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1. Introduction

Let © be a bounded domain in RV with a C?-boundary 09, let 1 < 7 < ¢ < p < 400, and let
f: QxR — R be a Carathéodory function. Consider the Dirichlet problem

—Apu—Agu=u""t + Af(z,u) inQ,
u>0 in Q, (P)\)
u=20 on 0f),

where A > 0 is a parameter while A,., r > 1, denotes the r-Laplacian, namely
Avu = div(|Vu|""2Vu) Yue W, (Q).

The nonhomogeneous differential operator Au := Aj,u + Agu that drives (P)) is usually called (p, ¢)-La-
placian. It stems from a wide range of important applications, including models of elementary particles [8],
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biophysics [9], plasma physics [26], reaction-diffusion equations [7], elasticity theory [27], etc. That’s why
the relevant literature looks daily increasing and numerous meaningful works on this subject are by now
available; see the survey paper [19] for a larger bibliography.

Since 7 < ¢ < p, the function £ — 71 grows (¢—1)-sublinearly at +oo, whereas & — f(z, &) is assumed to
be (p—1)-superlinear near +o0, although it need not satisfy the usual (in such cases) Ambrosetti-Rabinowitz
condition. So, the reaction in (P,) exhibits the competing effects of concave and convex terms, with the
latter multiplied by a positive parameter.

The aim of this paper is to investigate how the solution set of (P,) changes as A varies. In particular, we
prove that there exists a critical parameter value \* > 0 for which problem (P)) admits

o at least two solutions if A € (0, \*),
e at least one solution when A = \*, and
e 1o solution provided A > \*.

Moreover, we detect a smallest positive solution wy for each A € (0, A\*] and show that the map A — )
turns out left-continuous, besides increasing.

The first bifurcation result for semilinear Dirichlet problems driven by the Laplace operator was estab-
lished, more than twenty years ago, in the seminal paper [2] and then extended to the p-Laplacian in [11,16].
These works treat the reaction

Em NI R €20,

where 1 < s < p < r < p*, A > 0, and p* denotes the critical Sobolev exponent. A wider class of
nonlinearities has recently been investigated in [22], while [24] deals with Robin boundary conditions. It
should be noted that, unlike our case, A always multiplies the concave term, which changes the analysis
of the problem. Finally, [4,14,23] contain analogous bifurcation theorems for problems of a different kind,
whereas [20,21] study (p, q)-Laplace equations having merely concave right-hand side.

Our approach is based on the critical point theory, combined with appropriate truncation and comparison
techniques.

2. Mathematical background and hypotheses

Let (X,| - ||) be a real Banach space. Given a set V C X, write V for the closure of V, OV for the
boundary of V', and int x (V') or simply int(V'), when no confusion can arise, for the interior of V. If x € X
and 0 > 0 then

Bs(z):={z€ X : ||z—xz| <d}, Bjs:=Bs(0).

The symbol (X*,|| - ||x+) denotes the dual space of X, (-,-) indicates the duality pairing between X and
X*, while ,, — z (respectively, z,, — z) in X means ‘the sequence {z,} converges strongly (respectively,
weakly) in X’ We say that A : X — X* is of type (S)4 provided

zn = in X, limsup(A(z,),z, —2z) <0 = 1z, >z

n—-+4oo

The function ® : X — R is called coercive if | Hlim ®(z) = +00 and weakly sequentially lower semicontin-
x||—+o0

uous when

Tpn =z in X = &) <liminf &(x,).

n—roo
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Suppose ® € C1(X). We denote by K (®) the critical set of @, i.e.,
K(®):={z e X: ?(z)=0}.
The classical Cerami compactness condition for ® reads as follows:

(C) Every {z,} C X such that {®(x,)} is bounded and (1 + ||z,|)®' (x,) — 0 in X* has a convergent
subsequence.

From now on, Q indicates a fixed bounded domain in RY with a C%-boundary 9. Let u,v : © — R be
measurable and let ¢ € R. The symbol u < v means u(z) < v(x) for almost every x € Q, t+ := max{+t, 0},
u®(-) := u(-)*. If u,v belong to a function space, say Y, then we set

v :={weY:u<w<v}, [u)={weY:u<w}.

The conjugate exponent r’ of a number r > 1 is defined by ' := r/(r — 1), while r* indicates its Sobolev
conjugate, namely

. % when r < N,
r* =
400 otherwise.
As usual,
1/r 1/r
lull- :== /\u|r dx Vue L"(Q), |ulir:= /\Vu\rd:r Yuée WOI’T(Q),
Q Q

and W17 () denotes the dual space of W, (€2). We will also employ the linear space C3(Q) := {u €
CH(Q) : ulpa= 0}, which is complete with respect to the standard C*(Q)-norm. Its positive cone

Cy:={uecCyQ):u(x)>0in Q}

has a nonempty interior given by
. ou
int(Cy)=<quelCi:ulz)>0 VreQ, a—(a:)<0 Veed,.
n

Here n(z) denotes the outward unit normal to 90 at x.
Let A, : Wy (Q) — W17 (Q) be the nonlinear operator stemming from the negative r-Laplacian, i.e.,

(A (u),v) = / |Vu""2Vu - Vodz, u,ve W) (Q).
Q
We know [12, Section 6.2] that A, is bounded, continuous, strictly monotone, and of type (S)i. The

Liusternik-Schnirelmann theory gives an increasing sequence {\, .} of eigenvalues for A,. The following
assertions can be found in [12, Section 6.2].

(p1) A1, is positive, isolated, and simple.
(p2) Ilully < <—lull7 . for all u € Wy ().

)\1,7‘
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(ps) A1, admits an eigenfunction ¢y , € int(C4) such that ||¢1 .||, = 1.

Proposition 13 of [6] then ensures that

(pa) If r # 7 then ¢1, and ¢ are linearly independent.

Let g: 2 x R — R be a Carathéodory function satisfying the growth condition
lg(z,t)] <a(z) (1+[t)*7!) in QxR,

where a € L*°(R), 1 < s < p*. Set G(z,£) : fo x,t) dt and consider the C'-functional ¢ : Wl’p(Q) —R
defined by

1 1
p(u) = ];HVUIH? + 6\|VUI|Z - /G(LU(x))dI, ue Wy(Q).
Q

Proposition 2.1 (/13], Proposition 2.6). If ug € Wy*(Q2) is a local C§(Q)-minimizer of ¢ then ug € C*(Q)
for some a € (0,1) and ug turns out to be a local WP ()-minimizer of .

Combining this result with the strong comparison principle below, essentially due to Arcoya-Ruiz [3],
shows that certain constrained minimizers actually are ‘global’ critical points. Recall that, given hi,hy €
L>=(6),

hi1 < hy <— essKinf (ha — h1) > 0 for any nonempty compact set K C Q.

Proposition 2.2. Let a € Ry, hy,hy € L®(), uy € C3(Q), ug € int(Cy). Suppose hy < hy as well as
—Apu; — Aqu; + alui|P"2u; = hy in Q, i=1,2.
Then, ug —uy € int(Cy).

Throughout the paper, ‘for every x € €2’ will take the place of ‘for almost every x € 2, cg, c1, ... indicate
suitable positive constants, f : Q x R — R is a Carathéodory function such that f(-,t) = 0 provided ¢ < 0,
while F(z,¢) : fo f(z,t)dt.

The following hypotheses will be posited.

(hy) There exist 6 € [,q] and r € (p,p*) such that
ettt < fat) <o (BTN V(a,t) e Qx Ry,

where c; > A q.
(hy) lim £ — 4 oo uniformly with respect to = € .

£——+o0 &r
(h3) lglm inf M > c¢3 uniformly in z € Q. Here, 8 > 7 and
—+o0

(r—p)max {Np~',1} < B < p*.

(hs) To every p > 0 there corresponds p, > 0 such that ¢ — f(z,t) 4+ p,t?~! is nondecreasing in [0, p| for
any x € €.
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By (ha)—(hs) the perturbation f(z,-) is (p — 1)-superlinear at +oco. In the literature, one usually treats this
case via the well-known Ambrosetti-Rabinowitz condition, namely:

(AR) With appropriate M > 0, ¢ > p one has both essQinf F(-,M) >0 and

0<oF(z,8) < f(z,8E, (2,8) €Qx[M, +o0). (2.1)
It easily entails ¢3£7 < F(z,€) in Q X [M, 4+00), which forces (hs). However, nonlinearities having a growth
rate ‘slower’ than t°~! at +oo are excluded from (2.1). Thus, assumption (hs) incorporates in our framework

more situations.

Example 2.3. Let ¢ > Ay 4. The functions f1, fo : R4 — R defined by

Pl et i 0<t <,
fi(t) = { 2 . fo(t) == "7 log(1 +1) +eat?™F, ¢ € Ry,

1 4 eptd! otherwise,
satisfy (h;)—(hy). Nevertheless, f; alone complies with condition (AR).
3. A bifurcation-type theorem

Write Sy for the set of positive solutions to (P,). Lieberman’s nonlinear regularity theory [18, p. 320]
and Pucci-Serrin’s maximum principle [25, pp. 111,120] yield

S)\ Q 1Ht(C+)

Put £ := {X > 0 : S\ # 0}. Our first goal is to establish some basic properties of £. From now on,
X =Wy (Q) and |- || == | - [|1,p-

Proposition 3.1. Under (hy) one has L # 0.
Proof. Given A > 0, consider the C''-functional ¥y : W, ?(Q) — R defined by

u()
1 1
Uy (u) = ]—?||Vu||£ + 6||Vu||g — /dz / a(t)dt Yuce Wol’p(Q),
Q 0

where
(@) = ()T deo [N (¢, teR.

Evidently, g, fulfills (2.1) once o € (p,r) and M > 0 is big enough. So, condition (C) holds true for ¥y.
Moreover,

u€int(Cy) = til?oo Uy (tu) = —o0

because r > p. Observe next that if s € [1,p*] then

Julls < cflu
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with C' := C(s,Q). This easily leads to

1 T
Ua(u) = EHUH” — callul” = Xes [[lul® + lull"]
1 (3.1)
=15 callal ™7 = Acs (Jlul*7P + ul"P) | s we X.
Let us set, for any ¢ > 0,
’Y)\(t) = C4tT_p + )\05(t9_p + tr—p)7 ’?)\(t) = (04 + )\05)t7—_p + 2>\C5tr_p.
From 7 < 6 < p < r it follows Aest? P < Aes (¢77P + ¢7P), which implies
0 < () <) in (0,+00). (3.2)

Since lim A\(t) = lim 45(t) = 400, there exists to > 0 satisfying 44 (to) = 0. One has
t—0t+ t——+oo

1

(ca+Aes)p—71)]7 "
2Xes(r — p)

to = to(/\) =
and, via simple calculations, )\lir(rler Ax(to) = 0. On account of (3.1)—(3.2) we can thus find Mg > 0 such that
—

Uy(u) >my >0=T,(0) forallue dB(0,ty), A€ (0, ).

Pick A € (0, ). The mountain pass theorem entails V) (uy) = 0 and Wx(ux) > m, with appropriate
uy € X. Hence,

(A (2) + Aq(i12), ) = / ()™ + Ao (@0 + @) Y)] vde, ve X, (3.3)
Q

and 4y # 0. Choosing v := —u) in (3.3) yields ||Vu, [|F + ||[Vuy || = 0, namely u, = 0. This forces uy > 0
while, by (3.3) again,

—Apiy — Agtiy =} "+ Aeg (@§ T +ayt) in Q.

Lieberman’s nonlinear regularity theory and Pucci-Serrin’s maximum principle finally lead to uy € int(Cy).
Now define, provided (z,£) € Q x R,

- {(5+)T-1+Af<x,s+) HESD@) oo,

Iz, &) = tx ()71 + Af(x, ix(z))  otherwise,

¢
/f,\(x,t) dt.
0

An easy verification ensures that the associated C'!-functional
= 1 » 1 q _
Pr(u) == EHVUIIp + QIIVUH(, — | Ex(z,u(z))dz, ueX,
Q

is coercive and weakly sequentially lower semicontinuous. So, it attains its infimum at some point u) € X.
Assumption (h;) produces
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<I>,\(u,\) <0= @,\(0),

i.e., uy # 0, because 7 < ¢ < p. As before, from

(Ap(ur) + Ag(un), / (z,ur(x))v(z)de VveX (3.4)
Q

we infer uy > 0. Test (3.4) with v := (u) — ux)™, exploit (h;) again, and recall (3.3) to arrive at

(Ap(ux) + Ag(un), (ux —un)*) = / (a5~ + AfCun)] (un — ax) Tda

Q

< / [ 7" 4+ Aeo (@ + a5 )] (un — n) Tda
Q

= (A (y) + Ay(u), (ux —ux)"),

which entails uy < u) by monotonicity. Summing up, uy € [0,u,] \ {0}. On account of (3.4), one thus has
uy € Sy for any A € (0, Ag). This completes the proof. O

Our next result ensures that £ is an interval.
Proposition 3.2. Let (hy) be satisfied. If A € £ then (0,\) C L.
Proof. Pick 4 € S5, A € (0, 5\), and define, provided (z,&) € Q x R,

A (ENT V4 Nf(z, &t) i€ <a(x), .
z,§&) = \(x,§) := x,t)dt
Ix@,6) {ﬁ( )L+ Af(x,a(x)) otherwise, A@,6) /f/\( )

0

The associated energy functional

A

1 1 .
Ba(w) = IVallp + Vully — [ Ao u@)do, ue X,
Q
turns out coercive, weakly sequentially lower semicontinuous, besides C'. Now, arguing exactly as above
yields the conclusion. 0O
A careful reading of this proof allows one to state the next ‘monotonicity’ property.

Corollary 3.3. Under hypothesis (hy), for every e L, us € S5, and X € (O,;\) there exists uy € Sy such
that uy < usy.

Actually, we can prove a more precise assertion.

Proposition 3.4. Suppose (hy) and (hy) hold. Then to each \ecL, us € S5, A € (0,5\) there corresponds
ux € Sy fulfilling ug —uy € int(Cy).
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Proof. Write p := [Jus||oc. If 11, is given by (hy) while uy comes from Corollary 3.3 then

—Apus — Aqus + )\upu’;l = ug_l + S\f(:n,uj\) + )\upu’;l
= ugfl + Af(z,ug) + Aupuﬁf\*l +(A— M) f(x,uy) (3.5)

1

> u;r\*l + A f(z,un) + Appud " = —Apuy — Aquy + )‘ﬂpuiil

~

because uy < us and f(x,t) > 0 once t > 0. The function h(x) := (A = A) f(z,us(z)) lies in L>°(2). Indeed,
on account of (h;), we have

0 < h(z) < co(h = N) [l + )] Ve
Pick any compact set K C Q. Recalling that u; € int(C ) and using (h;) again gives
h(x) > (A= A) [erus (2)P 7 + couy (2)171] > <01 i%fu];*l + e i%fugfl) >0, r€Q,
whence 0 < h. Now, (3.5) combined with Proposition 2.2 entails u5 — uy € int(Cy). O
The interval £ turns out to be bounded.
Proposition 3.5. Let (hy) and (hs) be satisfied. If \* := sup L then \* < oo.

Proof. Fix A € L, uy € Sy. Note that we can suppose A > 1, otherwise £ would be bounded, which of
course entails \* < oo. Define

A [C1(§+)p_1 + 02(§+)q_1] if € < uA(x),

Aferua(@)P! + coun(2)971]  otherwise,

3
ax(z, &) == { Ga(z, &) :== | ga(x,t)dt
/

for every (z,£) € Q@ x R, as well as

1 1
W) = [ Vullp+ <Vl - / Ga(e,u(z))dr, ueX.
Q

The same arguments employed before yield here a global minimum point, say uy, to ¥y. So, in particular,

(A () + Ay (@n), 0) = / (@, r(2))v(x) de Yo e X, (3.6)
Q
Choosing v := —u, first and then v := (ux — ux)" we obtain uy € [0,u,]; cf. the proof of Proposition 3.1.

Since, by (ps) in Section 2, uy, ¢1 4 € int(C ), through [22, Proposition 1] one has t¢1 o < uy, with ¢ > 0
small enough. Thus, on account of (p3) again,

U (t614) = %wal,q)ug 4 §||v<t¢17q>uz - / G2, tn4(2)) de
Q

7 , ot . o,
:$||V¢1,q||p+;|\v¢1,q||q— A 615¢1,q+025 1,4 | dx
)

9 nall2 + Erig = Aer Sli6 s — Aca
= — Lallp T —A1,g — ACL—||@1,4|lp — AC2—
p gt p q
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7 , 1
< —IVorgllp + — (A1g — Ac2)
p q
¢ p P q
< = [Vorqllh + =A1q(1 = A) = c6t? — cqt.
p q
Now, recall that ¢ < p and decrease t when necessary to achieve
\I’)\(ﬂ)\) = H}énWA < \I/)\(tqm’q) <0= \1/)\(0),
i.e., uy # 0. Summing up, uy € [0,ux]\ {0}, whence, by (3.6), it turns out a positive solution of the equation
—Apu — Agu = ey [ulP?u+ Aea|ul2u in Q.
Due to [5, Theorem 2.4], this prevents A from being arbitrary large, as desired. O

Le us finally prove that £ = (0, \*]. From now on, ®, : X — R will denote the C'-energy functional
associated with problem (P,). Evidently,

1 1 1
B () = 7Vl + 2 [Vl = 2| - A/F(m,qﬁ(m)) dr VueX. (3.7)
Q

Proposition 3.6. Under (hy), (hs), and (hy) one has \* € L.

Proof. Pick any {\,} C (0, \*) fulfilling A, T A*. Via Corollary 3.3, construct a sequence {u,} C X such

that u, € S\, un < upy1. Then

n?

(Ap(upn) + Ag(uy),v) = /u:;lv dz + )\n/f( Jup)vde, ve X. (3.8)
Q Q

We can also assume @y (u,,) < 0 (see the proof of Proposition 3.1), which means

D D r
9l + 2Vl = L = e / PP (e, un () dz < 0. (3.9)
Q

Testing (3.8) with v := u,, gives

IVtnE + [Vt |9 = [finT + A / £y un Y do (3.10)
Q

Since g < p while Ay < )\, from (3.9)—(3.10) it follows

1
J ¢ umun = pFC ulde < 5 (2= 1) Jual ¥nen. (3.11)
)\1 T
Q
Observe next that, thanks to (h;) and (hs), one has

f(l',f)é.*pF(SC,f) 26856*69 in XR+.

Consequently, (3.11) becomes
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L (p
esllunll§ < 3 (2 = 1) Nuall7 + €10 < enrllunllf +-c10, neN,

because 7 < . This clearly forces
||’Z,Ln||ﬁ § C12 Vn eN.

If » < f then {u,} turns out also bounded in L"(2). Using (3.10) besides (h) entails

ltnll? < [Fun 2+ [Fatn |4 < |7 + A* / £ty da
Q

<17+ Mo / (b + ul) de
Q

< IO Yl Xeo [ 10+ u7) + ) da
Q

whence {u,} C X is bounded. Suppose now 8 < r < p*. Two cases may occur.

1) p< N. Let t € (0,1) satisty

L_ 1ot ot
r g pr

The interpolation inequality [12, p. 905] yields ||uy, |, < ||unHé_t||un

t-. Via (3.12) we thus obtain

lunlly < ci3l|un ;,’l, ncN.
Reasoning exactly as before and exploiting (3.15) produce

[unll? < IVl + [IVunll§ < c1a (1+ [lun

;,C) < ci5 (1 + ||UnHtT) .

Finally, note that tr < p. Indeed, (r fp)% < (8 due to (hg), while

r—8 <2 = (T—p)%<ﬁ;

tr<p <=
p*—pB p*

cf. (3.14). Now, the boundedness of {u,} C X directly stems from (3.16).

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

2) p > N, which implies p* = +o00. We will repeat the previous argument with p* replaced by any o > r.

Accordingly, if ¢t € (0, 1) fulfills % = % + 5 then tr = 01(7%56) Since, thanks to (hs) again,

lim 40(7" )

o——+o00 O'—B :T_ﬁ<p7

one arrives at tr < p for o large enough. This entails {u,} C X bounded once more.
Hence, in either case, we may assume

up, = u* in X and wu, —u" in L"(Q),

(3.17)

where a subsequence is considered when necessary. Testing (3.8) with v := u,, —u* thus yields, as n — +o0,
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lim (Ap(upn) + Ag(un), un —u*y =0,

n——+oo

whence, by monotonicity of A,

lim sup [(Ap(un), un — ™) + (Ag(u), uy, —u™)] < 0.

n—-+oo

On account of (3.17) it follows

lim sup( A, (up), un, —u*) < 0.

n—-+oo
Recalling that A, enjoys the (S)i-property, we infer u, — u* in X, besides 0 < w,, < u* for all n € N.
Finally, let n — 400 in (3.8) to get
(Ap(u™) + Ag(u™),v) = /(u*)T_lv dzr + )\*/f( ,u )vde Vo € X,
Q Q

i.e., u* € Sy~ and, a fortiori, \* € L. O
Some meaningful (bifurcation) properties of the set Sy will now be established.

Proposition 3.7. Suppose (hy1)—(hy) hold true. Then, for every A € (0, \*), problem (P ) admits two solutions
ug, @ € int(CL) such that ug < 4. Moreover, ug is a local minimizer of the associated energy functional ®y.

Proof. Fix A € (0, \*) and choose n € (A, \*). By Proposition 3.2, there exists u, € S,, while Proposition 3.4
provides ug € Sy satisfying

ug € int ey (g ([0, uy)). (3.18)

The same reasoning adopted in the proof of Proposition 3.2 ensures here that wug is a global minimum point
to the functional

1 1
D) 1= [Vl + < [Vl - / Fy(z,u(z)) dz, ueX,
Q

where F) ,(z,€) := f(f (. t)dt, with

EH) T+ A (. €7) if € < uy(w),
(@)1 + Af(@,uy(z))  otherwise.

fA,'r?(xaé-) = {

By (3.18), ug turns out a local Cg(Q)-minimizer of ®y, because ®x|o,u,]= Prnljo,u,]- Via Proposition 2.1
we then see that this remains valid with C}(Q) replaced by X. Set

up(z)™ 1+ Af(x,up(x)) if € < ug(x),

fo(z, &) == {57_1 + A f(2,6) otherwise,

Fo(z,€) = / fola, ) d, (3.19)

(z,€) € Q xR, as well as
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1 1
Dy (u) := ];HVUHZ + QHVUHZ — | Fo(z,u(z))dx YueX. (3.20)
Q

From (3.19) and the nonlinear regularity theory it follows ug € K(®¢) C [ug) N int(C4). We may thus
assume

K(‘bo) n [UQ,UW} = {UO}, (3.21)

or else a second solution of (P,) bigger than uy would exist. Bearing in mind the proof of Proposition 3.6
and making small changes to accommodate the truncation at ug(z) shows that ®¢ satisfies condition (C).
Let us next truncate fo(x,-) at u,(x) to construct a new Carathéodory function f, with primitive F' and
associated functional ®, defined like in (3.20) but replacing Fy by F. Evidently,

K(®) = K(®0) N [ug, uy),

whence K (®) = {ug} because of (3.21). Since ® is coercive and weakly sequentially lower semicontinuous, it
possesses a global minimum point that must coincide with ug. An easy verification gives ®q L[Ov“n]: P L[Oﬂw]'
So, thanks to (3.18), ug turns out a local C3(Q)-minimizer of ®,. This still holds when X replaces C}(9Q);
cf. Proposition 2.1. We may suppose K (®Pg) finite, otherwise infinitely many solutions of (P,) bigger than
ug do exist. Adapting the argument exploited in [1, Proposition 29] provides p € (0,1) such that

D (ug) < mo :=inf{Po(u) : [[u — ug| = p}. (3.22)

Finally, if v € int(CY) then simple calculations based on (hg) entail ®g(tu) — —oo as t — +o00. Therefore,
the mountain pass theorem can be applied, and there is @ € X fulfilling

u e K(‘I’o), (bo(ﬂ) > mg. (323)

Via (3.22)—(3.23) one has ug # @ while the inclusion K (®g) C [ug) Nint(C) forces ug < @, which ends the
proof. O

Proposition 3.8. Under (hy)—(hy), the solution set Sy admits a smallest element uy for every \ € L.

Proof. A standard procedure ensures that Sy turns out downward directed; see, e.g., [10, Section 4].
Lemma 3.10 at p. 178 of [17] yields

essinf Sy = inf{u, : n € N} (3.24)
for some decreasing sequence {u,} C Sy. Consequently, 0 < u,, < wu; and

(Ap(upn) + Ag(un),v) = / [l P+ Af( un)] vde Vv e X. (3.25)
Q

Due to (hy), testing (3.25) with v := wu,, we thus obtain

lunll” < \IVun\|§+\|Vun||3=/[UZ+Af(-»un)un]dw
Q

< / [uf, + Aco (uf, +ul)] dz < / [u] + Aco (uf +ul)]dz, neN,
9) Q
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namely {u,} C X is bounded. Like before (cf. the proof of Proposition 3.6), this gives u,, — @y in X, where
a subsequence is considered if necessary. So, from (3.25) it easily follows

@%@Q+Aﬂmyw:/t@4+Aﬂwmﬂvm:VveX

Showing that uy # 0 will entail @y € Sy, whence the conclusion by (3.24). To the aim, consider the problem
—“Apu—Agu=u"""in Q w>0in Q u=0 on O (3.26)

Its energy functional
cI>()*1||V Hp+1||V 13 1|| 17 €X
o(u) := —||Vu —IVul|d — =Jlu™ |7, u ,
P Pyg ¢ 7

turns out coercive and weakly sequentially lower semicontinuous. Hence, there exists @ € X satisfying
®p(a) = infx Pg. One has @y # 0, because Pg(i) < 0 = Pg(0) (the argument is like in the proof of
Proposition 3.5). Further, ®( (@) = 0, i.e.,

(Ap(a) + Aq(@),v) = /(ﬂJr)T*lv dxr VYveX.
)

Choosing v := —u~ we see that u is a positive solution to (3.26). Actually, & € int(C,) and, through a

standard procedure [15, Lemma 3.1], @ turns out unique.
Claim: o < u for all u € S).

Indeed, for any fixed u € S, define

w(x)
1 1
W(w) = | Vulp+ [Vl - [do [ g@nan wex.
p q 2 )
where
th™1 ift < ,
g(x,t) :== ") i < ufe) V(x,t) € Q xR.
u(x)™™1  otherwise

The following assertions can be easily verified.
e U(u*) =infx ¥, with appropriate u* € X.
e U(u*) < 0= T(0), whence u* # 0.

o u* e K(U) C0,ulNCy.

Therefore, u* is a positive solution of (3.26). By uniqueness, this implies u* = @. Thus, a fortiori, @ < w.
The claim brings @ < u,, n € N, which in turn provides 0 < @ < u), as desired. O

Let us finally come to some meaningful properties of the map

k:NeL—ayeCln).
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Proposition 3.9. Suppose (hy)—(hy) hold true. Then the function k is both

(i1) strictly increasing, namely Gy, — uyx, € int(Cy) if A1 < A2, and
(ia) left-continuous.

Proof. Pick A1, A2 € £ such that A\; < Ag. Since uy, € S),, Proposition 3.4 yields uy, € Sy, fulfilling
Uy, — Uy, € int(Cy), while Proposition 3.8 entails uy, < uy,. Hence, uy, — @y, € int(C). This shows (ij).
If A, = A~ in £ then, by (i1), the sequence {uy, } turns out increasing. Its boundedness in X immediately
stems from (hy); see the previous proof. Now, repeat the argument below (3.17) to arrive at
Uy, — Uy in X, (3.27)
whence @) € Sy Cint(Cy). We finally claim that @y = u). Assume on the contrary
ux(xo) < Uxr(xg) for some zg € €. (3.28)
Lieberman’s nonlinear regularity theory gives {i,} C C3*(Q) as well as
||ﬂ)\n||03,a(§) <cg VneN.
Since the embedding Cy®(Q) < CA(Q) is compact, (3.27) becomes
ﬂ)\n — Uy in Cé(ﬁ)

Because of (3.28), this implies uy(zo) < uy, (x¢) for any n large enough, against (i;). Consequently, @y = uy,
and (iz) follows from (3.27). O

Gathering Propositions 3.1-3.9 together we obtain the following

Theorem 3.10. Let (hy)—(hy) be satisfied. Then, there exists \* > 0 such that problem (P)) admits

(j1) at least two solutions ug, @ € int(Cy), with ug < 4, for every A € (0, A*),
(j2) at least one solution u* € int(Cy) when X\ = \*,

(js) mo positive solutions for all X > \*,

(ja) a smallest positive solution uy € int(Cy) provided A € (0, \*].

Moreover, the map X € (0, \*] = uy € CL(Q) is strictly increasing and left-continuous.
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