ , -, P¥ (t),Q" (1)), Pdt-a.c.,
which is the global form of the maximum principle.

Proof. For an admissible control v such that v—u* is bounded, let us apply It6’s formula to P*" - (Y" Y ):

H

(P @Y 0 - Y 0), = [v- (DA (Y (5) 0" ()P (5, Y (0) - Y (5)) ds (13
0

t

— [ DL (9 () (Y (5) = Y (5)) ds
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+ [ v (AY(5), 0(5)) =AY (3), 0 (), P (s) ) ds

v

- [{(Y©) =Y (5).Q" ()W (s)) .

o\w o

Since the map H(-,-, P* (t),Q" (t)) is convex, we have
HOYY (1), (1), P (1, Q" (1) — HOY™ (0), 0" (1), P* (1), Q" (1)) >
Hiyy (Y (0.0 (), P¥ (0.Q" (0: (Y7 (1) = Y (1), 0(t) — (1))
= v ((DyAY (V" (1), ()P (1), Y (1) — Y () DyLOY™ (6),w* (1) (¥ (1) — Y™ (1)
— [ PTEODAE T (1007 (06) - (0l6€) — (1. €)) e

r
+ L (Y (), 0" (8); 0(t) — (1)),

where H(y ) (¥, u, P, ¢; (W, w)) denotes the directional derivative of H with respect to (y,u) in the direction
(w,w). We make the remark that

/ PY (6D (&Y (1,€),u"(1,€)) - (v(t,€) — u*(t,€)) dE

r

may be infinite, but exists, by (10). From relation (13) we get

E <D (Y (T)), Y"(T) - Y“*(T)>

[

H

>E

’1\

P (t, ) Dy (&Y™ (1,€),u"(,6)) - (v(t,é)U*(t,é“))didt]
~E

[L(t,w(t),v(t)) LY (1), 0 (t))] dt]

+E

S— S — s

Lo (Y (t),u* (t); v(t) — u*(t)) dt] .
The convexity of ¥ implies that
E [w(y" (1)) = w(Y* ()] = E(Dy(Y*(T)), Y"(T) - Y (T))

H

consequently

J(v) = J(u®) =

{// Dy (&Y (1,€), 0" (1,€)) + D&, Y™ (1, €),u" (t,€)) '(v(t,é)U*(t,é))dfdt}'
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By relation (10), the right-hand side of the above inequality is positive, so J(v) > J(u*).
If v — w* is not bounded, we can take, for n > 1,

o (t,€) = { v, b8 —ulh Ol <n
u(t,€), v (t,&) —ur(t, &) > n.

Applying 1td’s formula to Y (¢) — YV (¢), we get, by the properties of a and ~,
t
U, v 2 Un v 2
Y0 = Y01 +28 [ 1Y) = X" @)} ds
0

<2 [ [ 6T talo) = A6 7 (5),0(6))] (V72 (6) V() deds

T T
<CO/F/|7(§,Y”(S),UTL(S))—7(§7Y”(s),v(s))| dgds+5O/F/|Y“"(S)—Y”(S)} dé ds.

Therefore, by the dominated convergence theorem,

lim sup [[Y'"(t) - Y*(t)| = 0.
]

n=0 ¢el0,T
This implies that lim,, o J(v,) = J(v); hence J(v) > J(u*). O

Example. The convexity hypothesis for (-, -, P* (), Q* (t)) is hard to verify in practice, since the direction
of VP*" and the sign of P*" are not a priori determinable. However, under convexity assumptions on the
coefficients, we just need to strengthen condition (10) in order to derive a sufficient optimality condition.

We will take a(z,{) = ¢, (z,{) € O x R™ (or, more general, linear with respect to ¢). Moreover, the
functions £(z, -), 1(x,-) and (&, -) are supposed to be convex, dz-a.e. on O, respectively dé-a.e. on I'. For
o € {~1,1}, on v and £ we impose that:

e (y,u) — —ov(&,y,u) is convex, dé-a.e. on I';

o (y,u) — £(&,y,u) is convex, dé-a.e. on T
Let, for (§,y,u) e T x R x U,

S(&,y,u) = {a € R| aDyy(& §,u) — Dul(£,5,u) € Ny(u)},

where Ny (u) is the exterior normal cone to U in u if u € U and Ny (u) = {0} if uw € int U.
A sufficient condition of optimality for an admissible control u* is then

PY(1,€) € S(EY™ (1,€),u"(t,€) NoRy, didt-a.c. (14)
This condition is obviously equivalent to (10) when S(£, ¢, u) NoR* =0, Vi € R, dé-a.e.
4. Existence of an optimal control

Let now study the problem of the existence of an optimal control under the convexity conditions on the
coefficients of the cost functional and linearity of control.
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Assume that U is bounded and:

(Cs) v(& 7, u) =7(&, y) + B(&) - u, where ¥ satisfies conditions (Co)—(Cz) and 8 € L= (I';R™);
(Fy) ¥(z,-) and 9(&,-) are convex, dz-a.e. on O, respectively dé-a.e. on T';

(L) #(z,-) and £(&,-) are convex, dz-a.e. on O, respectively d€-a.e. on I'.

Remark. Notice that our assumptions, although stringent, cover most of the cases in the literature. For
instance, Debussche, Fuhrman and Tessitore [10], Fabbri and Goldys [17] and Bonaccorsi, Confortola and
Mastrogiacomo [6] consider linear control problems on the boundary (for Neumann, Dirichlet and dynamic
boundary conditions, respectively), and all those papers are concerned with the one-dimensional problem.
These papers, further, consider linear quadratic term in the cost functional, that hence satisfy assumptions
(F2) and (Lo).

On the other hand, in this paper we do not consider the structure condition that is necessary to apply
the forward-backward approach of Fuhrman and Tessitore [18], i.e., the condition that the control and the
noise enters the equation with the same operator in front of them.

Theorem 4.1. Under the above assumptions, there exists at least an optimal control.

The necessary condition (10) provides more information about the optimal control whose existence is
guaranteed by the above result. In fact, it can be written as

ﬂ(g)pu* (tv 6) - Dug(ga }7“* (tv 6)7 u* (ta 6)) € NU (’LL* (t7 5))7 dgdt—a.e.
(recall that Ny (u) is the exterior normal cone to U in u if u € OU and Ny (u) = {0} if u € int U).

Proof. By Itd’s formula applied to ||Y“||i1, it is clear that

E sup [[YU(t)|l3 <C,
t€[0,T]

for every control u (we recall that we use the generic term C for positive constants, whose values can change
from one place to another). Since U is bounded, J is bounded, too. Let (u,) be a sequence of controls
such that J(u,) N\ infyecy J(u). There exists u* € L? (Q x [0,T]; L*(I;R™)) such that a subsequence of
(up,) converges weakly to u*. Without restricting the generality, we can suppose that the whole sequence
converges to u*.

For the sake of simplicity, let us denote Y” := Y*". Let us show that Y” converges to Y* . We have
that, exactly as in (7), that

T
sup | sup BV (@) +E [ YOI dt| < +oc.
neN | t€[0,T] 5

Consequently, the sequences (a(-, VY™)), -, and (3, }7"))”>1 are also bounded in L? (Q x [0,T]; L? (0)),

respectively in L2 (Q x [0,T); L? (F)) Therefore, at least on a subsequence:

e Y" converges weakly in L? (2 x [0,T]; V) to a process Y* = (Y*,Y*);
e Y"(t) converges weakly in L? (Q; H) to Y*(t) for every t € [0, T];

o a(-, VY™) converges weakly in L? (Q x [0,7]; L* (O)) to a process x;
o (-, Y™) converges weakly in L? (Q x [0,T]; L? (")) to a process .
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Ifz=(z,2) € V, then

“ VY™ (5)), V2) 120 +<’~Y("Yn<s))75>L2(F>} ds

\ﬂ

<Yn(t)7 Z> y0» H

_/t BE)Z - u" )dgds+</BdW) > , t€[0,T].

H
Passing to the limit in this relation, we obtain, for ¢ € [0, T,

t

(Y02 = 50,20 — [ [(K) Vabino) + (60, 2) )

0
—O/F//a(s)z-u*(s,f)dfdw</BdW<s>,z> :

0 H

meaning that Y* satisfies the relation

t
yo+/ ds+/BdW 5), t €[0,T],
0

where the V*-valued, square-integrable process A is defined by
v+ (A(s), (z7é)>v = —/X(S) -Vzdx — / [(s) + B(&)u*(s)] 2d¢, (2,2) € V.
o r

In order to assert that Y* = Y* , we have to prove the identification A(s) = A(Y*(s),u*(s)), dt-a.s. For
that, we will use some results from the theory of maximal monotone operators (see [2], for example).
We have that, P-a.s., Y*(-) — Y1(-) € W12(0,T;V*) and

;t (Y"(t) = Y'() = A(Y"(t),u"(t)) — A(Y'(t),u' (t)), dt-ae.

Moreover, we have

1Y) = Y @ + 8 [1Y76) = Y O} ds < Cllmrmy 2 € [0.7)

and

[ @) - A 0. 05 t<0(1+ JAGKC ||€+|\Yl<t>||’é)dt)
<C (1+ JAGEE Y1<t>H2V+HY1Hi)dt)~
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Consequently, the sequence (Y™(:) —Yl(-))n>1 is bounded in L2 (0,T;V) N WH2(0,T;V*), P-a.s. By a
well-known result of Aubin (see, for example, Theorem 1.20 in [2]), since the inclusion V' C H is compact,
(Y"(-) = Y'(-)), -, is relatively compact in L? (0,T; H).

As we already have that (Y” — Yl)n>1 converges weakly to Y* — Y in L? (Q x [0,7]; V), we infer that

(Y"()=Y'()), -, converges strongly to Y*(-)=Y!(-)in L? (0,T; H), P-a.s. By the dominated convergence
theorem Y™ converges strongly to Y* in L? (Q x (0,T); H).

Let us define the operator A on L? (Q x (0,T) x O) x L? (2 x (0,T) x ') by

A6 9) = (al,¢():7( )

Since A is hemicontinuous and monotone, by Theorem 2.4 in [2], A is a maximal monotone operator.
1t6’s formula applied to Y, respectively Y*, yield

T
oR // 2 VY"(#) - VY () dr dt | + 2B O/F/’y(f,Y”(t))Y”(t)dgdt

T
— E|[Y"(T)|% - 2E / BT (t) - w(t) e dt | + Iyollly + TIBIZ, o
0

and

T r T
D) !Zx(t)-VY*(t) dadt| + 2E _O/F/%(t)Y*(t) dg dt

T
= —E|Y*(T)|3; - 2E / BEY™(t) - () dedt| + [lyollF + TIBIT, s -
0

Consequently, since the norm in H is lower-semicontinuous with respect to the weak topology, u™ converges
weakly to u* in L2 (Q X [O,T];LQ(F;R"L)) and Y™ converges strongly to Y* in L2 (Q X [O,T];LQ(F)), we
get

limsup (A(VY", Y"), (VY™ Y")) < {((x, %), (VY*, V™)),

e—0

where (-, ) denotes the scalar product in L? (Q x (0,7) x O) x L? (2 x (0,T) x I'). By Corollary 2.4 in [2],
(x, %) = A(VY™,Y7),
ie.

x(t) =a(-, VY™*(t)), P-as. x dz dt-a.e.;
sx(t) = A(-, Y*(t)), P-a.s. x d dt-a.e.

By the uniqueness of the solution of equation (3), we have that Y* = YU
The functional 7 : L? (2 x [0, T]; H) x L? (2 x [0, T]; L*(T’;R™)) — R, defined by

J(Y,u):=E /L t))dt + w(Y(T))
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is strongly continuous. By conditions (F3) and (Ls), it is also convex and therefore weakly lower semi-
continuous. As a consequence, liminf, .. J(Y",u™) > J(Y*,u*). Since J(Y",u™) = J(u"™), J(Y*, u*) =
J(u*) and J(u"™) — inf,ey J(u), u* has to be an optimal control. O
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