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We study the linear finite element approximation of the elasticity equations with 
and without unilateral friction contact (of Tresca type) conditions in a polygonal 
or polyhedral domain. The unilateral contact condition is weakly imposed by the 
penalty method. We derive error estimates which depend on the penalty parameter 
ε and the mesh size h. In fact, under the H 3

2 +ν (Ω) , 0 < ν ≤ 1
2 , regularity of 

the solution of the contact problems (with and without friction) and with the 
requirement ε > h, we prove a convergence rate of O

(
h

1
2 +ν + ε

1
2 +ν

)
in the energy 

norm. Therefore, if the penalty parameter is taken as ε := chθ where 0 < θ ≤ 1, the 
convergence rate of O

(
h
θ
(

1
2 +ν

))
is obtained. In particular, we obtain an optimal 

linear convergence when ε behaves like h (i.e. θ = 1) and ν = 1
2 .

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω ⊂ R
d, d = 2, 3, be a polygonal or polyhedral domain representing the configuration of a linearly 

elastic body. The equilibrium equations satisfied by this body are defined by

−∇ · σ(u) = f , in Ω,

σ(u) = Aε(u), in Ω,
(1)

where u is the displacement field, f ∈
(
L2(Ω)

)d is a body force and σ := (σij)1≤i,j≤d is the stress tensor 
field. The tensor A is the fourth order symmetric elasticity tensor satisfying the usual uniform ellipticity 
and boundedness properties, and ε represents the linearized strain tensor field defined by
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Fig. 1. A deformable body Ω in contact with a rigid foundation corresponding to a zero gap (� = 0).

ε(u) := 1
2
(
∇u + ∇ut

)
.

We assume that the polygonal or polyhedral boundary ∂Ω is partitioned into three non-overlapping parts 
ΓD, ΓN and ΓC (∂Ω = ΓD ∪ ΓN ∪ ΓC) where meas(ΓD) > 0 and meas(ΓC) > 0. The contact boundary ΓC

is supposed to be a straight line segment when d = 2 (see Fig. 1) or a polygon when d = 3.
To problem (1), we associate the following Dirichlet and Neumann boundary conditions on ΓD and ΓN

u = 0, on ΓD, (2)

σ(u)n = g, on ΓN , (3)

where the vector n is the unit outward normal on ∂Ω and g ∈
(
L2(ΓN )

)d is a surface load. The body is 
clamped on ΓD for sake of simplicity and is subjected to a surface load on ΓN . We adopt the following 
decomposition of the displacement field v and the density of the surface forces σ(v)n into the normal and 
the tangential components

v = (v · n)n + vt and σ(v)n = σn(v)n + σt(v),

where σn(u) is the contact pressure.
We also add to the problem (1), the following nonlinear boundary conditions describing the unilateral 

contact on ΓC

u · n− � ≤ 0, σn(u) ≤ 0,
(
u · n− �

)
σn(u) = 0, on ΓC , (4)

where the gap function � : ΓC −→ R
+ is a continuous mapping that associates any point s ∈ ΓC with its 

normal distance from the rigid foundation.
If we consider that there is no friction on ΓC , the following additional condition completes that in (4)

σt(u) = 0, on ΓC . (5)

Otherwise, if we consider friction of the Tresca type, the contact condition (4) is completed by⎧⎪⎨
⎪⎩

|σt(u)| ≤ g, if ut = 0

σt(u) = −g
ut

|ut|
, if ut �= 0

on ΓC , (6)

where g ∈ L2(ΓC) is a nonnegative function and | · | stands for the Euclidean norm in Rd−1. We can easily 
verify that if g = 0, the boundary condition (6) recovers the condition (5).

This work is devoted to the finite element analysis of the following two contact problems by the penalty 
method:

• The frictionless contact problem defined by equations (1)–(4) and (5).
• The Tresca friction contact problem represented by equations (1)–(4) and (6).
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Let us denote by Hm(Ω), m ≥ 0, and L2(Ω) := H0(Ω) the classical Sobolev spaces equipped with the usual 
norm ‖ · ‖m,Ω. Through the paper, bold letters like u, v indicate vector or tensor valued quantities, while 
the capital ones represent functional sets. Thus, we define the following Sobolev spaces (see [1])

Hm(Ω) := (Hm(Ω))d , L2(Ω) :=
(
L2(Ω)

)d
.

We also introduce the set K of admissible displacements satisfying the non-interpenetration condition on 
the contact zone ΓC

K :=
{
v ∈ V : v · n− � ≤ 0 on ΓC

}
,

where

V :=
{
v ∈ H1(Ω) : v = 0 on ΓD

}
.

On the other hand, we consider the bilinear and linear forms A(·, ·) and F (·), defined by

A(u,v) :=
∫
Ω

σ(u) : ε(v) dx,

F (v) :=
∫
Ω

f · v dx +
∫

ΓN

g · v ds,

for u, v ∈ H1(Ω). The bilinear form A(·, ·) is continuous and V-elliptical from V × V into R, that is

m‖v‖2
1,Ω ≤ A(v,v),∀v ∈ V , (7)

A(v,w) ≤ M‖v‖1,Ω‖w‖1,Ω, ∀v,w ∈ V , (8)

where M and m are positive constants. We define the notation [ · ]+ for a scalar quantity a ∈ R by

[a]+ :=
{
a, if a > 0,

0, otherwise.

Let us remind the following two useful properties

a ≤ [a]+, a[a]+ = [a]+[a]+, ∀ a ∈ R, (9)

from which the following monotonicity property is deduced (see [6], [7] and [8])

(
[a]+ − [b]+

)(
a− b

)
≥

(
[a]+ − [b]+

)2
. (10)

For α ∈ R
+, we define B(0, α) ⊂ R

d−1 as the closed ball centered at the origin 0 and of radius α. We thus 
introduce the notation [ · ]α for the orthogonal projection onto B(0, α), which stands for any x ∈ R

d−1 as 
follows

[x]α :=

⎧⎪⎨
⎪⎩

x, if |x| ≤ α,

α
x

|x| , if |x| > α.
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We hence recall the following classical properties for projections, for all x, y ∈ R
d−1

(
[x]α − [y]α

)
·
(
x− y

)
≥ 0 and

∣∣∣ [x]α − [y]α
∣∣∣ ≤ ∣∣x− y

∣∣, (11)

where the dot · is the Euclidean scalar product in Rd−1.
The boundary conditions we have to deal with are thus characterized by the inequality u · n− � ≤ 0 on 

ΓC . But this constraint is not favorable for computations, despite the fact that the variational inequality for-
mulation obtained from these contact problems can be solved by various methods. We thus need techniques 
more favorable and one of the classical and most used method to circumvent this inequality constraint is 
the penalty method. The penalty technique is a classical method for the numerical treatment of constrained 
problems (see [12] and [14]). Unlike the Lagrange multiplier technique, the penalty method avoids to in-
troduce a new variable. Moreover, it is more readily applicable in most numerical codes. Nevertheless, this 
method remains an approximation since the solution of the penalized problem is expected to coincide with 
the solution of the original problem when the penalty parameter ε is zero.

The present study is devoted to the application of the penalty method to these contact problems. If the 
finite element approximation space V h is made of standard continuous and piecewise affine functions, it is 
expected, choosing the penalty parameter as ε(h) = chθ with a suitable value of θ, to obtain the following 
a priori error estimate between the displacement field u and the penalized finite element approximation 
solution uεh

‖u− uεh‖1,Ω = O (h) . (12)

To the best of our knowledge, in this case of polygonal or polyhedral domain, the best estimate is established 
by F. Chouly and P. Hild ([6], Theorem 3.2 and Theorem 4.2). They obtained, without a specific numerical 
integration scheme to treat the penalty term, the a priori error estimate for the frictionless problem (1)–(5)

‖u− uεh‖1,Ω + ε
1
2

∥∥∥∥σn(u) + 1
ε

[uεh · n]+
∥∥∥∥

0,ΓC

≤ c

⎧⎪⎨
⎪⎩

(
h

1
2+ ν

2 +ν2
+ hνε

1
2 + hν− 1

2 ε
)
‖u‖ 3

2+ν,Ω , if 0 < ν <
1
2 ,(

h |ln(h)|
1
2 + (hε)

1
2 + ε

)
‖u‖2,Ω , if ν = 1

2 .
(13)

As for the Tresca friction problem (1)–(4) and (6), by fixing ε = h and taking d = 2, they established the 
following result (which remains valid in the three dimensional case d = 3 using similar tools)

‖u− uεh‖1,Ω + h
1
2

(∥∥∥∥σn(u) + 1
ε

[uεh · n]+
∥∥∥∥

0,ΓC

+
∥∥∥∥σt(u) + 1

ε
[uεht ]εg

∥∥∥∥
0,ΓC

)

≤ c

⎧⎪⎨
⎪⎩

h
1
2+ ν

2 +ν2 ‖u‖ 3
2+ν,Ω , if 0 < ν <

1
2 ,

h |ln(h)|
1
2 ‖u‖2,Ω , if ν = 1

2 .
(14)

These two estimates remain under optimal because of the first terms on the right hand side. These bounds
were obtained by estimating the following contact term

∫
σn(u)

(
I1

h(u) · n
)
ds, (15)
ΓC
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where I1
h is the Lagrange interpolation operator mapping onto V h. Recently, this contact term is optimally 

estimated by G. Drouet and P. Hild [10]. And taking again the approach of F. Chouly and P. Hild [6], an 

optimal estimate would be obtained for ε = h.
Otherwise in the limit case h → 0 with 0 < ν < 1

2 , the a priori estimate (13) cannot provide a decreasing 

bound since one of the terms in its right hand side, namely the term hν−1
2 ε, diverges. This is why in Remark 

3.6 in [6], the authors emphasized the penalty parameter to be chosen as follows ε < ch
1
2−ν in order to 

ensure the convergence to zero of the error term ‖u− uεh‖1,Ω+ε
1
2

∥∥∥σn(u) + 1
ε [uεh · n]+

∥∥∥
0,ΓC

. Nevertheless 

in the limit case h → 0 with ν = 1
2 , this estimate is optimal in term of the penalty parameter ε in the 

sense that it gives the same convergence order than the continuous estimate obtained at Theorem 3.1 in [6]
(which is recalled in the forthcoming analysis at Theorem 1, estimate (20)).

In the present work, we improve both a priori finite element estimates (13) and (14) by establishing for 
the frictionless unilateral problem the following result

‖u− uεh‖1,Ω +
(
ε

1
2 − ch

1
2

)∥∥∥∥σn(u) + 1
ε

[uεh · n− �]+
∥∥∥∥

0,ΓC

≤ c
(
h

1
2+ν + ε

1
2+ν

)
‖u‖ 3

2+ν,Ω . (16)

And for the Tresca friction unilateral problem, we obtain the following similar result

‖u− uεh‖1,Ω +
(
ε

1
2 − ch

1
2

)(∥∥∥∥σn(u) + 1
ε

[uεh · n− �]+
∥∥∥∥

0,ΓC

+
∥∥∥∥σt(u) + 1

ε
[uεht ]εg

∥∥∥∥
0,ΓC

)

≤ c
(
h

1
2+ν + ε

1
2+ν

)
‖u‖ 3

2+ν,Ω . (17)

The first advantage of the results (16) and (17) is that, the expected a priori optimal estimate (12) is 
achieved if the penalty parameter is chosen for example in the form ε(h) = (c + 1)2 h by fixing ν = 1

2 .
Another useful advantage is, the results (16) and (17) do not present a negative power in h for 0 < ν ≤ 1

2 . 
Thus the warnings of Remark 3.6 in [6] are not necessary here and we do not need any additional conditions 
on the penalty parameter to ensure convergence of terms in the left hand side of estimates (16) and (17). 
Moreover in the limit case h → 0 with 0 < ν ≤ 1

2 , the estimates (16) and (17) are optimal in term of ε since 

the same estimates as Theorem 3.1 and Theorem 4.1 in [6] are recovered.
The analysis of the article is presented in four parts where to each of them, we distinguish the frictionless 

unilateral contact problem (defined by equations (1)–(5)) to the Tresca friction unilateral problem (given by 

equations (1)–(4) and equation (6)). We first present in Section 2, the weak formulations of the unilateral 
contact problems and their penalty weak formulation. Section 3 is devoted to the finite element approxi-
mations of the penalized formulations. We present in Section 4, the results of the paper by providing the a 

priori estimates of each problem. A general conclusion ends the article in Section 5 where we make a point 
of the different established results and evoke an extension to the quadratic case.

Throughout the paper, we assume that c denotes various positive constants which are independent of 
the discretization parameter h and the penalty parameter ε, and have different values depending on the 

context.
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2. Penalty weak formulations of the unilateral problem

2.1. The penalty formulation of the frictionless problem

The weak formulation of the frictionless unilateral problem (1)–(5) is defined by
{

Find u ∈ K such that,

A(u,v − u) ≥ F (v − u), ∀v ∈ K.
(18)

The problem (18) admits a unique solution according to Stampacchia’s theorem. The penalty weak formu-
lation, derived from the variational inequality (18), reads [12]

⎧⎪⎪⎨
⎪⎪⎩

Find uε ∈ V such that,

A(uε,v) + 1
ε

∫
ΓC

[uε · n− �]+(v · n) ds = F (v), ∀v ∈ V .
(19)

Well-posedness and uniform convergence of the penalized problem (19) have already been studied by N. 
Kikuchi and Y. J. Song in [13] (Theorems 3.1 and 3.2), but also by N. Kikuchi and J. T. Oden in [12]
(Theorems 3.15 and 6.6). Recently, F. Chouly and P. Hild ([6], Theorems 2.2 and 3.1) tackle again these 
questions in the context of linear finite elements where the H

3
2+ν (Ω) , 0 < ν ≤ 1

2 , regularity of the contact 
solution u is required. We take again the Theorems 3.1 established in [6] in order to adapt it to a non-zero 
gap � ≥ 0 by establishing the following convergence theorem.

Theorem 1. Let Ω ⊂ R
d, d = 2, 3, be a polygonal bounded domain, u and uε solutions of problems 

(18) and (19), respectively. If u belongs to H
3
2+ν(Ω) where 0 < ν ≤ 1

2 , then we obtain the a priori 
estimate

‖u− uε‖1,Ω + ε
1
2

∥∥∥∥σn(u) + 1
ε

[
uε · n− �

]+∥∥∥∥
0,ΓC

≤ cε
1
2+ν‖u‖ 3

2+ν,Ω, (20)

where c > 0 is a constant, independent of the penalty parameter ε and the solution u.

Proof. Multiplying the equation (1) by test functions v ∈ H1(Ω) and integrating over Ω by taking into 
account Green formula and boundary conditions (2), (3) and (5), we obtain

A(u,v) −
∫
ΓC

σn(u)(v · n)ds = F (v). (21)

If u ∈ V , the equation (21) may have no meaning because of lack of regularity (it has a meaning if the 
boundary integral is interpreted as a duality pairing on H− 1

2 (ΓC) × H
1
2 (ΓC)). Then, we suppose u ∈

H
3
2+ν(Ω) where ν > 0 to justify this calculation by obtaining σn(u) ∈ Hν(ΓC).
Using the coercivity relation (7) of A(·, ·), the equation (21) and the Problem (19), we obtain

m‖u− uε‖2
1,Ω ≤ A(u− uε,u− uε)

= A(u,u− uε) −A(uε,u− uε)

=
∫ (

σn(u) + 1
ε

[
uε · n− �

]+)(
u · n− uε · n

)
ds
ΓC
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=
∫
ΓC

(
σn(u) + 1

ε

[
uε · n− �

]+)((
u · n− �

)
−
(
uε · n− �

))
ds

=
∫
ΓC

σn(u)
(
u · n− �

)
ds +

∫
ΓC

1
ε

[
uε · n− �

]+(
u · n− �

)
ds

−
∫
ΓC

σn(u)
(
uε · n− �

)
ds−

∫
ΓC

1
ε

[
uε · n− �

]+(
uε · n− �

)
ds. (22)

We first remark, thanks to the unilateral contact condition (4), the following two estimates
∫
ΓC

σn(u)
(
u · n− �

)
ds = 0

∫
ΓC

1
ε

[
uε · n− �

]+(
u · n− �

)
ds ≤ 0.

(23)

And using the property (9) and the same condition (4), we obtain

−
∫
ΓC

σn(u)
(
uε · n− �

)
ds ≤ −

∫
ΓC

σn(u) [uε · n− �]+ ds

−
∫
ΓC

1
ε

[
uε · n− �

]+(
uε · n− �

)
ds = −

∫
ΓC

1
ε

[
uε · n− �

]+[
uε · n− �

]+
ds.

(24)

Then taking into account the relations (23), (24) and the Young inequality, the estimate (22) becomes

m‖u− uε‖2
1,Ω ≤ −

∫
ΓC

(
σn(u) + 1

ε

[
uε · n− �

]+)[
uε · n− �

]+
ds

≤ −ε

∫
ΓC

(
σn(u) + 1

ε

[
uε · n− �

]+)(
σn(u) − σn(u) + 1

ε

[
uε · n− �

]+)
ds

≤ −ε

∥∥∥∥σn(u) + 1
ε

[
uε · n− �

]+∥∥∥∥
2

0,ΓC

+ ε

∫
ΓC

(
σn(u) + 1

ε

[
uε · n− �

]+)
σn(u) ds

≤ −ε

∥∥∥∥σn(u) + 1
ε

[
uε · n− �

]+∥∥∥∥
2

0,ΓC

+ εδ
∥∥∥∥σn(u) + 1

ε

[
uε · n− �

]+∥∥∥∥
−ν,ΓC

ε1−δ ‖σn(u)‖ν,ΓC

≤ −ε

∥∥∥∥σn(u) + 1
ε

[
uε · n− �

]+∥∥∥∥
2

0,ΓC

+ ε2δ

2β

∥∥∥∥σn(u) + 1
ε

[
uε · n− �

]+∥∥∥∥
2

−ν,ΓC

+ βε2−2δ

2 ‖σn(u)‖2
ν,ΓC

, (25)

with δ ∈ [0, 1] and β > 0. Thus using the estimate (18) of Lemma 3.9 in [6], we obtain from estimate (25)

m‖u− uε‖2
1,Ω ≤ −ε

(
1 − c

ε2(δ+ν)−1

β

)∥∥∥∥σn(u) + 1
ε

[
uε · n− �

]+∥∥∥∥
2

0,ΓC

+ c
ε2(δ+ν)−1

β
‖u− uε‖2

1,Ω

+ βε2−2δ

2 ‖σn(u)‖2
ν,ΓC

. (26)
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Thus from the equation 2 (δ + ν)−1 = 0, we choose the parameter δ as follows δ = 1
2 −ν. Moreover, making 

the same choice as in the proof of Theorem 3.1 [6] on the parameter β = 2c max
(
1,m−1) and taking into 

account the estimate ‖σn(u)‖ν,ΓC
≤ c‖u‖ 3

2+ν,Ω, we obtain from the inequality (26) the following estimate 
which establishes (20)

(
m− 1

2 max (1,m−1)

)
‖u− uε‖2

1,Ω + ε

(
1 − 1

2 max (1,m−1)

)∥∥∥∥σn(u) + 1
ε

[
uε · n− �

]+∥∥∥∥
2

0,ΓC

≤ cmax
(
1,m−1) ε1+2ν‖u‖2

3
2+ν,Ω. �

2.2. The penalty formulation of the Tresca friction unilateral problem

The weak formulation of the Tresca friction problem (1)–(4) and (6) is defined by the following second 
kind variational inequality problem

⎧⎪⎪⎨
⎪⎪⎩

Find u ∈ K such that,

A(u,v − u) +
∫
ΓC

g
(
|vt| − |ut|

)
ds ≥ F (v − u), ∀v ∈ K.

(27)

According to [15], the formulation (27) admits a unique solution. Applying the penalty method to the 
formulation (27), we have the following penalty weak formulation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find uε ∈ V such that,

A(uε,v) + 1
ε

∫
ΓC

[uε · n− �]+ (v · n) ds

+ 1
ε

∫
ΓC

[uεt ]εg · vt ds = F (v), ∀v ∈ V .

(28)

The problem (28) admits a unique solution (since the proof of Theorem 2.2 in [6] still holds). The uniform 
convergence of its solution is established by F. Chouly and P. Hild ([6], Theorem 4.1). In the case of a gap 
not identical to zero (that is � ≥ 0), we have the following theorem:

Theorem 2. Suppose that u, the solution of Problem (27), belongs to H
3
2+ν(Ω) with 0 < ν ≤ 1

2 . Let 
uε be the solution of Problem (28). We have the a priori estimate

‖u− uε‖1,Ω + ε
1
2

(∥∥∥∥σn(u) + 1
ε
[uε · n− �]+

∥∥∥∥
0,ΓC

+
∥∥∥∥σt(u) + 1

ε
[uεt ]εg

∥∥∥∥
0,ΓC

)

≤ cε
1
2+ν ‖u‖ 3

2+ν,Ω ,

(29)

where c > 0 is a constant, independent of ε and u.

Proof. The proof is established by taking again the different steps of Theorem 4.1 in [6] and by following 
the ideas of the proof of Theorem 1 where a positive gap is used. The Theorem 4.1 in [6] has been proved 
in the two dimensional case but it also remains valid in dimension three as specified by its authors. �
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3. Finite element approximations of the penalty formulations

For the construction of the finite element approximations, we mesh the polyhedral domain Ω ∈ R
d, d =

2, 3, by a finite set of d-simplices �

Ω :=
⋃

�∈Th

� , (30)

such that the intersection between two elements, when non-empty, is assumed to be a vertex, an edge or a 
face of both elements. We denote by Th this finite set of d-simplices which is assumed to be regular, that is 
there exists ρ ≥ 0 such that for any � ∈ Th,

h�
ρ�

≤ ρ, (31)

where ρ� denotes the radius of the inscribed ball in � and where h� is the diameter of the element �. We 
denote by h the mesh size defined as the largest diameter of all elements �

h := max
�∈Th

h�. (32)

We thus define the family of finite-dimensional spaces Vh, composed of continuous and piecewise affine 
functions, as follows

Vh :=
{
vh ∈ C 0(Ω); vh|� ∈ P1(�), ∀� ∈ Th, vh = 0 on ΓD

}
,

where P1(�) is the set of polynomials of degree less or equal to 1 on �. From the discrete space Vh, we 
introduce the vector space V h := (Vh)d and the following space of traces on ΓC

Wh (ΓC) :=
{
μh ∈ C 0(ΓC); ∃ vh ∈ Vh, vh|ΓC

= μh

}
.

We assume that the endpoints or the border (for the three dimensional space) of the boundary part ΓC

belong to ΓN , and the mesh on ΓC induced by Th is quasi-uniform. This implies, in the sense of Blamble 
et al. [4], the locally quasi-uniformity of the mesh on ΓC .

Let us recall the stability and the interpolations properties of the L2 (ΓC)-projection operator onto 
Wh (ΓC), denoted by Ph : L2 (ΓC) −→ Wh (ΓC). These properties, of which proofs can be found in [2] and 
[4], are stated in the following lemma.

Lemma 1. Suppose that the mesh associated to Wh (ΓC) is locally quasi-uniform. For all s ∈ [0, 1] and all 
v ∈ Hs(ΓC), we have the stability estimate

∥∥Ph(v)
∥∥
s,ΓC

≤ c‖v‖s,ΓC
. (33)

The following interpolation estimate also holds:
∥∥v − Ph(v)

∥∥
0,ΓC

≤ chs‖v‖s,ΓC
, (34)

for all v ∈ Hs(ΓC), where the constant c > 0 in both cases is independent of v and the mesh size h.

We recall another lemma proven in [3] (see also [9]), which concerns the existence of a discrete bounded 
lifting from the contact boundary ΓC to the domain Ω.
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Lemma 2. Suppose that the mesh on the contact boundary ΓC is quasi-uniform. There exist an extension 
operator Rh : Wh (ΓC) −→ Vh and c > 0, such that

Rh (μh)|ΓC
= μh,

∥∥Rh (μh)
∥∥

1,Ω ≤ c‖μh‖ 1
2 ,ΓC

, ∀ μh ∈ Wh (ΓC) . (35)

Remark 1. Let us denote by Ph and Rh the vector forms of the operators Ph and Rh respectively, defined 
for any vector w := (wi)1≤i≤d as follows

Ph (w) :=
(
Ph (wi)

)
1≤i≤d

and Rh (w) :=
(
Rh (wi)

)
1≤i≤d

. (36)

It is an easy task to see that the operators Ph and Rh also satisfy stability and interpolation properties 
(33), (35) and (34).

3.1. Finite element approximations of the frictionless unilateral problem

The finite element approximation of the penalized problem (19) is defined by

⎧⎪⎪⎨
⎪⎪⎩

Given ε > 0, find uεh ∈ V h such that,

A(uεh,vh) + 1
ε

∫
ΓC

[uεh · n− �]+ (vh · n) ds = F (vh),∀ vh ∈ V h.
(37)

It can easily be verified that the nonlinear operator Bh : V h −→ V h, defined by

(Bhvh,wh) := A(vh,wh) + 1
ε

∫
ΓC

[vh · n− �]+ (wh · n) ds, ∀vh,wh ∈ V h, (38)

is hemicontinuous and V h-elliptic (see [6], Theorem 2.2). Hence applying the Corollary 15 in [5], we conclude 
that the operator Bh is one to one. Thus, the existence and the uniqueness of the solution of the discrete 
penalty problem (37) are assured.

Unlike the Nitsche method (see [7] and [8]), the penalty method is not consistent in the sense that 
the solution to the continuous constrained problem (18) does not satisfy conditions corresponding to the 
discrete penalty problem (37). In order to be consistent with the discrete scheme (37), we focus on the a 
priori analysis between the continuous penalty formulation (19) and the discrete penalty problem (37).

Remark 2. The penalty formulation (19) is consistent with the finite element problem (37) in the sense that 
the solution uε of the Problem (19) also satisfies the following equation for test functions vh in V h

A(uε,vh) + 1
ε

∫
ΓC

[uε · n− �]+ (vh · n) ds = F (vh),∀ vh ∈ V h. (39)

The uniform convergence of the penalized solution uε being ensured from the estimate (20), one can focus 
exclusively on the convergence of the penalty finite element approximation solution uεh towards uε, and 
not towards the solution of the constrained problem (18). This approach is the main difference between this 
study and most of works on the penalty method of the unilateral contact problem (see for instance [13], [12]
and [6]).
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3.2. Finite element approximations of the Tresca friction unilateral problem

The finite element approximation problem, issued from the penalized problem (28), is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given ε > 0, find uεh ∈ V h such that,

A(uεh,vh) + 1
ε

∫
ΓC

[uεh · n− �]+ (vh · n) ds

+ 1
ε

∫
ΓC

[uεht ]εg · vht ds = F (vh), ∀vh ∈ V h.

(40)

The existence and the uniqueness of the solution of the discrete problem (40) are obtained similarly to the 
problem (28). The consistency of the solution uε with respect to the discrete problem (40), described in the 
following remark, is very useful in the forthcoming analysis.

Remark 3. The penalty formulation (28) is consistent with the finite element approximation problem (40)
in the sense that the solution uε of the Problem (28) also satisfies the following weak formulation

A(uε,vh) + 1
ε

∫
ΓC

[uε · n− �]+ (vh · n) ds

+ 1
ε

∫
ΓC

[uεt ]εg · vht ds = F (vh), ∀vh ∈ V h.

(41)

We will focus exclusively on the convergence of the penalty finite element approximation solution uεh

towards uε, due to this consistency but also thanks to the uniform convergence result (29).

4. A priori estimate in terms of the penalty parameter ε and the mesh size h

4.1. A priori estimate of the frictionless unilateral contact problem

We first present the estimate of the error 
(
uε − uεh,

1
ε [uε · n− �]+ − 1

ε [uεh · n− �]+
)

in terms of the 
interpolation estimate error and the penalty approximation error. And thanks to the consistency of the 
estimate in Theorem 1 and the triangle inequality, we establish the second a priori estimate of the term (
u− uεh, σn (u) + 1

ε [uεh · n− �]+
)
.

Theorem 3. Let Ω ⊂ R
d, d = 2, 3, be a polygonal bounded domain, uε and uεh solutions of Problems 

(19) and (37), respectively. Then for any ε > 0 and h > 0, we have the following a priori estimate

‖uε − uεh‖1,Ω +
(
ε

1
2 − ch

1
2

)∥∥∥∥1
ε

[uε · n− �]+ − 1
ε

[uεh · n− �]+
∥∥∥∥

0,ΓC

≤ c
(
‖u− vh‖1,Ω + ‖u− uε‖1,Ω

)
,

for all vh ∈ V h and where c > 0 is a constant independent of u, h and ε.
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Proof. Taking as test functions vh − uεh where vh ∈ V h, we obtain from Problem (37) the following

A(uεh,vh − uεh) + 1
ε

∫
ΓC

[uεh · n− �]+ (vh · n− uεh · n) ds = F (vh − uεh), ∀ vh ∈ V h. (42)

Similarly, considering the same test functions and taking into account of the consistency described at (39), 
we obtain from Problem (19) the following equation

A(uε,vh − uεh) + 1
ε

∫
ΓC

[uε · n− �]+ (vh · n− uεh · n) ds = F (vh − uεh), ∀ vh ∈ V h. (43)

Due to the continuity and ellipticity of the bilinear form A(·, ·) described in (7) and (8), we have

m‖uε − uεh‖2
1,Ω ≤ A(uε − uεh,uε − uεh)

≤ A(uε − uεh,uε − vh) + A(uε − uεh,vh − uεh)
≤ M‖uε − uεh‖1,Ω‖uε − vh‖1,Ω + A(uε,vh − uεh) −A(uεh,vh − uεh),

(44)

for all vh ∈ V h. Then, by Young’s inequality and the triangle inequality, the estimate (44) becomes

m‖uε − uεh‖2
1,Ω ≤ 1

2α‖uε − uεh‖2
1,Ω + αM2

2 ‖uε − vh‖2
1,Ω + A(uε,vh − uεh) −A(uεh,vh − uεh)

≤ 1
2α‖uε − uεh‖2

1,Ω + αM2 (‖uε − u‖2
1,Ω + ‖u− vh‖2

1,Ω
)

+ A(uε,vh − uεh)

−A(uεh,vh − uεh),

(45)

for all vh ∈ V h. For the estimation of the last two terms to the right hand side of the inequality (45), 
equations (42) and (43) are first used to obtain

A(uε,vh − uεh) −A(uεh,vh − uεh) =
∫
ΓC

(
1
ε
[uεh · n− �]+ − 1

ε
[uε · n− �]+

)
(vh · n− uεh · n) ds

=
∫
ΓC

(
1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

)
(uεh · n− uε · n) ds

+
∫
ΓC

(
1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

)
(uε · n− vh · n) ds.

(46)

Using the monotonicity property (10), we estimate the first term in the right hand side of the equality (46)
as follows

∫
ΓC

(
1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

)
(uεh · n− uε · n) ds

= −ε

∫
ΓC

(
1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

)(
1
ε
(uε · n− �) − 1

ε
(uεh · n− �)

)
ds

≤ −ε

∥∥∥∥1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

∥∥∥∥
2

0,ΓC

.

(47)

For the second term in the right hand side of the equality (46), we use the notations in (36), the equality 
in (35) and the Cauchy–Schwartz inequality to obtain
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∫
ΓC

(
1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

)(
uε · n− vh · n

)
ds

=
∫
ΓC

(
1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

)(
(uε − vh) · n−Ph(uε − vh) · n

)
ds

+
∫
ΓC

(
1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

)
Ph(uε − vh) · n ds

≤
∥∥∥∥1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

∥∥∥∥
0,ΓC

∥∥∥((uε − vh) −Ph(uε − vh)
)
· n

∥∥∥
0,ΓC

+
∫
ΓC

(
1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

)
Rh

(
Ph(uε − vh)

)
· n ds.

(48)

We estimate the first term of the right hand side of the inequality (48) using the interpolation (34), the 
Young’s inequality and the continuity of the trace operator

∥∥∥∥1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

∥∥∥∥
0,ΓC

∥∥∥((uε − vh) −Ph(uε − vh)
)
· n

∥∥∥
0,ΓC

≤ ch
1
2

∥∥∥∥1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

∥∥∥∥
0,ΓC

‖uε − vh‖ 1
2 ,ΓC

≤ ch

∥∥∥∥1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

∥∥∥∥
2

0,ΓC

+ c ‖uε − vh‖2
1,Ω

≤ ch

∥∥∥∥1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

∥∥∥∥
2

0,ΓC

+ c
(
‖uε − u‖2

1,Ω + ‖u− vh‖2
1,Ω

)
.

(49)

On the other hand, using the consistence equation (39), the problem (37) and stability properties in (33)
and (35), we estimate the last term of the right hand side of the inequality (48) as follows

∫
ΓC

(
1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

)
Rh

(
Ph(uε − vh)

)
· n ds

= A
(
uε − uεh,Rh

(
Ph(uε − vh)

))
≤ M‖uε − uεh‖1,Ω

∥∥∥Rh
(
Ph(uε − vh)

)∥∥∥
1,Ω

≤ cM‖uε − uεh‖1,Ω

∥∥∥Ph(uε − vh)
∥∥∥

1
2 ,ΓC

≤ cM‖uε − uεh‖1,Ω (‖uε − u‖1,Ω + ‖u− vh‖1,Ω)

≤ 1
α
‖uε − uεh‖2

1,Ω + α (cM)2

2
(
‖uε − u‖2

1,Ω + ‖u− vh‖2
1,Ω

)
.

(50)

Thus taking into account estimates (49) and (50), we rewrite the estimate (48) as follows

∫
ΓC

(
1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

)(
uε · n− vh · n

)
ds

≤ 1
α
‖uε − uεh‖2

1,Ω + c

(
1 + αM2

2

)(
‖uε − u‖2

1,Ω + ‖u− vh‖2
1,Ω

)

+ ch

∥∥∥∥1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

∥∥∥∥
2

.

(51)
0,ΓC
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Combining the inequalities (47) and (51), we rewrite the estimate in (46) as follows

A(uε,vh − uεh) −A(uεh,vh − uεh) ≤ 1
α
‖uε − uεh‖2

1,Ω + (ch− ε)
∥∥∥∥1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

∥∥∥∥
2

0,ΓC

+ c

(
1 + αM2

2

)(
‖uε − u‖2

1,Ω + ‖u− vh‖2
1,Ω

)
.

(52)

Finally, rewriting the estimate (45) by taking into account the inequality (52), we establish the desired 
result (

m− 3
2α

)
‖uε − uεh‖2

1,Ω + ε

∥∥∥∥1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

∥∥∥∥
2

0,ΓC

≤ c

(
1 + 3αM2

2

)(
‖u− vh‖2

1,Ω + ‖uε − u‖2
1,Ω

)
+ ch

∥∥∥1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

∥∥∥2

0,ΓC

,

for α > 3
2m , where c > 0 is independent of u, the penalty parameter ε and the mesh size h. �

Theorem 4. Under assumptions of Theorem 3, if the solution u of Problem (18) belongs to H
3
2+ν(Ω)

with 0 < ν ≤ 1
2 , then for ε > 0 and h > 0, the following estimate holds

‖u− uεh‖1,Ω +
(
ε

1
2 − ch

1
2

)∥∥∥∥σn (u) + 1
ε

[uεh · n− �]+
∥∥∥∥

0,ΓC

≤ c
(
h

1
2+ν + ε

1
2+ν

)
‖u‖ 3

2+ν,Ω , (53)

where c > 0 is a constant independent of u, the penalty parameter ε and the mesh size h.

Proof. Since vh ∈ V h, then let us make the choice vh := I1
h (u) where I1

h is the Lagrange interpolation 
operator mapping onto V h. The standard Lagrange interpolation estimate in the H1(Ω) norm stands for 
(see [11])

‖u− I1
h (u) ‖1,Ω ≤ ch

1
2+ν‖u‖ 3

2+ν,Ω, (54)

where −1
2 < ν ≤ 1

2 .
From Theorem 3, we prove Theorem 4 by taking into account estimates (20), (54), the triangle inequality 

and the penalty parameter chosen as ε > h. �
Remark 4. An important point to emphasize is, throughout the proofs leading to the estimation (53) we do 
not face estimating the contact term in (15). The sub-optimal estimate of this contact term explains the 
quasi-optimal estimate obtained in [6], even if recurrently its optimal estimate was established [10].

Remark 5. In order to determine the induced convergence rate at the estimate (53), we take the penalty 
parameter ε as a function of the size of the mesh, that is, we define it as follows:

ε(h) := chθ,

where c and θ are positive constants to fix.
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• If the penalty parameter behaves like the size of the mesh h, i.e. ε(h) := (c + 1)2 h, we obtain from 
Theorem 4 the following a priori estimate

‖u− uεh‖1,Ω + h
1
2

∥∥∥∥σn (u) + 1
ε

[uεh · n− �]+
∥∥∥∥

0,ΓC

≤ ch
1
2+ν ‖u‖ 3

2+ν,Ω . (55)

The main consequence of the result (55) is the O
(
h

1
2+ν

)
convergence rate obtained under the 

H
3
2+ν(Ω), 0 < ν ≤ 1

2 , regularity and without any additional assumptions on the contact boundary 
ΓC . We thus obtain the same optimal error estimate than the strong finite element approximation of 
the variational inequality (18) established by G. Drouet and P. Hild in [10]. By the Nitsche method, 
this optimal result was also obtained by F. Chouly, P. Hild and Y. Renard (see [7] and [8]).

• On the other hand, if the penalty parameter is defined by ε(h) := c2hθ, 0 < θ < 1, a sub-optimal 
estimate of O

(
hθ

( 1
2+ν

))
convergence rate is obtained from Theorem 4

‖u− uεh‖1,Ω + ch
θ
2

(
1 − h

1−θ
2

)∥∥∥σn (u) + 1
ε

[uεh · n− �]+
∥∥∥

0,ΓC

≤ chθ
( 1
2+ν

)
‖u‖ 3

2+ν,Ω. (56)

Knowing that 
(
1 − h

1−θ
2

)
−→ 1 if h −→ 0.

• If the continuous estimate in (20) remains true for a more regular solution, namely for u ∈ H
3
2+ν(Ω)

with 0 < ν ≤ 3
2 , then the result obtained in Theorem 4 will be valid and optimal for quadratic finite 

elements. Indeed, the steps of the proof of Theorem 3 do not directly use the current finite element. 
The latter only intervened in the estimation (54) which remains valid in the quadratic case.

4.2. A priori estimate of the Tresca friction unilateral contact problem

Similarly to the frictionless problem, we first focus on the convergence of the penalty finite ele-
ment approximation solution 

(
uεh,

1
ε [uεh · n− �]+, 1

ε [uεht ]εg
)

towards the penalized continuous solution (
uε,

1
ε [uε · n− �]+, 1

ε [uεt ]εg
)
.

Theorem 5. Let Ω ⊂ R
d, d = 2, 3, be a polygonal bounded domain, uε and uεh solutions of Problems 

(28) and (40), respectively. Then for ε > 0 and h > 0, we have the a priori estimate

‖uε −uεh‖1,Ω +
(
ε

1
2 − ch

1
2

)(∥∥∥∥1
ε
[uε · n− �]+− 1

ε
[uεh · n− �]+

∥∥∥∥
0,ΓC

+
∥∥∥∥1
ε

[uεt ]εg −
1
ε

[uεht ]εg

∥∥∥∥
0,ΓC

)

≤ c
(
‖u− vh‖1,Ω + ‖u− uε‖1,Ω

)
for all vh ∈ V h and where c > 0 is a constant independent of u, h and ε.

Proof. This proof is established by following the same steps as those of the proof of Theorem 3. First of all 
by the same arguments as those used to establish inequality (45), we obtain the following similar inequality

m‖uε − uεh‖2
1,Ω ≤ 1

2α‖uε − uεh‖2
1,Ω + αM2

(
‖uε − u‖2

1,Ω + ‖u− vh‖2
1,Ω

)
+ A(uε,vh − uεh)

−A(u ,v − u ),
(57)
εh h εh
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for all vh ∈ V h. Instead of the equality (46), taking into account equations (40) and (41) by introducing the 
terms uε · n and uεt , we replace the last two terms to the right hand side of the inequality (57) as follows

A(uε,vh − uεh) −A(uεh,vh − uεh) =
∫
ΓC

(
1
ε
[uεh · n− �]+ − 1

ε
[uε · n− �]+

)(
vh · n− uεh · n

)
ds

+
∫
ΓC

(
1
ε

[uεht ]εg −
1
ε

[uεt ]εg
)
·
(
vht − uεht

)
ds

=
∫
ΓC

(
1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

)(
uεh · n− uε · n

)
ds

(58)

+
∫
ΓC

(
1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

)(
uε · n− vh · n

)
ds

+
∫
ΓC

(
1
ε

[uεt ]εg −
1
ε

[uεht ]εg
)
·
(
uεht − uεt

)
ds

+
∫
ΓC

(
1
ε

[uεt ]εg −
1
ε

[uεht ]εg
)
·
(
uεt − vht

)
ds.

In order to make easier the estimate of the terms in the right hand side of the equality (58), let us denote

T1 :=
∫
ΓC

(
1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

)(
uεh · n− uε · n

)
ds,

T2 :=
∫
ΓC

(
1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

)(
uε · n− vh · n

)
ds,

T3 :=
∫
ΓC

(
1
ε

[uεt ]εg −
1
ε

[uεht ]εg
)
·
(
uεht − uεt

)
ds,

T4 :=
∫
ΓC

(
1
ε

[uεt ]εg −
1
ε

[uεht ]εg
)
·
(
uεt − vht

)
ds.

We already have estimated the term T1 in (47) and obtained

T1 ≤ −ε

∥∥∥∥1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

∥∥∥∥
2

0,ΓC

. (59)

Using the inequalities in (11) under the following form
(
[vt]εg − [wt]εg

)
·
(
vt −wt

)
≥ 0 and

∣∣∣[vt]εg − [wt]εg
∣∣∣ ≤ ∣∣vt −wt

∣∣,
on ΓC for all v, w in V , we estimate the term T3 as follows

T3 = −ε

∫
ΓC

(
1
ε

[uεt ]εg −
1
ε

[uεht ]εg
)
·
(

1
ε

(uεt) −
1
ε

(uεht)
)
ds

≤ −ε

∥∥∥∥1
ε

[uεt ]εg −
1
ε

[uεht ]εg

∥∥∥∥
2

.

(60)
0,ΓC
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For the remaining terms T2 and T4, we use the notations in (36), the equality in (35) and the Cauchy–
Schwartz inequality

T2 + T4 =
∫
ΓC

(
1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

)(
(uε − vh) · n−Ph(uε − vh) · n

)
ds

+
∫
ΓC

(
1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

)
Ph(uε − vh) · n ds

+
∫
ΓC

(
1
ε

[uεt ]εg −
1
ε

[uεht ]εg
)
·
(
(uε − vh)t −Ph(uε − vh)t

)
ds

+
∫
ΓC

(
1
ε

[uεt ]εg −
1
ε

[uεht ]εg
)
·Ph(uε − vh)t ds (61)

≤
∥∥∥∥1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

∥∥∥∥
0,ΓC

∥∥∥((uε − vh) −Ph(uε − vh)
)
· n

∥∥∥
0,ΓC

+
∫
ΓC

(
1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

)
Rh

(
Ph(uε − vh)

)
· n ds

+
∥∥∥∥1
ε

[uεt ]εg −
1
ε

[uεht ]εg

∥∥∥∥
0,ΓC

∥∥∥((uε − vh) −Ph(uε − vh)
)
t

∥∥∥
0,ΓC

+
∫
ΓC

(
1
ε

[uεt ]εg −
1
ε

[uεht ]εg
)
·Rh

(
Ph(uε − vh)

)
t
ds.

By the same arguments as those used in estimation (49), we obtain the estimate of the first and the third 
terms of the right hand side of the inequality (61)

∥∥∥1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

∥∥∥
0,ΓC

∥∥∥((uε − vh) −Ph(uε − vh)
)
· n

∥∥∥
0,ΓC

+
∥∥∥∥1
ε

[uεt ]εg −
1
ε

[uεht ]εg

∥∥∥∥
0,ΓC

∥∥∥((uε − vh) −Ph(uε − vh)
)
t

∥∥∥
0,ΓC

≤ ch

(∥∥∥∥1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

∥∥∥∥
2

0,ΓC

+
∥∥∥∥1
ε

[uεt ]εg −
1
ε

[uεht ]εg

∥∥∥∥
2

0,ΓC

)

+ c
(
‖uε − u‖2

1,Ω + ‖u− vh‖2
1,Ω

)
.

(62)

And by the same process as in estimate (50), we also have the estimate of the second and the fourth terms 
of the right hand side of inequality (61)

∫
ΓC

(1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

)
Rh

(
Ph(uε − vh)

)
· n ds

+
∫
ΓC

(
1
ε

[uεt ]εg −
1
ε

[uεht
]εg

)
·Rh

(
Ph(uε − vh)

)
t
ds

≤ 1 ‖uε − uεh‖2
1,Ω + α(cM)2(‖uε − u‖2

1,Ω + ‖u− vh‖2
1,Ω

)
.

(63)
α 2
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Finally, the sum T2 + T4 is estimated as follows

T2 + T4 ≤ 1
α
‖uε − uεh‖2

1,Ω + c

(
1 + αM2

2

)(
‖uε − u‖2

1,Ω + ‖u− vh‖2
1,Ω

)
+ ch

(∥∥∥∥1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

∥∥∥∥
2

0,ΓC

+
∥∥∥∥1
ε

[uεt ]εg −
1
ε

[uεht ]εg

∥∥∥∥
2

0,ΓC

)
.

(64)

Rewriting the estimate (57) by taking into account the inequalities (59), (60) and (64), we establish the 
desired result from the following

(
m− 3

2α

)
‖uε − uεh‖2

1,Ω + ε

(∥∥∥∥1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

∥∥∥∥
2

0,ΓC

+
∥∥∥∥1
ε

[uεt ]εg −
1
ε

[uεht ]εg

∥∥∥∥
2

0,ΓC

)

≤ ch

(∥∥∥∥1
ε
[uε · n− �]+ − 1

ε
[uεh · n− �]+

∥∥∥∥
2

0,ΓC

+
∥∥∥∥1
ε

[uεt ]εg −
1
ε

[uεht ]εg

∥∥∥∥
2

0,ΓC

)

+ c

(
1 + 3αM2

2

)(
‖u− vh‖2

1,Ω + ‖uε − u‖2
1,Ω

)
,

for α > 3
2m , where c > 0 is independent of u, the penalty parameter ε and the mesh size h. �

Thus, we now focus on the convergence of the approximation solution 
(
uεh,

1
ε [uεh · n− �]+, 1

ε [uεht ]εg
)

towards the solution (u, σn (u) , σt (u)) by combining the Theorem 2 and the Theorem 5.

Theorem 6. Under assumptions of Theorem 5, if the solution u of Problem (27) belongs to H
3
2+ν(Ω)

with 0 < ν ≤ 1
2 , then for ε > 0 and h > 0, the following estimate holds

‖u− uεh‖1,Ω +
(
ε

1
2 − ch

1
2

)(∥∥∥∥σn (u) + 1
ε

[uεh · n− �]+
∥∥∥∥

0,ΓC

+
∥∥∥∥σt (u) + 1

ε
[uεht ]εg

∥∥∥∥
0,ΓC

)

≤ c
(
h

1
2+ν + ε

1
2+ν

)
‖u‖ 3

2+ν,Ω ,

where c > 0 is a constant independent of u, the penalty parameter ε and the mesh size h.

Proof. We establish the Theorem 6 from the Theorem 5, the Theorem 2, and by taking into account the 
interpolation estimate (54) and the triangle inequality. �
Remark 6. A choice of the penalty parameter as a function of the size of the mesh is necessary in order to 
obtain the induced convergence rate in the Theorem 6.

• If ε behaves like the mesh size h, that is ε(h) := (c + 1)2 h, we obtain the a priori estimate

‖u− uεh‖1,Ω + h
1
2

(∥∥∥∥σn (u) + 1
ε

[uεh · n− �]+
∥∥∥∥

0,ΓC

+
∥∥∥∥σt (u) + 1

ε
[uεht ]εg

∥∥∥∥
0,ΓC

)

≤ ch
1
2+ν ‖u‖ 3

2+ν,Ω .

Thus the O
(
h

1
2+ν

)
convergence rate is obtained under the regularity H

3
2+ν(Ω), 0 < ν ≤ 1

2 . In particular 
if ν = 1 , we obtain an optimal linear error estimate.
2
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• Otherwise a sub-optimal choice of the penalty parameter, namely ε = c2hθ with 0 < θ < 1, provides 
the sub-optimal convergence rate of O

(
hθ

( 1
2+ν

))
, 0 < ν ≤ 1

2 .

• If the continuous estimate (29) remains true for a more regular solution, that is for u ∈ H
3
2+ν(Ω) with 

0 < ν ≤ 3
2 , then the result obtained in Theorem 6 (as well as the Theorem 5) would also be valid and 

optimal for quadratic finite elements (since the standard Lagrange interpolation estimate (54) remains 
valid).

5. General conclusion

Through this work, we have analyzed the application of the penalty method to the unilateral contact 
problem with or without Tresca friction. The approach developed here, focusing on the finite element 
approximation of the continuous penalized problems (19) and (28), is the main difference between this work 
and most of works on the subject. This approach has spared us an intrinsic difficulty of the unilateral contact 
problem, that is to have to estimate the contact term in (15) when considering the direct finite element 
approximation of the variational inequalities (18) or (27).

We establish general a priori estimates depending on the penalty parameter ε and the mesh size h. 
A similar behavior of these two parameters, that is to say ε = ch, provides an optimal estimation of the 
unilateral contact problem with the following requirement ε > h.

We finally note that the theorems established throughout the paper (mainly Theorem 3 and Theorem 5) 
remain valid for quadratic finis elements, and a generalization of results (20) and (29) for 0 < ν ≤ 3

2 are 
sufficient to obtain optimal results.
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